OASIS: Weakening User Obligations for

Security-critical Systems ein an Tun * Amel Bennaceur * Bashar Nuseibeh † * e Open University, UK * † Lero, Ireland rstname.lastname@open.ac.uk

Abstract-Security-critical systems typically place some requirements on the behaviour of their users, obliging them to follow certain instructions when using those systems. Security vulnerabilities can arise when users do not fully satisfy their obligations. In this paper, we propose an approach that improves system security by ensuring that attack scenarios are mitigated even when the users deviate from their expected behaviour. e approach uses structured transition systems to present and reason about user obligations.

e aim is to identify potential vulnerabilities by weakening the assumptions on how the user will behave. We present an algorithm that combines iterative abstraction and controller synthesis to produce a new so ware speci cation that maintains the satisfaction of security requirements while weakening user obligations. We demonstrate the feasibility of our approach through two examples from the e-voting and e-commerce domains.

Index Terms-System security, user behaviour, e-voting I. I A recent survey by the UK Government shows that human behaviour such as sta not adhering to organisational policies contributes to 42% of security incidents [START_REF]Cyber security breaches survey[END_REF]. For such reasons, users are o en seen as the "weakest link" in the security chain. In this paper, we focus on security vulnerabilities that emerge when users fail to satisfy their obligations fully. We argue that in many cases, there are alternative designs for the so ware in which the system satis es its security requirements even when a user deviates from the expected behaviour, and we propose a systematic approach to achieve them.

Research in the eld of usable security has argued that the deviation of user behaviour is o en justi ed because many of these instructions are arbitrary (e.g., mixing of character types in passwords), unrealistic (e.g., requiring di erent passwords for each account [START_REF] Herley | Unfalsi ability of security claims[END_REF]), ine ective (e.g., users having to change passwords every 90 days leads to weaker passwords [START_REF] Inglesant | e true cost of unusable password policies: password use in the wild[END_REF]), or cumbersome (e.g., requiring users to con rm before every critical action). Security mechanisms can therefore cause friction in the way users want to interact with systems, and their usability is therefore critical for their acceptance by users (and ultimately their e ectiveness). However, focusing on user behaviour alone is insu cient and equal, if not bigger, importance should be given to the design of the associated so ware systems [START_REF] Bada | Cyber security awareness campaigns: Why do they fail to change behaviour?[END_REF].

In this paper, we propose an approach, called OASIS (Obligations, A ack scenarios, SpecI cation abstraction, and Synthesis) that relaxes some of the obligations of the users while satisfying security requirements by generating a revised speci cation of the associated so ware. e contribution of this paper is threefold. 1) A modelling process that makes explicit the components of systems, their interaction, and users obligations. We decompose the environment into a set of interacting components in a way similar to problem frames [START_REF] Jackson | Problem Frames: Analyzing and Structuring So ware Development Problems[END_REF]. To support automated reasoning, we use existing formalisation of protocol behaviour using nite state machines [START_REF] Keller | Formal veri cation of parallel programs[END_REF] for each component. e aim is to make precise user obligations and clarify the assumptions made for the design of the so ware, which in turn helps generate potential a ack scenarios that arise from failures of the users to comply with those obligations.

2) An algorithm to generate revised speci cation for weakened obligations. Once an a ack scenario is identi ed, we propose an algorithm that integrates abstraction and synthesis techniques in order to derive a revised speci cation that xes the identi ed vulnerability and maintain the security requirements satis ed under weaker assumptions about user behaviour. By abstracting the speci cation rst, the controller is able to change the sequencing of actions rather than only blocking or allowing some actions in an adversarial environment.

3) A demonstrator that shows that the revised so ware speci cation satis es the security requirements even though the users deviate from theirs obligations. We implemented the OASIS approach on top of an existing model checker, LTSA [7], and evaluated it with two examples from the e-voting and e-commerce domains.

For example, we automatically revise the behaviour of an e-voting application to avoid vote ipping even if users forget to con rm their vote. e remainder of this paper is structured as follows. Section II introduces the e-voting illustrative example. Section III gives an overview of the approach. Section IV presents the formalism we use to model socio-technical systems. Section V details the OASIS approach and Section VI reports on the implementation and the experiments conducted to validate our approach. Section VII examines related work. Finally, Section VIII concludes the paper and discusses future work.

II. M

E : E V In 2010 in Kentucky, eight co-conspirators were sentenced to a total of more than 156 years in prison for electoral fraud [START_REF] Friedman | Clay county, ky, election o cials sentenced to 156 years in election rigging case[END_REF]. One of the methods used to steal votes involved the touch-screen voting machine called iVotronic manufactured by ES&S. When a voter enters the booth, the voter's interaction with the voting machine can be described as follows.

Step 1. Key in the voter ID & personal pin, and move to the next step (password) Step 2. Select candidate and move to the next step (select) Step 3. Vote selected candidate and move to the next step (vote), or return to Step 2 (back) Step 4. Con rm the vote (con rm), or return to Step 3 (back)

In the above e-voting system, an important obligation of the voter is that they complete the entire sequence until the vote is con rmed in Step 4. e use of con rm action at the end is a common heuristic for user interface design to ensure that mistakes are prevented before a user performs a critical action (this is known as the "error prevention" heuristic [START_REF] Nielsen | Usability engineering[END_REF]).

Vulnerability and A ack. When voters used this system, there were incidents where some voters mistakenly thought that their vote had been counted a er the vote action, and exited the voting booth. e corrupt election o cials, who were allowed to go inside the booth a er the voter had exited the booth, went inside, tapped 'back' twice, selected their preferred candidate, before con rming the vote. is a ack is called "vote ipping".

Fixing the vulnerability. ere are a number of potential ways in which this vulnerability can be xed including:

(i) Make recruitment and monitoring of election o cials more stringent. (ii) Install booth doors preventing the voter from leaving before con rming, or authenticate every person entering the booth. is however makes voting booths less portable. (iii) Give more e ective instructions to voters so that they know not to leave before con rming their vote. For example, this may mean providing clearer signs on the display indicating the progress of their interactions with the system. However, interaction design techniques alone are o en insu cient to build secure systems and need to be combined with so ware and security engineering methods [START_REF] Faily | Usable and Secure So ware Design: e State-of-the-Art[END_REF]. (iv) Modify the behaviour of the e-voting so ware so that a corrupt o cial cannot easily change the vote a er the voter has le the booth, whether the voter has con rmed their vote or not. is is a so ware engineering challenge, and our approach will focus on nding such a solution.

ere is a long line of work on formal veri cation of security properties in electronic voting systems at di erent levels of granularity: from cryptographic primitives, to highlevel protocols, to so ware, to socio-technical systems (see Fig. 1). We give examples of approaches dedicated to each level of granularity on the le hand-side and illustrate their meaning with the e-voting example on the right hand-side. e OASIS approach focuses on the system level and is concerned with identifying security vulnerabilities and resolving them by controlling the so ware behaviour, without necessarily changing, constraining, or controlling the user behaviour as described in the following section. reat Modelling e.g., [START_REF] Shostack | reat modeling: Designing for security[END_REF],

Usable security e.g., [START_REF] Whi | Why johnny can't encrypt: A usability evaluation of pgp 5.0[END_REF] Code Analysis e.g., [START_REF] Livshits | Finding security vulnerabilities in java applications with static analysis[END_REF] Authentication protocols e.g., [START_REF] Burrows | A logic of authentication[END_REF] Cryptographic primitives e.g., [START_REF] Boneh | A Graduate Course in Applied Cryptography[END_REF] Fig. 1: Security: Layers of abstraction

III. O OASIS A

To describe our approach more precisely, we formalise it using Jackson and Zave's framework for requirements engineering [START_REF] Jackson | Deriving speci cations from requirements: An example[END_REF]. is framework makes explicit the relationship between requirements, speci cations, and environment properties. It allows us to describe our approach precisely without prescribing a speci cation or veri cation technique.

e OASIS (Obligations, A ack scenario, SpecI cation abstraction, and Synthesis) approach aims to revise the so ware design to maintain the satisfaction of requirements while weakening the expected behaviour of the users. To do so, OASIS starts by modelling the socio-technical system in order to identify the interactions between the so ware and the environment generally, and the users in particular.

is steps constructs an argument showing how the security requirement R s is satis ed by the so ware speci cation M 1 in the environment E 1 that places strong obligations on the users (i.e. M 1 , E 1 |= R s) as depicted in Fig. 2-. e so ware speci cation is described using Finite State Machines (FSM) [START_REF] Keller | Formal veri cation of parallel programs[END_REF].

e environment is made up of interacting components or agents, each of which represented using an FSM. Requirements are represented using Linear Temporal Logic (LTL) [START_REF] Pnueli | e temporal logic of programs[END_REF]. e entailment M, E |= R holds when the so ware speci cation (machine) M satis es the requirement R in the environment E. Modelling is explained in Section IV.

OASIS uses then the model of the environment (E 1) and the successive weakening of the user behaviour to generate a ack scenarios, producing the model of an adversarial environment (E 2) where the security requirement is violated (M 1 , E 2 |= R s) as depicted in Fig. 2-. Once an a ack scenario is identi ed, the behaviour of the implemented so ware system, together with the model of the adversarial environment and the security requirements are used to identify a revised speci cation: that is, we seek M 2 such that M 2 , E 2 |= R s . e revision stage (see Fig. 2-) generates successively more abstract model M of the existing speci cation M 1 , which is then used to synthesise a controller C that ensures the satisfaction of the security requirement in the adversarial environment.

e revised speci cation M 2 is the result of controlling the abstracted speci cation and removes the security vulnerability without changing the behaviour of E 2 . e revision is minimal with respect to M 1 , that is it involves modi cation of fewest alphabets in the behavioural model of M 1 . We acknowledge that minimality

Elicit User Obligations M 1 , E 1 |= R s Generate A ack Scenarios M 1 , E 2 |= R s Abstract Existing Specification Find M Synthesise New Specification M 2 , E 2 |= R s
Revise Speci cation

1 2 3 E 1 M 1 E 2 , R s M Fail Fail Revised Spec. M 2
Fig. 2: Overview of the OASIS approach may not be the sole criterion for selecting the appropriate revision. For example, sub-minimal revision may o er be er usability or performance. Indeed, while we focus on the security requirements R s for simplicity, other requirements can be speci ed without loss of generality. We will explain the modelling process in Section IV before detailing each step of the approach in Section V.

IV. M S B

e behaviour of a component speci es its interaction with the environment and models how the actions of its alphabet are coordinated in order to achieve the speci ed functionality. We build upon state-of-the-art approaches to formalise behaviour using Finite State Machines (FSM) [START_REF] Keller | Formal veri cation of parallel programs[END_REF].

De nition 1 (Finite State Machine (FSM)): An FSM is a quintuple Q, Σ, δ, q 0 , F where • Q is the set of states,

• Σ is the set of actions denoting the alphabet of the FSM,

• δ : Q × Σ → Q is the transition function,
• q 0 is the initial state, and • F ⊆ Q is the set of accepting states. Example. e voting so ware behaviour can be modelled as shown in Fig. 3. Generally, we will abstract away a sequence of so ware-controlled action immediately followed by the user-controlled action into one action. For example the action password could be described as two actions, the so ware asking for password and the voter entering the correct password. Modelling socio-technical systems using a single FSM has many limitations: 1) So ware is not the system, and the vulnerability is not in so ware. In the a ack scenario discussed above, corrupt o cials exploit the system behaviour not covered by the model in Fig. 3. For example, the model only says how the so ware and voters interact but does not say anything about who can enter and exit the booth at what points. ere is a need to model the behaviour of the voter, a acker, the booth as well as voting so ware, individually and together in order to identify and x the vulnerability.

2) e so ware cannot observe every action in the system. For example, the so ware can observe the candidate selected but not whether someone has entered or exited the booth. Once authenticated, the so ware does not know who it is interacting with. e assumption that actions subsequent to user authentication are always performed by the authenticated user is unwarranted and is a security risk.

3) Actions such as password, are special because we can assume that only the voters can perform the password action. Both voter and a acker can perform all other actions. erefore, analysing the structure and behavioural properties of the components involved in the system is central to identifying and xing certain security vulnerabilities. e OASIS approach uses Structured FSM (SFSM) to model sociotechnical systems. Similarly to Problem Frames [START_REF] Jackson | Problem Frames: Analyzing and Structuring So ware Development Problems[END_REF] that decompose systems into multiple domains, SFSM structures the socio-technical system into multiple interacting components, each of which described as an FSM.

De nition 2 (Structured FSM (SFSM)): An SFSM is a tuple B, m, controls where • B is a set of nite state machines where αF denotes the alphabets of the FSM F ∈ B associated with one component, • m ∈ B is the FSM associated with the so ware (machine), and

• controls : B × B → 2 Σ where Σ = F ∈B
αF is a function that speci es that the shared alphabet a = controls(f 1 , f 2) is controlled by the FSM f 1 and observed by another f 2 . Note that controls(f 1 , f 1) designates the hidden actions that are internal to the component f 1 ∈ B. We use the shorthand controls(f 1) = f ∈B controls(f 1 , f) to identify all externally visible alphabets .

We assume the following syntactic rules to ensure SFMS models are well-formed.

• Every alphabet is controlled by a component (either shared or hidden). • Every component controls or observes some shared alphabet (no component with hidden alphabets only). • No alphabet is both hidden and shared at the same time.

e security properties are described using the alphabet Σ of the SFSM while the alphabet that the machine can observe and control is described using Σ m , called speci cation phenomena.

De nition 3 (Speci cation phenomena): Speci cation phenomena Σ m of a system described by an SFSM is:

Σ m = f ∈B controls(m, f) ∪ controls(f, m)
To avoid unwanted synchronisation between the FSM of di erent components, an alphabet controlled by multiple components in di erent state machines are relabelled by pre xing them with their respective components so that they are distinguishable in the composed model. For example, both the alphabets of the voter and the election o cial include the enter and exist actions in their interaction with the booth. In order to avoid the FSM of the voter and election o cial from synchronising they are both sufxed: controls(Voter, Voting Booth) = {v.enter, v.exit} and controls(Election O cial, Voting Booth) = {eo.enter, eo.exit}.

e behaviour of the voting booth is a synchronisation of the voter and election o cial behaviour. Fig. 4 shows that the voter and the election o cial cannot be in the booth at the same time. For now, we consider one voter and one voting o cial in the model, but we consider a multitude of them in Section VI-C. System modelling using SFSM addresses the three aforementioned limitations: 1) We can distinguish between three kinds of actions [START_REF] Zave | Four dark corners of requirements engineering[END_REF]:

(i) machine-controlled actions the environment observes (

f ∈B controls(m, v)), (ii) environment-controlled actions the machine observes (f ∈B controls(f, m)), and (iii)
environment-controlled actions the machine cannot control or observe (Σ-Σ m). By explicitly modelling the behaviours of the so ware (machine) and environmental components, vulnerabilities due to interactions between components can be analysed. For example, we can express who can enter the voting booth and what is the state of the voting machine when they enter. 2) By including actions of the environment which the machine cannot observe in the analysis but restricting the alphabets of the machine to the speci cation phenomena, we can surface obligations placed on the environment that may turn out to be too strong. In other words, the SFSM makes explicit the interaction between the di erent components, in particular between the machine and the users as well as between the users and the environment. 3) By allowing that environment-controlled actions may be controlled by a number of components, we can model issues related to identity and authentication.

Using SFSM to describe both the structure and behaviour of the so ware system allows us to elicit and reason about user obligations more precisely, which we will explain in the following section.

V. T OASIS A A. Eliciting User Obligations

In order to describe the user obligations assumed by an implemented system, we model the system behaviour including the behaviour of the machine and environment. When modelling the machine, the focus is on the interactions with the user rather than actions internal to the machine. e rst step is to decompose the behavioural model according to its di erent components, which involves developing an FSM for each component. We then extend the model of user behaviour with actions users control that machine cannot observe. is may also involve adding new states as well as new transitions.

Example. In the e-voting system, the assumed behaviour of the voter can be developed by expanding the model in Fig. 3 to include the enter and exit actions, which voter can perform but the machine cannot observe as shown in Fig. 5. e model emphasises that the voter enters the booth before initiating a voting session and that the voter exits the booth a er con rming the vote, hence the booth hides these actions from the machine. However, the voter can actually exit the booth at any time/state without the machine/so ware being able to detect this action. Since there are common alphabets controlled by both voter and election o cial, they are relabelled using action su xes. Specifying security requirements Besides modelling the system behaviour, we must also represent the security requirement (R s) and show that the composed system behaviour satis es the security requirement. Example. For the e-voting system, let us consider some possible formulations of the security requirement "No Vote Flipping" and they include the following (a voting session is a trace of the behavioural model in Fig. 5): R1 the con rmed vote in every voting session is for the candidate selected by the voter in the session R2 the person who con rms the vote must be the voter of the session R3 in every session, it must be the voter who chooses the candidate, con rms the vote. R4 election o cials can never select a candidate a er the voter has entered the password Although the requirement "No Vote Flipping" in Fig. 3 is the relationship between the candidates each voter has selected and the nal vote tally, the behavioural model does not say anything about the vote directly. As a result, we cannot talk about the vote count in R1 directly using LTL. We will restrict our requirements to properties we can express in LTL, namely, safety and progress properties. is o en means rewriting the requirements [START_REF] Rushby | Security requirements speci cations: How and what?[END_REF]. We choose the stronger formulation of the requirement for "No Vote Flipping", i.e. R4 , which can be expressed in LTL as (v.vote → (¬eo.select)).

Since the machine cannot observe who performs the con rm action, the speci cation cannot rely on the occurrence of con rm action to satisfy the security requirement. e voter in Fig. 5 is obliged to con rm the vote before leaving the voting booth. It is easy to see that if the user ful ls the obligations, we can verify that the security property "No Vote Flipping" is satis ed by the system through the entailment M 1 , E 1 |= R s , where E 1 is the environment where the voter complies with their obligations.

B. Generating A ack Scenarios

Once user obligations have been identi ed, this step aims to relax those obligations, creating a weaker, and more realistic, environment E 2 and identifying possible violations to the security requirements with the existing machine speci cation, i.e. counterexamples to the entailment M 1 , E 2 |= R s . In the following, we describe each of these two steps and illustrate them using the e-voting example.

Relaxing user obligations.

e aim is to weaken the behaviour of the users so that 1) they are allowed to perform actions in any order they like and 2) the machine can constrain user behaviour only by de ning valid action sequences the user controls and the machine observes. In e ect, the user behaviour is a single state with all transitions returning to it.

Example. Fig. 6 shows the weakened behaviours of the voter and the election o cial, where they are allowed to perform actions in any order a er they have entered the voting booth. is can be compared with the initial assumed behaviour of, for example, the voter described in Fig. 5. In other words, the machine must control the behaviour allowed by the voter rather than obliging the voter to follow a speci c behaviour. Note also that apart from the password action, the machine cannot di erentiate between the actions performed by the voter and a legitimate or malicious o cial. Identifying requirements violation. Once the user obligations are weakened, we can de ne a more realistic behavioural model of the environment by composing the behavioural models of the component and reverify the requirement entailment. Counterexamples are possible a ack scenarios. e behaviour of the system is the composition of all components in the system. We can then use model checking to verify that M 1 , E 2 |= R s . Notice that E 2 re nes E 1 by weakening user behaviours and extending user alphabets, which may lead to the violation of security requirements.

Example.

e behaviours of the voter, election o cial, voting booth and the machine are then composed to give the revised system behaviour as shown in Fig. 7. is is the behavioural model of the environment in which the e-voting system will be used. Given the model, several counterexamples to the security requirement that the election o cial cannot select the vote can be generated. e a ack scenario discussed in Section II is highlighted in red do ed lines, but the model highlights several other a ack scenarios as well. In short, once the system has reached one of the red states (the voter has given the password and has le the voting booth without having con rmed the vote), the election o cial can con rm the vote and thus violating the security requirement.

e machine can control only the ordering of the actions password, select, vote, con rm and back . e machine cannot observe the actions exit, and enter of the voter and election o cial. It is di cult to de ne the bad states because it depends on who is controlling the transitions; even in Fig. 7 are indistinguishable for the machine; so are events such as v.select and eo.select. What is needed is a re-design of the behaviour of the so ware system in order to prevent election o cials to alter a vote even when the voter exits without con rming.

C. Revising Speci cation

Once an a ack scenario is identi ed, we then need to revise the speci cation M 1 into a speci cation M 2 that satis es the requirements R s in the weakened environment E 2 (E 2 re nes E 1). ere are three main cases for this revision depending on the relationship between M 1 and M 2 .

Case 1: M 1 re nes M 2 and αM 2 ⊆ αM 1 . If the revised speci cation M 2 is a re nement, which implies that the alphabet and the transitions are subsets of those in the original speci cation, then nding δ such that δ, M 1 , E 2 |= R s is a simple controller synthesis problem. For example, controller synthesis approaches can nd a x where all back actions are removed from the speci cation as depicted in Fig. 8. is means that as long as the voter leaves the voting booth a er selecting the candidate, the a acker cannot modify the vote. [START_REF] Ippolito | Hope for the best, prepare for the worst: multi-tier control for adaptive systems[END_REF] propose a multi-tier framework whereby a stack of mediators are synthesised to satisfy stronger requirements when making stronger assumptions about the environment. For example, a two level stack would be as follows.

Synthesise

M 1 such that E 1 , M 1 |= R 1 , Synthesise M 2 such that E 2 , M 2 |= R 2 , E 2 simulates E 1 , and M 2 simulates M 1
where in the higher tier, some strong assumptions about the environment are made and strong guarantees provided while weaker assumptions (E 2 simulates E 1) are made in the lower rst tier but also weaker guarantees are provided. Nevertheless, it is not always the case that the revised version re nes the original one while satisfying the same requirements.

For example, if we still need to avoid vote ipping while allowing voter to change their selection before con rming, then a di erent behavioural design of the machine is required.

Case 2: M 2 does not re ne M 1 and αM 2 ⊆ αM 1 . States and alphabets can be added to and removed from the description of the environment (which may also a ect the speci cation phenomena).

is amounts to modifying the environment so that the existing speci cation satis es the requirement. For example, this could be the addition of new states and transitions to prevent the voter from leaving the booth before con rming or enable the machine to observe or control the enter and exit actions. As we have discussed in Section II, this is outside the scope of this work.

Case 3: M 2 does not re ne M 1 and αM 2 ⊆ αM 1 . An implemented design is a commitment to particular behaviour where alternatives may be possible. Since some of the user obligations have been removed, the users interacting with the system perform actions in di erent sequences. As a result, the machine can also modify its behaviour without changing the set of actions it executes. erefore, we seek M 2 that is similar structurally to M 1 and satis es the requirements M 2 , E 2 |= R s . e aim of this step is to revise some design decisions in order to nd the implementation most similar to M 1 that maintains the satisfaction of the requirements and prevents the a ack scenario identi ed. e primary focus of this work is on the last case and we de ne a revision algorithm that works in two iterative steps: abstracting the existing speci cation and then synthesising a controller that uses this abstract speci cation to synthesise a new one that satis es the given requirements.

Algorithm 1 for generating a revised speci cation takes as inputs the behaviour model of the machine component M 1 , and that of the environment composed behavioural models of other components, and the security requirements R s expressed as an LTL property. e algorithm produces either the behavioural model for the revised speci cation M 2 or the special symbol Fail as its output.

Algorithm 1: Generate Revised Speci cation input : M 1 = Q, Σ m , δ, q 0 : machine behavioural model E 2 : Environment behavioural model R s : Security requirements output : {M 2 , F ail} 1 L ← orderedPowerSet(Σ m); 2 while L = ∅ do 3 L ← nextMinimalElement(L); 4 M ← minimize (Q, (Σ m -L) ∪ {τ }, δ 1 , q 0) where ∀q ∈ Q, ∀a ∈ Σ m • δ(q, a) = δ 1 (q, τ) if a ∈ L and δ(q, a) = δ 1 (q, a) otherwise; 5 N ← minimize (Q, L ∪ {τ }, δ 2 , q 0) where ∀q ∈ Q, ∀a ∈ Σ m • δ(q, a) = δ 2 (q, a) if a ∈ L and δ(q, a) = δ 2 (q, τ) otherwise; 6 F ← M || N ; 7 synthesise C such that C, F, E 2 |= R s ; 8 if C = N ull then 9 M 2 ← C || M;
First the algorithm constructs the poset L from the alphabets in the input model M 1 , where members of the power set are ordered by the subset relationship. In other words, L = (2 Σm , ⊆).

is produces a la ice where the smallest element is the empty set and the greatest element is M 1 (Line 1). is la ice is used to loop on possible abstractions of M 1 by selecting the minimal element L from the la ice and removing it together with the complement subset from the la ice, i.e. L ← L -{L, Σ m -L} (Line 3). Note that the rst element in the la ice is the empty set (∅) and therefore in the rst iteration of the loop, M is assigned M 1 .

For each minimal element L, the algorithm constructs an abstract state machine F that interleaves all the actions in L. In a process algebraic form, this is done by composing two state machines M and N . e state machine M is obtained by removing all actions in L from M 1 . is is done by replacing all the transitions involving those actions by silent transitions (δ(q, a) = δ 1 (q, τ) if a ∈ L) and then minimising the resulting state machine (Line 4).

e algorithm generates another state machine N by rst hiding alphabets other than those from the set L, before minimising it (Line 5). F , the parallel composition of M and N (Line 6) is based on interleaving semantics where the two components synchronise on shared actions (note that αM ∩ αN = ∅ by construction) and can progress by alternating at any rate the execution of their other actions. M 1 is one potential re nement of F in which a particular sequences of the actions in L is chosen.

e algorithm then a empts to synthesise the controller C such that it can allow or block the actions of F in order to satisfy the security requirements in the adversarial environment E2 (Line 7). In other words, the synthesised controller ensures that the composition of the behaviours of the di erent components is deadlock-free and reaches a state where the requirements are satis ed. ere are many approaches to controller synthesis [START_REF] Yellin | Protocol speci cations and component adaptors[END_REF]- [START_REF] Bennaceur | Automated synthesis of mediators to support component interoperability[END_REF], and they di er in their assumptions (e.g., system behaviour is deterministic) and the expressiveness of the goals involved (e.g., dealing with safety, liveness, or general LTL properties). Rather than focusing on a speci c approach for synthesis, we show how these techniques can be extended through abstraction.

If the synthesis succeeds, the revised speci cation M 2 is the parallel composition of C and M ; the algorithm successfully terminates by returning M 2 (Line 10). If the synthesis fails, the algorithm chooses the next set of alphabets from the la ice and repeats the loop. If no controller C is found at the end of the loop, the algorithm returns the special symbol Fail (Line 13).

Proposition 1: M generated in every iteration of the loop in Algorithm 1 is an abstraction of M 1 . Intuitively, M is obtained by removing some of the actions of M 1 and then later on changing their positions in F to obtain di erent re nements. Re nement gives an intuitive notion of correctness (especially for safety properties), and it has been applied in the stepwise design and implementation of so ware systems, starting from their more abstract speci cation [START_REF] Hoare | Process algebra: A unifying approach[END_REF].

We prove the contrapositive that M 1 is a re nement of M . As noted, in the rst iteration of the loop, M is M 1 , and therefore M 1 re nes M in that iteration. As M is obtained by hiding some of the alphabet L of M 1 while maintaining the same transition set which implies inclusion of the trace sets since. By construction ∀q ∈ Q, ∀a ∈ Σ m • δ(q, a) = δ 1 (q, τ) if a ∈ L and δ(q, a) = δ 1 (q, a) otherwise where L is the hidden alphabet in the given transition, δ and δ 1 the transition functions of M 1 and M respectively.

Example. In the e-voting example, if we choose a subset L = {password}, we obtain the abstract machine M , and the corresponding complementary N depicted in Fig. 9.

eir parallel composition F means that the password action can be placed at any stage between the actions of M , i.e. {select, vote, con rm, back}. Placing it before the select action as in the original speci cation M 1 depicted in Fig. 3 is only one option or possible re nement of F . We can run the synthesis to generate a controller that controls the actions of F to make the security requirements satis ed. However, multiple possible revised speci cations can be obtained as depicted in Fig. 10. When minimality is de ned in terms of overlap of transitions with the speci cation M 1 then the rst case (a) can be discarded. Alternatively, a partial speci cation of M 2 or some additional requirements can drive the choice between cases (b) and (c). For example, case (b) prevents the election o cials changing the vote but not con rming it. is section discusses the implementation of Algorithm 1 together with theoretical and practical evaluation of the algorithm. e evaluation covers the following three properties of our approach: 1) Complexity: we examine the theoretical aspects of the OASIS approach and discuss its performance. 2) Feasibility: we describe the implementation of the approach on top of an existing model checker and show how it can be used to identify an a ack and revise the behaviour in two scenarios. 3) Scalability: we measure the time and the size of the search space when dealing with an increasingly complex speci cation, which we obtain by varying the number of voters, voting o cials, and voting booths. We show that, although theoretically complex, OASIS can be applied at runtime in practical cases (models with up to around 500 states and 4000 transitions). Finally, we discuss the limitations and possible enhancements of our approach.

A. Complexity

In the general case, controller synthesis is known to be computationally expensive [START_REF] Pnueli | On the synthesis of a reactive module[END_REF]. Let us consider the synthesis of a controller C that ensures the requirement R s assuming E 2 , i.e. the controller satis es the formula φ ≡ E 2 ⇒ R s . In other words, C |= φ. When φ is expressed as an LTL formula, controller synthesis may reach complexity of double exponent in the size of φ [START_REF] Pnueli | On the synthesis of a reactive module[END_REF]. Yet for safety formulas as well as subclasses of liveness formulas (e.g., GR(1) [START_REF] Ehlers | Generalized rabin(1) synthesis with applications to robust system synthesis[END_REF] or SGR(1) [START_REF] Ippolito | Synthesizing nonanomalous event-based controllers for liveness goals[END_REF]), the synthesis problem can be solved in polynomial time. Our approach does not aim to improve the synthesis algorithm per se. Instead, we rely on the extensive work that has been developed in the area of controller synthesis and reduce the size of the models provided as input to the synthesis algorithm. In addition, the abstraction allows us to redesign behaviour by moving actions, which is not possible with existing synthesis approaches. e time complexity of performing minimisation with strong equivalence is O(kn) for an FSM with k transitions and n states [START_REF] Kanellakis | CCS expressions, nite state processes, and three problems of equivalence[END_REF] in general and and O(klogn) for more e cient algorithms [START_REF] Fernandez | An implementation of an e cient algorithm for bisimulation equivalence[END_REF]. However, the model checker we used, LTSA, implements a simpler algorithm proposed by Holzmann [START_REF] Holzmann | Design and Validation of Computer Protocols[END_REF], which is less e cient theoretically but proves faster for practical uses [START_REF] Giannakopoulou | Model checking for concurrent so ware architectures[END_REF].

e minimisation and synthesis are performed for a stack of abstract FSM starting from the original/existing speci cation and gradually abstracting it, until all possible partitions of the alphabet have been explored. In the worst case scenario, this would necessitate 2 m-1 iterations for an existing machine speci cation with a size m alphabet. However, although the algorithm has an exponential complexity O(2 m), one can make use of the partial speci cation S to bound the possible abstraction. In the e-voting example, constraints such as select must precede vote, which must precede con rm considerably reduce the search space. is is similar in principle to protocol projections [START_REF] Lam | Protocol veri cation via projections[END_REF] with the image protocol explored through possible partitions. A partial speci cation can guide the exploration and reduce the processing time.

B. Feasibility

In order to validate our approach and give evidence of its functional correctness, we have implemented the approach using the LTSA model checker [7]. LTSA is a free veri cation tool that can check safety and liveness properties of communicating processes. We built on the existing capabilities of LTSA for behavioural analysis and used composition to capture the speci cation of the controller. In the following, M 1 is the behavioural model given in Fig. 3. E 2 is the parallel composition of the models for voting booth (Fig. 4), the voter and the election o cial (Fig. 6). e a ack scenario is generated by checking the following LTL property.

assert NoEOSelectAfterVPassword = [](v.vote -> [](!eo.select))
which produces the a ack scenario in less than 1ms. e complete speci cation and its explanation are available at h ps://github.com/amelBennaceur/oasis.

Case study: Session Hijacking via Cross-Site Scripting

To show applicability to other domains, we consider an e-commerce web application. When a user is authenticated, the application stores a session cookie (a random string) inside the client browser, which is then used in subsequent interactions between the client and the server. A class of a acks called session hijacking happen when an a acker manages to obtain the session cookies. is can happen when the user unwi ingly executes a malicious script hidden inside a page or disguised as a link which reads the cookie and sends it to the a acker.

Step 1.

e user provides username and password to log in.

Step 2. If credentials are valid, the e-commerce website stores a session cookie.

Steps 3 and 4. e user browses the catalogue and adds items to basket.

Step 5.

e user chooses a delivery address. Step 6.

e user may make payment to complete the purchase.

Step 7.

e user logs out from the site.

e session cookie generated and stored on the user's computer in Step 2 needs to be validated by the server in each interaction. e cookies are valid for the entire session until the user logs out in Step 6, or a period of inactivity has occurred. In such cases, the user is asked to log in again creating a new session cookie.

Vulnerability and A ack. A user may log in and keep the session cookie on the computer for a length of time for a number of reasons, such as taking a long time to make purchase decisions and forge ing to log o a er deciding not to buy anything. An a acker may steal the cookie via Cross Site Scripting: a script that reads the cookie and sends it to the a acker's server may be executed when the user clicks on a link. is means that there are four states (states 2 to 5), when the system is vulnerable to session hijacking a acks.

An important obligation placed on the user is that a er they have logged in, they make the purchase and log out, AND never click on a link containing a script that steals the cookie before logging out. e OASIS approach aims to weaken this obligation while keeping the system secure. One revised speci cation according to our approach is to move the login and cookie events to immediately before the address event so that the user only has to log in when they are about to pay (see Fig. 11). e system is now vulnerable to session hijacking a ack in three states (states 3 to 5). Although the number of vulnerable states is reduced by one, the eliminated state tends to last longer, and therefore poses a signi cant security threat.

It is worth noting that this pa ern of authenticating users (again) before escalating privilege can be observed in many popular online applications: banking applications tend to authenticate users when checking transactions, and again before making transfers.

Modern web browsers also have partial defences against session hijacking a acks: (i) H pOnly cookies cannot be read by client-side scripts, (ii) when the a ribute SameSite is set to strict, cookies cannot be sent to a di erent domain, and (iii) Content Security Policies can prevent execution of scripts that are not white-listed by the application. ese techniques are complementary in that they are designed to restrict access to cookies inside the browser, while our focus is to reduce the number of states when cookies are stored.

C. Scalability

In order to evaluate the scalability of our algorithm using LTSA, we increase the size of the model by increasing the number of instances of Voter and Election O cial. Starting with one voter and one election o cial, we increment them alternately. Fig. 12 shows how the state space of the model, time taken by the tool to synthesise the new speci cation, and the amount of memory required by the tool as the number of users increase. LTSA, wri en in Java, has a memory limitation of 1GB on 32-bit machines. A er a combined total of 26 users, LTSA raises an out of memory error. e time required to generate the counter example is negligible in all cases. Both time and space required for the synthesis explodes quickly as the number of users approaches 26. A large part of the time ine ciency is due to the minimise operation. e largest model has a state space over 4 × 10 11 , and is synthesised in about 5 mins using 240 MB of RAM on a 32-bit laptop.

reats to Validity. ere are both internal and external threats to validity in our evaluation. An internal threat is related to the use of LTL to specify the requirements, which could have limited expressivity especially in cases relating to complex data structures. We also relied on the operators available in LTSA (and associated process algebra FSP) to implement the algorithm. Other model checkers may have di erent operators or have built-in simpli cation that give be er performance. Since the complexity of the revision is exponential, nding the right level of abstraction to analyse the behaviour of a system is paramount. For example, increasing the number of users adds to the complexity without necessarily uncovering di erent behaviours. With respect to external threats to validity, OASIS was evaluated in two cases for which we already knew about potential a acks. We plan to conduct more extensive evaluation to investigate whether the tool will identify false positive a acks which might have been handled by other means (e.g., rewalls or human agents) and how the revisions proposed are received by developers.

D. Discussion

Our initial evaluation demonstrated that OASIS can be used to revise the so ware speci cation to allow for weakened user obligations thus improving overall system security (mitigating more a acks). We made several simplifying assumptions in order to implement and empirically evaluate our approach. We discuss how some of these assumptions can be relaxed.

Minimality of revised speci cation. We have assumed that revisions of the so ware that involves fewer actions are relatively minimal to those that involve more actions. is may not be the case when the revision is translated into code.

is issue needs to be investigated in future work.

Generalisation. Being able to precisely determine the role of the users and to make the so ware resilient to deviation in their behaviour is an important issue. is also raises the question of how users interact when the machine itself is made up of multiple components that collaborate in order to satisfy security. We are applying the proposed approach to practical problems in a number of domains. In particular, many real-world examples will involve properties about data (such as collection of the vote results) and multiple processes and people. While this paper focuses on behavioural analysis, existing work on synthesis also considers data ow and associated control [START_REF] Bennaceur | e many facets of mediation: A requirements-driven approach for trading-o mediation solutions[END_REF]. In addition, while the behaviour of individual components are usually small, if all the components in the environment are modelled the size of the composed model may grow quickly, increasing the complexity of the synthesis. Collaborative approaches to synthesis [START_REF] Bennaceur | Feature-driven Mediator Synthesis: Supporting Collaborative Security in the Internet of ings[END_REF] provides a way to manage this complexity in domains such as the IoT.

Applicability. We intend to conduct a more comprehensive empirical study in order to evaluate relevance of the suggested revisions, and compare their acceptability by so ware developers, who may not always follow security practices [START_REF] Lopez | hopefully we are mostly secure": views on secure code in professional practice[END_REF]. In particular, OASIS assumes that the requirements can be expressed in LTL, which might not always be the case, especially for cases relating to complex data structures.

e proposed revisions are based on changing the order of actions or removing some actions while other potential revisions might also involve frequency of actions or adding actions. ese revisions might require techniques other than automated synthesis and we plan to investigate whether these revisions can be learnt. We also plan to evaluate the e ort required to assess the identi ed a ack scenarios and the willingness to address them by revising speci cations.

VII. R W

e proposed approach OASIS is related to existing research in a number of areas, which as summarised below.

1) Requirements engineering for system security. Focusing on security properties such as non-interference, Rushby [START_REF] Rushby | Security requirements speci cations: How and what?[END_REF] argues that it is di cult to write security requirements because some security properties do not match with behavioural properties that can be expressed using formal methods. However, at the system level, certain security requirements such as preventing vote ipping can be described in terms of safety and liveness properties. Looking at the system from the point of view of an a acker is a common way of eliciting security requirements, and is the basis of threat modelling and a ack tree approaches to security [START_REF] Shostack | reat modeling: Designing for security[END_REF], [START_REF] Schneier | A ack trees[END_REF]. Requirements of an a acker are called negative requirements, or antirequirements [START_REF] Crook | Security requirements engineering: When anti-requirements hit the fan[END_REF]. Once identi ed, the so ware engineer has to design the system that prevents the anti-requirements from being satis ed. e idea has been extended by considering various pa erns of anti-requirements, known as "abuse frames" [START_REF] Lin | Using abuse frames to bound the scope of security problems[END_REF]. In goal-oriented modelling, anti-requirements are called anti-goals, and the anti-goals can be re ned in order to identify obstacles to security goals, and generate countermeasures [START_REF] Van Lamsweerde | Elaborating security requirements by construction of intentional anti-models[END_REF]. In a similar vein, a systematic process to analyse security requirements in a social and organisational se ing has been proposed [START_REF] Liu | Security and privacy requirements analysis within a social se ing[END_REF]. e OASIS approach focuses on the behaviour of users interacting with the so ware, and identi es potential security vulnerabilities by weakening their obligations. To the best of our knowledge, existing work has not addressed this issue explicitly. Formal and semi-formal argumentation approaches have been used to reason about system security [START_REF] Haley | Security requirements engineering: A framework for representation and analysis[END_REF]. It is easy to argue that if the users fail to discharge their obligations fully, then the so ware system cannot be expected to satisfy its security requirements. e OASIS approach shows instead that it is o en possible to weaken user obligations, and as a result the system becomes more robust with respect to its security requirements.

2) Usable security. System security mechanisms are more e ective when they are user-friendly [START_REF] Whi | Why johnny can't encrypt: A usability evaluation of pgp 5.0[END_REF]. Other studies of usable security have focused on the issues of password policies [START_REF] Adams | Users are not the enemy[END_REF], [START_REF] Florencio | A large-scale study of web password habits[END_REF], user behaviour when confronted by security warnings on web browsers [START_REF] Akhawe | Alice in warningland: A large-scale eld study of browser security warning e ectiveness[END_REF], and so on. Shi ing focus to developers and their mistakes when writing security-critical code, recent studies have examined the issue of the usability of cryptographic APIs [START_REF] Acar | Comparing the usability of cryptographic apis[END_REF]. From the usability point of view, the vote ipping problem discussed in this paper is known as the "missed sub-goal problem", and the general solution is to focus on the simplicity of the path for users to achieve their goal. It means for example, whether the language used is appropriate, and whether the system states re ect the mental model of the user. Complementing these approaches, the OASIS approach shows that the so ware behaviour can be designed so that the system remains secure even when the user does not complete their tasks fully.

3) Formal veri cation of authentication protocols. Meadows [START_REF] Meadows | Formal Veri cation of Cryptographic Protocols: A Survey[END_REF] surveys approaches to formal veri cation of authentication protocols which include methods based on communicating state machines, modal logics, and algebraic models. Recognising that many authentication problems stem from user behaviour, and not necessarily from the protocols themselves, recent work has begun to examine the interactions between user behaviour and authentication protocols (the top layer in Fig. 2). Basin et al. [START_REF] Basin | Modeling human errors in security protocols[END_REF], for example, focus on modelling and reasoning about human error in security protocols. First, they de ne human error as deviation from the role speci cation, which produces a partial order on these errors. ey integrate the human error model within existing formalisation of security protocols, and verify the security properties of the security protocol under human errors. However, unlike OASIS, their approach focuses on veri cation rather than repair and operates at the protocol level.

4) Controller synthesis. ere are many approaches to mediator synthesis [START_REF] Yellin | Protocol speci cations and component adaptors[END_REF]- [START_REF] Bennaceur | Automated synthesis of mediators to support component interoperability[END_REF], and they di er in their assumptions and the expressiveness of the goals involved. It is not always possible to synthesise a mediator that will maintain the requirements satis ed whatever the environment properties. D'Ippolito et al. [START_REF] Ippolito | Hope for the best, prepare for the worst: multi-tier control for adaptive systems[END_REF] propose a multi-tier framework for graceful degradation by switching machine speci cations, which are organised as a stack where higher layers making strong assumptions about the environment and providing stronger guarantees. However, the environments and the controllers must be in simulation. e OASIS approach relaxes this assumption through iterative abstractions and synthesis.

VIII. S

We have proposed an approach to identify vulnerabilities due to strong assumptions about the user behaviour and to update the so ware speci cation to allow for weaker assumptions about the user behaviour while maintaining the satisfaction of the security requirements. e proposed approach begins by formalising the structure as well as the behaviour of a socio-technical system with critical security requirements, which makes user obligations explicit and enable us to identify a ack scenarios.

e approach then alternates between abstraction and synthesis to generate a revised speci cation that xes the identi ed vulnerabilities and satis es the requirements in the more realistic environment with weakened assumptions. We validated the approach by applying it to the e-voting and e-commerce examples and evaluating how it scales with a state space up to 4×10 11 . Our approach goes beyond re nement for the revised speci cation and generates a speci cation that can change the sequencing of existing actions controlled by the machine.

e results of the evaluation show that OASIS can identify security vulnerabilities and resolve them by controlling the so ware behaviour without unnecessarily changing, constraining or controlling the user behaviour.

We plan to carry out further application of the approach to potentially discover new a ack scenarios, identify more ecient methods for managing the iteration between abstraction and synthesis, and explore notions of minimal change. IX. A is research is supported by EPSRC and SFI (grant 13/RC/2094). We thank Michael Jackson and Sebastian Uchitel for helpful discussions, and Gunter Mussbacher and the anonymous referees for constructive suggestions.

A

In the following we explain how LTSA operators are used to implement Algorithm 1. Assuming L is {password} Lines [START_REF] Bada | Cyber security awareness campaigns: Why do they fail to change behaviour?[END_REF][START_REF] Jackson | Problem Frames: Analyzing and Structuring So ware Development Problems[END_REF][START_REF] Keller | Formal veri cation of parallel programs[END_REF] are implemented using the hide (\), interface (@) and minimisation (minimal) operators: minimal||M = EM\{password}. minimal||N = EM@{password}. ||F = (M||N).

In order to ensure that M and N are composed correctly, action labels need to be pre xed appropriately. We rst rebel the voter and the election o cial before creating the model for E 2 (Line 7). Since LTSA does not allow us to state the requirement for synthesis using LTL, we rephrase the security requirement R s as a behavioural model (NoEOConfirm) together with a partial speci cation S before synthesising C. e rest of the algorithm is a wrapper to the LTSA tool.

e complete speci cation are available at h ps://github.com/amelBennaceur/oasis.

In the e-voting example, the a ack scenario is generated by checking the following LTL property. Assuming the behaviour models of the machine, voting booth, voter and voting o cial speci ed in Fig. 3, 4, and 6 respectively, the following output is produced

Fig. 3 :

 3 Fig. 3: Behaviour of the voting machine

Fig. 4 :

 4 Fig. 4: Voting booth behaviour

Fig. 5 :

 5 Fig. 5: Assumed voter behaviour

Fig. 6 :

 6 Fig. 6: Weakened behaviours of the voter and the voting o cial

Fig. 7 :

 7 Fig.7: Expanded E-voting system behaviour

Fig. 8 :

 8 Fig.8: A revised speci cation of the voting machine (the most constrained) D'Ippolito et al.[START_REF] Ippolito | Hope for the best, prepare for the worst: multi-tier control for adaptive systems[END_REF] propose a multi-tier framework whereby a stack of mediators are synthesised to satisfy stronger requirements when making stronger assumptions about the environment. For example, a two level stack would be as follows.SynthesiseM 1 such that E 1 , M 1 |= R 1 , Synthesise M 2 such that E 2 , M 2 |= R 2 , E2simulates E 1 , and M 2 simulates M 1

1 passwordFig. 9 :Fig. 10 :

 1910 Fig. 9: Abstraction and composition of the voting machine

Fig. 11 :

 11 Fig. 11: Revised speci cation of a shopping session

Fig. 12 :

 12 Fig. 12: Evaluation of tool scalability

 minimal||Sys0 = ({v}::F || v:Voter) @{v.enter,v.password,v.select,v.vote, v.back,v.confirm,v.exit}. minimal||Sys1 = ({eo}::F || eo:EO) @{eo.enter,eo.select,eo.vote,eo.back, eo.confirm,eo.exit}. ||E2 = (Booth||Sys0||Sys1||{v,eo}::F).

S

 = (back->back->END). property NoEOConfirm = (v.confirm -> NoEOConfirm). C = (S || Env || NoEOConfirm).

 (v.vote -> [](!eo.select))