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Abstract: The development of on-board sensors, such as inertial measurement units (IMU), has made
it possible to develop new methods for analyzing horse locomotion to detect lameness. The detection
of spatiotemporal events is one of the keystones in the analysis of horse locomotion. This study
assesses the performance of four methods for detecting Foot on and Foot off events. They were
developed from an IMU positioned on the canon bone of eight horses during trotting recording
on a treadmill and compared to a standard gold method based on motion capture. These methods
are based on accelerometer and gyroscope data and use either thresholding or wavelets to detect
stride events. The two methods developed from gyroscopic data showed more precision than those
developed from accelerometric data with a bias less than 0.6% of stride duration for Foot on and 0.1%
of stride duration for Foot off. The gyroscope is less impacted by the different patterns of strides,
specific to each horse. To conclude, methods using the gyroscope present the potential of further
developments to investigate the effects of different gait paces and ground types in the analysis of
horse locomotion.

Keywords: horse; locomotion; gait events; biomechanics; inertial measurement units; methods
comparison; stride segmentation

1. Introduction

The analysis of the locomotion is an essential point for the monitoring of the physical integrity
of the sport horse [1]. During locomotion, the distal limbs of the horse behave like a spring-mass
system that stores energy during the damping phase when the hoof is down on the ground and
restores it during the propulsion phase [2]. Consequently, the anatomical structures of the horse′s
limb are subjected to high mechanical stress during locomotion [3]. In addition, mechanical stress
could be emphasized by the nature of the ground [4] or the movement performed [5] i.e., landing after
jumping a vertical fence [6]. These mechanical stresses repeated during the sporting exercise can
lead to micro-lesions possibly leading to more serious injury causing lameness [7]. In the worst case,
this leads to large veterinary costs and convalescence for the horse.

Head and pelvis movements are the most common criteria in locomotion analysis for the detection
and localization of lameness in horses [8–10]. These movements need to be analyzed in conjunction
with accurate detection of the left and right stance phases. This study is a preliminary step to the
development of an on-board tool for the detection of degradation of horse locomotion. For this purpose,
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easy to use equipment is needed in order to make it useable in the field. The horse boots being a
commonly used equipment to protect the horse limbs, we chose to explore the possibility to measure
gait events at the level of the boots.

The identification of gait events in human locomotion based on inertial measurement units
(IMU) data is currently a vivid research area [11,12]. Several methods are proposed using the
accelerometer data [13,14] or the gyrometer data [14,15] based on threshold [16] or signal pattern
identification [17]. However, each method presented advantages and limitations, and necessary direct
comparison would help to define its informed applications. Horse locomotion being very different
from human locomotion [18], the use of IMUs for horse locomotion analysis requires the development
of specific methods.

The detection of spatiotemporal events, i.e., Foot on and Foot off timings, is an essential step for
data preprocessing in order to segment the data and then calculate the locomotor parameters. This step
is the keystone for the analysis of the locomotion of the horse [19], especially for the next detection of
lameness [20]. Different methods have been explored to detect these events by force plate [21–23] or
kinematic recordings [24–26]. In laboratory conditions, these methods are reliable but require specific
equipment such as a force plate or a full motion capture (MoCap) system. New versatile methods
based on the use of inertial measurement units (IMUs) allow on-board recordings of locomotion and
in-field sessions [27,28].

Due to the fact that IMU records accelerations and rotational velocities, signal processing is required
to detect specific spatiotemporal events of the horse locomotion. Signal processing methods, based
on the coupled use of several IMUs on the horse, have been the subject of several studies [20,27–29].
These studies have provided methods for the precise detection of stride events from the combined
use of IMUs positioned on the trunk and distal limbs [20]. The combined use of eight IMUs on
specific anatomical areas has allowed the analysis of several locomotor parameters important for
the analysis of locomotion and the quantification of lameness [27]. Other studies have developed
methods of locomotion analysis from a single sensor, with, for example, the use of a geometric model
to estimate the movements of the tuber coxae from an IMU positioned on the sacrum [28] or the use of
an accelerometer positioned on the hoof [29]. This last study showed artefacts in the measurements
which limits its usefulness in the precise evaluation of the locomotion of the horse. Few studies have
focused on the development of the locomotion analysis method from IMU positioned only on the
distal part of the limbs [30,31]. The first study [30] is based on the analysis of the symmetry of the
gait at each stride cycle but did not detect the precise events delimiting the stance phase. The second
study [31] evaluated the performance of four methods developed from signals of an IMU positioned
on the distal horse’s limb to detect the two events delimiting the stance phase, named Foot on and
Foot off. Despite the encouraging performance of this study, the explanation of the methods used was
not fully detailed.

The objective of this study is to explore different methods of detecting Foot on and Foot off events
in order to increase the precision of on-board measurements of stride events. Four methods were
developed from the signals of an IMU positioned on the distal front limb and compared using a
reference MoCap system to assess accuracy.

2. Materials and Methods

2.1. Animals

Eight sound horses of trotting breeds (four geldings and four mares, height 162± 3 cm (mean ± sd))
from the “Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines” (CIRALE)
were included in the study. Prior to the procedure, the protocol was examined and approved by
the dedicated ethics committee on animal investigation (Comité National de Reflexion Ethique sur
l’Experimentation Animale, Anses/ENVA/UPEC n◦HE_2017_01).
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2.2. Data Acquisition

Data acquisition included motion capture sessions with a marker-based system and IMUs (Figure 1).
Motion capture was used to track horse limbs kinematics by 3D displacements of anatomical markers
and marker clusters. Eighteen cameras (Vicon T160, Oxford Metrics Ltd., Oxford, UK) at full resolution
4704 × 1728, sampling at 200 Hz, were set up on both sides of a high-speed treadmill (Protrainer,
Hippocenter, Saint-Paul du Verney, France) (Figure 2). Eight horses were equipped with 10 reflective
kinematic markers, with a radius of 5 mm and 10 mm (only the 2 markers positioned in the center
of each IMU) on the right forelimb and withers. The size of the mocap’s marker is a compromise to
determine the smallest size possible allowing the optical detection, the 3D tracking, and risk of removal
according to the high acceleration of the horse’s limb during locomotion. Two IMUs (ProMove-mini,
Inertia Technology BV, Enschede, The Netherlands) with a full-scale range of 16 g, 2000 ◦/s, 16 bits,
sampling at 500 Hz, were also positioned, for the first one, on the distal front limb of the horse, in the
center of the dorsal side of the third metacarpal bone, and for the second, on the wither, used for
system synchronization. The positioning of the IMU of the distal limb was carried out so as to align
the Y-axis of the gyroscope with the axis transverse to the canon bone. The recordings of the two IMUs
are managed by the gateway Inertia which ensures the synchronization (offset <100 ns) between the
two sensors. Each horse performed three trot passes on a treadmill at a speed of 4 m/s, which is a
usual speed at which horses are observed during clinical examination [32,33]. At least 25 strides were
recorded at a steady speed for each trial. To synchronize the marker-based MoCap system with the
IMU system, an additional kinematic marker was used to strike the IMU marker positioned on the
wither at the beginning and at the end of each trial.
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Figure 1. Placement of the two IMUs (represented in red) and the kinematics markers according to
points of interest: six at anatomical points: carpal joint, metacarpo-phalangeal joint, hoof (toe, heel,
front coronary band, lateral coronary band), one at the center of wither’s IMU and three on canon
bone’s IMU (center, up lateral part, down lateral part). One additional free marker was used for
synchronization keystroke on the wither’s marker.
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Figure 2. Positioning of Vicon cameras (in black) around the treadmill (in blue) to record the locomotion
of the limbs of the right side of the horses. The orange crosses represent the different experimenters
and their control tables (computers with software for MoCap and IMUs and treadmill control panel)
are shown in gray.

2.3. Data Processing

Data processing included five steps: (1) the raw data management, (2) the synchronization
between the marker-based and IMU motion data, (3) marker-based data processing, (4) IMU data
processing, and (5) statistical analysis.

First, the raw measurements of both motion-capture systems were managed. From the
marker-based system, 3D coordinates for each marker named MoCap data were computed by
the manufacturer’s dedicated software (Nexus 2.8.0, Oxford Metrics Ltd., Oxford, UK). From IMUs,
3D accelerations and rotational velocities, named IMU data, were extracted from the dedicated software
(InertiaStudio, Inertia Technology BV, Enschede, The Netherlands). Then MoCap and IMU data were
processed by calculation software (Matlab R2019b, The MathWorks Inc., Natick, MA, USA).

Second, data from the Mocap system and IMU were homogenized at 500 Hz using a continuous
derivative interpolation function. Once the sampling frequency was standardized, a synchronization
process has been performed. On the data coming from the IMU positioned on the wither and from
the kinematic marker fixed on the center of this IMU, the peaks corresponding to the synchronization
keystrokes made at the start and end of recording were detected. Data were cut down to keep only the
data between these two peaks on each of the systems. A correlation calculation was performed from
the vertical position of the wither from the kinematic data and the IMU data to ensure that the data of
the two systems were well synchronized. The average correlation value for all the trials of the eight
horses is 0.84 ± 0.09.

Third, the locomotion parameters calculated from the MoCap were used to define the beginning and
the end of the stance phase for each recorded stride. These events labeled respectively MoCapFootOn(i)
and MoCapFootOff(i) of i-th gait cycle, were calculated using the method validated by Merkens and
Schamhardt [22], with i equal 1 to n and n > 25. The stride duration named MoCapStrideDuration(i)
(Equation (1)) and the stance phase duration MoCapStanceDuration(i) (Equation (2)) of the the i-th gait
cycle were computed with MoCapFootOn(i) and MoCapFootOff(i) frames.

MoCapStrideDuration(i) = MoCapFootOn(i +1)-MoCapFootOn(i) (1)

MoCapStanceDuration(i) = MoCapFootOff(i)-MoCapFootOn(i) (2)



Sensors 2020, 20, 2983 5 of 14

The fourth step was the data processing of the IMU data which included 2 substeps. The first
substep was the windowing of the IMU data. From the low pass filtered signal (2nd-order lowpass
Butterworth filter with a cutoff frequency of 20 Hz) of the Y-axis of the gyroscope, each maximum peak
was identified (Figure 3). This filter eased to identify the cycle pattern of the gait cycle as we noticed
that the average stride frequency for all horses participating in the experiment at 4 m/s is less than
10 Hz. Then, a processing window was determined between two consecutive peaks. Each processing
window includes unique gait cycle data. So, n windows were identified and the i-th was named
ImuWindow(i).
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processing windows (o). In this figure, the i-th ImuWindow is shown in dotted lines. It is preceded by
the (i-1) th ImuWindows delimited by the first two maximum points represented in red.

The second substep was the detection of Foot on and Foot off events from IMU data by four
methods. These events identified for each of the methods will then be compared with those detected
on the MOCAP data in order to assess their accuracy (Figure 4a).

Method A: in ImuWindow(i), the first minimum peak on the Y-axis of the gyroscope was
identified, corresponding to the Foot on event labeled ImuFootOn_A(i). Then for the Foot off labeled
ImuFootOff_A(i) was identified as the peak preceding the penultimate minimum peak, detected with a
threshold of 20% of the minimum value of the gyroscope signal on the Y-axis in the processing window
(Figure 4b).

Method B: in ImuWindow(i), on the Z-axis of the accelerometer, the Foot on labeled ImuFootOn_B(i)
was identified by the detection of the minimum peak preceding the first peak max (Figure 4c). For the
detection of the end of the stance phase, the jerk of the acceleration on the X-axis was calculated.
This step detects the ‘plateau’ corresponding to the low-amplitude acceleration of the IMU during
the stance phase. The end of the stance phase was then identified as the minimum peak on the X
acceleration following the end of the plateau. This minimum peak corresponding to the Foot off was
labeled ImuFootOff_B(i) (Figure 4d).

Method C: The detection of the Foot on was done by a discrete wavelet analysis (DWT) of the Y-axis
of the gyroscopic signal, performed using a fourth-order Coiflet as the mother wavelet and five levels
of decomposition (coif4 level 5) [34]. The peak of interest was then sought on the reconstructed signal,
which corresponds to the first minimum peak in each ImuWindow(i). Then, on the gyroscopic signal
on the Y-axis, the minimum peak, closest to the peak of interest detected on the signal reconstructed
in wavelets, was detected. This peak corresponding to the Foot on was labeled ImuFootOn_C(i).
The Foot off was identified with the detection of the peak preceding the penultimate minimum peak,
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detected with a threshold of 20% of the minimum value on the gyroscopic Y-axis, in the processing
window. The Foot off was labeled ImuFootOff_C(i) (Figure 4b).

Method D: A DWT of the Z-axis of the accelerometric signal (coif 3 level 5) was performed for the
detection of the Foot on. In each ImuWindow(i), the minimum peak on the reconstructed signal was
detected. Then, on the accelerometric signal on the Z-axis, the maximum peak was detected preceding
the minimum peak detected on the signal reconstructed in wavelets. The Foot on corresponding
to the minimum peak preceding the first maximum peak on Z accelerometric signal was labeled
ImuFootOn_D(i) (Figure 3c). A DWT of the X-axis of the accelerometric signal (coif 3 level 5) was
performed for the detection of the Foot off. In each ImuWindow(i), the peak of interest corresponding
to the end of the stance phase was detected on the reconstructed signal in absolute value. Then, on the
accelerometric signal on the X-axis, the minimum peak, closest to the peak of interest detected on the
signal reconstructed in wavelets, was detected. This minimum peak was labeled ImuFootOff_D(i)
(Figure 4d).

The rationale for the use of wavelet reconstruction is due to its ability to perform a pattern-oriented
analysis [35]. In Methods C and D, the selection of the type of mother wavelet Coiflets is performed by
resemblance process [36].

For each method X = {A, B, C, D}, stride duration is named ImuStrideDuration_X(i) (Equation (3)),
and the stance phase duration ImuStanceDuration_X(i) (Equation (4)) of the i-th gait cycle was calculated.

ImuStrideDuration_X(i) = ImuFootOn_X(i +1)-ImuFootOn_X(i) (3)

ImuStanceDuration_X(i) = ImuFootOff_X(i)-ImuFootOn_X(i) (4)

The results of each method were then compared to MoCap data to assess their accuracy and
repeatability. The accuracy of Foot on, Foot off, as well as the Stride Duration and the Stance Duration of
each method X= {A, B, C, D} compared to those measured on the data of the MoCap, was studied with
Bland-Altman representation [37]. For each method, the accuracy was defined by the means difference
(Bias) between the method values and the MoCap values and precisions as the standard deviation of
the differences (SD). The limits of agreement corresponding to the confidence interval where 95% of
the differences were represented were calculated [37]. The bias and the SD were used to estimate this
interval (Equations (7) and (8)). For the results of Foot on and Foot off events, time was expressed as a
percentage of the stride duration. The difference between the method measured and the MoCap was
related to the duration of the corresponding stride measured on the MoCap data. The results of Stance
Duration and Stride Duration were expressed by the difference in milliseconds between the duration
measured from the Foot on and Foot off of the method used and those determined with the MoCap.

AgreementLimitHigh_X = Bias + 1.96xSD (5)

AgreementLimitLow_X = Bias − 1.96xSD (6)
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Figure 4. Representation of (a) the hoof angle calculated from the hoof markers allowing the detection of
Foot on (o) and Foot off (∆) reference events (MoCapFootOn and MoCapFootOff ), (b) the Y-axis gyroscopic
signal used for the detection of Foot on (o) and Foot off (∆) events in method A (ImuFootOn_A and
ImuFootOff_A) and method C (ImuFootOn_C and ImuFootOff_C), (c) the Z-axis accelerometric signal
used for detection of Foot on (o) events in method B (ImuFootOn_B) and method D (ImuFootOn_D),
(d) the X-axis accelerometric signal used for detection of Foot off (∆) events in method B (ImuFootOff_B)
and method D (ImuFootOff_D).
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3. Results

3.1. Foot on Detections

The following results present the precision of each method for detecting Foot on (Figure 5) in the
percentage of stride.
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Figure 5. Bland-Altman comparison of the Foot on detection of the four methods developed with IMU
data and MoCap Foot on detection. Accuracy (bias between each method and MoCap) and limits
of agreement (95% limits of agreement) of method A were represented on the upper left corner (A),
method B on the upper right corner (B), method C on the lower left corner (C), and method D on the
lower right corner (D).

For the detection of Foot on (Figure 5), whatever the method, the average bias was less than 1% of
stride duration. The methods A and C show a tendency to detect Foot on with a slight delay, respectively
0.55% and 0.57%. Conversely, the methods B and D showed a tendency to detect Foot on slightly ahead,
respectively −0.84% and −0.62%. The confidence interval was wider for methods B and D than for
methods A and C (B: [−6.06%, 4.38%], D: [−5.17%, 3.92%] vs. A: [−1.95 %, 3.06%], C: [−2.05%, 3.19%]).

3.2. Foot Off Detections

The following results present the precision of each method for detecting Foot off (Figure 6) in the
percentage of stride.

For the detection of Foot off (Figure 6), Methods A and C presented an average bias of 0.05%
while methods B and D have a higher bias, respectively 0.48% and 1.00%. The confidence interval
was also very close for methods A and C (A: [−2.21%, 2.32%], C: [−2.23%, 2.33%]) and more extended
for methods B and D (B: [−5.84%, 6.80%], D: [−5.62%, 7.62%]). For horses 1 and 6, a systematic
detection error occurred with method D. For horse 1, method D detected the peak preceding the peak
corresponding to the Foot off event. For horse 6, method D detected the peak following the peak
corresponding to the Foot off event.
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3.3. Stride Durations

Stride duration (Figure 7) was calculated for each method from Foot on according to Equation (3)
and compared to Stride durations calculated from MoCap data according to Equation (5). The bias of
each method was expressed in milliseconds (ms). All of the methods tested had a bias of less than
1 ms (A: −0.01 ms, B: −0.19 ms, C: 0.05 ms, D: −0.12 ms). However, methods B and D had a wider
confidence interval than methods A and C, with B: [−41.76 ms, 41.37 ms] and D: [−36.09 ms, 35.84 ms],
vs. A: [−14.52 ms, 14.50 ms], and C: [−15.74 ms, 15.83 ms].
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Figure 7. Bland-Altman comparison of the Stride Duration, calculated from the Foot on obtained from
the four methods developed with IMU data and MoCap. Accuracy (bias between each method and
MoCap) and limits of agreement (95% limits of agreement) of method A were represented on the
upper left corner (A), method B on the upper right corner (B), method C on the lower left corner (C),
and method D on the lower right corner (D).



Sensors 2020, 20, 2983 10 of 14

3.4. Stance Durations

Stance duration (Figure 8) was calculated from the Foot on and Foot off for each method according to
Equation (4) and compared to Stance durations calculated from the MoCap data according to Equation (6).
Methods A and C had slightly underestimated Stance durations with a respective bias of −3.46 ms and
−0.32 ms, while methods B and D presented overestimated Stance durations with a respective bias
of 8.26 ms and 10.08 ms. The most restricted confidence interval was obtained with the method C
(C: [−23.92 ms, 17.28 ms] vs. A: [−27.53 ms, 20.62 ms], B: [−26.89 ms, 43.42 ms] and D: [−23.56 ms,
43.71 ms]). As previously for Foot off detection, a systematic error was noticed for the horses 1 and 6 in
Stance Duration with method D.
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4. Discussion

The force plate and MoCap are the reference tools for the detection of stance phases [24–26].
Although these tools provide great precision in the measurements made, they can be used only in
laboratory conditions which could be painstaking for longitudinal investigation, and exclude most
of the field investigations. To avoid these limitations, several studies had developed new methods
for the detection of stride events. Some studies used accelerometers positioned on the hooves [29],
others used several IMUs positioned on different anatomical points of the horse [27]. This study opted
for a single inertial sensor located on the lower limb. This choice was motivated by the versatility
and the simplicity of the location and attachment. Indeed, IMU can easily be integrated into boots,
the usual equipment of the horse.

In this study, four methods of detecting Foot on and Foot off of the horse locomotion by a
single IMU located on the canon bone were compared. Two methods processed gyroscopic data of
the IMU, using thresholding (method A) or wavelet (method C), and had performances superior to
those developed using thresholding (method B) or wavelet (method D) from accelerometric data.
These methods demonstrated a bias less than 0.6% of stride for Foot on and 0.1% of stride for Foot off.
The measurements of the Stance and Stride durations were also more precise for methods A and C.
Several methods were proposed to detect locomotion events by IMU measurement. Raw data of the
accelerometers and gyroscope were commonly used. Methods by threshold detection on accelerometric
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signals were the most common [13,14]. Gyroscopic signals are often used in the case of human
locomotion investigations [14–16] but these methods are also known to drift over time [38]. In this
study, methods A and C used gyroscopic signals. Moreover, to limit the risk of drift, the post-processing
was performed in time windows around 1s to 2s [39]. On the other hand, wavelet decomposition
allowed a new approach by the detection of events through pattern recognition [40–42] and has been
tested on accelerometric signals for human locomotion [43,44]. In this study, the wavelet decomposition
was adapted for horse locomotion signals and extended to post-processing of the gyroscopic signals.

A previous study [31] also evaluated the accuracy of different algorithms for the detection of
Foot on and Foot off to determine Stride duration using a force plate as the gold standard. The best
accuracy for measuring the Stance duration was −11.6 ms with algorithm 3 developed in the study [31]
for the front limb at a trot. In our study, the accuracy of the methods developed was between −3.32 ms
for the most accurate (Method C) and 10.08 ms for the least accurate (Method D). The difference
observed in the evaluation of the accuracy of the methods developed in each study can be explained by
a loss of accuracy by the use of MoCap for the Foot on and Foot off measurements compared to the force
plate [45]. Nevertheless, our more accurate method (Method C) showed a more restricted confidence
interval than that of the most accurate method of the study [31] (respectively [−23.92 ms, 17.28 ms] vs.
[−79.4 ms, 56.2 ms]). Although it was difficult to compare the accuracy of the methods developed in
each study, due to two different reference systems, method C developed in our study provided better
reproducibility in the measurement of the Stance duration.

This study demonstrated that the performance of the four methods was variable. The methods
based on the processing of the gyroscopic data (method A and C) presented better results than ones
based on the processing of the accelerometer data (method B and D). The less accurate results of
methods B and D were dependent on the horse and we noticed that these methods failed for two
horses. An explanation could be that the high energy impact of the hoof on the ground leads to
vibrations from the impact wave, which could increase the noise-signal ratio [46,47]. Methods A and
C reported better results and similar performance. Similar observations were noticed in the case of
human locomotion [48].

However, our study presents limitations. First, the stance detections from the IMU positioned
on the forelimb cannon bone were compared to the stance detections made from the MoCap on the
hoof [22]. The horse’s foot and cannon bone are connected by three joints, the distal interphalangeal
joint, the proximal interphalangeal joint, and the metacarpophalangeal joint (fetlock joint) [21,49].
These joints have a damping role in the locomotion of the horse which can cause a temporal shift of the
stride events between the hoof and the canon bone. The conformation of the horse’s limbs and hooves
can have an effect on the stride pattern [50–52]. This parameter could be variable from one horse to
another and lead to differences in stance detections from the IMU more or less close to those made
from the hoof (amplitude of the confidence interval). Second, in this study, a treadmill was used in
order to control the speed and the regularity of strides. In the field, the nature of the ground leads
to a change in the stride pattern [4,53], and the range of the inertial sensor values. The stride cycle
detection with wavelets seems more reliable because this method is focused on the shape of the curves
themselves correlated to the stride pattern [40,54]. However, the application of this method to different
paces and types of ground surfaces will nevertheless require the adjustment of the type of wavelets.

5. Conclusions

This study made it possible to compare different methods of stance phases detections from
an IMU positioned on the cannon bone. The methods developed from the gyroscope have shown
more precision on all the horses measured. The use of wavelets to detect the stance phases from the
gyroscopic signal reduces the impact of the stride pattern specific to each horse. Adapting this method
to different conditions (gait and ground) could allow the development of a simplified tool for the
analysis of horse locomotion in the field and for longitudinal analysis.
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