
HAL Id: hal-02896411
https://hal.science/hal-02896411v1

Submitted on 10 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to reason from inconsistent ontologies with
prioritized assertional bases?

Salem Benferhat, Zied Bouraoui, Huma Chadhry, Mohd Shafry Bin Mohd
Rahim, Karim Tabia, Abdelmoutia Telli

To cite this version:
Salem Benferhat, Zied Bouraoui, Huma Chadhry, Mohd Shafry Bin Mohd Rahim, Karim Tabia, et al..
How to reason from inconsistent ontologies with prioritized assertional bases?. The 12th International
Conference on SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS, Nov 2016,
Naples, Italy. �hal-02896411�

https://hal.science/hal-02896411v1
https://hal.archives-ouvertes.fr

How to reason from inconsistent ontologies with prioritized assertional bases?

Salem Benferhat
Artois University - Nord de France,

CRIL CNRS UMR 8188, Artois,
F-62307 Lens, France.

Email: benferhat@cril.univ-artois.fr

Zied Bouraoui
Computer Science and Informatics

Cardiff University, UK
Email: BouraouiZ@cardiff.ac.uk

Huma Chadhry
Technology Malaysiay

81310 UTM Johor Bahru, Johor, Malaysia
Email: huma.bicse@gmail.com

Mohd Shafry Bin Mohd Rahim Fc
Technology Malaysiay

81310 UTM Johor Bahru, Johor, Malaysia
Email: shafry@utm.my

Karim Tabia
Artois University - Nord de France,

CRIL CNRS UMR 8188, Artois,
F-62307 Lens, France.

Email: tabia@cril.univ-artois.fr

Abdelmoutia Telli
Artois University - Nord de France,

CRIL CNRS UMR 8188, Artois,
F-62307 Lens, France.

Email: telli@cril.univ-artois.fr

Abstract—In many applications, such as video processing,
assertions are often provided by several and potentially
conflicting sources having different reliability levels. This
paper deals with the problem of handling inconsistency in
lightweight ontologies when the set of assertions (facts) is
prioritized. We propose a safe and efficient way to restore
consistency using the concept of free assertions; assertions
that are not involved in conflicts. Our approach allows the
selection of one consistent assertional base, called a preferred
repair. Selecting a unique repair is important since it allows
an efficient handling of queries. The last part of the paper
contains an illustrative example using video data.

Keywords-Inconsistency; Prioritized knowledge bases;
Lightweight Ontologies

I. INTRODUCTION

Description Logics (DLs) are formal frameworks for
representing and reasoning with ontologies. A DL knowl-
edge base is built upon two distinct components: a termi-
nological base (called TBox) representing generic knowl-
edge, and an assertional base (called ABox) containing
facts or assertions.

Recently, a particular interest was given to Ontology
Based Data Access (OBDA), in which the ontological
view (i.e. the TBox) is used to offer a better exploitation
of assertions (i.e. the ABox) when querying them (e.g.
[18], [23]). A crucially important problem that arises in
OBDA is how to manage conflicting information. In such
a setting, an ontology is usually verified and validated
while the assertions can be provided in large quantities
by various and unreliable sources that may be inconsistent
with respect to the ontology. Moreover, it is often too ex-
pensive to manually check and validate all the assertions.
This is why it is very important in OBDA to reason in the
presence of inconsistency. Many works (e.g. [9], [11], [17],
[19], [20]), basically inspired by the ones in the database
area (e.g. [1], [8], [14]) and propositional logic approaches
(e.g. [5]), deal with inconsistency in DLs by proposing
several inconsistency-tolerant inferences, called semantics.
These semantics are based on the notion of a maximally

assertional (or ABox) repair which is closely related to the
notion of a database repair [16] or a maximally consistent
subbase used in the propositional logic setting (e.g. [22]).
An ABox repair is simply an assertional subbase which is
consistent with an ontology.

In many applications, assertions are often provided by
several and potentially conflicting sources having different
reliability levels. Moreover, a given source may provide
different sets of uncertain assertions with different con-
fidence levels. Gathering such sets of assertions gives
a prioritized or a stratified assertional base (i.e. ABox).
The role of priorities in handling inconsistency is very
important and it is largely studied in the literature within
the propositional logic setting (e.g. [7]). Several works
have also studied the notion of priority when querying
inconsistent databases (e.g. [21], [24]) or DLs knowledge
bases (e.g. [4], [10], [15]).

The context of this paper is the one of handling in-
consistency in lightweight ontologies when the ABox is
prioritized. We use DL-Lite [2], an important tractable
fragment of DLs, as an example of lightweight ontologies
which is well-suited for OBDA [17].

In the presence of conflicting information, there is
always a compromise that one needs to reach between the
expressiveness and computational issues. Having multiple
repairs often allows to derive more conclusions than if
one repair is only used. However, query answering from
multiple repairs is generally more expensive than query
answering from a single repair. In fact, reasoning from
a single repair can be viewed as an approximation of
reasoning from multiple repairs. Recently, a so-called non-
defeated repair has been proposed in [4]. This paper
proposes a characterization of the non-defeated repair
using the concept of accepted assertions. This leads to
select a unique preferred repair from initial inconsistent

knowledge base. Selecting only one preferred repair is
important since, once computed, it allows an efficient
query answering.

The rest of this paper is organized as follows: Section
II-A provides the needed background on DL-Lite. Section
III presents some elementary concepts on inconsistency
handling such as the concepts of conflicts, repairs and
free assertions. Section IV presents the so-called non-
defeated repair and its characterization using the concept
of accepted assertions. Section V introduces the notion of
a prioritized deductive closure and its use in non-defeated
repair. The last section provides a potential application of
our approach to video data.

II. DL-Lite AND PRIORITIZED ASSERTIONAL BASE

A. DL-Lite: A Brief Refresher

This section briefly recalls DL-Lite logics. For the sake
of simplicity, we only consider DL-LiteR language [12]
and we will simply use DL-Lite instead of DL-LiteR.
Note that the results of this paper can be extended in
a straightforward way to any tractable DL-Lite as far as
computing ABox conflicts is done in polynomial time.
This is true for DL-Litecore (a particular case of DL-LiteR)
and DL-LiteF . The DL-Lite language is defined as follows:

R −→ P | P− E −→ R | ¬R
B −→ A | ∃R C −→ B | ¬B

where A is an atomic concept, P is an atomic role and
P− is the inverse of P . B (resp. C) is called basic (resp.
complex) concept and role R (resp. E) is called basic
(resp. complex) role. A knowledge base (KB) is a couple
K=〈T ,A〉 where T is a TBox and A is an ABox.

A TBox includes a finite set of inclusion axioms on
concepts and on roles respectively of the form: B v C
and R v E. The ABox contains a finite set of atomic
concepts and role assertions respectively of the form A(a)
and P (a, b) where a and b are two individuals.
The semantics of a DL-Lite knowledge base is given
in terms of interpretations. An interpretation I=(∆I , .I)
consists of a non-empty domain ∆I and an interpretation
function .I that maps each individual a to aI ∈ ∆I , each
A to AI ⊆ ∆I and each role P to P I ⊆ ∆I × ∆I .
Furthermore, the interpretation function .I is extended in
a straightforward way for concepts and roles as follows:

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P−)I = {(y, x) ∈ ∆I ×∆I |(x, y) ∈ P I}
(∃R)I = {x ∈ ∆I |∃y ∈ ∆I such that (x, y) ∈ RI}
(¬B)I = ∆I \BI

(¬R)I = ∆I ×∆I \RI

An interpretation I is said to be a model of a concept
(resp. role) inclusion axiom, denoted by I |= B v C
(resp. I |= R v E), if and only if BI ⊆ CI (resp. RI ⊆
EI). Similarly, we say that an interpretation I is a model
of a membership assertion A(a) (resp. P (a, b)), denoted
by I |= A(a) (resp. I |= P (a, b)), if and only if aI ∈
AI (resp. (aI , bI) ∈ P I). A knowledge base K is called
consistent if it admits at least one model, otherwise K is
said to be inconsistent. A TBox T is said to be incoherent
if there exists at least a concept C such that for each
interpretation I which is a model of T , we have CI=∅.

B. Prioritized Assertional Bases

A prioritized assertional base (or a prioritized ABox),
simply denoted by A=(S1, · · · ,Sn), is a tuple of sets
assertions. The sets Si’s are called layers or strata. Each
layer Si contains the set of assertions having the same
level of priority i and they are considered as more reliable
than the ones present in a layer Sj when j > i. Hence, S1
contains the most important assertions while Sn contains
the least important assertions.

Throughout this paper and when there is no ambiguity
we simply use ’prioritized DL-Lite KB K=〈T ,A〉’ to refer
to a DL-Lite KB with a prioritized ABox of the form
A=(S1, · · · ,Sn).

This paper proposes methods to deal with inconsistent
DL-Lite KB. The input of our method is a prioritized DL-
Lite knowledge base K=〈T ,A〉 withA=(S1, · · · ,Sn). The
output of our approaches is a standard DL-Lite knowledge
base K′=〈T ,R〉, whereR is not prioritized (namely, just a
set of assertions). K and K′ have the same terminological
base. R will be called a preferred repair. Then a query q
is said to follow from K if it can be derived, using the
standard DL-Lite inference, from K′. Let us first recall
important concepts for handling inconsistency when no
priority is available between assertions.

III. INCONSISTENCY-TOLERANT REASONING FOR
PRIORITIZED DL-Lite ASSERTIONAL BASES.

A. The concept of repairs

Within the OBDA setting, we assume that T is coherent
and hence its elements are not questionable in the presence
of conflicts. Coping with inconsistency can be done by first
computing the set of consistent subsets of assertions (not
necessarily maximal), called repairs, then using them to
perform inference (i.e. query answering). More formally
a repair is defined as follows:

Definition 1: Let K=〈T ,A〉 be a flat (not prioritized)
DL-Lite KB. A subbase R ⊆ A is said to be a repair if
〈T ,R〉 is consistent. And R is said to be a maximally
inclusion-based repair of K, denoted by MAR, if 〈T ,R〉
is consistent and ∀R′: R (R′,〈T ,R′〉 is inconsistent.

In the rest of this paper, we will use the term ‘flat’ to
express the fact that there is no priority between different
assertions of an ABox. According to the definition of
MAR, adding any assertion f from A \ R to R entails the
inconsistency of 〈T ,R∪ {f}〉. Moreover, the maximality
in MAR is used in the sense of set inclusion. We denote
by MAR(A) the set of MAR of A with respect to T . The
definition of MAR coincides with the definition of ABox
repair proposed in [16].

Using the notion of repair, coping with inconsistency in
flat DL-Lite knowledge bases can be done by applying
standard query answering either using the whole set of
repairs (universal entailment or AR-entailment [16]) or
only using one repair.

B. Free Assertions and Conflict Sets

We now introduce the notion of a conflict. It is a
minimal subset C of assertions of A such that K=〈T , C〉
is inconsistent.

Definition 2: Let K=〈T ,A〉 be a DL-Lite KB. A sub-
base C ⊆ A is said to be an assertional conflict of K
iff 〈T , C〉 is inconsistent and ∀ f ∈ C, 〈T , C \ {f}〉 is
consistent.

From Definition 2, removing any fact f from C restores
the consistency of 〈T , C〉. In DL-Lite, when the TBox is
coherent, a conflict involves exactly two assertions [13].
We denote by C(A) the set of conflicts in A.

A nice feature of DL-Lite is that computing the set of
conflicts is done in polynomial time [3], namely Conf is
in P.
We now introduce the notion of non-conflicting or free
elements.

Definition 3: Let K=〈T ,A〉 be DL-Lite KB. An asser-
tion f ∈ A is said to be free if and only if ∀c ∈ C(A) :
f /∈ c.
Intuitively, free assertions correspond to elements that are
not involved in any conflict. We denote by free(A) the
set of free assertions in A. The notion of free elements
is originally proposed in [6] in a propositional logic
setting. Within a DL-Lite setting, free(A) is computed in
polynomial time thanks to the fact that computing conflicts
is done in polynomial time.

The folowing Lemma 1 rephrases the set of free ele-
ments using the set of maximally inclusion-based repairs:

Lemma 1: Let K=〈T ,A〉 be a DL-Lite KB. Then:
free(A) =

⋂
X∈MAR(A) X.

For flat DL-Lite knowledge bases, the free-entailment
(entailment based on free assertions) is equivalent to the
IAR-entailment proposed in [16]. In fact, in the context
of propositional logic the concept of a maximal consistent
subset has been introduced before the concept of repairs
[22]. Besides, the concept of free entailment have been
introduced in [6]. In the rest of this paper, we will only

use the notaion free(A) to describe the set of assertions
that are not responssible of conflict in 〈T ,A〉.

IV. ACCEPED PRIORITIZED ASSERTIONS

The free entailment repair can be viewed as a safe
way to deal with inconsistency. The term safe is used
by opposition to the term risky or adventurous with
respect to the derived conclusions. This section provides
an extension of free entailment repair when assertional
bases are prioritized. We first need to introduce the concept
of defeated assertion.

Definition 4: Let K=〈T ,A〉 be a prioritized DL-Lite
KB. Let f be an assertion of A. Then the assertion f ∈ Si

is said to be defeated if:
• K=〈T , {f}〉 is inconsistent, or
• There exists an assertion g ∈ Sj such that 〈T , {f, g}〉

is inconsistent and j ∈ i.

Basically, an assertion f is said to be defeated if it is
contradicted by some priority assertion. In the case where
an assertion is not defeated, it is called accepted. More
precisely:

Definition 5: Let K=〈T ,A〉 be a prioritized DL-Lite
KB. Let f be an assertion of A. Then the assertion f ∈ Si

is said to be accepted if and only if it is not defeated.

It turns out that the set of accepted assertions is exactly
equal to the so-called no-defeated repair introduced in
[4]. The idea in the construction of no-defeated repair
is to iteratively retrieve, layer per layer, the set of free
elements. More precisely:

Definition 6: Let K=〈T ,A〉 be a prioritized DL-Lite
KB. We define the non-defeated repair, denoted by
nd(A)=S ′1 ∪ . . . ∪ S ′n, as follows:

∀i = 1, .., n : S ′i = free(S1 ∪ . . . ∪ Si).

Namely, nd(A) =

free(S1) ∪ free(S1 ∪ S2) ∪ . . . ∪ free(S1 ∪ . . . ∪ Sn).

Hence an important result of this paper is to provide a

characterization of the so-called non-defeated repair using
the concept of accepted beliefs.
The definition of non-defeated subbase is an adaptation of

the definition proposed in [7] within a propositional logic
setting. However, contrarily to the propositional setting, as
we will see later, the non-defeated repair can be applied
on A or its deductive closure cl(A) which leads to two
different ways to select a single preferred repair. Besides
the non-defeated repair is computed in polynomial time
in a DL-Lite setting while its computation is hard in a
propositional logic setting.
Algorithm 1 gives the computation of the non-defeated
repair. Algorithm 1 first computes the set of conflicts

(step 1). Step 2 simply initializes nd(A) to an empty set.
The expression:

{f : f ∈ S1 ∪ . . . ∪ Si and ∃ g ∈ S1 ∪ . . . ∪ Si such that
{f, g} ∈ C }

represents the set of conflicting elements in S1 ∪ . . .∪Si.
Hence, Step 4 computes the set of free elements in
S1 ∪ . . . ∪ Si.
Step 5 adds this result to nd(A). Clearly, Algorithm 1
straightforwardly implements Definition ??. In Algorithm
1 the set of conflicts is computed once. Hence, the
compexity of Algorithm 1 is
Conf (step 1) plusO(n) (step 2-6), where n is the number
of strata in the DL-Lite knowledge base K.

The first nice feature of non-defeated repair is that it is
consistent. Indeed, Recall that:

nd(A) = free(S1)∪free(S1∪S2)∪. . .∪free(S1∪. . .∪Sn).

Recall also that if C is a conflict then either C is
singleton or C is a doubleton. Now, assume that nd(A) is
inconsistent. Then this means that there exists a conflict
C of 〈T ,A〉 such that C ⊆ nd(A).

Assume that C = {f} is a singleton and Si is the
first layer where f ∈ Si (namely, ∀j < i, f /∈ Sj).
This means that:

• ∀ j < i, f /∈ free(S1 ∪ · · · ∪ free(S1 ∪ · · · ∪ Sj)
(since f /∈ S1 ∪ · · · ∪ Si−1),

• ∀j ≥ i, f /∈ free(S1, · · · , Sj) (since free only
contains non-conflicting information).

Hence, f /∈ free(S1) ∪ · · · ∪ free(S1 ∪ · · · ∪ Sn).
Namely, f /∈ nd(A).

Now, assume that C = {f, g} is a doubleton. Let Si

(resp. Sj) be the first layer containing f (resp. g).
Let us assume that i ≤ j. Then clearl

C * free(S1) ∪ · · · ∪ free(S1 ∪ · · · ∪ Sj−1)

since f * S1∪· · ·∪S1∪· · ·∪Sj−1. Besides, for all k ≥ j,
we have:

free(S1 ∪ · · · ∪ Sk) ∩ C = ∅.

Hence, using the definition of free assertion, we get:

C * free(S1) ∪ · · · ∪ free(S1 ∪ · · · ∪ Sn).

Hence nd(A) contains no conflict and it is consistent.
The second nice feature when using the set of accepted

belief is that the complexity of computing nd(A) is in
P. Indeed, recall the computing conflicts is done in a
polynomial time. Since the set of free assertions can be
obtained in a linear time with respect to the set of conflicts,
then the whole computation of nd(A) is also done in
polynomial time.

Algorithm 1 Non-Defeated Repair
Input: K = 〈T ,A〉 where A = S1 ∪ . . . ∪ Sn
Output: A flat assertional base nd(A)

1: C ← C(A) {List of conflicts}
2: nd(A) ← ∅
3: for i = 1 to n do
4: Fi = (S1 ∪ . . . ∪ Si) −{f : f ∈ S1 ∪ . . . ∪ Si and

∃ g ∈ S1 ∪ . . . ∪ Si such that {f, g} ∈ C }
5: nd(A)← nd(A) ∪ Fi

6: return nd(A)

V. ACCEPTED ASSERTIONS ON A PRIORITIZED
CLOSURE

We now introduce the concept of a prioritized closure.
In fact, the three preferred repairs given in the previous
sections can be either defined on 〈T ,A〉 or on 〈T , cl(A)〉
where cl(A) denotes the deductive closure of a set of
assertions A and is defined as follows.

Definition 7: Let K=〈T ,A〉 be a flat DL-Lite KB. Let
Tp be the set of all positive inclusion axioms of T 1. We
define the deductive closure of A with respect to T as
follows: cl(A)={B(a): 〈Tp,A〉 |= B(a) where, B is a
concept of T and a is an individual of A} ∪ {R(a, b):
〈Tp,A〉 |= R(a, b), where R is a role of T and a,b are
individuals of A}.

The use of a deductive closure of an ABox fully makes
sense in DL languages. The following definition extends
Definition 7 to the prioritized case.

Definition 8: Let K=〈T ,A〉 be a prioritized DL-Lite
KB. We define a prioritized closure of A with respect
to T , simply denoted by cl(A), as follows:
cl(A) = (S ′1, . . . ,S ′n) where:

∀i = 1, .., n : S ′i = cl(S1 ∪ . . . ∪ Si−1 ∪ Si).

The first motivation of Definition 8 is that if an assertion
f is derived from 〈K, S1∪· · ·∪Sn〉 then f should belong
to cl(A). The second motivation is that if an assertion f
is believed to some rank i then it should also be believed
to all ranks that are higher than i. Namely, if f is derived
from 〈K, S1 ∪ · · · ∪ Si〉 then ∀j > i, f ∈ S′j .

One way to get a larger set of accepted assertions is to
use cl(A) instead of A. Namely, we define a closed non-
defeated repair, denoted by clnd(A), as S ′1∪. . .∪S ′n, such
that:

∀i = 1, .., n : S′i = free(c`(S1 ∪ . . . ∪ Si)). (1)

Clearly, nd(A) ⊆ clnd(A) and cl(nd(A)) ⊆ clnd(A).
The converse is false.

Example 1: Let us the following knowledge base
where: T = {A v¬B,B v C,A v C} and

1Positive inclusion axioms are of the form B1 v B2.

A = S1 = {A(a), B(a)}.
One can check that nd(A) = ∅, cl(nd(A)) = ∅ while
nd(cl(A)) = clnd(A) = {C(a)}. �

VI. EXAMPLE

This section contains a brief description of a potential
application of our approach to classifying and solving
conflicts in a collection of dance videos issued from
different sources. Motion in video carries important
information which is of a multi-fold nature. Motion
sometimes need to be interpreted for understanding
or anticipating any immediate reaction to the motion.
Hence, the significance of motion perception in a
video is seen in several of the present systems and it
remains to be active research area. Movements in dances
encompass different types of information; sacred rituals,
social dialogue or cultural expressions and more. This
calls for the need to completely and precisely describe
and process motion information and make it digitally
available for further processing. Several applications can
be reached by dance video automatic annotations, such as
dance video retrieval, classification of video databases or
animation of dances using modeling of stored information.

A video is a sequence of frames which extend over time.
A set of frames can be referred to as a dance segment once
a human completes a dance step in a composed dance.
Sequence of actions that display a motion which is isolated
and makes up a dancing vocabulary can be referred to as a
dance step. Improvisation in a dance refers to simultaneous
dance moves, which are not previously composed.

Dance moves need to categorized as expressions such
as Time Steps in Cha-Cha-Cha or Passo Basico in Samba
dance 2. Our aime is to explore how different dance
steps in a Malaysian dance video can be categorized
and described to extract knowledge from the video. For
instance, in the dance video Inang, we can describe the
step Side Bend as a position in which the upper body and
the raised arms arch in left or right direction and the feet
tap toe in the opposite direction, creating the form of an
arch on right and then left side. The dance step with the
name Side Bend are segmented from the entire video and
this segment of dance movement is labeled as Side Bend.

In the presence of a collection of dance segments issued
from different sources (cameras for instance), the problem
of conflict may arise. To illustrate this situation, let us
consider an example where we assume that we only have
the following concepts:

• Forwardmove,
• Backgroundmove,
• FastForwardmove,

2http://www.dancadesalao.com/agenda/ingles.php

• SlowForwardmove,
• FastBackgroundmove,
• SlowBackgroundmove,
• StartForwardmove, and
• StartBackgroundmove.
These concepts concern dances segment that represent

direct moves. The concept Forwardmove (resp. SlowFor-
wardmove and FastForwardmove) lists the set of dance
segments that represent a forward move (resp. a slow
and fast forward move). Similarly, The concept Back-
groundmove (resp. Slowbackgroundmove and Fastback-
groundmove) lists the set of dance segments that represent
a background move (resp. a slow and fast background
move). The concept StartForwardmove (resp. StartBack-
groundmove) lists the set of dance segments that represent
a starting forward (resp. background) move in a video.

We also assume that we only have one relation:

• DanceSegment: gives for each of dance video the list
of dance segments

The terminological base is expressed by the following
TBox:

Paxiom 1: FastForwardmove v Forwardmove
Paxiom 2: SlowForwardmove v Forwardmove
Paxiom 3: StartForwardmove v Forwardmove
Paxiom 4: FastBackgroundmove v Backgroundmove
Paxiom 5: SlowBackgroundmove v Backgroundmove
Paxiom 6: StartBackgroundmove v Backgroundmove
Paxiom 7: StartForwardmove v SlowForwardmove
Paxiom 8: StartBackgroundmove v SlowBackgroundmove
Paxiom 9: Forwardmove v ∃ DanceSegment−

Paxiom 10: backgrounddmove v ∃ DanceSegment−

Naxiom1: Forwardmove v ¬ Backgroundmove

Assume that we have four individuals: i) two dances segments
s1 and s2, and ii) two videos v1 and v2. Assume that we only
have four assertions facts given by the ABox A = (S1, S2)
with
S1 = {Backgroundmove(s1), DanceSegment(v1, s1)},

S2 = {StartForwardmove(s1), DanceSegment(v1, s2)},
and
S3 = {SlowBackgroundmove(s1), FastBackgroundmove(s2)}.

This assertional base is assumed to be provided by different
sources (different cameras for example) having different
reliability levels. This knowledge base is clearly inconsistent.
Indeed, using the assertion StartForwardmove(s1) and
the positive inclusion axiom Paxiom3 one can derive
Forwardmove(s1). This derived fact together with the
assertion Backgroundmove(s1) contradict the negative axiom
Naxiom1. Without the use of priorities, the free entailment
will simple lead to:
Free(A) = {DanceSegment(v1, s1),

DanceSegment(v1, s2),
FastBackgroundmove(s2)}

Namely,

only assertions that are not conserved by the conflict are
preserved. When there is a priority relation between assertional
facts, one can go one step further in solving conflicts. In our
example, Backgroundmove(s1) is assumed to be issued from
a source more reliable than the one that delivers the assertion
StartForwardmove(s1). Hence, using the non-defeated
entailment, we get :

nd(A) = {Backgroundmove(s1),
SlowBackgroundmove(s1),
DanceSegment(v1, s1),
DanceSegment(v1, s2),
FastBackgroundmove(s2)}.

Clearly, nd(A) is clearly larger than Free(A). The nice
feature of our approach is once nd(A) is computed, query the
initial inconsistent knowledge base can be done efficiently.

VII. CONCLUSION

This paper focused on how to select a single preferred
repair from a prioritized inconsistent DL-Lite knowledge base.
Selecting only one repair is important since it allows efficient
querying answering once the preferred repair is computed. A
future work is to apply our approach to query Malaysian dance
videos in presence of possible conflicts.

Acknowledgments
This work is supported by Research and Innovation Staff

Exchange (RISE) H2020-MSCA-RISE-2015 project called High
Dimensional Heterogeneous Data based Animation Techniques
for Southeast Asian Intangible Cultural Heritage Digital Content
or AniAge Project [EU H2020 project-AniAge (691215)].

REFERENCES

[1] M. Arenas, E. Leopoldo. Bertossi, and J. Chomicki. Con-
sistent query answers in inconsistent databases. In Proceed-
ings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Philadel-
phia, Pennsylvania, USA, pages 68–79, 1999.

[2] A. Artale, D. Calvanese, R. Kontchakov, and M. Za-
kharyaschev. The DL-Lite family and relations. Journal
of Artificial Intelligence Research (JAIR), 36:1–69, 2009.

[3] S. Benferhat, Z. Bouraoui, O. Papini, and E. Würbel. A pri-
oritized assertional-based revision for DL-Lite knowledge
bases. In European Conference on Logics in Artificial Intel-
ligence, volume 8761 of LNCS, pages 442–456. Springer,
2014.

[4] S. Benferhat, Z. Bouraoui, and K. Tabia. How to select
one preferred assertional-based repair from inconsistent and
prioritized DL-Lite knowledge bases? In Qiang Yang and
Michael Wooldridge, editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 1450–1456. AAAI Press, 2015.

[5] S. Benferhat, D. Didier, and P. Henri. Some syntactic ap-
proaches to the handling of inconsistent knowledge bases:
A comparative study part 1: The flat case. Studia Logica,
58(1):17–45, 1997.

[6] S. Benferhat, D. Dubois, and H. Prade. Representing
default rules in possibilistic logic. In Knowledge Represen-
tation and Reasoning, pages 673–684. Morgan Kaufmann,
1992.

[7] S. Benferhat, D. Dubois, and H. Prade. Some syntactic
approaches to the handling of inconsistent knowledge bases
: A comparative study. Part 2 : the prioritized case,
volume 24, pages 473–511. Physica-Verlag, Heidelberg,
1998.

[8] L.E. Bertossi. Database Repairing and Consistent Query
Answering. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

[9] M. Bienvenu. On the complexity of consistent query
answering in the presence of simple ontologies. In Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, 2012.

[10] M. Bienvenu, C. Bourgaux, and F. Goasdoué. Querying
inconsistent description logic knowledge bases under pre-
ferred repair semantics. In AAAI, pages 996–1002, 2014.

[11] M. Bienvenu and R. Rosati. Tractable approximations
of consistent query answering for robust ontology-based
data access. In International Joint Conference on Artificial
Intelligence. IJCAI/AAAI, 2013.

[12] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
and R. Rosati. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J.
Autom. Reasoning, 39(3):385–429, 2007.

[13] D. Calvanese, E. Kharlamov, W. Nutt, and
D. Zheleznyakov. Evolution of DL-Lite knowledge
bases. In International Semantic Web Conference (1),
pages 112–128, 2010.

[14] J. Chomicki. Consistent query answering: Five easy pieces.
In Database Theory - ICDT 2007, volume 4353 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2007.

[15] J. Du, G. Qi, and Y. Shen. Weight-based consistent
query answering over inconsistent SHIQ knowledge bases.
Knowledge and Information Systems, 34(2):335–371, 2013.

[16] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. Fabio
Savo. Inconsistency-tolerant semantics for description log-
ics. In Pascal Hitzler and Thomas Lukasiewicz, editors, RR,
volume 6333 of LNCS, pages 103–117. Springer, 2010.

[17] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. Fabio
Savo. Inconsistency-tolerant query answering in ontology-
based data access. Journal of Web Semantics, 33:3–29,
2015.

[18] M. Lenzerini. Ontology-based data management. In
Proceedings of the 6th Alberto Mendelzon International
Workshop on Foundations of Data Management 2012,
pages 12–15, 2012.

[19] T. Lukasiewicz, M. Vanina Martinez, A. Pieris, and Ger-
ardo I. Simari. From classical to consistent query answering
under existential rules. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence 2015, pages
1546–1552, 2015.

[20] T. Lukasiewicz, M. Vanina Martinez, and Gerardo I. Simari.
Inconsistency handling in datalog+/- ontologies. In 20th
European Conference on Artificial Intelligence ECAI, 2012,
pages 558–563, 2012.

[21] M. V. Martinez, F. Parisi, A. Pugliese, G. I. Simari, and
V. S. Subrahmanian. Inconsistency management policies.
In Knowledge representation and reasoning, pages 367–
377. AAAI Press, 2008.

[22] R. Nicholas and M. Ruth. On inference from inconsistent
premisses. Theory and Decision, 1(2):179–217, 1970.

[23] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies. J.
Data Semantics, 10:133–173, 2008.

[24] S. Staworko, J. Chomicki, and J. Marcinkowski. Priori-
tized repairing and consistent query answering in relational
databases. Annals of Mathematics and Artificial Intelli-
gence, 64(2-3):209–246, 2012.

	Introduction
	DL-Lite and Prioritized Assertional Base
	DL-Lite: A Brief Refresher
	Prioritized Assertional Bases

	Inconsistency-Tolerant Reasoning for Prioritized DL-Lite Assertional Bases.
	The concept of repairs
	Free Assertions and Conflict Sets

	Acceped Prioritized Assertions
	Accepted Assertions on a Prioritized Closure
	Example
	Conclusion
	References

