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Abstract—Security-critical systems typically place some
requirements on the behaviour of their users, obliging them
to follow certain instructions when using those systems.
Security vulnerabilities can arise when users do not fully
satisfy their obligations. In this paper, we propose an
approach that improves system security by ensuring that
attack scenarios are mitigated even when the users deviate
from their expected behaviour. �e approach uses structured
transition systems to present and reason about user obli-
gations. �e aim is to identify potential vulnerabilities by
weakening the assumptions on how the user will behave. We
present an algorithm that combines iterative abstraction and
controller synthesis to produce a new so�ware speci�cation
that maintains the satisfaction of security requirements while
weakening user obligations. We demonstrate the feasibility
of our approach through two examples from the e-voting and
e-commerce domains.

Index Terms—System security, user behaviour, e-voting

I. Introduction

A recent survey by the UK Government shows that human

behaviour such as sta� not adhering to organisational policies

contributes to 42% of security incidents [1]. For such reasons,

users are o�en seen as the “weakest link” in the security chain.

In this paper, we focus on security vulnerabilities that emerge

when users fail to satisfy their obligations fully. We argue that

in many cases, there are alternative designs for the so�ware

in which the system satis�es its security requirements even

when a user deviates from the expected behaviour, and we

propose a systematic approach to achieve them.

Research in the �eld of usable security has argued that the

deviation of user behaviour is o�en justi�ed because many of

these instructions are arbitrary (e.g., mixing of character types

in passwords), unrealistic (e.g., requiring di�erent passwords

for each account [2]), ine�ective (e.g., users having to change

passwords every 90 days leads to weaker passwords [3]), or

cumbersome (e.g., requiring users to con�rm before every

critical action). Security mechanisms can therefore cause

friction in the way users want to interact with systems, and

their usability is therefore critical for their acceptance by

users (and ultimately their e�ectiveness). However, focusing

on user behaviour alone is insu�cient and equal, if not bigger,

importance should be given to the design of the associated

so�ware systems [4].

In this paper, we propose an approach, called OASIS

(Obligations, A�ack scenarios, SpecI�cation abstraction, and

Synthesis) that relaxes some of the obligations of the users

while satisfying security requirements by generating a revised

speci�cation of the associated so�ware. �e contribution of

this paper is threefold.

1) A modelling process that makes explicit the components

of systems, their interaction, and users obligations. We

decompose the environment into a set of interacting

components in a way similar to problem frames [5]. To

support automated reasoning, we use existing formalisation

of protocol behaviour using �nite state machines [6]

for each component. �e aim is to make precise user

obligations and clarify the assumptions made for the design

of the so�ware, which in turn helps generate potential

a�ack scenarios that arise from failures of the users to

comply with those obligations.

2) An algorithm to generate revised speci�cation for weakened
obligations. Once an a�ack scenario is identi�ed, we pro-

pose an algorithm that integrates abstraction and synthesis

techniques in order to derive a revised speci�cation that

�xes the identi�ed vulnerability and maintain the security

requirements satis�ed under weaker assumptions about

user behaviour. By abstracting the speci�cation �rst, the

controller is able to change the sequencing of actions

rather than only blocking or allowing some actions in an

adversarial environment.

3) A demonstrator that shows that the revised so�ware

speci�cation satis�es the security requirements even

though the users deviate from theirs obligations. We

implemented the OASIS approach on top of an existing

model checker, LTSA [7], and evaluated it with two

examples from the e-voting and e-commerce domains.

For example, we automatically revise the behaviour of

an e-voting application to avoid vote �ipping even if users

forget to con�rm their vote.

�e remainder of this paper is structured as follows. Sec-

tion II introduces the e-voting illustrative example. Section III

gives an overview of the approach. Section IV presents the

formalism we use to model socio-technical systems. Section V

details the OASIS approach and Section VI reports on the

implementation and the experiments conducted to validate

our approach. Section VII examines related work. Finally,

Section VIII concludes the paper and discusses future work.

II. Motivating Example: Electronic Voting

In 2010 in Kentucky, eight co-conspirators were sentenced

to a total of more than 156 years in prison for electoral

fraud [8]. One of the methods used to steal votes involved the



touch-screen voting machine called iVotronic manufactured by

ES&S. When a voter enters the booth, the voter’s interaction

with the voting machine can be described as follows.

Step 1. Key in the voter ID & personal pin, and move to the

next step (password)

Step 2. Select candidate and move to the next step (select)
Step 3. Vote selected candidate and move to the next step

(vote), or return to Step 2 (back)

Step 4. Con�rm the vote (con�rm), or return to Step 3 (back)

In the above e-voting system, an important obligation of

the voter is that they complete the entire sequence until the

vote is con�rmed in Step 4. �e use of con�rm action at the

end is a common heuristic for user interface design to ensure

that mistakes are prevented before a user performs a critical

action (this is known as the “error prevention” heuristic [9]).

Vulnerability and A�ack. When voters used this system,

there were incidents where some voters mistakenly thought

that their vote had been counted a�er the vote action, and

exited the voting booth. �e corrupt election o�cials, who

were allowed to go inside the booth a�er the voter had exited

the booth, went inside, tapped ‘back’ twice, selected their

preferred candidate, before con�rming the vote. �is a�ack

is called “vote �ipping”.

Fixing the vulnerability. �ere are a number of potential

ways in which this vulnerability can be �xed including:

(i) Make recruitment and monitoring of election o�cials more

stringent.

(ii) Install booth doors preventing the voter from leaving

before con�rming, or authenticate every person entering

the booth. �is however makes voting booths less portable.

(iii) Give more e�ective instructions to voters so that they know

not to leave before con�rming their vote. For example, this

may mean providing clearer signs on the display indicating

the progress of their interactions with the system. However,

interaction design techniques alone are o�en insu�cient

to build secure systems and need to be combined with

so�ware and security engineering methods [10].

(iv) Modify the behaviour of the e-voting so�ware so that a

corrupt o�cial cannot easily change the vote a�er the

voter has le� the booth, whether the voter has con�rmed

their vote or not. �is is a so�ware engineering challenge,

and our approach will focus on �nding such a solution.

�ere is a long line of work on formal veri�cation of

security properties in electronic voting systems at di�erent

levels of granularity: from cryptographic primitives, to high-

level protocols, to so�ware, to socio-technical systems (see

Fig. 1). We give examples of approaches dedicated to each

level of granularity on the le� hand-side and illustrate their

meaning with the e-voting example on the right hand-side. �e

OASIS approach focuses on the system level and is concerned

with identifying security vulnerabilities and resolving them

by controlling the so�ware behaviour, without necessarily

changing, constraining, or controlling the user behaviour as

described in the following section.

Socio-Technical Systems

So�ware

Protocols

Primitives

e-Voting

iVotronic

TLS, SSH Authentication

Ciphers, Hash functions,

Signature schemes

�reat Modelling e.g., [11],

Usable security e.g., [12]

Code Analysis e.g., [13]

Authentication protocols e.g., [14]

Cryptographic primitives e.g., [15]

Fig. 1: Security: Layers of abstraction

III. Overview of the OASIS Approach

To describe our approach more precisely, we formalise

it using Jackson and Zave’s framework for requirements

engineering [16]. �is framework makes explicit the relation-

ship between requirements, speci�cations, and environment

properties. It allows us to describe our approach precisely

without prescribing a speci�cation or veri�cation technique.

�e OASIS (Obligations, A�ack scenario, SpecI�cation

abstraction, and Synthesis) approach aims to revise the

so�ware design to maintain the satisfaction of requirements

while weakening the expected behaviour of the users. To

do so, OASIS starts by modelling the socio-technical system

in order to identify the interactions between the so�ware

and the environment generally, and the users in particular.

�is steps constructs an argument showing how the security

requirement Rs is satis�ed by the so�ware speci�cation M1

in the environment E1 that places strong obligations on the

users (i.e. M1, E1 |= Rs) as depicted in Fig. 2-¶. �e so�ware

speci�cation is described using Finite State Machines (FSM) [6].

�e environment is made up of interacting components or

agents, each of which represented using an FSM. Requirements

are represented using Linear Temporal Logic (LTL) [17]. �e

entailment M,E |= R holds when the so�ware speci�cation

(machine) M satis�es the requirement R in the environment

E. Modelling is explained in Section IV.

OASIS uses then the model of the environment (E1) and the

successive weakening of the user behaviour to generate a�ack

scenarios, producing the model of an adversarial environment

(E2) where the security requirement is violated (M1, E2 6|=
Rs) as depicted in Fig. 2-·.

Once an a�ack scenario is identi�ed, the behaviour of the

implemented so�ware system, together with the model of

the adversarial environment and the security requirements

are used to identify a revised speci�cation: that is, we seek

M2 such that M2, E2 |= Rs. �e revision stage (see Fig. 2-¸)

generates successively more abstract model M of the existing

speci�cation M1, which is then used to synthesise a controller

C that ensures the satisfaction of the security requirement

in the adversarial environment. �e revised speci�cation

M2 is the result of controlling the abstracted speci�cation

and removes the security vulnerability without changing the

behaviour of E2. �e revision is minimal with respect to M1,

that is it involves modi�cation of fewest alphabets in the

behavioural model of M1. We acknowledge that minimality



Elicit User
Obligations
M1, E1 |= Rs

Generate A�ack
Scenarios

M1, E2 6|= Rs

Abstract Existing
Specification

Find M

Synthesise New
Specification
M2, E2 |= Rs

Revise Speci�cation

1 2

3

E1

M1 E2, Rs

M

7 Fail

7 Fail 3 Revised Spec. M2

Fig. 2: Overview of the OASIS approach

may not be the sole criterion for selecting the appropriate

revision. For example, sub-minimal revision may o�er be�er

usability or performance. Indeed, while we focus on the

security requirements Rs for simplicity, other requirements

can be speci�ed without loss of generality. We will explain

the modelling process in Section IV before detailing each step

of the approach in Section V.

IV. Modelling System Behaviour

�e behaviour of a component speci�es its interaction

with the environment and models how the actions of its

alphabet are coordinated in order to achieve the speci�ed

functionality. We build upon state-of-the-art approaches to

formalise behaviour using Finite State Machines (FSM) [6].

De�nition 1 (Finite State Machine (FSM)): An FSM is a

quintuple 〈Q,Σ, δ, q0, F 〉 where

• Q is the set of states,

• Σ is the set of actions denoting the alphabet of the FSM,

• δ : Q× Σ→ Q is the transition function,

• q0 is the initial state, and

• F ⊆ Q is the set of accepting states.

Example. �e voting so�ware behaviour can be modelled

as shown in Fig. 3. Generally, we will abstract away a

sequence of so�ware-controlled action immediately followed

by the user-controlled action into one action. For example

the action password could be described as two actions, the

so�ware asking for password and the voter entering the

correct password.

0start 1 2 3 4
password

select vote

back
con�rm

back

Fig. 3: Behaviour of the voting machine

Modelling socio-technical systems using a single FSM has

many limitations:

1) So�ware is not the system, and the vulnerability is not in

so�ware. In the a�ack scenario discussed above, corrupt

o�cials exploit the system behaviour not covered by the

model in Fig. 3. For example, the model only says how

the so�ware and voters interact but does not say anything

about who can enter and exit the booth at what points.

�ere is a need to model the behaviour of the voter,

a�acker, the booth as well as voting so�ware, individually

and together in order to identify and �x the vulnerability.

2) �e so�ware cannot observe every action in the system.

For example, the so�ware can observe the candidate

selected but not whether someone has entered or exited

the booth. Once authenticated, the so�ware does not know

who it is interacting with. �e assumption that actions

subsequent to user authentication are always performed by

the authenticated user is unwarranted and is a security risk.

3) Actions such as password, are special because we can

assume that only the voters can perform the password
action. Both voter and a�acker can perform all other actions.

�erefore, analysing the structure and behavioural prop-

erties of the components involved in the system is central

to identifying and �xing certain security vulnerabilities. �e

OASIS approach uses Structured FSM (SFSM) to model socio-

technical systems. Similarly to Problem Frames [5] that de-

compose systems into multiple domains, SFSM structures the

socio-technical system into multiple interacting components,

each of which described as an FSM.

De�nition 2 (Structured FSM (SFSM)): An SFSM is a tuple

〈B,m, controls〉 where

• B is a set of �nite state machines where αF denotes

the alphabets of the FSM F ∈ B associated with one

component,

• m ∈ B is the FSM associated with the so�ware (machine),

and

• controls : B × B → 2Σ
where Σ =

⋃
F∈B

αF is a function

that speci�es that the shared alphabet a = controls(f1, f2)
is controlled by the FSM f1 and observed by another f2.

Note that controls(f1, f1) designates the hidden actions that

are internal to the component f1 ∈ B. We use the shorthand

controls(f1) =
⋃

f∈B
controls(f1, f) to identify all externally

visible alphabets .

We assume the following syntactic rules to ensure SFMS

models are well-formed.

• Every alphabet is controlled by a component (either shared

or hidden).

• Every component controls or observes some shared alphabet

(no component with hidden alphabets only).

• No alphabet is both hidden and shared at the same time.

�e security properties are described using the alphabet

Σ of the SFSM while the alphabet that the machine can

observe and control is described using Σm, called speci�cation
phenomena.

De�nition 3 (Speci�cation phenomena): Speci�cation phe-

nomena Σm of a system described by an SFSM is:

Σm =
⋃
f∈B

controls(m, f) ∪ controls(f,m)

To avoid unwanted synchronisation between the FSM of

di�erent components, an alphabet controlled by multiple



components in di�erent state machines are relabelled by

pre�xing them with their respective components so that they

are distinguishable in the composed model. For example,

both the alphabets of the voter and the election o�cial

include the enter and exist actions in their interaction

with the booth. In order to avoid the FSM of the voter

and election o�cial from synchronising they are both suf-

�xed: controls(Voter,Voting Booth) = {v.enter, v.exit} and

controls(Election O�cial,Voting Booth) = {eo.enter, eo.exit}.
�e behaviour of the voting booth is a synchronisation of the

voter and election o�cial behaviour. Fig. 4 shows that the

voter and the election o�cial cannot be in the booth at the

same time. For now, we consider one voter and one voting

o�cial in the model, but we consider a multitude of them in

Section VI-C.

0

start

1 2

v.enter

eo.enter

eo.exit

v.exit

Fig. 4: Voting booth behaviour

System modelling using SFSM addresses the three afore-

mentioned limitations:

1) We can distinguish between three kinds of actions [18]:

(i) machine-controlled actions the environment observes

(

⋃
f∈B

controls(m, v)), (ii) environment-controlled actions

the machine observes (

⋃
f∈B

controls(f,m)), and (iii)

environment-controlled actions the machine cannot control

or observe (Σ−Σm). By explicitly modelling the behaviours

of the so�ware (machine) and environmental components,

vulnerabilities due to interactions between components

can be analysed. For example, we can express who can

enter the voting booth and what is the state of the voting

machine when they enter.

2) By including actions of the environment which the machine

cannot observe in the analysis but restricting the alphabets

of the machine to the speci�cation phenomena, we can

surface obligations placed on the environment that may

turn out to be too strong. In other words, the SFSM makes

explicit the interaction between the di�erent components,

in particular between the machine and the users as well

as between the users and the environment.

3) By allowing that environment-controlled actions may be

controlled by a number of components, we can model

issues related to identity and authentication.

Using SFSM to describe both the structure and behaviour

of the so�ware system allows us to elicit and reason about

user obligations more precisely, which we will explain in the

following section.

V. The OASIS Approach

A. Eliciting User Obligations
In order to describe the user obligations assumed by

an implemented system, we model the system behaviour

including the behaviour of the machine and environment.

When modelling the machine, the focus is on the interactions

with the user rather than actions internal to the machine. �e

�rst step is to decompose the behavioural model according

to its di�erent components, which involves developing an

FSM for each component. We then extend the model of user

behaviour with actions users control that machine cannot

observe. �is may also involve adding new states as well as

new transitions.

Example. In the e-voting system, the assumed behaviour

of the voter can be developed by expanding the model in

Fig. 3 to include the enter and exit actions, which voter

can perform but the machine cannot observe as shown in

Fig. 5. �e model emphasises that the voter enters the booth

before initiating a voting session and that the voter exits the

booth a�er con�rming the vote, hence the booth hides these

actions from the machine. However, the voter can actually exit

the booth at any time/state without the machine/so�ware

being able to detect this action. Since there are common

alphabets controlled by both voter and election o�cial, they

are relabelled using action su�xes.

0start 1 2 3 4

56

enter password

select vote

back

con�rm

back

exit

Fig. 5: Assumed voter behaviour

Specifying security requirements Besides modelling the

system behaviour, we must also represent the security require-

ment (Rs) and show that the composed system behaviour

satis�es the security requirement.

Example. For the e-voting system, let us consider some

possible formulations of the security requirement “No Vote

Flipping” and they include the following (a voting session is

a trace of the behavioural model in Fig. 5):

R1 the con�rmed vote in every voting session is for the

candidate selected by the voter in the session

R2 the person who con�rms the vote must be the voter of

the session

R3 in every session, it must be the voter who chooses the

candidate, con�rms the vote.

R4 election o�cials can never select a candidate a�er the

voter has entered the password

Although the requirement “No Vote Flipping” in Fig. 3 is the

relationship between the candidates each voter has selected

and the �nal vote tally, the behavioural model does not say

anything about the vote directly. As a result, we cannot talk

about the vote count in R1 directly using LTL. We will restrict

our requirements to properties we can express in LTL, namely,

safety and progress properties. �is o�en means rewriting

the requirements [19]. We choose the stronger formulation

of the requirement for “No Vote Flipping”, i.e. R4 , which

can be expressed in LTL as �(v.vote→ �(¬eo.select)).



Since the machine cannot observe who performs the con�rm
action, the speci�cation cannot rely on the occurrence of

con�rm action to satisfy the security requirement. �e voter

in Fig. 5 is obliged to con�rm the vote before leaving the

voting booth. It is easy to see that if the user ful�ls the

obligations, we can verify that the security property “No Vote

Flipping” is satis�ed by the system through the entailment

M1, E1 |= Rs, where E1 is the environment where the voter

complies with their obligations.

B. Generating A�ack Scenarios

Once user obligations have been identi�ed, this step aims to

relax those obligations, creating a weaker, and more realistic,

environment E2 and identifying possible violations to the

security requirements with the existing machine speci�cation,

i.e. counterexamples to the entailment M1, E2 |= Rs. In the

following, we describe each of these two steps and illustrate

them using the e-voting example.

Relaxing user obligations. �e aim is to weaken the be-

haviour of the users so that 1) they are allowed to perform

actions in any order they like and 2) the machine can constrain

user behaviour only by de�ning valid action sequences the

user controls and the machine observes. In e�ect, the user

behaviour is a single state with all transitions returning to it.

Example. Fig. 6 shows the weakened behaviours of the

voter and the election o�cial, where they are allowed to

perform actions in any order a�er they have entered the

voting booth. �is can be compared with the initial assumed

behaviour of, for example, the voter described in Fig. 5. In

other words, the machine must control the behaviour allowed

by the voter rather than obliging the voter to follow a speci�c

behaviour. Note also that apart from the password action, the

machine cannot di�erentiate between the actions performed

by the voter and a legitimate or malicious o�cial.

(Voter)

0

start

1

enter

select , vote, con�rm, back

password

exit

(Voting O�cial)
0

start

1

enter

select , vote, con�rm, back

exit

Fig. 6: Weakened behaviours of the voter and the voting o�cial

Identifying requirements violation. Once the user obligations

are weakened, we can de�ne a more realistic behavioural

model of the environment by composing the behavioural

models of the component and reverify the requirement

entailment. Counterexamples are possible a�ack scenarios. �e

behaviour of the system is the composition of all components

in the system. We can then use model checking to verify that

M1, E2 6|= Rs. Notice that E2 re�nes E1 by weakening user

behaviours and extending user alphabets, which may lead to

the violation of security requirements.

Example. �e behaviours of the voter, election o�cial,

voting booth and the machine are then composed to give

the revised system behaviour as shown in Fig. 7. �is is the

behavioural model of the environment in which the e-voting

system will be used. Given the model, several counterexamples

to the security requirement that the election o�cial cannot

select the vote can be generated. �e a�ack scenario discussed

in Section II is highlighted in red do�ed lines, but the model

highlights several other a�ack scenarios as well. In short,

once the system has reached one of the red states (the voter

has given the password and has le� the voting booth without

having con�rmed the vote), the election o�cial can con�rm

the vote and thus violating the security requirement.

�e machine can control only the ordering of the actions

password, select, vote, con�rm and back . �e machine cannot

observe the actions exit, and enter of the voter and election

o�cial. It is di�cult to de�ne the bad states because it depends

on who is controlling the transitions; even in Fig. 7, states

such as

21
and

22
or

31
and

32
are indistinguishable

for the machine; so are events such as v.select and eo.select.
What is needed is a re-design of the behaviour of the so�ware

system in order to prevent election o�cials to alter a vote

even when the voter exits without con�rming.

0start

11

12

61

21 31 41 51 65

62 63 64

22 32 42 52 66

v.enter

password

v.exit

eo.enter
eo.exit

eo.enter

v.select

v.exit

v.vote

v.back

v.exit

v.con�rm

v.back

v.exit

v.exit

eo.enter eo.enter eo.enter

eo.select

eo.back

eo.vote

eo.back

eo.con�rm

eo.exit eo.exit eo.exit

eo.exit

Fig. 7: Expanded E-voting system behaviour

C. Revising Speci�cation

Once an a�ack scenario is identi�ed, we then need to revise

the speci�cation M1 into a speci�cation M2 that satis�es the

requirements Rs in the weakened environment E2 (E2 re�nes

E1). �ere are three main cases for this revision depending

on the relationship between M1 and M2.

Case 1: M1 re�nes M2 and αM2 ⊆ αM1. If the revised

speci�cation M2 is a re�nement, which implies that the

alphabet and the transitions are subsets of those in the original

speci�cation, then �nding δ such that δ,M1, E2 |= Rs is a

simple controller synthesis problem. For example, controller



synthesis approaches can �nd a �x where all back actions

are removed from the speci�cation as depicted in Fig. 8. �is

means that as long as the voter leaves the voting booth a�er

selecting the candidate, the a�acker cannot modify the vote.

0start 1 2 3 4
password select vote con�rm

Fig. 8: A revised speci�cation of the voting machine (the most

constrained)

D’Ippolito et al. [20] propose a multi-tier framework

whereby a stack of mediators are synthesised to satisfy

stronger requirements when making stronger assumptions

about the environment. For example, a two level stack would

be as follows.

Synthesise M1 such that E1,M1 |= R1,

Synthesise M2 such that E2,M2 |= R2,

E2 simulates E1, and M2 simulates M1

where in the higher tier, some strong assumptions about

the environment are made and strong guarantees provided

while weaker assumptions (E2 simulates E1) are made in

the lower �rst tier but also weaker guarantees are provided.

Nevertheless, it is not always the case that the revised version

re�nes the original one while satisfying the same requirements.

For example, if we still need to avoid vote �ipping while

allowing voter to change their selection before con�rming,

then a di�erent behavioural design of the machine is required.

Case 2: M2 does not re�ne M1 and αM2 6⊆ αM1. States and

alphabets can be added to and removed from the description

of the environment (which may also a�ect the speci�cation

phenomena). �is amounts to modifying the environment

so that the existing speci�cation satis�es the requirement.

For example, this could be the addition of new states and

transitions to prevent the voter from leaving the booth before

con�rming or enable the machine to observe or control the

enter and exit actions. As we have discussed in Section II,

this is outside the scope of this work.

Case 3: M2 does not re�ne M1 and αM2 ⊆ αM1. An

implemented design is a commitment to particular behaviour

where alternatives may be possible. Since some of the user

obligations have been removed, the users interacting with the

system perform actions in di�erent sequences. As a result,

the machine can also modify its behaviour without changing

the set of actions it executes. �erefore, we seek M2 that

is similar structurally to M1 and satis�es the requirements

M2, E2 |= Rs. �e aim of this step is to revise some design

decisions in order to �nd the implementation most similar to

M1 that maintains the satisfaction of the requirements and

prevents the a�ack scenario identi�ed.

�e primary focus of this work is on the last case and we

de�ne a revision algorithm that works in two iterative steps:

abstracting the existing speci�cation and then synthesising a

controller that uses this abstract speci�cation to synthesise a

new one that satis�es the given requirements.

Algorithm 1 for generating a revised speci�cation takes

as inputs the behaviour model of the machine component

Algorithm 1: Generate Revised Speci�cation

input :M1 = 〈Q,Σm, δ, q0〉: machine behavioural

model

E2: Environment behavioural model

Rs: Security requirements

output : {M2, Fail}
1 L ← orderedPowerSet(Σm);

2 while L 6= ∅ do
3 L← nextMinimalElement(L);

4 M ← minimize (〈Q, (Σm − L) ∪ {τ}, δ1, q0〉)
where ∀q ∈ Q,∀a ∈ Σm · δ(q, a) = δ1(q, τ) if

a ∈ L and δ(q, a) = δ1(q, a) otherwise;

5 N ← minimize (〈Q,L ∪ {τ}, δ2, q0〉)
where ∀q ∈ Q,∀a ∈ Σm · δ(q, a) = δ2(q, a) if

a ∈ L and δ(q, a) = δ2(q, τ) otherwise;

6 F ← M || N ;

7 synthesise C such that C,F,E2 |= Rs;

8 if C 6= Null then
9 M2 ← C || M;

10 return M2;

11 end
12 end
13 return Fail;

M1, and that of the environment composed behavioural

models of other components, and the security requirements

Rs expressed as an LTL property. �e algorithm produces

either the behavioural model for the revised speci�cation M2

or the special symbol Fail as its output.

First the algorithm constructs the poset L from the

alphabets in the input model M1, where members of the power

set are ordered by the subset relationship. In other words,

L = (2Σm ,⊆). �is produces a la�ice where the smallest

element is the empty set and the greatest element is M1

(Line 1). �is la�ice is used to loop on possible abstractions

of M1 by selecting the minimal element L from the la�ice

and removing it together with the complement subset from

the la�ice, i.e. L ← L− {L,Σm − L} (Line 3). Note that the

�rst element in the la�ice is the empty set (∅) and therefore

in the �rst iteration of the loop, M is assigned M1.

For each minimal element L, the algorithm constructs an

abstract state machine F that interleaves all the actions in L.

In a process algebraic form, this is done by composing two

state machines M and N . �e state machine M is obtained by

removing all actions in L from M1. �is is done by replacing

all the transitions involving those actions by silent transitions

(δ(q, a) = δ1(q, τ) if a ∈ L) and then minimising the resulting

state machine (Line 4).

�e algorithm generates another state machine N by �rst

hiding alphabets other than those from the set L, before

minimising it (Line 5). F , the parallel composition of M
and N (Line 6) is based on interleaving semantics where

the two components synchronise on shared actions (note

that αM ∩ αN = ∅ by construction) and can progress by



alternating at any rate the execution of their other actions.

M1 is one potential re�nement of F in which a particular

sequences of the actions in L is chosen.

�e algorithm then a�empts to synthesise the controller

C such that it can allow or block the actions of F in

order to satisfy the security requirements in the adversarial

environment E2 (Line 7). In other words, the synthesised

controller ensures that the composition of the behaviours

of the di�erent components is deadlock-free and reaches a

state where the requirements are satis�ed. �ere are many

approaches to controller synthesis [21]–[27], and they di�er

in their assumptions (e.g., system behaviour is deterministic)

and the expressiveness of the goals involved (e.g., dealing

with safety, liveness, or general LTL properties). Rather than

focusing on a speci�c approach for synthesis, we show how

these techniques can be extended through abstraction.

If the synthesis succeeds, the revised speci�cation M2 is the

parallel composition of C and M ; the algorithm successfully

terminates by returning M2 (Line 10). If the synthesis fails,

the algorithm chooses the next set of alphabets from the

la�ice and repeats the loop. If no controller C is found at

the end of the loop, the algorithm returns the special symbol

Fail (Line 13).

Proposition 1: M generated in every iteration of the loop

in Algorithm 1 is an abstraction of M1.

Intuitively, M is obtained by removing some of the actions of

M1 and then later on changing their positions in F to obtain

di�erent re�nements. Re�nement gives an intuitive notion of

correctness (especially for safety properties), and it has been

applied in the stepwise design and implementation of so�ware

systems, starting from their more abstract speci�cation [28].

We prove the contrapositive that M1 is a re�nement of

M . As noted, in the �rst iteration of the loop, M is M1, and

therefore M1 re�nes M in that iteration. As M is obtained by

hiding some of the alphabet L of M1 while maintaining the

same transition set which implies inclusion of the trace sets

since. By construction ∀q ∈ Q,∀a ∈ Σm · δ(q, a) = δ1(q, τ)
if a ∈ L and δ(q, a) = δ1(q, a) otherwise where L is the

hidden alphabet in the given transition, δ and δ1 the transition

functions of M1 and M respectively.

Example. In the e-voting example, if we choose a subset

L = {password}, we obtain the abstract machine M , and

the corresponding complementary N depicted in Fig. 9.

�eir parallel composition F means that the password action

can be placed at any stage between the actions of M ,

i.e. {select, vote, con�rm, back}. Placing it before the select
action as in the original speci�cation M1 depicted in Fig. 3 is

only one option or possible re�nement of F . We can run the

synthesis to generate a controller that controls the actions

of F to make the security requirements satis�ed. However,

multiple possible revised speci�cations can be obtained as

depicted in Fig. 10. When minimality is de�ned in terms of

overlap of transitions with the speci�cation M1 then the �rst

case (a) can be discarded. Alternatively, a partial speci�cation

of M2 or some additional requirements can drive the choice

between cases (b) and (c). For example, case (b) prevents the

election o�cials changing the vote but not con�rming it.

M :

0start 1 2 3
select vote con�rm

back back

||

N :

0start 1
password

Fig. 9: Abstraction and composition of the voting machine

(a)

0

start

1 2 3 4
select

password vote
back

con�rm

(b)

0

start

1 2 3 4
select vote

password
back

con�rm
back

(c)

0

start

1 2 3 4
select vote

con�rm
back

password
back

Fig. 10: Possible revisions of the e-voting machine

VI. Evaluation

�is section discusses the implementation of Algorithm 1

together with theoretical and practical evaluation of the algo-

rithm. �e evaluation covers the following three properties

of our approach: 1) Complexity: we examine the theoretical

aspects of the OASIS approach and discuss its performance. 2)

Feasibility: we describe the implementation of the approach

on top of an existing model checker and show how it can be

used to identify an a�ack and revise the behaviour in two

scenarios. 3) Scalability: we measure the time and the size of

the search space when dealing with an increasingly complex

speci�cation, which we obtain by varying the number of

voters, voting o�cials, and voting booths. We show that,

although theoretically complex, OASIS can be applied at

runtime in practical cases (models with up to around 500

states and 4000 transitions). Finally, we discuss the limitations

and possible enhancements of our approach.

A. Complexity

In the general case, controller synthesis is known to be

computationally expensive [29]. Let us consider the synthesis

of a controller C that ensures the requirement Rs assuming

E2, i.e. the controller satis�es the formula φ ≡ E2 ⇒ Rs.

In other words, C |= φ. When φ is expressed as an LTL

formula, controller synthesis may reach complexity of double

exponent in the size of φ [29]. Yet for safety formulas as well as

subclasses of liveness formulas (e.g., GR(1) [30] or SGR(1) [26]),

the synthesis problem can be solved in polynomial time. Our

approach does not aim to improve the synthesis algorithm

per se. Instead, we rely on the extensive work that has

been developed in the area of controller synthesis and

reduce the size of the models provided as input to the

synthesis algorithm. In addition, the abstraction allows us to



redesign behaviour by moving actions, which is not possible

with existing synthesis approaches. �e time complexity of

performing minimisation with strong equivalence is O(kn)
for an FSM with k transitions and n states [31] in general and

and O(klogn) for more e�cient algorithms [32]. However,

the model checker we used, LTSA, implements a simpler

algorithm proposed by Holzmann [33], which is less e�cient

theoretically but proves faster for practical uses [34].

�e minimisation and synthesis are performed for a stack of

abstract FSM starting from the original/existing speci�cation

and gradually abstracting it, until all possible partitions of the

alphabet have been explored. In the worst case scenario, this

would necessitate 2m−1
iterations for an existing machine

speci�cation with a size m alphabet. However, although the

algorithm has an exponential complexity O(2m), one can

make use of the partial speci�cation S to bound the possible

abstraction. In the e-voting example, constraints such as select
must precede vote, which must precede con�rm considerably

reduce the search space. �is is similar in principle to protocol

projections [35] with the image protocol explored through

possible partitions. A partial speci�cation can guide the

exploration and reduce the processing time.

B. Feasibility

In order to validate our approach and give evidence of its

functional correctness, we have implemented the approach

using the LTSA model checker [7]. LTSA is a free veri�cation

tool that can check safety and liveness properties of com-

municating processes. We built on the existing capabilities

of LTSA for behavioural analysis and used composition to

capture the speci�cation of the controller. In the following, M1

is the behavioural model given in Fig. 3. E2 is the parallel

composition of the models for voting booth (Fig. 4), the

voter and the election o�cial (Fig. 6). �e a�ack scenario is

generated by checking the following LTL property.

assert NoEOSelectAfterVPassword
= [](v.vote −> [](!eo.select))

which produces the a�ack scenario in less than 1ms.

�e complete speci�cation and its explanation are available

at h�ps://github.com/amelBennaceur/oasis.

Case study: Session Hijacking via Cross-Site Scripting

To show applicability to other domains, we consider an

e-commerce web application. When a user is authenticated,

the application stores a session cookie (a random string)

inside the client browser, which is then used in subsequent

interactions between the client and the server. A class of

a�acks called session hijacking happen when an a�acker

manages to obtain the session cookies. �is can happen when

the user unwi�ingly executes a malicious script hidden inside

a page or disguised as a link which reads the cookie and

sends it to the a�acker.

Step 1. �e user provides username and password to log in.

Step 2. If credentials are valid, the e-commerce website stores

a session cookie.

Steps 3 and 4. �e user browses the catalogue and adds

items to basket.

Step 5. �e user chooses a delivery address.

Step 6. �e user may make payment to complete the pur-

chase.

Step 7. �e user logs out from the site.

�e session cookie generated and stored on the user’s

computer in Step 2 needs to be validated by the server in

each interaction. �e cookies are valid for the entire session

until the user logs out in Step 6, or a period of inactivity

has occurred. In such cases, the user is asked to log in again

creating a new session cookie.

Vulnerability and A�ack. A user may log in and keep the

session cookie on the computer for a length of time for

a number of reasons, such as taking a long time to make

purchase decisions and forge�ing to log o� a�er deciding not

to buy anything. An a�acker may steal the cookie via Cross

Site Scripting: a script that reads the cookie and sends it to

the a�acker’s server may be executed when the user clicks

on a link. �is means that there are four states (states 2 to 5),

when the system is vulnerable to session hijacking a�acks.

An important obligation placed on the user is that a�er

they have logged in, they make the purchase and log out,

AND never click on a link containing a script that steals

the cookie before logging out. �e OASIS approach aims to

weaken this obligation while keeping the system secure.

0start

1 2 3 4 5

6browse

add
browse

add
login cookie address pay

logout

Fig. 11: Revised speci�cation of a shopping session

One revised speci�cation according to our approach is to

move the login and cookie events to immediately before the

address event so that the user only has to log in when they

are about to pay (see Fig. 11). �e system is now vulnerable

to session hijacking a�ack in three states (states 3 to 5).

Although the number of vulnerable states is reduced by one,

the eliminated state tends to last longer, and therefore poses

a signi�cant security threat.

It is worth noting that this pa�ern of authenticating users

(again) before escalating privilege can be observed in many

popular online applications: banking applications tend to

authenticate users when checking transactions, and again

before making transfers.

Modern web browsers also have partial defences against

session hijacking a�acks: (i) H�pOnly cookies cannot be read

by client-side scripts, (ii) when the a�ribute SameSite is set

to strict, cookies cannot be sent to a di�erent domain, and

(iii) Content Security Policies can prevent execution of scripts

that are not white-listed by the application. �ese techniques

are complementary in that they are designed to restrict access

to cookies inside the browser, while our focus is to reduce

the number of states when cookies are stored.



C. Scalability

In order to evaluate the scalability of our algorithm using

LTSA, we increase the size of the model by increasing the

number of instances of Voter and Election O�cial. Starting

with one voter and one election o�cial, we increment them

alternately. Fig. 12 shows how the state space of the model,

time taken by the tool to synthesise the new speci�cation, and

the amount of memory required by the tool as the number of

users increase. LTSA, wri�en in Java, has a memory limitation

of 1GB on 32-bit machines. A�er a combined total of 26 users,

LTSA raises an out of memory error. �e time required to

generate the counter example is negligible in all cases. Both

time and space required for the synthesis explodes quickly

as the number of users approaches 26. A large part of the

time ine�ciency is due to the minimise operation. �e largest

model has a state space over 4× 1011
, and is synthesised in

about 5 mins using 240 MB of RAM on a 32-bit laptop.

�reats to Validity. �ere are both internal and external

threats to validity in our evaluation. An internal threat

is related to the use of LTL to specify the requirements,

which could have limited expressivity especially in cases

relating to complex data structures. We also relied on the

operators available in LTSA (and associated process algebra

FSP) to implement the algorithm. Other model checkers

may have di�erent operators or have built-in simpli�cation

that give be�er performance. Since the complexity of the

revision is exponential, �nding the right level of abstraction to

analyse the behaviour of a system is paramount. For example,

increasing the number of users adds to the complexity without

necessarily uncovering di�erent behaviours. With respect to

external threats to validity, OASIS was evaluated in two cases

for which we already knew about potential a�acks. We plan

to conduct more extensive evaluation to investigate whether

the tool will identify false positive a�acks which might have

been handled by other means (e.g., �rewalls or human agents)

and how the revisions proposed are received by developers.

D. Discussion

Our initial evaluation demonstrated that OASIS can be used

to revise the so�ware speci�cation to allow for weakened user

obligations thus improving overall system security (mitigating

more a�acks). We made several simplifying assumptions in

order to implement and empirically evaluate our approach.

We discuss how some of these assumptions can be relaxed.

Minimality of revised speci�cation. We have assumed that

revisions of the so�ware that involves fewer actions are

relatively minimal to those that involve more actions. �is

may not be the case when the revision is translated into code.

�is issue needs to be investigated in future work.

Generalisation. Being able to precisely determine the role

of the users and to make the so�ware resilient to deviation

in their behaviour is an important issue. �is also raises the

question of how users interact when the machine itself is

made up of multiple components that collaborate in order to

satisfy security. We are applying the proposed approach to

practical problems in a number of domains. In particular, many

real-world examples will involve properties about data (such

as collection of the vote results) and multiple processes and

people. While this paper focuses on behavioural analysis,

existing work on synthesis also considers data �ow and

associated control [36]. In addition, while the behaviour of

individual components are usually small, if all the components

in the environment are modelled the size of the composed

model may grow quickly, increasing the complexity of the

synthesis. Collaborative approaches to synthesis [37] provides

a way to manage this complexity in domains such as the IoT.

Applicability. We intend to conduct a more comprehensive

empirical study in order to evaluate relevance of the sug-

gested revisions, and compare their acceptability by so�ware

developers, who may not always follow security practices [38].

In particular, OASIS assumes that the requirements can be

expressed in LTL, which might not always be the case,

especially for cases relating to complex data structures.

�e proposed revisions are based on changing the order

of actions or removing some actions while other potential

revisions might also involve frequency of actions or adding

actions. �ese revisions might require techniques other than

automated synthesis and we plan to investigate whether these

revisions can be learnt. We also plan to evaluate the e�ort

required to assess the identi�ed a�ack scenarios and the

willingness to address them by revising speci�cations.

VII. Related Work

�e proposed approach OASIS is related to existing research

in a number of areas, which as summarised below.

1) Requirements engineering for system security. Focusing

on security properties such as non-interference, Rushby [19]

argues that it is di�cult to write security requirements because

some security properties do not match with behavioural

properties that can be expressed using formal methods.

However, at the system level, certain security requirements

such as preventing vote �ipping can be described in terms of

safety and liveness properties. Looking at the system from

the point of view of an a�acker is a common way of eliciting

security requirements, and is the basis of threat modelling and

a�ack tree approaches to security [11], [39]. Requirements

of an a�acker are called negative requirements, or anti-

requirements [40]. Once identi�ed, the so�ware engineer has

to design the system that prevents the anti-requirements from

being satis�ed. �e idea has been extended by considering

various pa�erns of anti-requirements, known as “abuse

frames” [41]. In goal-oriented modelling, anti-requirements

are called anti-goals, and the anti-goals can be re�ned in

order to identify obstacles to security goals, and generate

countermeasures [42]. In a similar vein, a systematic process

to analyse security requirements in a social and organisational

se�ing has been proposed [43]. �e OASIS approach focuses

on the behaviour of users interacting with the so�ware, and

identi�es potential security vulnerabilities by weakening their

obligations. To the best of our knowledge, existing work has

not addressed this issue explicitly. Formal and semi-formal

argumentation approaches have been used to reason about
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Fig. 12: Evaluation of tool scalability

system security [44]. It is easy to argue that if the users fail

to discharge their obligations fully, then the so�ware system

cannot be expected to satisfy its security requirements. �e

OASIS approach shows instead that it is o�en possible to

weaken user obligations, and as a result the system becomes

more robust with respect to its security requirements.

2) Usable security. System security mechanisms are more

e�ective when they are user-friendly [12]. Other studies

of usable security have focused on the issues of password

policies [45], [46], user behaviour when confronted by security

warnings on web browsers [47], and so on. Shi�ing focus to

developers and their mistakes when writing security-critical

code, recent studies have examined the issue of the usability

of cryptographic APIs [48]. From the usability point of view,

the vote �ipping problem discussed in this paper is known as

the “missed sub-goal problem”, and the general solution is to

focus on the simplicity of the path for users to achieve their

goal. It means for example, whether the language used is

appropriate, and whether the system states re�ect the mental

model of the user. Complementing these approaches, the

OASIS approach shows that the so�ware behaviour can be

designed so that the system remains secure even when the

user does not complete their tasks fully.

3) Formal veri�cation of authentication protocols. Mead-

ows [49] surveys approaches to formal veri�cation of au-

thentication protocols which include methods based on

communicating state machines, modal logics, and algebraic

models. Recognising that many authentication problems stem

from user behaviour, and not necessarily from the protocols

themselves, recent work has begun to examine the interactions

between user behaviour and authentication protocols (the

top layer in Fig. 2). Basin et al. [50], for example, focus

on modelling and reasoning about human error in security

protocols. First, they de�ne human error as deviation from

the role speci�cation, which produces a partial order on these

errors. �ey integrate the human error model within existing

formalisation of security protocols, and verify the security

properties of the security protocol under human errors.

However, unlike OASIS, their approach focuses on veri�cation

rather than repair and operates at the protocol level.

4) Controller synthesis. �ere are many approaches to medi-

ator synthesis [21]–[27], and they di�er in their assumptions

and the expressiveness of the goals involved. It is not always

possible to synthesise a mediator that will maintain the

requirements satis�ed whatever the environment properties.

D’Ippolito et al. [20] propose a multi-tier framework for

graceful degradation by switching machine speci�cations,

which are organised as a stack where higher layers making

strong assumptions about the environment and providing

stronger guarantees. However, the environments and the

controllers must be in simulation. �e OASIS approach relaxes

this assumption through iterative abstractions and synthesis.

VIII. Summary and conclusions

We have proposed an approach to identify vulnerabilities

due to strong assumptions about the user behaviour and

to update the so�ware speci�cation to allow for weaker

assumptions about the user behaviour while maintaining

the satisfaction of the security requirements. �e proposed

approach begins by formalising the structure as well as the

behaviour of a socio-technical system with critical security

requirements, which makes user obligations explicit and

enable us to identify a�ack scenarios. �e approach then

alternates between abstraction and synthesis to generate a

revised speci�cation that �xes the identi�ed vulnerabilities

and satis�es the requirements in the more realistic environ-

ment with weakened assumptions. We validated the approach

by applying it to the e-voting and e-commerce examples and

evaluating how it scales with a state space up to 4×1011
. Our

approach goes beyond re�nement for the revised speci�cation

and generates a speci�cation that can change the sequencing

of existing actions controlled by the machine. �e results

of the evaluation show that OASIS can identify security

vulnerabilities and resolve them by controlling the so�ware

behaviour without unnecessarily changing, constraining or

controlling the user behaviour.

We plan to carry out further application of the approach to

potentially discover new a�ack scenarios, identify more e�-

cient methods for managing the iteration between abstraction

and synthesis, and explore notions of minimal change.
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Appendix

In the following we explain how LTSA operators are used to

implement Algorithm 1. Assuming L is {password} Lines [4—

6] are implemented using the hide (\), interface (@) and

minimisation (minimal) operators:

minimal||M = EM\{password}.
minimal||N = EM@{password}.
||F = (M||N).

In order to ensure that M and N are composed correctly,

action labels need to be pre�xed appropriately. We �rst rebel

the voter and the election o�cial before creating the model

for E2 (Line 7).

minimal||Sys0 = ({v}::F || v:Voter)
@{v.enter,v.password,v.select,v.vote,
v.back,v.confirm,v.exit}.

minimal||Sys1 = ({eo}::F || eo:EO)
@{eo.enter,eo.select,eo.vote,eo.back,
eo.confirm,eo.exit}.

||E2 = (Booth||Sys0||Sys1||{v,eo}::F).

Since LTSA does not allow us to state the requirement for

synthesis using LTL, we rephrase the security requirement

Rs as a behavioural model (NoEOConfirm) together with

a partial speci�cation S before synthesising C .

S = (back−>back−>END).
property NoEOConfirm = (v.confirm −>
NoEOConfirm).
C = (S || Env || NoEOConfirm).

�e rest of the algorithm is a wrapper to the

LTSA tool. �e complete speci�cation are available at

h�ps://github.com/amelBennaceur/oasis.
In the e-voting example, the a�ack scenario is generated

by checking the following LTL property.

assert NoEOSelectAfterVPassword
= [](v.vote −> [](!eo.select))

Assuming the behaviour models of the machine, voting

booth, voter and voting o�cial speci�ed in Fig. 3, 4, and 6

respectively, the following output is produced

Depth 9 −− States: 52 Transitions: 103
Memory used: 18610K
Trace to property violation in

NoEOSelectAfterVPassword:
v.enter
v.password
v.select
v.vote
v.exit
eo.enter
eo.back
eo.back
eo.select

Analysed in: 0ms
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