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Abstract: In wetland environments, vegetation has an important role in ecological functioning.
The main goal of this work was to identify an optimal combination of Sentinel-1 (S1), Sentinel-2
(S2), and Pleiades data using ground-reference data to accurately map wetland macrophytes in the
Danube Delta. We tested several combinations of optical and Synthetic Aperture Radar (SAR) data
rigorously at two levels. First, in order to reduce the confusion between reed (Phragmites australis
(Cav.) Trin. ex Steud.) and other macrophyte communities, a time series analysis of S1 data was
performed. The potential of S1 for detection of compact reed on plaur, compact reed on plaur/reed
cut, open reed on plaur, pure reed, and reed on salinized soil was evaluated through time series of
backscatter coefficient and coherence ratio images, calculated mainly according to the phenology of
the reed. The analysis of backscattering coefficients allowed separation of reed classes that strongly
overlapped. The coherence coefficient showed that C-band SAR repeat pass interferometric coherence
for cut reed detection is feasible. In the second section, random forest (RF) classification was applied
to the S2, Pleiades, and S1 data and in situ observations to discriminate and map reed against other
aquatic macrophytes (submerged aquatic vegetation (SAV), emergent macrophytes, some floating
broad-leaved and floating vegetation of delta lakes). In addition, different optical indices were
included in the RF. A total of 67 classification models were made in several sensor combinations with
two series of validation samples (with the reed and without reed) using both a simple and more
detailed classification schema. The results showed that reed is completely discriminable compared to
other macrophyte communities with all sensor combinations. In all combinations, the model-based
producer’s accuracy (PA) and user’s accuracy (UA) for reed with both nomenclatures were over 90%.
The diverse combinations of sensors were valuable for improving the overall classification accuracy
of all of the communities of aquatic macrophytes except Myriophyllum spicatum L.

Keywords: wetland vegetation; Danube Delta; backscatter coefficient; coherence ratio; stacking of
times series radar and optical; random forest
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1. Introduction

Wetlands are described as “the lands of transition zone between aquatic and terrestrial ecosystems
where the land is covered by shallow water” [1]. Wetlands (marshes, peat bogs, coastal mudflats,
alluvial forests, etc.) form a complex set of environments. They have a high biological productivity and
great biological diversity and are considered dynamic ecologically. Wetland vegetation is an important
component of wetland ecosystems and plays an important role in maintaining ecosystem structure
and function [2]. Wetland vegetation ecosystems depend on water levels and therefore climate change,
especially changes in precipitation, is likely to have a significant impact on these habitats and associated
species. Phragmites australis (common reed) is one of the most widely distributed wetland macrophyte
plant species. Reed is a key species and plays a significant role in wetland ecosystems, with high
biomass and abundance.

Aquatic macrophytes are also key components of wetland ecosystems. Knowing the function
of aquatic macrophytes in wetlands and shallow lake ecosystems is critical for understanding basic
ecosystem processes. It is also important for numerous applications, such as wetland restoration,
wastewater treatment, and management of invasive species [3]. Accurate wetland vegetation mapping
is needed to distinguish the different classes of macrophyte vegetation, understand their functions,
and analyze the response of wetlands to climate change and human activities. Recently, remote sensing
methodology for the study of wetland vegetation has been used by many researchers [4–11].

Advances in sensors and data analysis techniques have made remote sensing a means of monitoring
vegetation in wetlands. Optical remote sensing data have been used widely since the 1970s to study
vegetation and the environment [12]. In order to improve the accuracy of research, several scholars
have recently used fine spatial resolution images in vegetation wetland studies [13–17]. Fine spatial
resolution images offer many advantages for the identification of wetland boundaries and plant
formations. In this study, the optical domain was used to differentiate submergent macrophytes
from emergent vegetation. Aquatic plants and their properties, however, are not as easily detected
as terrestrial vegetation. The major difficulty for the classification of aquatic macrophytes is the
modification of the reflectance by the water column. The water column absorbs part of the radiation from
aquatic plants and makes them more difficult to detect. Elements in the water column, such as plankton
or sediment, also modify the optical signal and further complicate species detection. Some research
also recommends including bathymetric information in models and classifications to reduce the
influence of the water column [18]. At the leaf level, the presence and concentration of leaf pigments
determines the response in the visible region of the spectrum, and leaf morphology and water content
are the main factors acting in the near-infrared. At the individual level, biophysical factors such as
leaf distribution, leaf density and orientation, and overall canopy structure are important [18]. In the
same study, Silva et al., [18] highlight the difference between detection of submergent and emergent
macrophytes. Submergent macrophytes are much more difficult to detect because the plants are not
visible on the surface. Aquatic plant reflectance can also vary greatly depending on the phenological
stage of the plant, which is important in choosing the date of the image to be processed. This variability
also explains the recurring confusion between emergent macrophytes and terrestrial vegetation.
Another important factor is the density of a macrophyte surface, which as it increases will also increase
canopy reflectance in the Near-infrared (NIR) wavelengths (between 700 and 1000 nanometers).

Radar may be relevant for studying aquatic macrophytes because of the ability of microwaves
to distinguish dry vegetation from moist or even submerged vegetation. The longer microwave
wavelengths penetrate into the canopy, resulting in a “volumetric” signal. However, as radar
wavelengths do not penetrate into water, radar systems can only be applied to emergent macrophytes.
For backscatter, the radar response to aquatic vegetation is similar to that of terrestrial species,
with predominantly volume and geometric scattering.

It is difficult to monitor vegetation within wetlands only using optical images because the dense
vegetation cover leads to signal saturation [19] and because of very high spatial and spectral variability,
due to very short ecotones between wetland vegetation units [20–22]. In this context, radar imagery is
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widely used in mapping wetlands. Radar data provide completely different information from sensors
that operate in the visible and near-infrared range of the electromagnetic spectrum. For some years
now, a new generation of radar images has been available. Radar systems have great potential for
delineating wetland characteristics, including species composition, water surface detection, vegetation
health, or structural properties [23–25]. Many studies have demonstrated the importance of microwave
sensors for vegetation monitoring [26–29].

In this study, Sentinel-1 (S1) radar (C band) was used to distinguish macrophyte vegetation such
as several classes of reed (Phragmites australis) compared to other macrophyte communities. Two reed
surfaces were observed: compact reed (dense reed) and cut reed. The period of cut in the Danube
Delta is from November to March. Most scholars agree that the radar signal is the sum of several
components: diffuse scattering of the soil surface, volume scattering by vegetation, and multiple
interactions between vegetation and soil. In our case, the soil contributes very little to the signal because
most surfaces are made up of water (according to the phenological calendar of the reed (Figure 1a).
The growth of the reed results in an increase in the height of the stems and the number and the size of
the leaves. The contribution of each component to the total radar signal depends on the characteristics
of the reed, the soil (roughness and moisture content)/water, and other parameters (incidence and
polarization). For dense reed surfaces, the radar signal is composed of the double-bounce interaction
from the radiation and return to the sensor (Figure 1b), the surface backscatter from the ground surface
and the volumetric backscatter from the canopy elements, the result of the interaction of the radiation
within the vegetation canopy, leaves, and stems (Figure 1c). For cut reed, the surfaces are composed
of water and less dense leftover stems. For similar surfaces (herbaceous plants in flooded wetlands),
Pope et al. [30] observed that the backscattering values are not as high as those observed for high
density stands due to the increase in the forward scattering in water patches.
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The information potential of radar images with regard to the inventory and mapping of vegetation
is highlighted by analyzing these images in combination with optical images. Recently, processes such
as stacking, coregistration, and data fusion of optical with radar products have been applied to improve
classification quality and its accuracy. Multi-source integration should be the trend of future wetland
remote sensing [12]. A combination of data from multiple sensors can achieve a high level of accuracy
in the classification of vegetation in the Danube Delta [31,32]. A data fusion approach combining SAR
data, optical multi-spectral data, and airborne laser scanning light detection and ranging (LIDAR) for
wetland vegetation detection was conducted by Niculescu et al. [31] in the Danube Delta. In recent
years, machine learning approaches such as support vector machine (SVM), random forests (RF),
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and artificial neural networks (ANN) have become very popular classifiers for SAR data or optical
data classification, as they can provide accurate wetland maps [32–35]. RF, used in this study, has also
been successful in many studies of classification of vegetation and complex environments, such as
wetlands [36–38].

The main goal of this research was to distinguish and map Phragmites australis from aquatic
machrophytes (submerged aquatic vegetation (SAV), emergent macrophytes, and some floating
broad-leaved) in the Danube Delta using time series of the S1 (high spatial resolution radar images) and
Sentinel-2 (S2) (high spatial resolution optical images) and Pleiades images (very high spatial resolution
optical images). The novelty of this study resides in determination of the optimal combination of
sensors, periods of observations, diverse nomenclatures, different environments of wetlands and
an adapted methodology for reducing confusion in discriminating several classes of the Phragmites
australis (compact reed on plaur, compact reed on plaur/reed cut, open reed on plaur, pure reed, and
reed on salinized soil) and aquatic macrophytes within the lakes of delta. The S1 time-series radar was
used to distinguish the different types of surface covers by the many classes of reed, including cut reed.
In this first section, the potential of S1 is evaluated through time series of the backscatter coefficient
and coherence ratio images, calculated mainly according to the phenology of the reed. In the second
section, RF was used to build up classification models in three different sensor combinations: the first
using only S1 data, the second using only S2 data, and the third using both S1 and S2 data. The RF
classification model was used to test all data sets and select the most thematically accurate product for
macrophyte wetlands in Danube Delta.

2. Materials and Methods

2.1. Study Area and Vegetation of Danube Delta

2.1.1. Study Area

The study was conducted in the Danube Delta (45◦10′29”N, 29◦22′58”E) (Figure 2). It is located in
southeastern Romania and southern Ukraine. The delta consists mainly of wetland vegetation with
lakes in the center and southwest, some forests and dune areas, some cities along the three main arms,
and finally an agricultural area to the northwest.
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Natural marsh vegetation dominated by reed (44%) and other aquatic vegetation (27%) is the
most widespread class in the Danube Delta. The area covered by these vegetation classes is 398,676 ha,
of which 362,965 ha is in the Romanian part and 35,711 ha is in the Ukrainian part [39].

For the section on the potential of radar to detect the many classes of Phragmites australis, the study
area includes almost all the delta (red footprint, Figure 2). For the macrophyte classification section,
two more boundaries were selected for lake areas (cyan, Figure 2). The two zones were chosen according
of the overlap between the Pléiades satellite data, S1 and S2, and the terrain data.

2.1.2. Phragmites australis

Reed marshes, covering more than 220,000 hectares [39], are the Danube Delta’s most dominant
vegetation unit. The first detailed vegetation map of the Danube Delta was based on aerial
photo interpretation, satellite images, and verification through field checks [39]. Most of the
photointerpretation was carried out at a scale 1:22,000 up to 1:25,000. The primary plant community
is Scirpo-Phragmitetum Koch. The dominant species is Phragmites australis, usually accompanied
by hydrophilous species as Typha angustifolia L., Carex sp., Schoenoplectus lacustris (L.) Palla and
Thelypteris palustris (A. Gray) Schot. There is high variability in the floristic structure and composition
of reed vegetation of the Danube Delta due to variation in the main ecological factors such as hydrology,
soil substrate, and salinity. Such variation, in connection with biometrical parameters of the specific
reed populations, determines the individual categorization of reed subassociations and distribution [39].
Bolboschoenus-Phragmitetum Borhidi and Balogh, creates a variable width band around the exterior
edge of the marsh. Located on the edge of temporary flooded marshes, it grows on gleyic soil and
moderate-to-strong saline arenosoils with low alkaline pH. It is recognized as a type of halophyle
species. Astero tripolii-Phragmitetum Krisch is found on the shores of maritime areas that experience
temporary, low levels of flooding and is prone to saline psammosoil and alkaline reactions. Another
vegetation formation specific of the delta is floating reed beds covering around 109,000 ha [39].
Often, reed marshes are invaded by grey willow (Salix cinerea L.) bushes.

In this study, many classes of Phragmites australis were observed: compact reed on plaur, /reed cut,
open reed on plaur, pure reed, and reed on salinized soil. In the Danube Delta, a local name for a peat
marsh is “plaur”. In its initial stage, this reed peat is not connected either to the mineral lagoon bottom
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or to the lake bottom itself. It is literally a floating layer, consisting of a network of viable rhizomes
(fibric peat) with a thickness of 0.8–1.3 m, often with many patches of water in it. The layer grows
gradually thicker. Eventually it establishes contact with the mineral floor. In the final stage, the layer
with viable rhizomes rests on layers of older and more mineralized peat (hemic or sapric peat).

2.1.3. Aquatic Macrophyte Vegetation

Over 300 lakes are found in the Danube Delta, and lake size varies from 14 to 4530 ha [40].
Lakes are supplied with fresh river water through vast networks of natural and artificial canals.
The water level in lakes is variable and dependent on the river pulse. The highest water level is
recorded in spring (May–June) [40]. With water depths of 1.5–4 m and a chloride concentration
below 60 mg/L, the Danube Delta lakes are characterized as shallow freshwater lakes. Based on the
classification scheme of Vollenweider [41], these lakes are eutrophic with respect to phosphorus.

There are strong differences in vegetation dominance between these lakes. These are the main
controlling factors that play an important role in the distribution of aquatic macrophytes that influence
the trophic gradient recognizing that most of the floodplain lakes are to some extent connected with
a river [40,42,43]. In our data, we distinguished three type of lakes: (1) lakes with the highest connectivity
dominated by Potamogeton trichoides Cham. & Schltdl., P. crispus, Elodea nuttallii, (2) long distance,
large turbid lakes located at the deeper parts of the former marine lagoons with Potamogeton crispus L.
and Myriophyllum spicatum, and (3) long distance lakes with low connectivity characterised by Nitellopsis
obtusa (Desvaux in Loiseleur) J. Groves, Chara globularis Thuiller, Chara aspera Willdenow, Myriophyllum
spicatum L., Myriophyllum verticillatum L., Stratiotes aloides L., Utricularia vulgaris L., Nuphar lutea (L.)
Sm., Nymphaea alba L., Nymphaea candida C.Presl, Hydrocharis morsus-ranae L., and Nymphoides peltata
(S.G.Gmel.) Kuntze.

2.2. Data Set

2.2.1. Satellite Data

Three types of satellite data were used. For the radar domain, S1 data using both systems
(1A and 1B) were used. The Copernicus Sentinel-1 mission, operated by the European Space
Agency, provides the opportunity to monitor Earth’s surface using radar at high spatial and temporal
resolution. The Sentinel-1 satellites carry synthetic aperture radars (SAR), providing backscatter at
C-band (5.405 GHz). They have a spatial resolution of 10 m and a temporal resolution of 12 days
(6 by combining the two satellites) and can take images according to several modes of acquisition.
The “interferometric wide swath” (IW) mode was used in this study. It facilitates interferometry
and provides images with a swath width of 250 km. Fifty-nine images were downloaded on the
Plateforme d’exploitation des produits Sentinel (PEPS) platform (https://peps.cnes.fr) over the period
2016–2017, in “single look complex” (SLC) format and in “ground range detected” (GRD) format. The
first includes the phase and intensity information of the radar signal, while the second contains only
the intensity information.

For the optical domain, S2 and Pleiades data (Tables S1 and S2/Supplementary material) were used.
The first is a pair of European satellites (2A and 2B). Their spatial resolution is 10, 20, or 60 m depending
on the bands, providing a 5-day temporal resolution by combining the two satellites, and a 290 km
swath. The Danube Delta is included on two footprints, and 76 images (38 for each path) were
downloaded with processing level 1C (without atmospheric correction), also on the PEPS platform.

Pleiades data were provided by GEOSUD. Pleiades is a pair of French satellites (1A and 1B).
They have four (4) bands (visible and NIR) acquired at 0.7 m spatial resolution and a panchromatic
band at 0.5 m (Table S1/Supplementary material). The images acquired by the satellites have a swath
of up to 100 km. The three images ordered were previously orthorectified, and the bands of the visible
and PIR were resampled to 0.5 m spatial resolution from the panchromatic band by the supplier.

A summary of the properties of the three sensor types is included in Table 1.

https://peps.cnes.fr
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Table 1. Data set available.

Sensor Type of Sensor Bands Spatial Resolution Number of Images Dates of Recording

Sentinel-1
(GRD and SLC) RADAR VH

VV 10 m 59 images
03/01/2016–29/12/2017

Sentinel-2
(Level 1C) OPTICAL 13 bands 10 m/20 m/60 m 2 × 38 images

02/18/2016–12/09/2017

Pléiades OPTICAL 5 bands 0.7 m
0.5 m panchromatic

3 images
08/14/2016 1 image
07/11/2017 2 images

2.2.2. Environmental Data

In order to compare the values of the radar images with the precipitation, daily data from four
weather stations (Sfanta Gheorghe, Sulina, Gorgova, and Cataloi) (Figure 2) located on the delta
acquired from 2016 to 2017 were downloaded from the NOAA platform: https://www7.ncdc.noaa.gov.

2.3. Methodology

2.3.1. Backscatter Coefficient and Coherence Estimation

In the first section, several steps were applied: calculation of coherence from SLC Sentinel-1
data and calculation of backscatter coefficients from Sentinel-1 GRD data and extraction of the radar
values from the sample set. In this work, two types of radar images were used, namely backscatter
(signal intensity) and coherence (based on a phase comparison of two images) (Figure 3).
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Figure 3. Process flowchart for identification of Phragmites australis in the delta by radar Sentinel-1.
The red rectangles correspond to the basic data, the blue ones to the intermediate data, the yellow ones
to the final products created, and those in dotted lines to the processing images.

The backscatter images allow us to observe what interacted with the emitted wave, according to
the roughness of the surface, target roughness moisture content or the various elements on the ground.
These are expressed in intensity (ESA).

https://www7.ncdc.noaa.gov


Remote Sens. 2020, 12, 2188 8 of 29

The coherence product is based on the comparison of two radar images by interferometry. Because
microwaves are sensitive to the water content of the soil and vegetation and other variables influencing
backscatter, i.e., soil roughness and vegetation structure, the challenge in microwave remote sensing
is to retrieve the vegetation signal. In this study, it is shown that backscattering clearly reflects the
different phenological stages of reed.

The most important step in calculating coherence is the transition from S1 SLC images to coherence
images. For this, a methodology described by ESA documents was applied [44]. This goes through
the free software SNAP, developed by ESA. The coherence images are achieved after four stages:
1—coregistration, 2—coherence calculation, 3—deburst, and 4—terrain correction (TC). Once the
different treatments were finished, they were applied to all images, by calling the SNAP functions
directly into Python. The transition from SLC to coherence images is as follows. The two images whose
phase we want to compare are aligned together so that their pixels correspond, then the correlation of
their phase value is calculated for each pixel and thus gives an image of coherence.

The last step of the first part of the methodology included radar values extraction for the classes
of the vegetation, namely the Phragmites australis. The extraction of the coherence and backscattering
coefficient values was performed in R. The time-series of coherence (VH and VV) and backscattering
coefficient (VH, VV, and VH on VV) were thus obtained for all classes of vegetation of the sample set.
For the Phragmites australis we used the following samples (Table 2).

Table 2. On the left the reed classes and the number of samples per class. On the right the other land
cover classes and their samples.

5 Phragmites australis Classes 6 Other Classes

Type of Phragmites australis Samples Type of land cover Samples

Compact reed on plaur 30 Urban areas 10

Compact reed on plaur/reed cut 19 Crops 12

Open reed on plaur 24 Dunes (sand) 28

Pure reed 29 Dunes (vegetation) 18

Reed on salinized soil 11 Water 16

Forest 26

2.3.2. Machine Learning Method (Random Forest) and Classification of Macrophytes

The second section entailed identification and and mapping of Phragmites australis and other
aquatic macrophytes (submerged, emergent, floating-leaved, etc.) from optical images (S2 and Pleiades)
and radar images (S1) (Figure 4).

To compare the different classifications with each other, we chose the same two areas for each
sensor (Figure 2). As Pleiades had the smallest number of satellite images, we used it to choose
areas. These areas were then cross-referenced based on locations where there were field surveys.
The northern zone of classification corresponds to the lakes whose field samples were made from 25 to
26 July 2016 and the south to those made from 17 to 19 May 2016. For the radar data to be included in
the classifications, the backscattering coefficient was preferred to the coherence because it corresponds
to a single date and not to a comparison of two dates. Moreover, the coherence images did not allow
us to correctly distinguish elements on the lakes contrary to the coefficient of backscatter. For S2 data,
an atmospheric correction (transition from Level 1C to Level 2A) was applied to all images via the
ESA SEN2COR module. They were then resampled in SNAP to put all the bands at a resolution of
10 m, then mosaicked to get the image of the entire delta. Finally, the images have been adjusted
to classifications as S1 data, by the python script. The PIR bands at 20 m (8A), water vapor (9) and
cirrus (10) were not used, but that of the coastal and aerosol (1) was retained as useful for studying
the shallow waters. The calculations of the eight S2 indices: enhanced vegetation index, modified
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chlorophyll absorption in reflectance index, normalized difference pond index, normalized difference
turbidity index, normalized difference vegetation index (NDVI), normalized difference water index
(NDWI), and pigment specific simple ratio (Table S3/Supplementary material) were automated in the
python script.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 31 
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The Pleiades images were reconstituted in QGIS, then cut to the boundaries of the classification
areas, also in QGIS. Only NDVI and NDWI were calculated, to limit the weight of Pleiades stacks,
and because the satellite only has visible bands and NIR. Stacks fusing optical data and radar were
made with the SNAP Collocation feature, which resamples a data source to coincide with another.
Here we resampled the radar according to the optical data. S1 stacks were created with 3 bands each
time, VH, VV, and VH/VV. S2 stacks were created according to 3 variants; the original bands alone
(10 bands), the indices alone (8 bands), and the two sets (18 bands). For Pleiades, two variants were
created; the original bands alone (4 bands) and the latter with the indices (6 bands). Once all optical
stacks were carried out, a version of each was fused with the corresponding radar stack. The choice
to produce many diverse stacks was made to observe the separate influence of the bands, indices,
and radar images in the results of the classifications.

The last step was to calculate the random forest algorithm to all stacks for the classification of
aquatic macrophytes in lakes within the delta and Phragmites australis. This step was realized on
the free software Orfeo ToolBox (OTB), in the version incorporated into QGIS. Random forests is
a nonparametric ensemble classification and regression machine learning approach based on many
decision trees as base classifiers [45–47]. To classify an image, it randomly selects training data and
variables many times to develop numerous trees, then applies each unique set of trees to classify the
image, generating a final classification that is an ensemble of multiple trees, assigning the class by
majority model. The tree depth and minimum sample size are the two most important parameters in
the RF classifier. In this work, the number of trees was set to 500 and the number of features in a subset
was the square root of the total number of features used in this study. In order to train and validate
the model on independent datasets, we randomly split the database into 50% for training and 50%
for validation [48].
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2.3.3. Ground Reference Data Collection

To ensure a nonbiased assessment of classification accuracy, both model training data and model
validation data were collected using a sampling framework. In this study, the ground data collection
step to validate the results of the supervised classifications combines two categories of survey methods,
random methods (probabilistic) and empirical methods (nonrandom). Implementing a probabilistic
sampling design contributes to a scientifically defensible accuracy assessment. Probabilistic sampling
designs include systematic, clustered, simple random, and stratified random. Probabilistic sample
methods were applied for the homogeneous thematic areas classes of macrophytes. Satellite imagery
(Pleiades) served as the sampling frame for the references data. A total of 100 points in zone north and
105 points in zone south with a confidence interval of 95% were surveyed. The random survey was
chosen and applied using the ENVI software.

This survey determines the membership of an observation unit in a sample based on a random draw.
In this case, the probability is known. The random draw was stratified from the set of homogeneous
thematic areas. The stratification was carried out before the field investigation phase. The front
stratification allows a radiometric contact of the ground to set up the sampling. The stratification
at this first stage is a morphological type stratification, which is based on criteria of textural
homogeneity, backscattering (in the case of radar images), and then thematic homogenization. Zoning by
homogeneous sector with respect to the variable studied (macrophytes) from this morphological
stratification is essential. The stratification improves the precision of the accuracy and area estimates [49].

For the observation of the macrophytes, first, an empirical survey was conducted to guide the
data collection phase. Sample coordinates were collected during the survey using a global positioning
system (GPS). In this stage, the following aspects are achieved: the geographic position of the points,
their description (the description of the vegetation is physiognomic with an estimate of the cover),
and their location on the classified satellite image or on a color composite of optical images. Second,
a survey by route for areas accessible only by boat was carried out (except for lakes). The routes
were chosen according to the channels existing in our area of work. Along the route, the points on
the grid of the random stratified survey were first observed. This survey first asks for a selection of
the main elements of the plant landscape. Thus, a few typical units, representative of the vegetation
units crossed, were analyzed. This survey is also known as “sample units,” according to the name of
the sample of individuals. Observations by standard units were chosen by vegetation stratum [50].
Stratification was carried out on satellite documents (Pleiades) before the field mission to validate
the results. The objective of this stratification is to ensure a good thematic dispersion of the sample.
In general, a minimum of two units per stratum is required for this stage of field data collection.
The positioning of the standard units was chosen in a station physiognomically homogeneous from
a point of view of flora and plant formations. The data included floristic composition and vegetation
structure, using Braun–Blanquet estimates. The description of the vegetation is physiognomic with
an estimate of the cover. The size of the observation unit is more or less important depending on
the size of the homogeneous area. The structure as well as the type of vegetation were noted at each
point within a radius of 25 m around the observer. The information collected were: date, precise
location (mapping), and total vegetation cover. Some floristic information was also recorded: list
of species classified by physiognomic stratum (different classes of Phragmites australis and emergent
aquatic macrophytes).

In our analyses, we used an aquatic macrophytes database from 2016 [51], that covers 43
representative lakes of the Danube Delta. The database includes 895 species records and 205 surveys.
Sampling of aquatic vegetation was done by boat or canoe. The number of surveys on the lake was
established according to the size of the lake. The total cover of the plants and the individual cover of the
species of plants and filamentous algae were estimated visually and by harvesting with a harvesting
rake. For each species, the percentage of cover was estimated using a 5-point scale according to
Kohler, A. [43].
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2.3.4. Accuracy Assessment

To be relevant, an accuracy assessment should meet certain requirements, such as confusion
matrix normalization [52]. Indeed, after generating the raw error matrix, also called a confusion matrix,
it is necessary to normalize it by the proportion of the number of control points as well as to normalize
it by the proportion of the area classes obtained in the classification. Based on our validation points,
we normalized the raw error matrix in order to generate common statistics such as the overall accuracy
(OA), the producer accuracy (PA) and the user accuracy (UA). We assessed classification performance
using these metrics for all 67 classifications.

The OA is intended to check the conformity of the classifications at a global scale for all the
classes. The OA describes the proportion of total map area that has been correctly mapped. The PA is
a class indicator that characterizes the omission error (PA = 1—omission) where UA is a class indicator
characterizing the commission error (UA = 1—commision).

Reporting only accuracy measures such as the overall accuracy is insufficient without taking into
account uncertainties. A confidence interval is very useful because it provides valuable information
regarding the margin of error in estimation and gives a range of probable values for the parameter.
Indeed, whatever the sampling design, uncertainties will give the confidence interval the measure
allowing an objective analysis of the results. A confidence interval provides a range of values for
a parameter taking into account the uncertainty of the sample-based estimate [52].

In Olofsson [52], the confusion matrix used in accuracy assessment provides information on the
magnitude of the classification errors that allow for an adjustment to be made in the area estimator.
In order to quantify the sampling variability of the estimated area, the confidence intervals were
calculated. The calculations of the confidence intervals were automated in the python script included
in QGIS.

3. Results

3.1. Sentinel-1 Radar Images to Differentiate the Different Classes of Phragmites australis

The graphs presented in this part of the results show the temporal changes in the backscattering
coefficient (Figure 5) for the classes sampled (Table 2), over the period 2016–2017, compared to daily
precipitation for the same period. The left curves correspond to the reed classes and the right ones to
the other classes (Table 2). An average value for each sample of each class was extracted, then each
of these was averaged for all dates. We thus obtained the coherence (VH and VV) and backscatter
coefficient (VH, VV, and VH on VV) time series for the 11 classes of the sample set, compared on the
graphs with rainfall. We identified the backscatter double bouncing (built-up areas) and volumetric
(different class of reed). The identification of the backscattering increases the possibility of RF to identify
the class reed.

3.1.1. Backscattering Coefficient to Identify the Phragmites australis

Mean backscatter (Figure 5) varied logically between the different polarizations of the class
observed. The analysis of the backscattering coefficient allowed us to provide information for separation
between classes of macrophytes, some of which overlap strongly.
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To interpret the backscattering, it can be recalled that the vegetation tends to return the radar
signal in many directions and therefore has high values, while water and flat surfaces such as bare
ground will tend to only send the signal in one direction and thus have low values. The backscatter
values are lowest for VH (a), slightly higher for VV (b), and even higher for VH/VV (c). The ratio
has a small amplitude compared to the other two polarizations, with values almost all between
0 and −12.5 decibels (dB). VV has the largest amplitude and shows significant backscattering peaks,
especially for Phragmites australis classes. For the classes themselves we note that the different types of
reed have similar curves for the 3 polarizations. On the other hand, polarizations differed between the
types of reeds. VH shows an increase from January to April (about +5 dB), then a gradual decline
(about −3 dB) until the end of the year, while VV shows a larger increase (about +10 to 15 dB) until
April–May, then a decline of the same amplitude until the end of the year. VH/VV shows alternating
small increases then decreases on the order of 2 dB, stabilizing around −5 dB after July. Between
2016 and 2017, there are two differences in behavior; the first is the sudden decrease in backscatter in
March and early April 2016, visible especially for the cut grass (in purple), but also to a lesser extent
for other types of reed. This variation may be related to a late cut of the reed at the beginning of the
year. The second difference is the behavior of backscattering at the end of the year (November and
especially December), where in 2016 fluctuations are noted (and continue in early 2017), while in 2017
there is an increase (or stagnation for VH/VV). The cut reed is the class that is the most separable from
the other classes, with the weakest backscattering values and the largest annual variation. The pure
reed class (light green) also stands out, with the most important VV backscattering peaks in mid-2016.
For the other classes, the interpretation is simpler. In VH, as in VV, the curves do not change much.
VV shows larger peaks for dunes (sand) and water. Buildings and forests have the strongest and most
consistent values for VH and VV. This seems logical since it is these surfaces that retain an important
geometry all year round (buildings and tree trunks). Dunes with vegetation have a very similar
behavior, with slightly higher values for vegetation. Their curves showed a peak in late spring and
summer, and a low in winter over the two years observed.

By visualizing the calculated images, we obtain significant results for the identification of the reed
plaur and the aquatic macrophytes (Figure 6).
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Figure 6. Identification of plaurs (macrophytes red) and aquatic macrophytes (cyan) from backscatter
coefficient images (September–October 2016). RGB bands combination for the optical image.

It is possible to follow the displacements of the plaur reed on the surface of the lakes with images
of the backscattering coefficient (Figure 6, in red), in particular with the VV polarization. VH only
distinguishes water surfaces, while VH/VV seems to track algal blooms for certain dates. It is also noted
that these VV backscattering data make it possible to see changes in lake cover by aquatic macrophytes
(Figure 6, in cyan).
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3.1.2. Coherence for the Different Classes of Phragmites australis and Identification of the Cut Reed

The interpretation of the coherence values is different from that of the backscattering coefficient.
Surfaces with stable backscatter and phase such as urban or bare soils have high values. When we study
vegetation with coherence, we observe the moment when it disappears to reveal the soil, resulting in
an increase in values. As for the backscattering coefficient, the VV coherence shows a larger amplitude
and larger peak than VH (Figure 7).
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australis + other classes of land cover and precipitation, over the period 2016–2017. Polarization VH
and VV.

For the reed classes, there is a great similarity in the behavior of the different types, and between
VH and VV as well. For both polarizations, the reeds had low values of coherence between 0.2 and 0.3
throughout the year. Some classes such as pure reed or reed on saline soil had rare peaks between 0.3
and 0.4. The cut reed is the class of reed whose coherence shows the highest values (0.42 for VH and
0.59 for VV). These increases in coherence occur at the end of the year and can therefore be linked to
cutting events. Similar results can be found in cutting crops and sugar in other studies [53,54]. For the
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other classes, the amplitude is higher, with the frame that conserves in VH as in VV of strong values
throughout the two years (between 0.38 and 0.74). The water and forest also remain fairly constant,
in the low values, between 0.2 and 0.3. The forest has small increases to 0.3 or more, mainly in winter,
which could be related to the loss of leaves and exposed trunks, a little more stable in their phase.
This is similar to the results of another study [53]. Crops and dunes (vegetation and sand) show the
most important variations in all classes. They are also more marked in VV. For crops, there are many
periods of bare soil with increases in winter, partially corresponding to low backscatter values at the
same time periods.

As for the backscattering coefficient, the coherence values for 2016 and 2017 do not seem to be
influenced by precipitation trend. By visualizing the calculated images, we obtain significant results
for the idntification of the reed cut (Figure 8).
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VV coherence is the best data for monitoring the reed. In Figure 8, we can observe the appearance
of strong values of coherence for several areas (in purple). The dates correspond to the cutting period,
late autumn and early winter. The image is located in the center-east of the delta, an area where the reed
is very exploited. The same trend of the reed surfaces is observable in November 2016 and March 2017
(for this period, the link with a reed cut is less certain). The phenomenon does not happen gradually,
and we can probably date a section between 11/11 and 11/23/2017.

3.2. Macrophyte Classifications

3.2.1. Nomenclature

In this study, we used detailed nomenclature and simple nomenclature. The detailed nomenclature
distinguishes macrophyte species and is based mainly on field survey records, although some classes
contained very few records. For this nomenclature, it was assumed that macrophytes remained more
or less at the same place in time on the lakes, since they are attached to a substrate. So we created
only one set of samples per zone and one adapted to each classified date. The simple nomenclature
differentiates submerged macrophytes from emergent macrophytes. Dates for satellite images were
selected differently according to the nomenclature used. For the detailed nomenclature, the dates
closest to the sampling date were selected for S1 and S2. For Pleiades, the date was necessarily on
at 11/07/2017. On the other hand, for the simple nomenclature, which is largely dependent on the
samples, the date for each zone with visibility on the lakes (no clouds, acceptable water turbidity) and
the most apparent macrophytes were selected. The detailed nomenclature took up all the classes of
the field samples, grouping together some of them when they were very similar (e.g., Potamogeton
pectinatus and Potamogeton trichoides, or Ceratophyllum demersum and Ceratophyllum submersum L.).
For the northern classification area, seven classes of macrophytes and one class of reed/other were
distinguished for areas that surround the lakes, a water class, and a class of “no data”, i.e., 10 classes.
For the southern classification zone, 10 classes of macrophytes and also classes of reed/other, water,
and no data were taken into account, i.e., 13 classes. To create the samples of this nomenclature,
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we relied on field samples, especially because the species were not visually distinguishable to create
them by photo-interpretation, especially on S2. For this reason, two sets of samples (one for each
zone) were created so that they were suitable for Pleiades, S2 and S1, and also for the different dates
of the images used. The simplified nomenclature was created by serving classes of field samples for
macrophytes that can be seen visually on the images and whose species were known precisely with
field data. This was the case for two emergent species (floating, broad-leaved), Nuphar lutea or yellow
water lily and Trapa natans. The rest of the species, visually indistinguishable from each other, were
united in a class of submerged macrophytes. For the northern classification zone, five classes were
differentiated (Nuphar lutea, submerged macrophytes, water, a class of reed/other, and a class of “no
data”). For the southern zone, the same classes were differentiated, to which Trapa natans was added,
as well as those of algal bloom and sediments, visible at the dates studied, i.e., height classes. With this
simpler nomenclature, we were able to create more samples per class that were more extended and
better distributed throughout the territory to be classified. On the other hand, as this nomenclature is
based on photo-interpretation, we created a set of samples for each date. We had two sets (north and
south zones) adapted to S2 (2016 images) and two adapted to Pleiades (images from 11/07/2017) or
four sample sets in total. For each optical classification, the image S1 corresponding to the level of
the date was classified. The sample set used was adapted according to whether the optical reference
classification was on S2 or on Pleiades.

3.2.2. Estimating Overall Accuracy

Validation of the classifications was done with and without samples for the reed/other class,
to highlight its influence on the results. In the Table 3, the values of OA for validation with reed class
without this class.

Table 3. The OA significant results for detailed nomenclature classifications + simple nomenclature
classifications and standard errors.

Nomenclature Stack

OA with
Samples

Validation
Reed North

OA without
Samples

Validation
Reed North

OA with
Samples

Validation
Reed South

OA without
Samples

Validation
Reed South

Detailed
nomenclature

P + S1 63.82 ± 0.16 21,2 ± 1.2 78.79 ± 1.02 28.57 ± 1.02

S1 73.5 ± 3.02 43.3 ± 2.97 68.36 ± 2.85 25.85 ± 0.99

S2 (bands) 88.33 ± 2.48 69.55 ± 10.12 74.97 ± 1.54 26.41 ± 1.41

S1 + S2 (bands) 79.08 ± 5.67 54.5 ± 12.33 70.01 ± 3.31 69.05 ± 4.16

S1 + S2 indices 82.22 ± 3.71 60.73 ± 8.18 71.28 ± 1.6 60.27 ± 0.05

S2 (bands + indices) 76.1 ± 7.8 49.31 ± 1.8 68.02 ± 1.23 62.25 ± 2.81

S1 + S2 (bands + indices) 90.31 ± 1.2 80.23 ± 0.8 68.05 ± 4.37 67.72 ± 3.43

Simple
Nomenclature

P (bands) 95.87 ± 0.04 97.24 ± 0.04 88.34 ± 0.02 43.07 ± 0.01

P + S2 (indices) 97.56 ± 0.03 98.92 ± 0.02 91.07 ± 0.02 82.28 ± 0.0

P + S2 (indices) + S1 98.15 ± 0.02 98.75 ± 0.01 97.94 ± 0.01 84.36 ± 0.0

S1 94.57 ± 0.26 90.28 ± 0.25 78.61 ± 0.31 71.24 ± 0.24

S2 indices 96.91 ± 0.29 94.02 ± 0.61 98.18 ± 0.14 80.03 ± 0.08

S1 + S2 indices 94.07 ± 0.36 91.02 ± 0.24 95.77 ± 0.24 80.93 ± 0.22

S1 + S2 (bands + indices) 97.02 ± 0.23 95.35 ± 0.02 98.53 ± 0.08 85.81 ± 0.07

S1 + S2 (bands) 96.54 ± 0.3 98.24 ± 0.02 97.15 ± 0.22 81.77 ± 0.16

The results following the calculations of the OA and their confidence intervals applying the RF
model classifications for three sensors show the difference between classifier accuracies of various
variable stacks. The detailed nomenclature overall has lower accuracies of OA compared to those using
the simple nomenclature for all sensors and for all combinaisons (Table 3). Overall, the northern zone
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presents higher accuracy of OA for the different stacks compared to the southern zone. Systematically,
accuracy of OA with samples validation reed is greater than accuracy of OA without samples validation
reed (Table 3).

For classifications using the detailed nomenclature, the highest accuracy was obtained with S2
(bands and indices) fused with S1 (as of 17/07/2016) (Table 3). The less efficient stack for obtaining
high accuracy was S1 for detailed nomenclature. This is in agreement with what is found in the
literature [55–57]. The stack S2 set and Pleiades gave very high accuracy for this nomenclature.
The stack S1 was a high accuracy in the simple nomenclature (Table 3).

The first results of the classifications showed that the emergent macrophytes were well classified,
except some species, in particular for the detailed nomenclature, and it seemed interesting to test the
evaluation of the classifications with and without this class to see its influence. This is possible because
the evaluation is done only on the pixels included in the validation samples. No validation sample
was created for the “no data” class (created simply to isolate these pixels from the others), because
all of its pixels were invariably well classified. At the same time, height and vegetation and water
indices were included in the RF classifications. The application of optical radiometric indices is widely
accepted as a means to improve classifications [55,58,59]. For the accuracy that included different
optical indices in the RF classifications, we analyzed the different stacks of S2 and Pleiades. Regarding
the test of the different stacks for optical images (bands, height indices, and bands and indices), the
three sets provided similar accuracy, with a slight increase overall when the bands and indices were
used together. For the detailed nomenclature (north zone) for the date of 07/17/2016, the eight indices
had the lowest accuracy (OA: 64.21 ± 2.1), the bands an intermediate result (OA: 69.02 ± 0.02), and the
bands and indices a slightly higher result (OA: 72.32 ± 3.2) (Table 3). Most of this was also observed
for the other dates, for the two zones and with or without the addition of the radar, with sometimes
the eight indices giving better results than the bands, but in general with the third stack giving the
highest accuracy.

In conclusion, for the accuracy of OA for the detailed nomenclature in north zone, the following
stack obtained accuracy greater than 90%: S1 + S2 (bands + indices) (90.31 ± 1.2) Table 3. Between 80%
and 90% accuracy we had the following stacks: S2 (bands) and S1+ S2 indices. An accuracy of less
than 80% was obtained for the following stacks: P + S1, S1, S1 + S2 (bands), and S2 (bands + indices).
In south zone, the situation was different: no accuracy greater than 90% for detailed nomenclature was
obtained. The most efficient stack was the P + S1 with an accuracy of 78.79 ± 1.02 Table 3. Accuracy
greater than 70% was obtained with the following stacks: S2 (bands), S1+ S2 indices, and S1 + S2 (bands).
In the case of simple nomenclature, all the stacks used presented very high accuracy (greater than
90%) for the northern zone. The most efficient stack with very high accuracy was P + S2 (indices) + S1
(98.15 ± 0.02) Table 3. Other stacks with notable accuracy higher than 95% were: P + S2 (indices),
S1 + S2 (bands + indices), S2 indices, and S1 + S2 (bands). In the south zone, the most efficient stacks
were S1 + S2 (bands + indices) (98.53 ± 0.08) and S2 indices (98.18 ± 0.14) Table 3. Other stacks have
obtained high accuracy, higher than 90%: P + S2 (indices) + S1, S1 + S2 indices, and P + S2 (indices).

3.2.3. Estimating Producer’s Accuracy (PA), User’s accuracy (UA)

In order to analyze in more detail the error for the different classes, we focused the analysis on
class accuracy indicators (Table 4). The confidence intervals was calculated at 95%.

The best results were obtained for the following combinations: classification of the S2 stack (bands
and indices; 07/17/2016) with S1, using detailed nomenclature; classification of the Pleiades stack
(bands and indices; 07/11/2017) with S1 in simple nomenclature; classification of the Pleiades stack
(bands and indices; 07/11/2017) with S1 in simple nomenclature.; classification of the S1 + S2 stack
(bands and indices), 08/06/2016, in simple nomenclature; and classification of the S2 stack (bands and
indices; 08/16/2016) in simple nomenclature.
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Table 4. Some examples of the best results by the classification of the user’s accuracy (%), producer’s
accuracy (%) and standard errors of the macrophytes.

Zone Stack Overall
Accuracy (%) Class User’s

Accuracy (%)
Producer’s

Accuracy (%)

North

S1 + S2 82.22 ± 3.71

Ceratophyllum sp. 100 100
Chara sp. 26.91 ± 4.96 90.91 ± 16.99

Myriophylum spicatum 0 0
Nuphar lutea 100 100
Spirogyra sp. 100 61.11 ± 22.52
Trapa natans 100 16.67 ± 29.82

Vallisneria sp. 38.35 ± 45.08 66.67 ± 30.8
Phragmites australis 100 100

Water 100 97.18 ± 3.85

P + S1 94.07 ± 0.36

Nuphar lutea 99.87 ± 0.26 99.49 ± 0.35
Submerged macrophytes 85.32 ± 1.38 79.76 ± 1.44

Water 100 95.05 ± 0.87
Phragmites australis 93.19 ± 0.45 100

S1 + S2 96.91 ± 0.29

Nuphar lutea 93.09 ± 2.46 86.22 ± 1.6
Submerged macrophytes 82.24 ± 1.56 98.62 ± 0.47

Water 100 91.83 ± 0.88
Phragmites australis 99.44 ± 0.08 100

South
S2 (bands +

indices) 98.18 ± 0.14

Nuphar lutea 82.52 ± 1.79 76.76 ± 1.96
Trapa natans 82.45 ± 2.06 83.71 ± 1.09

Submerged macrophyte 100 95.05 ± 0.87
Algal bloom 93.19 ± 0.45 100

Water 95.59 ± 2.34 96.14 ± 0.67
Sediment 98.87 ± 0.19 98.79 ± 0.17

Phragmites australis. 99.37 ± 0.07 99.33 ± 0.16

The second analysis was carried out by species of macrophytes. The best results are presented in
the table (Table 5).

Table 5. The best results of the producer’s accuracy, user’s accuracy and standard errors by species
of macrophytes.

Communities Macrophytes Zone Stack User’s
Accuracy (%)

Producer’s
Accuracy (%)

Phragmites australis
Detailed nomenclature

North

S1 + S2 (bands) 100 100

P + S1 92.55 ± 0.23 99.27 ± 0.07

P + S2 91.55 ± 0.18 99.36 ± 0.07

S1 + S2 (indices) 100 100

S1 100 100

S2 (bands) 100 100

South S2 (bands + indices) 100 99.32 ± 0.95

Phragmites australis
Simple nomenclature

North

S1 + S2 93.19 ± 0.45 100

P + S2 (indices) 97.44 ± 0.03 98.2 ± 0.02

P+S1 99.52 ± 0.01 99.01 ± 0.01

S2 (bands) 100 100

S2 (indices) 99.91 ± 0.06 99.62 ± 0.11

S1 98.05 ± 0.17 99.53 ± 0.11

South

S1 + S2 99.50 ± 0.06 99.99 ± 0.02

P + S1 99.43 ± 0.01 97.81 ± 0.01

S2 (indices) 99.89 ± 0.02 99.72 ± 0.1

S1 98.30 ± 0.09 96.39 ± 0.31
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Table 5. Cont.

Communities Macrophytes Zone Stack User’s
Accuracy (%)

Producer’s
Accuracy (%)

Nuphar lutea
Detailed nomenclature

North

S1 + S2 100 100

S2 (bands) 100 100

P + S2 (indices) 99.87 ± 0.26 99.49 ±0.35

Nuphar lutea
Simple nomenclature

North S1 + S2 99.87 ± 0.26 99.49 ± 0.35

South

S2 (bands + indices) 94.14 ± 1.45 89.7 ± 1.43

S2 (bands) 90.15 ± 1.54 96.83 ± 0.87

S1 + S2 90.54 ± 1.6 97.24 ± 0.81

Submerged macrophytes
Detailed nomenclature

North

S1 + S2 100 100

P + S2 (indices) 99.87 ± 0.26 99.49 ± 0.35

S2 (bands) 100 100

S2 (bands + indices) 100 100

Ceratophyllum sp.
Detailed nomenclature

North

S1 + S2 100 100

P + S1 99.87 ± 0.26 99.49 ± 0.35

S2 (bands + indices) 100 100

S2 (bands) 100 100

Trapa natans
Simple nomenclature South

S1 + S2 (indices) 92.11 ± 0.67 84.37 ± 1.07

S2 (bands + indices) 91.57 ± 2.27 91.93 ± 0.82

S2 (indices) 82.45 ± 2.06 83.71 ± 1.09

The Phragmites australis is distinguished in all combinations in comparison with other macrophytes
in the two nomenclatures. All stacks presented UA and PA higher than 90%. Some stacks presented
maximum accuracy (100%) for the two parameters: with detailed nomenclature: S1 + S2 (indices) and
S1, S2 (bands) in the north zone. In the case of simple nomenclature, S2 (bands) had the maximum
accuracy in the north zone. In simple nomenclature, other stacks presented accuracy (UA and PA)
close to the maximum values: S2 (indices) (99.91 ± 0.06 and 99.62 ± 0.11) and P + S1 (99.52 ± 0.01 and
99.01 ± 0.01) Table 5 in the north zone. In the south zone, the following stack had high accuracy: S2
(indices) (99.89 ± 0.02 and 99.72 ± 0.1), S1 + S2 (99.50 ± 0.06 and 99.99 ± 0.02), and P + S1 (99.43 ± 0.01
and 97.81 ± 0.01) (Table 5).

The aquatic macrophyte Nuphar lutea had a very high accuracy (100%) for PA and UA in detailed
nomenclature for the north zone for the following stacks: S1 + S2 and S2 (bands). The stack P + S2 (indices)
had a very high accuracy too for the two parameters (Table 5). In simple nomenclature, four stacks
were performing with accuracy greater than 90%: S1 + S2 (in north zone) and S2 (bands + indices), S2
(bands), and S1 + S2 (in south zone). The submerged macrophytes give the highest accuracy for the
north zone. Some stacks had a maximum accuracy for the detailed nomenclature: S1 + S2, S2 (bands)
and S2 (bands + indices). Ceratophyllum sp. had a very high accuracy only in the north zone for the
detailed nomenclature: S1 + S2 (100% and 100%). The stack P + S1 was detected at high accuracy
(99.86% ± 0.26 and 99.49% ± 0.35). Trapa natans was detected at high accuracy only in south zone with
the simple nomenclature in S1 + S2 indices.

Most macrophyte species were identified with good accuracy with the stack S1 + S2 indices
except for the Myriophyllum spicatum with minimum accuracy for the two parameters (0.0% ± 0.0
and 0.0% ± 0.0) (Table 5). The same accuracy was found for the same macrophyte for all dates of the
stack S1 for the north zone. Vallisneria sp. presented the same results for stack S1 for the north zone.
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In the south zone, the same accuracy (0.0% ± 0.0 and 0.0% ± 0.0) was found for Elodea nuttallii (Planch.)
H.St.John, in the stack S1+ S2 (bands and indices) with the detailed nomenclature.

3.2.4. Mapping Macrophytes

The classifications derived from the precise nomenclature were more complex to interpret,
and their classes were much more mixed. For that of the northern zone (Figure 9), many different
classes of aquatic macrophytes were found on the same lake, and for that of the southern zone
(Figure 10), the Nuphar lutea and Stratiotes aloides L. classes were strongly confused with the reed
class. Classifications in simple nomenclature were easier to analyze. There seems to be little confusion
between classes, and the reed was well separated from other classes.

There was a big difference between the S2 and Pleiades results for the distribution of the detected
classes between the north and the south zone. The species of macrophytes were not the same.
For example, for the north zone, Pleiades detect a lot of Vallisneria sp., where S2 rather detects
Myriophyllum spicatum, Spirogyra sp., and water (Figures 7 and 8). Conversely, the classifications of
the simple nomenclature showed a concordance of the Pléiades and S2 results. As for the detailed
nomenclature, their dates were not the same, but the common elements visible on the true color images
were found on the classifications of the two sensors. This was true for the reed or for the species Nuphar
lutea and Trapa natans in particular (Figure 11b–e).
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Figure 11. (a) Localization of the detailed view of two lakes in the two zones. Comparisons of
classification with detailed nomenclature: (b) north classifications/detailed nomenclature (10 classes)
(c) south classifications/detailed nomenclature (13 classes). S2 used: 07/17/2016, bands and indices and
Pleiades used: 07/11/2017, bands and indices. Comparisons of classification with simple nomenclature.
(d) North classifications/simple nomenclature (5 classes). S2 used: 08/06/2016, bands and indices.
Pleiades used: 07/11/2017, bands and indices. (e) South classifications: simple nomenclature (8 classes).

To better illustrate these classfications we show an enlarged image of two lakes in the
two zones (Figure 11a).
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4. Discussion

4.1. Sentinel-1 Radar Images Identified the Different Classes of Phragmites australis

In the first section, the results showing time series of backscattering and coherence coefficients
captured the phenology of the main classes of Phragmites australis, or the period of cut for this macrophyte.
The vegetation’s phenological cycle helped the separation of different types of Phragmites australis in
the multi-seasonal approach. The increase and then the stability of the reed class values from June to
November/December for VH/VV correspond to the phenology of the species. These results provide an
additional argument for enhancing the correlation between phenology of the species and observation
of the backscattering coefficient. Precipitation does not influence the backscatter of the different classes.
Even unusual rain events do not correspond to sudden changes in backscatter. It can be hypothesized
that this is due to the very wet character of the delta, which means that precipitation does not change
moisture on surfaces. Finally, the vegetation phenological cycle helped differentiate the different types
of Phragmites australis in a multi-seasonal approach.

Using the identification of the multi-seasonal backscattering increases the possibility of RF to
identify the reed. The results agree with the results of other research [28,60–62]. This study demonstrates
the large potential of microwave coefficients for identification of the several classes of Phragmites australis
and their phenology. The coherence coefficient shows that C-band SAR repeat pass interferometric
coherence for cut reed detection is feasible. Sentinel-1 data with high spatial resolution are useful for
monitoring the reed cut when acquisition dates surround the cut date. The interpretation of the images
shows that the difference between the coherence coefficient of the mature reed and the cut reed is very
pronounced. Low values of coefficient of coherence are observed at periods when the reed is generally
cut off and therefore one can know more or less precisely when they have occurred. The results also
showed that the radar signal could be very independent of precipitations, taking into account that the
environment is very wet by its nature.

4.2. Macrophyte Classifications

Various tests to compare results using different RF input parameters and data types were
conducted. The RF approach provides relatively good accuracy without the danger of overfitting.
The random forest classifier has less difficulty in simply differentiating between emergent macrophytes
and submerged macrophytes than differentiating between species.

4.2.1. Accuracy Assessment

When sensor combinations were compared, OA, PA, and UA showed that a synergistic use of S1
and S2/Pleiades produced higher accuracies than use of SAR alone in most of the cases. The stack S1
alone could have high accuracy, for example in simple nomenclature (OA: 94.57 ± 0.26). The stack in
combination with the radar increased accuracy for Pleiades and S2, and especially for the detailed
nomenclature. For simple nomenclature, this trend was less apparent; the results that included the
radar changed little (+/− 1% or 2% in most cases). Only Pleiades showed an increase with the radar
in this nomenclature, especially for the southern zone (97.94 ± 0.01). Pleiades has a finer spatial
resolution compared to Sentinel-2 (Tables S1 and S2/Supplementary material). It was assumed that for
species analysis of macrophytes, this sensor could be very useful. But ultimately, the results with S2
demonstrated that it is possible to distinguish most of the macrophytes observed. Our study shows
that the Pleiades images provide more information than the S2 in wetlands when only this sensor
is used. In combination with other sensors, such as the S1, Pleiades gave very good accuracy for
discrimination and mapping of the macrophytes.

The results show that classifications with simple nomenclature have stable classes, often between
90% and 100% OA for both types of sensors, except for certain classifications with only S1. This was not
the case, however, for classifications with detailed nomenclature. We observed that the macrophyte and
water classes are often confused. This is particularly true for the Pleiades classifications because this



Remote Sens. 2020, 12, 2188 24 of 29

sensor’s finer spatial resolution has more pixels included in the validation samples than for S2 and S1.
Only the reed and water classes appear stable with high accuracy. It is difficult to find particular
trends for the other classes in this detailed nomenclature, except for lower overall values for S1 than for
optical sensors. For the simple nomenclature, there is much less confusion of macrophytes with water.
There is more confusion between the emergent macrophytes themselves (classes of Nuphar lutea,
Trapa natans, and reed), even if it remains in small proportions.

The second accuracy analysis was carried out by species of macrophytes. The optical integration
with radar and the optical-only classifiers stand out with generally good results of PA and UA.
The accuracies increased by as much as 10% when radar and optical data were fused. However,
the stack S1 showed that the radar S1 was able to identify Phragmites australis with the maximum UA
and PA (100% and 100%). However, the reed was completely discriminated from the other macrophytes
in all combinations and for all sensors. In all cases, the PA and PU for Phragmites australis for the
north zone and with the detailed nomenclature had values over 95%. For this species of macrophyte,
the very good accuracy for the PA and UA and its confidence interval was namely for the Sentinel
sensors in different combinations and for the north zone. Pleiades had good results in combination
with S1 in the simple nomenclature and in both zones.

4.2.2. Comparison to Other Studies

Our results agree with Whyte et al. [55], except that we have obtained good results for most
macrophytes with optical data in fusion with radar data. Whyte et al. [55] applied RF and SVM
algorithms for wetland classification using S-1 and S-2. In their article, using the RF algorithm,
15 classes were selected, and the best results were achieved using all products (S-1, S-2, and their
derivatives). The OA was 83.3% and the Kappa coefficient was 0.72. All fusion scenarios showed
higher results than using optical data only. Tian et al. [35], studying wetlands in China, applied RF
classification for the retrieval of wetland land cover in arid regions by fusing Pleiade-1B data with
multi-date Landsat-8 data; in our study the Pleiades data produced very high accuracies (99.87% ± 0.26
and 99.49% ± 0.35) for some species of aquatic macrophytes on the Danube Delta when fused with
S1 data. In Tian et al. [35], the RF classifier achieved an overall accuracy of 93% and a Kappa coefficient
of 0.92. The same nonparametric (RF) classifier was used in the work of Dubeau et al. [63], where
they used a combination of dry and wet season data to study wetlands in Ethiopia. In this study, the
fusion of optical and radar data was proposed. This combination of multispectral optical, radar, and
topographic variables provided the best overall classification accuracy, 94.4% and 92.9% for the dry
and wet season, respectively. Spectral and topographic data (radar data excluded) performed nearly as
well, while accuracies using only radar and topographic data were 82–89%. In our study, the radar
only (S1) gave modest results in comparison with the optical radar synergy, but for Phragmites australis,
the radar (S1) had the highest precision for the areas studied and for the dates available. Fu et al. [34]
used optical and radar fusion to study wetland vegetation. Comparison of six classification scenarios
indicates that the use of additional multi-source data sets achieved higher classification accuracy.
In this work, object-based and pixel-based RF classifications both achieved greater than 80% overall
accuracy for both GF-1 and GF-1 (Chinese Gaofen-1) fused with SAR images (L-band PALSAR and
C-band Radarsat-2). In our study, the synergy of optical and radar data (S1, S2, and Pleiades) for
most of the species of macrophytes indicates higher classification accuracy. In other studies on the
vegetation of wetlands (Selenga River Delta of Lake Baikal, Russia), Lane et al. [64] have proposed
22 classes of aquatic and wetland habitats. They explored and evaluated the utility of an eight-band
satellite system (Worldview-2). Their OA accuracy was 86.5% (Kappa coefficient: 0.85). In our work,
we used a maximum of 13 class of macrophytes including the reed, but we used the SAR in synergy
with two optical sensors, and the diverse accuracy was greater than the OA of study of Lane et al. [64].
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4.3. Future Directions

Optical and infrared indices have limitations associated with opacity of the atmosphere due to
clouds, water vapor, and aerosols. It is known also that vegetation indices developed in optical remote
sensing can only provide information on the surface of the canopy. NDVI and leaf area index (LAI),
for example, are correlated with the amount of plant biomass to a certain limit. Radar remote sensing
can overcome some of these limitations given the ability to work with multiple data configurations
(multi-temporal, multi-frequency, multi-polarization, and multi-angle). With a frequency, an angle of
incidence, and if the polarization signal is adequate, the radar signal can interact better with the canopy
and provide volumetric information about the vegetation. At low frequency, the radar signal can more
or less penetrate thick canopies and provide information on the total amount of biomass available.
The radar vegetation index, as first introduced by Kim and van Zyl, (2004) [65], is a measure of volume
scattering (from randomly oriented dipoles), a scattering mechanism usually caused by complex
structural elements of vegetation (e.g., combination of leaves, branches, and trunks). In this context,
some future research can be planned: a comparative analysis of the radar indices, namely the radar
vegetation index (RVI) and the dual polarized radar vegetation index (IVRDvv) in two frequencies
(C and X) and the difference vegetation index standard (NDVI) used in optical multispectral remote
sensing in deltaic environments.

5. Conclusions

Wetlands are complex systems with the presence of lakes, channels, and several natural ecosystems
more or less saturated by water that favor development of specific plant communities. Mapping,
identification, and classification of wetland macrophytes using remote sensing are important because
this data provide many beneficial services in planning, restoring, and managing wetlands. S2, Pleiades,
and C-band dual-polarimetric SAR of S1 were deemed suitable in this study for identification and
mapping of wetland macrophytes. This study showed that the chosen methodology is good for
mapping the wetland macrophytes with freely available spatial data at a good temporal resolution,
due to addition of the S1, S2, and Pleiades.

Random forest was applied to the S2, Pleiades, and S1 data and in situ observations for
discrimination and mapping of reed against submerged aquatic vegetation (SAV), emergent
macrophytes, some floating broad-leaved plants communities, and floating vegetation of delta lakes.
A total of 67 classifications models, in several combinations, with two series of validation samples
(with the reed and without reed) were run. The results showed that reed is completely discriminable
in comparison to other macrophyte communities with all sensor combinations. In all combinations,
the producer’s accuracy (PA) and user’s accuracy (UA) for the reed with both nomenclatures were
over 90%. These diverse combinations of sensors were valuable for improving the overall classification
accuracy of all communities of aquatic macrophytes, except Myriophyllum spicatum L.

These research findings can contribute to current knowledge of mapping macrophyte distributions
since the methodology applied produces more accurate local data. The classification procedures
produced from the S1, S2, and Pleiades images are reproducible, which allows their implementation
on another wetlands. The maps produced are of interest to highlight habitat distribution between
wetland sectors and for the assessment of ecological status of the water bodies by showing location of
the aquatic macrophyte indicator species.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/14/2188/s1,
Table S1: Pleiades images: Bands, wavelengths, and spatial resolution; Table S2: Sentinel-2 images: Bands,
wavelengths, and spatial resolution; Table S3: Different indices used for classifications.
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