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A B S T R A C T

This study presents a process-based-empirical model for the assessment of ionic fluxes derived from chemical
weathering of rocks (ICWR) at a global scale. The equations are designed and the parameters fitted using riverine
transport of dissolved major ions Ca2+, Mg2+, K+, Na+, Cl−, SO4

2−, and alkalinity at a global scale by com-
bining point sampling analysis with spatial descriptions of hydrology, climate, topography, lithology and soil
variables such as mineral composition and regolith thickness. Different configurations of the model are con-
sidered and the results show that the previously reported “soil shielding” effect on chemical weathering (CW) of
rocks presents different values for each of the ions considered. Overall, there is good agreement between median
and ranges in observed and simulated data, but further analysis is required to downscale the model to catchment
scale. Application to the global scale provides the first global ICWR map, resulting in an average cationic flux
derived from chemical weathering of 734·106 Mg·y−1, where 58% is Ca2+, 15% is Mg2+, 24% is Na+ and 3% is
K+, and an average anionic flux derived from chemical weathering of 2640·106 Mg·y−1, where 74% is alkalinity,
18% is SO4

2−, and 8% is Cl−. Hyperactive and hotspot areas are elucidated and compared between ions.

1. Introduction

Freshwater chemical composition has long been used as a proxy to
understand the processes occurring in a catchment (e.g. Gibbs, 1970;
Amiotte Suchet and Probst, 1993a; Romero-Mujalli et al., 2019). The
insights obtained from these analyses are relevant for assessing bio-
geochemical cycles, since rivers are vectors of matter transport between
land and oceans (Probst, 1992). Major ion riverine loads are linked to
the mineralogical composition of the underlying bedrock and overlying
soil, and to their sensitivity to chemical weathering (CW) (Hartmann
et al., 2009). CW of rocks is the process responsible for transforming
rock into saprolites and soils, i.e. soil pedogenesis, in the Critical Zone
(CZ) (Riebe et al., 2017), which releases dissolved compounds that are
subsequently transported by rivers.

For several decades, evaluation and quantification of CW has been
the focus of hydrogeochemical research (Livingstone, 1963; White and
Blum, 1995; Di Figlia et al., 2007; Jansen et al., 2010; Hartmann et al.,
2014a; Raab et al., 2019) and in more recent years it has also been used
to quantify trends in salt increases related to human activities
(Meybeck, 2003; Moosdorf et al., 2011; Guo et al., 2015; Kaushal et al.,
2018). Large-scale studies have focused CW analysis on its implications
for atmosphere/land/ocean fluxes and the Earth's climate, in influen-
cing the biogeochemical cycles of elements by regulating CO2 con-
sumption, or nutrient release (Amiotte Suchet and Probst, 1993b;
Amiotte Suchet and Probst, 1995; Dupré et al., 2003; Hartmann et al.,
2014a). However, fewer studies have centred on individual ion analysis
(e.g. Goddéris et al., 2006; Goddéris et al., 2009) and, to the authors'
knowledge, there is no spatially explicit reference product for ionic
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biogeochemical cycle adopted in this study is shown in the Supple-
mentary Information, Fig. S1.

Atmospheric deposition incorporates ions to the CZ (from above the
ground through the soil and saprolite horizons to the bedrock, Keller,
2019) which are either concentrated in the soil surface by evapo-
transpiration and washed out of the catchment through surface and sub-
surface runoffs; or infiltrated into the saprolite down to the unsaturated
and saturated zones, reaching the groundwater reservoir. Soil processes
—such as organic matter decay and root uptake followed by biomass
storage— interact with these salts and may present synergies with the
transport fluxes, altering the concentration of the salts present in the
lateral flow (or subsurface runoff) and subsequently the river water
(Keller, 2019). As regards the groundwater source, salts are derived
from water interaction with rocks and later transported to the stream
with groundwater flow (or baseflow).

CW has long been reported as a dominant process in major water
composition, and several studies (Garrels and Mackenzie, 1972; Stallard
and Edmond, 1981; Velbel, 1993; Gaillardet et al., 1999; Balagizi et al.,
2015) have highlighted the relevance of lithology, hydrology, soil
chemistry, and temperature, as variables that condition both CW and
soil processes, while distance to the coast and altitude mostly affect
atmospheric deposition (Meybeck et al., 1986, Vet et al., 2014). The
combination of all these variables, in addition to human input, condi-
tion major ion loads leaving the catchment.

Other dissolved compounds may be found in the dissolved riverine
loadings which may interact with major ions, such as SiO2, NO3

−, or
PO4

3−. However, these elements have not been included within the
scope of the modelling, since their global biogeochemical cycles are
more complex and more closely linked to biological interactions (c.f.
Galloway et al., 2004, Hartmann et al., 2014a) than those of the major
ions selected, which are assumed to have more similar pathways be-
tween reservoirs and a more stable temporal evolution (Keller, 2019).

2.2. Workflow and data overview

In order to estimate the specific fluxes of major ions, i.e. Ca2+,
Mg2+, K+, Na+, Cl−, SO4

2−, and alkalinity, linear regressions have
been developed using global databases as input data, fitting the para-
meters of the equations to minimize the difference between modelled
and observed data. The mathematical approach used to develop the
equations and fit the parameters is based on previous literature (e.g.
Meybeck, 1979; Amiotte Suchet and Probst, 1993a, 1993b; Hartmann,
2009).

The observed chemical concentrations used in this study were taken
from the GLORICH database (Hartmann et al., 2014b, retrieved from
https://doi.pangaea.de/10.1594/PANGAEA.902360), which compiles
over 1.2 million analyses of river waters around the world, as well as
containing additional information on the draining catchments at the
sampling locations. In order to focus on sampling locations mainly af-
fected by atmospheric deposition and chemical weathering fluxes, a
subset of the samples was created (see Section 2.2.1). The specific
chemical fluxes were derived from averaged chemical concentrations
and specific discharge for each draining catchment, and the differ-
entiation between the atmospheric and chemical weathering contribu-
tion was computed using an independent dataset to estimate the at-
mospheric deposition (see Section 2.2.2). Additional variables were
then included in the analysis, such as soil type abundance taken from
the Harmonized World Soil Database (HSWD, FAO et al., 2012), re-
golith thickness (GSDE, Shangguan et al., 2017), and soil permeability
(GLHYMPS, Huscroft et al., 2018). The incorporation of these databases
is described in Section 2.2.3 and a summary of the uncertainties may be
found in Section 2.2.4. The workflow followed is shown in graphic form
in Fig. 1.

2.2.1. Data subset and estimation of atmospheric deposition
The original chemical data stored in the GLORICH HC was sorted to

fluxes derived from chemical weathering of rocks (ICWR) at a  global 
scale that quantifies the natural rock fluxes of single ions.

Assessment of chemical weathering rates (CWR) at catchment-to-
global scale has evolved over recent years due to improvements in la-
boratory experiments, the compilation of river water chemical data-
bases, and the development of technical resources in modelling 
(Meybeck, 1987; Amiotte Suchet and Probst, 1993a, 1995; Probst et al., 
1994; Hartmann et al., 2014a; Perri et al., 2016; Dong et al., 2018; 
Biondino et al., 2020). A distinction can be drawn between two main 
approaches to hydrogeochemical modelling: mechanistic and empirical 
based models. On the one hand, mechanistic models such as WHAM 
(Tipping, 1994) or WITCH (Goddéris et al., 2006) base their calculation 
on distinguishing between several layers in the soil with different 
chemical weathering rates, integrating the chemical composition of 
soils and the drainage waters in a mass-balance where the dissolution of 
primary minerals is described through kinetic laws (Goddéris et al., 
2006; Roelandt et al., 2010), though they require a large quantity of 
detailed data which is normally not available worldwide. On the other 
hand, empirical models relate CWR to environmental variables through 
linear and non- linear regression, using statistically fitted parameters 
(Meybeck, 1987; Amiotte Suchet and Probst, 1995; Dessert et al., 2003; 
Hartmann, 2009), ignoring the physical dynamics behind the process. 
Despite their greater degree of abstraction, empirical laws have ex-
tensively been used to quantify global fluxes of matter (Hartmann et al., 
2014a) and CO2 sequestration by rock weathering (Amiotte Suchet and 
Probst, 1995; Probst et al., 1997; Dessert et al., 2003; Hartmann et al., 
2009), since they require less exhaustive input data and fewer com-
puting resources while at the same time providing a useful product.

Given that, to the best of the authors' knowledge, there are no 
spatially explicit results at a global scale for the contribution of each 
major ion to the total CWR, and that this needs to be quantified before 
assessing the global anthropogenic inputs of major ions (Vörösmarty 
et al., 2010),the present study seeks to develop and apply an empirical 
model at a global scale to quantify the ICWR of major elements. The 
methodology pursued is based on that presented by Hartmann et al.
(2009), and the objectives are: i) to present the methodology used to 
develop a spatially explicit empirical model of ICWR; ii) to evaluate the 
limitations of this methodology and of application of the model; and iii) 
to present and contrast the preliminary results of the model at a global 
scale, including a discussion of spatial distribution and an assessment of 
hyperactive and hotspot areas.

2. Materials and methods

2.1. Conceptualization

Conceptualization of the CW process used in developing this model 
is explained in the following lines and shown in graphic form in the 
Supplementary Information, Fig. S1. Major ion fluxes — i.e. Ca2+, 
Mg2+, K+, Na+, Cl−, SO4

2−, and alkalinity (HCO3
− + CO3

2−)— in 
rivers have previously been used as a proxy of all the processes oc-
curring in the upstream draining catchment (Garrels and Mackenzie, 
1972; Meybeck, 1984, 1986; Hartmann and Moosdorf, 2011), and are 
also considered in the present study. Two sources are established with 
regards to the spatial unit of the catchment: allochthonous, when the 
origin of the element lies outside the boundaries of the catchment (i.e. 
atmospheric dry and wet deposition); and autochthonous when the 
source of the element lies within the catchment area (i.e. bedrock 
chemical weathering). Human activity is a third source of ions in rivers, 
which may be: allochthonous when ions originating from anthropogenic 
activities are brought to the river by atmospheric deposition, e.g. acid 
rain (Schindler, 1988; Likens et al., 1996; Mahowald et al., 2011); or 
autochthonous when there are spot saline sources or diffuse input within 
the unit, such as effluents from wastewater treatment plants (Carey and 
Migliaccio, 2009), cropland fertilization, or road salting (Moore et al., 
2008; Dailey et al., 2014). The conceptual schema of the major ion
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exclude samples with missing data for Ca2+, Mg2+, K+, Na+, Cl−,
SO4

2− or alkalinity, samples showing an ionic charge balance error
over ±10% and sampling locations with <3 samples. Around 65% of
the original 1,274,102 samples analysed in 18,897 locations between
1942 and 2011 were excluded. Chemical concentrations at the sampling
location were aggregated through the median value since the dis-
tribution was non-normal according to a Shapiro-Wilk test (p < 0.01).
Not all sampling locations presented an associated draining catchment,
and some were nested catchments; these were also excluded, resulting
in 1751 catchments ranging from 1 to 2.9·104 km2, with 3 to 1220
samples, depending on the catchment. A map showing the selected
sampling locations and associated areas may be seen in Fig. 2.

2.2.2. Estimation of derived variables and atmospheric deposition
Due to the heterogeneity of the data on the number of samples in

each sampling location and the frequent lack of instantaneous dis-
charge, average riverine specific fluxes, Fx measured in mol·m−2·y−1,
were estimated from riverine concentration and specific runoff (com-
puted as the discharge at the outlet of the catchment divided by the
draining area, Fekete et al., 2002) using Eq. 1. In this equation, specific
runoff, qann, measured in mm·y−1, was multiplied by the average con-
centration Cx of the sampling location, measured in mol·L−1, for each
ion x.

F q C·x ann x= (1)

Riverine-specific fluxes include the mass departing the catchment
from bedrock weathering, atmospheric deposits and other sources (in-
cluding anthropogenic activities). In order to estimate ICWR, it was
necessary to subtract the contribution of atmospheric deposition
(Meybeck, 1983). Anthropogenic input could not be quantified since
the extent of the anthropic influence differs between catchments; it was
therefore assumed to be negligible for major cations and anions at the
scale of application. However, further research on the impact of human
pressure is needed (Vörösmarty et al., 2010).

Atmospheric flux was estimated using the results of Vet et al. (2014)
(HTAP database) on atmospheric seasalt and sulphur deposition. First,
the mean seasalt flux throughout the catchment was computed for each
catchment using the “raster” package in R (Hijmans, 2019). In order to

distinguish the contribution of each ion in the total salt deposition, an
ionic concentration distribution profile was then calculated for coastal
and continental zones in each continent. To compute these profiles, the
raw data used in Vet et al. (2014), obtained from the World Data Pre-
cipitation Chemistry website (http://wdcpc.org/global-assessment-
data) was classified by continents and into coastal/continental, based
on distance from the coast. Average concentration values and ratios to
the total salt concentration were then computed (see chemical dis-
tribution profiles in Supplementary Information Fig. S2 and Table S1).

Once the percentages of each element within the total concentration
were obtained, the catchments were classified into zones according to
the position of their centroid. This classification, together with the
mean seasalt deposition flux, allowed us to quantify the specific at-
mospheric flux for each element in each catchment. CW fluxes were
computed by subtracting the atmospheric deposition flux from the
riverine flux.

2.2.3. Database integration
Spatial analysis was performed using ArcGIS 10.4 and mainly con-

sisted of summarising raster files in the polygonal shapes of the
draining catchment. All data was integrated using R software (R Core
Team, 2018). Three worldwide databases were included in the original
GLORICH catchment properties (CP) database. For each catchment, the
cover percentage of each HSWD soil type (FAO et al., 2012) was
computed, and the mean regolith depth (Shangguan et al., 2017) and
mean hydraulic conductivity (Huscroft et al., 2018) were then sum-
marised. The spatial resolution is different for each database included;
the catchment borders were delimited using the Hydro1K database (c.f.
Hartmann et al., 2014b) at a 30 arc-second resolution, the same as for
the HWSD soil type database (FAO et al., 2012) and hydraulic con-
ductivity (Huscroft et al., 2018). However, finer resolution is found for
the global soil depth database (Shangguan et al., 2017). Uncertainties in
dataset collection are discussed in Section 2.2.4. However, considering
the global approach of the study and the relatively small size of some
catchments (see Supplementary Information, Fig. S2), the spatial re-
solution of the global databases was considered sufficient to represent
the lithological and soil compositions, average soil depth, and hydraulic
conductivity.

GLORICH HC

GLORICH CP

HTAP

GSDE

GLHYMPS 2.0

sample sort

aggregation

GLORICH CP*

correction

CP calibration

HWSD

relative area
calculation

aggregation

model configuration

EQUATIONSparameter fit

model evaluation COEFFICIENTSCP validation

Fig. 1. Workflow summary. The green rectangles represent the original databases included in the analysis, while the yellow boxes contain the datasets derived for the
present analysis, and the arrows describe actions. The acronyms refer to: the GLORICH database (Hartmann et al., 2014b) which contains information on hydro-
chemical analyses (HC) and catchment properties (CP); the Harmonized World Soil Database (HSWD, FAO et al., 2012); the global regolith thickness (GSDE,
Shangguan et al., 2017); the soil permeability (GLHYMPS 2.0, Huscroft et al., 2018); and the world precipitation chemistry dataset (HTAP, Vet et al., 2014). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The data pre-process resulted in a database with over 180 variables,
including chemical fluxes, morphological variables (i.e. altitude, area,
slope, etc.), climate variables (monthly and annual temperature, pre-
cipitation, windspeed, etc.), land covers (forest, agricultural, managed
percentages, etc.), soil types (Leptosols, Cambisols, Nitisols, etc.), soil
descriptors (regolith thickness, hydraulic conductivity, pH, etc.), and
lithology (Metamorphics, Plutonics Acids and Basics, Carbonate
Sedimentary, etc.). This dataset was used to explore the relationships,
calibrate the parameters of the equations, and test the residuals of the
model created to further define the model.

2.2.4. Database uncertainties
The development, calibration, and validation steps of an empirical

model rely on the data used for its construction. In this study, several
types of data from different sources were included, selected following
an assessment of their quality. Among chemical collection datasets, the
GLORICH database (Hartmann et al., 2014b) was chosen because it
contained a larger amount of data located in a greater number of
catchments. Moreover, it contains two types of data: spot data (related
to the samples analysed in each river) and spatial data (relating to the
physical description of the draining catchment). Spot data was gathered
from different monitoring programs and scientific literature and tested

Fig. 2. Original, subset, and classified sampling locations and draining catchments in the present study. Within the original GLORICH dataset (light grey), the darker
grey areas represent the selected draining catchments, for which the outlets are represented as red or black points depending on whether they have been used for
calibration (n = 1313) or validation (n = 438), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)



F q ·cx ann x= (M1)

F q · (L ·c )x ann i xi= (M2)

F q ·f (soil)· (L ·c )x ann s i xx i= (M3)

F q ·f (temperature)· (L ·c )x ann T i xi= (M4)

F q ·f (soil)·f (temperature)· (L ·c )x ann s T i xx i= (M5)

F q ·f (soil depth)· (L ·c )x ann D i xi= (M6)

F q ·f (hydraulic conductivity)· (L ·c )x ann K i xi= (M7)

F q ·f (soil depth hydraulic conductivity)· (L ·c )x ann KD i xi= + (M8)

f
F

Fs
x(shield 0.5)

x(M2,shield 0.5)
x =

f exp 1
T

1
TT =

f Depth
Depth b·DepthD

MAX
=

f
K

K b·KK
hyd

hyd hydMAX
=

f Depth
KKD

hyd
=

where Fx
⁎ represents the ionic flux derived from chemical weathering of

rocks (ICWR) of an element x, measured in mol·m−2·y−1; qann re-
presents the annual average runoff composite of the catchment

(computed as the discharge at the outlet of the catchment over the area
of the draining surface), in dm3·m−2·y−1; Li accounts for the percentage
of the area covered by a lithological group i (see Fig. S6); fs,x is the soil
shielding effect factor, dimensionless; fT represents the temperature
effect factor, dimensionless; fD is the soil depth factor, dimensionless;
and the fK considers the hydraulic conductivity factor, dimensionless;
fKD is the soil depth-hydraulic conductivity factor, dimensionless; Fx⁎M2

is the flux obtained with model M2, in mol·m−2·y−1; T is the average
annual air temperature of the draining basin taken from the GLORICH
database, computed from the WordClim (Hijmans, 2019) database, in
K; T is the global average annual temperature, in K; Depth measures the
soil depth, in cm; and Khyd measures the mean hydraulic conductivity,
in m·s−1. A further detail of the former three factors is set out in the
following paragraphs. For all models tested here, the parameters are cx,
cx,i, measured in mol·L−1, and b, dimensionless, and may be interpreted
as the average concentration of an element x in the water draining from
rock i (cx and cx,i) corrected for atmospheric inputs, and b as the
function parameter. The parameters fitted at the calibration step are cx,
cx,i, and b.

Soil cover over bedrock has been identified as an important factor to
consider when analysing the CW at a global scale (Dupré et al., 2003;
Hartmann et al., 2014a). Some soil types with thick profiles, or high
organic matter content, or low permeability may act as a buffer to the
chemical flux arriving to the river stream, as shown by Boeglin and
Probst (1998) for large river basins covered by lateritic soils, where the
fluxes of bicarbonates supplied by silicate hydrolysis are half of the
river fluxes produced in non-lateric basins. In this regard, Hartmann
et al. (2014a) estimated an average soil shielding factor of 0.1 for the
following FAO soil types: Ferralsols, Acrisols, Nitisols, Lixisols, Histo-
sols, and Gleysols. Here, we consider a similar factor, but differentiating
between the values for each ion. Further explanation is given in Section
2.4. In this study, 416 catchments showed a percentage of coverage of
this kind of soil of 50% and were expected to be affected by the “soil
shielding effect”.

In order to include the soil shielding effect fs,x we established a
threshold to differentiate between two groups of catchments: those in
which 50% or more of the area was covered by the sum of the soil types
Ferralsols, Acrisols, Nitisols, Lixisols, Histosols, and Gleysols (Hartmann
et al., 2014a), where the dominance of the soil shielding effect was
expected; and those where this sum was under 50%. The mean values of
the flux for each group and ion was computed and the ratio of atmo-
spherically corrected observed flux to flux obtained with model M2, for
soil-shield-affected affected catchments was computed, giving fs,

Ca2+ = 0.75; fs, Mg2+ = 0.74; fs, Na+ = 0.46; fs, K+ = 0.78; fs, Alkali-

nity = 0.70; fs, SO4
2− = 0.29; fs, Cl− = 0.34.

As regards the temperature effect, catchments with higher average
temperature were expected to drain higher fluxes of elements than
those with lower temperatures. Annual air temperature was used as a
proxy for groundwater mean temperature, which is that responsible for
changes in the solubility constants of certain minerals. Then, a similar
temperature factor to Hartmann et al. (2014a) with an Arrhenius type
equation was then computed as fT.

2.3.1. Calibration and model evaluation
The parameters from the equations were fitted using a 75% random

subset of the data (ncalibration = 1313) from the selected sites (Fig. 1),
while the remainder were used for validation (nvalidation = 438). The fit
was carried out using the Levenberg-Marquardt algorithm, a method
used to find the minimum of a function, in this case, a sum of squares
(Moré, 1978), implemented in the “minpack.lm” package (Elzhov et al.,
2010) for the R software (R Core Team, 2018). As the parameters to fit
were interpreted as the concentration (cx, cx,i) of an element draining
from water from each lithological group, a lower boundary of 0 was
established. The performance of the model was evaluated by assessing
the significance of the relation between observed and simulated values
using Spearman correlation (ρ) and evaluation of the percentage of

to eliminate possible errors, although this dataset was considered to 
have been validated by its creators (Hartmann et al., 2014b). The 
spatial data for both the GLORICH description of the draining basin 
characteristics and the added variables is based on contrasted spatial 
datasets. The lithological distribution was taken from the Global Li-
thological Map (GLIM, Hartmann and Moosdorf, 2012) which, to the 
best of the authors' knowledge, is the highest resolution lithological 
database at a global scale. Soil type abundance was computed using the 
polygons in the Harmonized World Soil Database (HSWD, FAO et al., 
2012). The hydrology was taken from the 0.5°x0.5° raster in the UNH/
GRDC Composite Runoff F ields V 1.0 ( Fekete e t a l., 2 002). Regolith 
thickness was taken from the 1x1km raster Global Soil Regolith 
Thickness (GSDE, Shangguan et al., 2017). Hydraulic conductivity was 
estimated from the polygons in Global Hydrogeology Maps (GLHYMPS, 
Huscroft et al., 2018). The seasalt atmospheric deposition was derived 
from 1°x1° raster from the global assessment of precipitation chemistry 
(Vet et al., 2014). The uncertainties and limits for each dataset are set 
out in each of the publications, while in the present analysis the global 
results are modelled (using the soil, lithology, and specific runoff da-
tabases) at a resolution of 0.5°x0.5°.

2.3. Modelling approach

Chemical weathering rates are mainly affected b y h ydrology, li-
thology of the underlying bedrock, the overlying soil, and water tem-
perature (Hartmann et al., 2009; Hartmann et al., 2014b). In order to 
analyse the effect of each one on all of the ion fluxes, it was proposed to 
test 8 linear equations. To design the equations, a physical interpreta-
tion of the estimates was considered, and the variables were added in 
the following order: lithology, soil shielding effect (further explained in 
the paragraphs below and in Hartmann et al., 2014b), temperature, 
hydraulic conductivity and soil depth. The set of equations tested is as 
follows:



deviation (PBIAS), which measures the average tendency of the simu-
lated values to be above or below the observed values.
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where cov(rgObserved, rgSimulated) is the covariance of the observed and
simulated fluxes, σrg represents the standard deviation of the variables,
and F represents the specific fluxes. Finally, the model is applied over a
grid with a cell size of 0.5 × 0.5° where superposition of the GLiM,
HSWD, and UNH/GRDC (Fekete et al., 2002) datasets allowed for the
generation of single combination cells where the M3 model estimates
were applied.

3. Results

3.1. Assessment of model performance

Table 1 summarises the statistics used to evaluate performance of
the model, all of which show a significant correlation (p < 0.01). M1
only includes the average specific runoff and the fitted parameter re-
presents the average concentration of element x in all catchments; it is
used here as a starting point for model performance. As expected, the
inclusion of lithology in the regression (M2) improved correlation of the
model and decreased the difference between observed and simulated
data. Inclusion of the “soil shielding” effect (M3) therefore has im-
proved the correlation but also increased the difference between the
data, as shown by the increase in PBIAS. The incorporation of tem-
perature (M4) had no effect when compared to model M2, and neither
did the combination of “soil shielding effect” and temperature (M5),
while aggregation of soil depth (M6) decreased the correlation with
regard to M2 and M3. M7 and M8 show the lowest correlations and the
highest PBIAS. It is important to note that there are almost no differ-
ences in the statistics from M2 to M5, although the best performance of
the model, with the fewest explanatory variables, was achieved with
M3, as further analysed in this study.

In general, there is a strong and significant correlation between the
median observed and simulated values considering all catchments and
ions included in the present study (rSpearman = 0.96, p < 0 .01), as
shown in Fig. 3. In addition, both observed and simulated fluxes expand
over similar interquartilic ranges (IQR = 3rdQ-1stQ), suggesting that
this model configuration is capable of estimating the median and ranges
of ionic-specific fluxes in large scale studies.

When each ion is evaluated independently, and site-specific fluxes
are compared in observed-simulated pairs, two findings may be de-
rived: there is a higher data scatter, as shown by lower ρ and a greater
underestimation of the model, noted by a more negative PBIAS
(Table 1). For M3, the best represented ions are Ca2+ and Alkalinity,
with correlations of over 0.6 and a PBIAS of under 15%, while the
poorest are Na+ and Cl−, with correlation of under 0.3 and PBIAS

>45% (Table 1). Nevertheless, the residuals display a normal dis-
tribution, centring on 0, suggesting a valid model configuration.

Application of the model to the validation dataset gives the result
shown in Fig. 3b. Like the calibration dataset, the model shows better
results for alkalinity, and worse results for Cl−.

3.2. Application of the model

Model M3 has been considered to represent a fair starting point for
assessing ICWR at large scales. Before applying it to smaller case stu-
dies, it should be contrasted in specific case studies with adapted data,
such as observed average specific discharge, soil maps, and lithological
distribution, with a finer resolution, instead of using globally derived
products. Here, the model is applied to a grid with a cell size of 0.5°
where superposition of the GLiM, HSWD, and UNH/GRDC datasets al-
lowed for the generation of single combination cells in which the M3
model estimates were applied. The results of this application are dis-
played in Fig. 4, which shows the spatial distribution of the ICWR,
measured in Mg·km−2·y−1 for easier comparison with previous studies
in Table 2.

Overall, higher ICWRs are obtained for alkalinity, SO4
2−, and Ca2+,

in concordance with the dominant elements commonly found in
freshwater environments, while the lowest ICWRs are found for K+,
which commonly accounts for a lower proportion of water chemistry. In
general, higher ICWRs are found in latitudes between 15° S and 15° N
for all ions, probably related to higher specific discharge and humid
tropical climates. This is clearly shown for alkalinity, presenting highest
values for the Amazon and the Congo basins, as well as the Polynesian
Islands. Low median fluxes are found between 15° N and 30° N and 15°
S and 30° S but probably affected by the Saharan and Australian deserts,
in contrast, the south-eastern parts of Asia and Central America show
higher ICWR. In this study, relevant fluxes are also found between 45° N
and 75° N whose contribution to chemical fluxes had previously been
assessed as not being relevant (Hartmann et al., 2014a). In the
GLORICH database and other input datasets, there is no catchment in
the Antarctic and Greenland, though ICWRs in these areas are displayed
as No Data, but they are probably affected by snow and ice processes
not properly represented in this study, as described by Wadham et al.
(2010) and St Pierre et al. (2019).

4. Discussion

4.1. Overall

The present study shows the development of an inverse model for
the assessment of ICWR at a global scale, based on aggregated chemical
analysis of spot samples at a catchment level around the world, as well
as on worldwide datasets. It is the first time that a map of the ionic flux
derived from chemical weathering of rocks is presented, and represents
an improvement on previously published similar models (Meybeck,

Spearman correlation coefficients and PBIAS values [%] for the eight models tested here (M1-M8, n = 1313) in the calibration dataset. The last column (“MEAN”)
shows the mean value for all ion assessment in each model. All correlations are statistically significant (p <0.01). M3 is considered the best and analysed further in
this text.

Ca2+ Mg2+ Na+ K+ Cl− Alkalinity SO4
2− MEAN

ρ PBIAS ρ PBIAS ρ PBIAS ρ PBIAS ρ PBIAS ρ PBIAS ρ PBIAS ρ PBIAS

M1 0.41 −24.1 0.24 −34.7 0.31 −42.0 0.26 −24.0 0.13 −52.1 0.40 −26.5 0.32 −36.6 0.29 −34.3
M2 0.59 −13.7 0.39 −26.2 0.29 −41.3 0.43 −19.5 0.15 −48.6 0.66 −12.3 0.45 −26.5 0.42 −26.9
M3 0.60 −15.1 0.40 −28.0 0.29 −45.0 0.42 −20.8 0.16 −52.9 0.66 −13.4 0.50 −29.1 0.43 −29.2
M4 0.59 −13.7 0.39 −26.2 0.29 −41.3 0.43 −19.5 0.15 −48.6 0.66 −12.3 0.45 −26.5 0.42 −26.9
M5 0.60 −15.1 0.40 −28.0 0.29 −45.0 0.42 −20.8 0.16 −52.9 0.66 −13.4 0.50 −29.1 0.43 −29.2
M6 0.56 −16.2 0.41 −20.4 0.31 −25.7 0.36 −18.7 0.18 −28.4 0.66 −14.3 0.43 −26.3 0.41 −21.4
M7 0.15 −65.9 0.04 −71.2 0.12 −57.0 0.11 −60.8 0.06 −52.9 0.16 −72.5 0.20 −75.8 0.12 −65.2
M8 0.24 −81.4 0.23 −80.3 0.21 −83.0 0.18 −78.0 0.09 −84.8 0.30 −86.2 0.16 −88.4 0.20 −83.2

Table 1



1987; Amiotte Suchet and Probst, 1995; Gaillardet et al., 1999; Ludwig
et al., 2011; Hartmann et al., 2014a). In order to discuss the results,
three main points are established:

• A comparison is made between the results of the model and the last
model presented on Chemical Weathering Rates (CWR, Hartmann
et al., 2014a) and other global studies, in order to validate the re-
sults obtained and contrast the differences.

• A framework of application of this model is established with regard
to the spatial scale of application. In addition, the advantages that
this configuration poses for potential users, and limitations re-
garding scales and conceptualization are also discussed.

• An identification and comparison of the hotspots among ions at a
global scale is described, to highlight the role of ICWR in global
biogeochemical cycles.

4.2. Model validation

The results of the present study are compared to previous studies in
Table 2, considering the individual ionic fluxes and their aggregations
in cation, anion and total fluxes. In general, the M3 model presents an
average global CWR of ~3374·106 Mg·y−1, which is lower than pre-
vious studies, e.g. ~4175·106 Mg·y−1 (Meybeck, 1979),
~4050·106 Mg·y−1 (Probst, 1992), but higher than more recent results
~2131·106 Mg·y−1 (Gaillardet et al., 1999). However, focusing speci-
fically on the ~734·106 Mg ·y−1 total cation flux (ΣZ+), it has a lower
value than a recent study at the same scale ~1439·106 Mg ·y−1

(Hartmann et al., 2014a). Differences in this result are attributed to
three main causes: differences in the definition of CWR (inclusion of
dissolved silica), the number and location of the reference sampling
sites selected for the model calibration step, and the configuration of
the model itself. According to results from Meybeck (1979) and Probst
(1992), the SiO2/Ca2+ ratio is ~0.7, which would yield a ΣZ+

M3⁎ of
~1034·106 Mg·y−1 closer to, but lower than, the study by Hartmann
et al. (2014a).

The CWR measurement shows discrepancies between research stu-
dies, given that several compute the total weathered matter from rocks
through Total Dissolved Solids, TDS (e.g. Dessert et al., 2003; Donnini
et al., 2016) while others make different aggregations, i.e. cations (e.g.

Gaillardet et al., 1999; Dessert et al., 2003; Balagizi et al., 2015) or
cations plus SiO2 (e.g. Hartmann et al., 2014a). In the present study,
each ion is computed independently to overcome these discrepancies, in
a similar way to Braun et al. (2005) and Goddéris et al. (2009). Among
the applications of these studies, a knowledge of CWR is of interest in
assessing CO2 consumption through rock dissolution (Amiotte Suchet
and Probst, 1995; Amiotte Suchet et al., 2003; Hartmann et al., 2009),
in studying the global biogeochemical cycles of P (c.f. Hartmann et al.,
2014a), and in characterising the riverine end-member in oceanic as-
sessments (Sun et al., 2016). Assessing each ion independently offers an
opportunity for a more detailed description of the CW process and the
associated assessments at a global scale. In this regard, the present
study will be a reference for future works, especially in large-scale
applications (see discussion sections below). The ICWR model yields
similar flux median and ranges values as compared to the observed data
for alkalinity, but a poorer representation of Cl−, linked to a pre-
dominantly atmospheric input and traces of evaporites located in other
lithological groups that are not large enough to be mapped at a global
scale but are large enough to have a significant impact on riverine
loads.

Previous authors have attributed the overestimation of empirically-
modelled CWR in tropical areas (such as the Amazon, Congo, and
Orinoco basins) and its underestimation in northern latitudes to the
small number of sampling locations included in development of the
model (see discussion in Hartmann et al., 2014a and Goddéris et al.,
2006). The recent study by Hartmann et al. (2014a) extrapolated a
regionally fitted model (using 381 sampling locations in the Japanese
Archipelago, see Hartmann and Moosdorf, 2011) to the world, and
further refined its formulation by considering 49 large river catchments
in different locations worldwide, among which there are several tro-
pical and Arctic basins. Gaillardet et al. (1999), on the other hand,
initially included this kind of basin in their model fitting, taking the 60
largest rivers in the world as a reference. Here, 1313 sampling locations
in large basins and small catchments in warm and cold climates around
the world were used for the model fit step, reflecting greater variability
in the parameter estimates and thus giving to more robust results, as
supported by the residual normal distribution.

Nevertheless, even though the number of sampling locations is
greater than in previous empirical model developments, they are

Fig. 3. Scatterplot of simulated and observed data for calibration and validation, using model M3. Each point represents a median value for each ion considered in
this study, and the bar expands over the first and third quartiles to show how the average ranges are captured by the model. The dashed line represents 1:1.



spatially clustered in some areas, excluding relevant areas from the
calibration and validation steps (Fig. 3). Northern latitudes (the Arctic
catchments), Polynesian sampling locations and a large quantity of data
available from Asia are not included in the present analysis because of

non-availability in the data source selected, or due to the subset cri-
terion established (see Section 2.2.1). Despite not including these areas,
the calibration subset is considered to be representative of different
climates, soils and lithological characteristics (see Supplementary
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Fig. 4. Holospheric distribution of Ionic fluxes derived from Chemical Weathering of Rocks (ICWR), all data expressed in Mg·km2·y−1. The maps were obtained by
applying the model to a global grid of 0.5° using the fitted parameters in model M3. Note that each ion presents a different colour range based on the global percentile
distribution, using P10th, P25th, P50th, P75th, and P90th as breakpoints.



Information, Figs. S3-S7), allowing a flexible tool to be developed that
is capable of capturing a great variability in catchment characteristics,
albeit acknowledging its limitations (see Section 4.3 Domain of appli-
cation).

CW of rocks is a complex process that is controlled by several factors
that vary with soil depth, e.g. the composition of minerals (Apollaro
et al., 2019; Biondino et al., 2020), and the hydrology (Gabet et al.,
2006; Anderson et al., 2004; Hartmann, 2009). Boeglin and Probst
(1998) showed that for large river basins, the atmospheric/soil CO2

consumed by silicate weathering and the associated bicarbonate river
fluxes are 1.8 times lower when the bedrock is covered by deep lateritic
soils. Oliva et al. (2003) noted that regolith depth shields the rocks from
CW in areas where this layer is thicker, however Dong et al. (2018)
reported that the highest CW occurs at an intermediate soil thickness. In
this regard, we hypothesized that a larger regolith (soil+saprolite)
layer would act as a proxy for erosion-product deposition, and in sy-
nergy with a low hydraulic conductivity, would result in a lower CWR
(Gabet et al., 2006; Anderson et al., 2004).

However, inclusion of global regolith thickness (Shangguan et al.,
2017) and hydraulic conductivity (Huscroft et al., 2018) in this study
did not improve the results. We associate this finding with the model
configuration and the scale of application. In addition, the GLHYMPS
database (Huscroft et al., 2018) was computed from the GLiM database,
which is already accounted in the model variables, although informa-
tion may already have been included in the lithological group classifi-
cation. In contrast with our study, Dong et al. (2018) succeeded in in-
cluding of these variables using a physically based model, by making a
distinction between different soil layers. However, our data-driven
model was not capable of including these variables within its context
and the area of application poses a challenge in describing the required
variables. Nonetheless, an improvement in performance of the model in
relation to soil data can be found in the “soil shielding effect” factor
(Dupré et al., 2003; Hartmann et al., 2014a), computed for soil types
classified based on their pedogenesis in the HSWD database (FAO et al.,
2012). Soils with thick layers, low hydraulic conductivities, dominated
by organic matter decay, or with a shallow ground water table
(Hartmann et al., 2014a) would have a stronger shielding effect. We
attribute the improvement in the model's results to the soil shielding
effect, and the lack of success in including new variables to the fact that
the combination of the lithological and soil classification maps already
takes into account the interaction of chemical fluxes with the soil layers
overlying the bedrock zone, and the fact that the inclusion of regolith
thickness and hydraulic conductivity requires a physically-based ap-
proach for inclusion in studies of chemical weathering studies.

Temperature is another variable initially considered to be relevant
in CW (Drever and Zobrist, 1992, Dessert et al., 2003, Hartmann et al.,
2014), since it reflects changes in the equilibrium constant of the dis-
solution reactions (Drever, 2012). An increase in water temperature
would increase dissolution of rocks and augment biological activity,
through respiration and pCO2 in the soil, but it would also reduce the
gas dissolution in the liquid. However, CO2 is produced by ecosystem

respiration, inducing acids responsible for chemical weathering; this is
a two-factor dependence (soil water content and temperature) which
explains why an Arrhenius-type factor for the model alone does not
improve the results (Romero-Mujalli et al., 2019). Dissolution takes
place in the regolith water and groundwater but we could find no da-
tabase with worldwide spatially distributed temperature values. For
this reason, air temperature is used as a proxy for this effect, but its
inclusion does not provide any improvement in the model. This is re-
lated to two main factors: the different effect on the dissolution of each
mineral and that the fact that, although groundwater temperature is
dependent on annual average air surface temperature, this variable
appears not to be a proxy related to the temperature effect on CW re-
actions. Further research is needed to analyse the effect of water tem-
perature on these fluxes worldwide.

At the conceptualization stage (see Section 2.1), several other
variables were considered, such as vegetation (land cover), evapo-
transpiration, or a finer definition of rocks (including rock ages), but
after some consideration, these data were not included in the devel-
opment stage. Vegetation fixes atmospheric C through photosynthesis,
which is later exchanged by roots with microorganisms during soil re-
spiration, increasing the CO2 concentration in the soil pores, which
would dissolve in water to generate carbonic acid and enhance rock
dissolution, thus releasing ions into the water matrix (c.f. Keller, 2019).
However, changes in the photosynthesis process, soil respiration and
evapotranspiration are processes with a higher variability (posing a
challenge in modelling them, c.f. Chen and Liu, 2020) than the annual
mean value used in this study, although this variability could not be
captured. Evapotranspiration, conditioned by climatic variables such as
temperature and precipitation, affects the water balance by extracting
water from the system (i.e. basin) causing an increase in the saline
concentration found in rivers. However, its effect on CW is less pro-
nounced than other characteristics, such as lithological classification
(White and Blum, 1995). This suggests that a better representation of
the effect of precipitation, air temperature and other climatic variables
on chemical weathering rates is mainly related to an improvement in
the water balance at a basin scale, which could be achieved by using
more detailed models. Lastly, in comparison with previous similar
studies (Meybeck, 1986; Amiotte Suchet and Probst, 1995) recent stu-
dies include a larger number of lithological classes (Hartmann et al.,
2014b, this study), involving a finer definition of minerals. Despite this
larger number, further levels of classification of lithologies are available
(c.f. Hartmann and Moosdorf, 2012), but given the number of sampling
locations, it would have been a challenge to include all of them, as most
of them would not vary in a wide enough range to calibrate the para-
meters in the model. Even with the classification used in this study,
there are some lithological classes which do not span the entire spec-
trum (e.g. plutonic intermediate, see Supplementary Information, Fig.
S6), meaning that in the subset considered in this study, there are no
catchments in which 100% of the draining area is covered by these
lithologies. The inclusion of finer lithological classification should focus
on smaller-scale cases, where mechanistic models may be applied, or

Table 2
Comparison between studies on of CWR at global scales. All values expressed at 106 Mg·y−1. ΣZ+ represent the Ca2+, Mg2+, Na+, and K+ while ΣZ− for Cl−, SO4

2−,
and Alkalinity (expressed as HCO3

−). Bracketed values represent a recalculation of ΣZ+ adding a virtual contribution of SiO2, considering a SiO2/Ca2+ of 0.7.

Study Code Ca2+ Mg2+ Na+ K+ Alkalinity SO4
2− SiO2 Cl− ΣZ+ ΣZ− Total flux from Chemical Weathering

This study M1 374 100 223 25 1815 401 – 246 722 (984) 2462 3184 (3446)
M2 484 121 202 29 2234 500 – 263 836 (1175) 2997 3833 (4172)
M3 428 107 176 24 1954 465 – 221 734 (1034) 2640 3374 (3674)
M4 527 132 221 31 2434 545 – 287 911 (1284) 3266 4177 (4550)
M5 477 119 202 27 2139 490 – 241 825 (1159) 2870 3695 (4029)

Meybeck (1979) Natural 502 126 192 48 1940 307 – 215 868 2462 3330
Total 549 136 270 53 2040 431 388 308 1008 3167 4175

Probst (1992) 510 141 211 73 2013 455 355 223 935 3046 3981
Gaillardet et al. (1999) – – – – – – – – – – 2131
Hartmann et al. (2014a) Soil shielding applied – – – – – – – – (1439) – –



Here, the present model defines the CWR by its constituents, i.e.

ions, analyses the weight of each one in the total flux and helps to assess
the average specific flux. The poor representation of Na+ fluxes is
linked to different drivers governing the dissolution of the rocks with
this kind of elements, such as albite or volcanic glass, which are re-
ported as large CO2 sinks in a global context (Dessert et al., 2003). In
order better to represent the Na+ and SO4

2− ions from an inverse
modelling point of view, other variables should be taken into con-
sideration, as their presence may be linked more to redox processes
than to congruent dissolution by acids (Berner and Berner, 2012), like
dissolved oxygen concentration or redox potential, which are com-
monly measured in the field. This finding highlights the importance of
analysing all ions when considering CW and other associated processes,
as since although the CWR has previously been quantified, the re-
presentation of all ions in this flux is not equally well defined, in-
dicating that further research is needed to improve the representation
of those elements and an understanding of the associated processes.
Keller (2019) shows an analysis of the Critical Zone and explains CW in
its context; a relevant number of variables are tied up with this process
(including denudation rate, rock age, etc.), and these variables should
be taken into consideration in any further developments of these
models and may be responsible for the variability not captured by the
model. This study has shown that CWR is mostly conditioned by Ca2+

and alkalinity, though the other ions need further research to be
properly represented.

A relevant factor in applying this model is the scale of application.
The model has been applied at a global scale, but the initial data en-
capsulated catchments with different sizes. In general, basins draining
an area between 10 and 10,000 km2 were those that showed dis-
crepancies of within ±20% between modelled and observed data
(Table S3). Those two limits encompass most of the catchments con-
sidered in this study and are therefore, the best spatial scale for ap-
plication of the model. Larger catchments are expected to drain water
affected by more processes other than CW (such as cyclic salts and
pollution) and have a more complex hydrology, while smaller catch-
ments may not be well defined in terms of the lithological composition.
A compromise between the scale of application and the level of detail
needs to be found in order to apply a model, especially for large scale
applications (Fu et al., 2019). This is a limitation for application of the
model at this step; further analysis on the performance and variability
captured by the model in larger or smaller catchments should be stu-
died and considered in future studies.

In addition to the applications noted above, the model provides an
opportunity to assess the natural major ionic composition of water,
relevant in analysis of crop production (Wicke et al., 2011) and useful
when analysing “river syndromes” (salinization, eutrophication, etc. see
Meybeck, 2003) at the scales indicated. An initial snapshot for ICWR
fluxes is presented in Fig. 4. This data can be used as a reference for
scarce data availability on water chemistry analysis and as a constraint
for assessing anthropogenic influence in analysis of catchment water.
Moreover, the method presented can be used as a guide for developing
models with different lithological classifications if a different the li-
thological map exists, and enough data are available for parameter
fitting.

Application of this model is tested for sampling locations with the
characteristics summarised in the Supplementary Material (Figs. S3-S7)
and extrapolation of the model to a global scale yielded to a similar
value to recent studies (see Section 4.2). Nonetheless, constraints have
been found for classification of the lithology and soil considered in the
input dataset (see Figs. S6 and S7 for a summary). Temporal evolution
has not been tested, as chemical data was summarised to a unique value
per catchment, and hydrology was aggregated to a single annual value.
Refinement of the model should focus on distinguishing the different
hydrological fluxes (groundwater, surface, lateral flows, etc.) in order
to take into account processes of dilution and concentration, apart from
the improvements in representation of the CW process. As regard per-
formance of the model, the main limitation of this model is the poorer

when the chemical data compilation includes cases spanning the entire 
range of values.

Despite the current assessment, the relative importance of these 
variables in chemical weathering may not be well represented in the 
selected modelling approach, since data- driven models describe the 
process based on correlations of the data and not on physical funda-
ments, as mechanistic models do (e.g. WITCH model, Goddéris et al., 
2006). The uncertainty regarding this kind of model is large and diffi-
cult to quantify (Hartmann et al., 2014a), and is strongly affected by the 
reference sampling locations and the pre-processing step, which may 
induce bias in the data used for model fitting. Strict criteria on sampling 
location selection excludes around 80% of the data included in the 
original database but excludes the bias introduced by isolated samples 
(catchments sampled only once or twice) or from heavily anthro-
pogenically affected samples.

The greatest uncertainty in the pre-processing step is found in the 
separation of the riverine flux between atmospheric and bedrock fluxes, 
but its relevance is noted in previous literature (Stallard and Edmond, 
1981; Meybeck, 1986; Dessert et al., 2003; Hartmann and Moosdorf, 
2011). With regard to the ionic sources in streams, atmospheric de-
position has been noted as being relevant with regard to the input of 
sea-salt derived Cl− and Na+, especially in catchments located close to 
the coast (Meybeck, 1986; Berner and Berner, 2012). In arid regions, 
the atmospheric input of Ca2+ and K+ is related more to aeolian dust, 
biomass burning, or industrial emissions (Vet et al., 2014). Several 
publications show large scale deposition of base ions in the United 
States (e.g. Brahney et al., 2013) and other authors such as Lehmann 
et al. (2005) have studied the temporal evolution of these depositions. 
In this study, no temporal evolution has been studied, but an average 
spatial value has been derived from the data of Vet et al. (2014), which 
may differ for specific cases and requires further analysis when down-
scaling the model.

To the best of the authors' knowledge, no results of mechanistic 
models representing ICWR at a global scale have previously been 
published, as upscaling of this kind of models is constrained to the data 
availability (creating a need for assumptions or simplifications when 
applying to large scales) and computing resources. In this context, the 
present study represents a step forward in the assessment, through 
modelling, of CW at a global scale in three main aspects: assessing CW 
at a global scale making a distinction of each ion; establishing a simple 
law that can be downscaled to catchment-level studies in later studies, 
and highlighting the need for physically- based principles in order to 
study the effect of variables such as regolith thickness, hydraulic con-
ductivity, or water temperature.

4.3. Domain of application

In general, this kind of model has been applied at regional or global 
scale to perform several assessments, such as atmospheric CO2 se-
questration by rocks through dissolution of minerals (Probst, 1992; 
Amiotte Suchet and Probst, 1995; Amiotte Suchet et al., 2003; Ludwig 
et al., 1998; Balagizi et al., 2015), Si mobilization (Jansen et al., 2010) 
and analysis of the P-release (Hartmann et al., 2014a). Alkalinity fluxes 
measured in rivers have commonly been used as a tracer of CO2 se-
questration by CW, and two main groups of rocks have been studied: 
carbonates and silicates. Following the reactions shown in Fig. S1, al-
kalinity fluxes from silicate rocks come only from the atmospheric/soil 
CO2, while for carbonates draining waters, 50% of the riverine flux is 
associated with lithogenic carbonate contribution (Amiotte Suchet and 
Probst, 1993a; Probst et al., 1994; Gaillardet et al., 1999; Hartmann 
et al., 2009; Balagizi et al., 2015). It is important to note that SiO2 is not 
considered in this study, because its implication for the biogeochemical 
cycle is strongly affected by its accumulation on amorphous silica, or 
biogenic silica in living organisms (Conley, 2002) processes which 
proved complex to simulate at the present scale.
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Fig. 5. Holospheric distribution of low, active, hyperactive, and hotspot areas with regard to ICWR at a global scale. The classification is based on the global median
value. Low activity areas (blue) are those that stand below the median global ICWR; Active areas (green) contain areas between the median and 5 times the median
global ICWR; Hyperactive areas (yellow) include areas with between 5 and 10 times the global ICWR; and Hotspots (red) are those with over 10 times the global
median value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



5. Conclusions and further developments

This study presents an assessment of the global ICWR for the major
ions Ca2+, Mg2+, K+, Na+, SO4

2−, Cl− and alkalinity, together with its

spatial distribution. Overall, although this kind of model contains an
important degree of uncertainty, this study contributes to a closer step
between empirical and mechanical approaches, since it improves the
representation of CWR by separating the total fluxes into ionic fluxes
(ICWR); it is based on a broader collection of sampling locations, and it
has taken into consideration up-to-date worldwide databases, high-
lighting better representation of ions such as Ca2+ and alkalinity, and
poorer representation of Na+ and Cl−. The results of this analysis in-
dicate that a regression including lithology, soil and hydrology is en-
ough to estimate the average flux and ranges of major ion CWR at a
global scale. The results also show that previous measurements of CWR
are mainly determined by Ca2+ and alkalinity, though the other ele-
ments need to be analysed to understand the key variables dominating
their geochemical cycles at a global scale. This study also supports the
idea that the most relevant factors are lithological distribution, hy-
drological representation and the soil shielding effect. In contrast,
temperature was not concluded as to be relevant, but its role remains
uncertain. In addition, the results coincide with previous identification
of hotspots in temperate climate latitudes but reflect the importance of
considering more northerly latitudes in global matter assessments.
Further studies should focus on improving representation of the input
data, as well as a more in-depth analysis the worst represented ions, and
a shift in approach from a static model to a dynamic approach, con-
sidering the changes on these fluxes over time, and thus allowing
forecasting studies to be applied.
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