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Abstract

This paper considers the pricing of equity-linked life insurance contracts with death

and survival benefits in a general model with multiple stochastic risk factors: interest

rate, equity, volatility, unsystematic and systematic mortality. We price the equity-

linked contracts by assuming that the insurer hedges the risks to reduce the local vari-

ance of the net asset value process and requires a compensation for the non-hedgeable

part of the liability in the form of an instantaneous standard deviation risk margin. The

price can then be expressed as the solution of a system of non-linear partial differential

equations. We reformulate the problem as a backward stochastic differential equation

with jumps and solve it numerically by the use of efficient neural networks. Sensitivity

analysis is performed with respect to initial parameters and an analysis of the accuracy

of the approximation of the true price with our neural networks is provided.
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1 Introduction

An equity-linked life insurance contract is a contract between a policyholder and an insurance

company which presents insurance and investment features (Palmer (2006), Bauer et al.

(2008)). Typically, the policyholder pays either a single premium or a stream of periodic

premiums during an accumulation phase. In return, the insurer guarantees a stream of

periodic payments starting either immediately or at a future date. For investors, equity-

linked life insurance contracts allow to participate in the equity market and offer higher

returns than fixed annuity contracts. Moreover, they offer protection against downside shocks

in the financial market by the presence of diverse guarantees. In the context of increasing

life expectancies and the population facing the need for sustainable income, the demand for

guaranteed income after retirement offered by equity-linked contracts is important (Haefeli

(2013)).

Pricing of equity-linked life insurance contracts is a classical theme in the actuarial lit-

erature. Typically, this involves the choice of a financial and actuarial model to capture

the financial and insurance risks. Based on no-arbitrage arguments and using the standard

assumption that the financial and insurance risks are independent, these two components are

merged together by a product of risk-neutral expectations (see Fung et al. (2014), Da Fonseca

and Ziveyi (2015), Ignatieva et al. (2016) among others). However, this approach does not

address the fundamental issue of incompleteness arising from the insurance and the financial

market. Since the risks cannot be perfectly hedged, the valuation is non-linear and we should

proceed in two-steps by disentangling the hedgeable and non-hedgeable part of the liability

(Pelsser and Stadje (2014), Dhaene et al. (2017) and Barigou et al. (2019)).

We follow the pricing approach from Delong et al. (2019b) where the authors derived a

system of partial differential equations (PDEs) for the fair valuation of a stream of payments

contingent on financial and insurance risk factors. In Delong et al. (2019b), three risk factors

were considered and numerical methods for solving the PDEs were not discussed. In practice,

we would like to apply a valuation operator which takes into account multiple correlated

risk factors. In this paper we deal with six stochastic financial and insurance risk factors:

interest rate (two factors), equity, volatility, unsystematic and systematic mortality. The

interest rate is modelled with two-factor Hull-White model, the equity is modelled with

Heston model where the volatility is modelled with Cox-Ingersoll-Ross model, the lifetimes

of policyholders are modelled, conditionally on the force of mortality, with independent

exponential distributions and the force of mortality is modelled with Feller process. We

assume that equity-linked contracts include two types of minimum guarantees: death benefits

in case of the deaths of the policyholder and survival benefits in case the policyholder is still

alive at the contract termination. In such a framework, we can derive a system of PDEs

for the fair valuation of a portfolio of equity-linked contracts. Solving such a system of
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PDEs seems to be challenging due to a large number of state variables and a large number

of PDEs which reflects the number of policies in the insurance portfolio. It is known that

finite difference methods for PDEs in high dimensions are not feasible due to the curse of

dimensionality. In our case, we face an additional difficulty if we valuate a large portfolio of

equity-linked contracts, since we have to solve recursively a large number of PDEs, where

the solution of one equation (for the number of policyholders equal to n) is used as the input

to the next equation (for the number of policyholders equal to n+ 1).

In recent years, some papers have considered the pricing of equity-linked contracts by

neural networks. Doyle and Groendyke (2019) explored the use of neural networks to price

and hedge equity-linked contracts. They showed that neural networks offer an important

computational gain compared to crude Monte-Carle methods, however they did not consider

stochastic mortality neither stochastic volatility in their framework. In Hejazi and Jackson

(2016), the authors proposed a neural network approach to price equity-linked contracts

for large insurance portfolios. Their framework prices some representative contracts via

Monte-Carlo and uses a spatial interpolation method to price the whole portfolio.

Another stream of literature investigated the use of neural networks to accelerate PDE

solvers. Han et al. (2018), Weinan et al. (2017), Beck et al. (2019) take advantage of re-

inforcement learning to speed up solving high-dimensional partial differential equations by

using a so-called Deep BSDE method. Moreover, Chan-Wai-Nam et al. (2019) proposed

an improved version of the Deep BSDE algorithm using different network architectures and

parameterizations.

We see three contributions of this paper. First, we consider the pricing of equity-linked

contracts in a general incomplete financial-actuarial market with stochastic interest rate,

equity, volatility and mortality. In the spirit of Delong et al. (2019b), we derive a system of

multi-dimensional non-linear PDEs and the optimal hedging strategy for our fair valuation

problem – this is our analytical contribution. Second, we present a numerical contribution:

using the representation of the PDEs as a BSDE with jumps, we show how to solve nu-

merically the pricing problem by neural networks. In particular, we show how the jump

component in the BSDE, which reflects the number of PDEs in the system of equations

and the number of policyholders in the portfolio, can be efficiently handled. Finally, we

discuss the sensitivity of the price to model parameters and study the accuracy of our ap-

proach to standard pricing methods. We emphasize that the resolution of the system of

non-linear PDEs by neural networks presented in this paper is general and is not limited to

life insurance.

We would also like to point out that BSDEs with jumps, which we apply in this paper

to represent the solution to our system of non-linear PDEs, are usually used to represent

solutions to non-linear partial integro-differential equations with Lévy jump measures. Re-
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cently, Castro (2021) considered a neural network to solve a PIDE in a similar fashion to

ours, in the sense that an additional network is trained for the jump component. However,

our system of non-linear PDEs and our jump components are different from the single PIDE

in Castro (2021).

The paper is structured as follows. In Section 2, we present in detail the financial and

insurance model. Section 3 derives the pricing PDEs, discusses their representation as a

BSDE with jumps and the numerical implementation by neural networks. In Section 4, we

present numerical results and Section 5 provides concluding remarks.

2 Financial and Insurance Model

Throughout the paper, we work on a probability space (Ω,F,P) equipped with a filtration

F = (Ft)0≤t≤T and a finite time horizon T < ∞. We consider a general financial market

consisting of a bank account, a bond and an equity. We use a two-factor interest rate model

to describe the short-rate process and Heston model to describe the dynamics of the equity

price and its volatility. The insurance risk is modeled by a jump process with stochastic

force of mortality.

2.1 The financial market

We assume that the dynamics of the risk-free rate under an equivalent martingale measure

Q is given by the G2++ two-additive-factor gaussian model:

r(t) = ψ(t) + x(t) + y(t), r(0) = r0,

dx(t) = −ax(t)dt+ σxdW
Q
1 (t), x(0) = 0,

dy(t) = −by(t)dt+ σydW
Q
2 (t), y(0) = 0,

where ψ is a deterministic function such that the initial term structure predicted by the

model is fitted to the market term structure. The G2++ model is equivalent to two-factor

Hull-White model under appropriate re-parametrization (see e.g. Section 4.2.5 in Brigo and

Mercurio (2007)). For hedging in incomplete markets, models need to be defined under the

real-world measure P. We follow the approach from Ait-Sahalia and Kimmel (2010) and

introduce the dynamics

r(t) = ψ(t) + x(t) + y(t), r(0) = r0,

dx(t) =
(
δxσx − ax(t)

)
dt+ σxdW1(t), x(0) = 0,

dy(t) =
(
δyσy − by(t)

)
dt+ σydW2(t), y(0) = 0,
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where we use constant risk premiums δx, δy to switch from the martingale measure to the

real-world measure.

The dynamics of the risk-free bank account is given by

dR(t) = R(t)r(t, x(t), y(t))dt, R(0) = 1,

where we emphasize that the risk-free rate r depends on (t, x(t), y(t)). In our G2++ model,

the dynamics of the bond price P (t) = EQ[e−
∫ T∗
t r(s)ds|Ft], which matures at time T ∗ ≥ T , is

given by

dP (t) = P (t)
((
r(t, x(t), y(t)) + ζ(t)

)
dt+ A(t)dW1(t) +B(t)dW2(t)

)
,

for some given deterministic functions A,B (see e.g. Section 4.2.3 in Brigo and Mercurio

(2007)):

A(t) = −σx
1− e−a(T ∗−t)

a
, B(t) = −σy

1− e−b(T ∗−t)

b
,

and the risk premium ζ:

ζ(t) = A(t)δx +B(t)δy.

The risk premium ζ should be positive, hence the risk premiums δx, δy should be negative

(as always, we assume that σx, σy are positive).

We assume that the equity follows the Heston stochastic volatility model (Heston (1993)):

dS(t) = S(t)
((
r(t, x(t), y(t)) + γ

√
v(t)

)
dt+

√
v(t)dW3(t)

)
, S(0) = 1,

dv(t) = k(η − v(t))dt+ σv
√
v(t)dW4(t), v(0) = v0,

where we also assume a constant risk premium γ for the equity. We assume that v0 > 0,

k > 0 and 2kη ≥ σ2
v so that v is strictly positive.

The policyholder pays a single premium for an equity-linked life insurance policy. The

initial premium is invested in the policyholder’s account value and the policyholder’s funds

are invested in the bond and the equity. The policyholder’s account dynamics is then given

by

dF (t) = uF (t)
((
r(t, x(t), y(t)) + ζ(t)

)
dt+ A(t)dW1(t) +B(t)dW2(t)

)
+(1− u)F (t)

((
r(t, x(t), y(t)) + γ

√
v(t)

)
dt+

√
v(t)dW3(t)

)
− cF (t)dt,

F (0) = F0,

where F0 is the initial premium paid by the policyholder, u is a fixed percentage of the

account invested in the bond, and c is a constant fee deducted by the insurer to cover the
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financial guarantees and insurance protection embedded in the contract. The portfolio of

equity-linked contracts, which we introduce in the next section, is homogeneous in the sense

that all policyholders invest the same single premium, follow the same investment strategy

and have the same guarantees and insurance protection, i.e. F0, u and c are equal and

fixed for all policyholders. We point out that the value of the fee c results from pricing the

contract. In this paper we assume that the fee c has already been set by a pricing actuary

and we calculate the price of the contracts given c . However, we can also find c such that

the price of the portfolio of equity-linked contracts is zero and we can call such a fee - a fair

fee.

Finally, all Brownian motions involved in the interest rate and the equity models are

correlated with dWi(t)dWj(t) = ρijdt for i, j = 1, . . . , 4.

2.2 The insurance portfolio

The portfolio consists of n policies. All policyholders have the same age and are entitled to

two types of benefits: a death benefit D paid at the moment that the insured dies (provided

he dies in [0, T ]) and a survival benefit S paid at terminal time T if the insured survives that

time. The benefits are contingent on the values of the policyholder’s account F , hence we

will use the notations D(t, F (t)) and S(F (T )) for death and survival benefits, respectively.

We assume that the lifetimes of the policyholders (τk)k=1,...,n at policy inception are,

conditional on the mortality intensity, independent and identically distributed with mortality

intensity λ, i.e. we assume that

P
(
τk > t|(λ(s), 0 ≤ s ≤ t)

)
= e−

∫ t
0 λ(s)ds.

The spot mortality intensity at calendar time t of a head aged x at time 0 is denoted by

λ(t). Following Luciano et al. (2008) and Luciano et al. (2012), we assume that λ(t) follows

the Feller process without mean reversion:

dλ(t) = qλ(t)dt+ σλ
√
λ(t)dW5(t), λ(0) = λ0, (2.1)

where λ0 > 0 and q > 0. The mortality intensity can attain zero value but Luciano and Vigna

(2008) showed that the probability of such an event is negligible for calibrated mortality data.

The choice of this model is motivated by its parsimony-few parameters to be calibrated and

its ability to fit cohort life tables due to the lack of mean reversion. Moreover, under the

dynamics (2.1), the survival probability can be obtained in the closed-form:

P
(
τk > t

)
= E

[
e−

∫ t
0 λ(s)ds

]
= eβ(t)λ(0), (2.2)

with β(t) = 1−ebt
b1+b2ebt

, b = −
√
q2 + 2σ2

λ, b1 = b+q
2
, b2 = b−q

2
.
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The lives of the policyholders are dependent since they are all affected by the path of λ(t)

(systematic mortality risk). However, conditionally to the sample path followed by λ(t), the

lives are independent (unsystematic mortality risk). Similar as in credit risk, we can compute

the probability that two policyholders survive (see e.g. Section 9.5 in McNeil et al. (2005)).

Using the conditional independence, we obtain:

P (τi > T, τj > T ) = E
[
P
(
τi > T, τj > T |(λ(s), 0 ≤ s ≤ T )

)]
= E

[
P
(
τi > T |(λ(s), 0 ≤ s ≤ T )

)
× P

(
τj > T |(λ(s), 0 ≤ s ≤ T )

)]
= E

[
e−2

∫ T
0 λ(s)ds

]
= eβ̃(T )λ(0), i 6= j,

where β̃(T ) =
2(1−eb̃T )
b̃1+b̃2eb̃T

, b̃ = −
√
q2 + 4σ2

λ, b̃1 = b̃+q
2
, b̃2 = b̃−q

2
, which is an increasing function

of σλ. Therefore, the higher the volatility of the mortality intensity, the higher the systematic

risk that both policyholders survive.

We introduce the processes N and J which count the number of deaths and in-force

policies in the insurance portfolio, respectively:

N(t) =
n∑
k=1

1{τk ≤ t}, N(0) = 0,

J(t) = n−N(t), J(0) = n.

In addition, the compensated counting process:

Ñ(t) = N(t)−
∫ t

0

(n−N(s−))λ(s)ds, (2.3)

is a martingale, and it will be used in further derivations. Finally, in the remainder of the

paper, we assume that the processes which drive the insurance risk (N, λ) are independent

of the financial market.

The financial and insurance models considered in this paper are very popular in actuarial

applications. Let us remark that different models can also be used and the methods presented

below still hold.

3 Pricing equity-linked life insurance

Even though the insurer can invest in a bank account, a bond or an equity, the insurance

liabilities are not perfectly hedgeable due to the presence of the stochastic volatility risk and

the independent actuarial risks. Therefore, there is no unique pricing technique for insurance

contracts and one needs to disentangle the hedgeable and non-hedgeable part of the liability.

For instance, Bayraktar et al. (2009) used the instantaneous Sharpe ratio and Liang and Lu
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(2017) considered the principle of equivalent utility. In this paper, we follow the approach

of Delong et al. (2019b) and use the fair valuation operator with the instantaneous standard

deviation risk margin. Our method for pricing can be described in the following steps:

1. We set up a hedging portfolio composed of a bond, an equity and a bank account. To

find the optimal investments, we minimize the local variance (quadratic variation) of

the net asset value process, which is defined as the excess value of the hedging portfolio

over the fair price of the liability. In case of a complete market, the minimized local

variance is zero. However, the incompleteness of the market leads to a residual risk, as

measured by the remaining local variance.

2. The insurer asks a compensation for this residual non-hedgeable risk and we assume

that it is priced via an instanteneous standard deviation risk margin.

3. The price can then be expressed as the solution to a system of non-linear PDEs. The

system of PDEs describes the prices given the number of in-force policies and the

number of equations is equal to the number of policies in the portfolio,

4. In order to solve these PDEs, we reformulate the PDEs as a forward-backward stochas-

tic differential equation with jumps and approximate the price using deep neural net-

works.

3.1 Fair pricing with the instantaneous standard deviation risk

margin

We assume that the insurer can invest in the bank account, the bond and the equity in order

to hedge the financial guarantees and the benefits embedded in the contracts. Let θ1 denote

the amount of money invested in the bond, and θ2 denote the amount of money invested

in the equity. The remaining amount is invested in the bank account. We assume that θ1

and θ2 are Markov control strategies and are functions of (t, x(t), y(t), F (t), v(t), λ(t), J(t)).

Let V θ := (V θ(t), 0 ≤ t ≤ T ) denote the self-financing hedging portfolio under a strategy

θ = (θ1, θ2). The dynamics of the insurer’s hedging portfolio is given by

dV θ(t) = θ1(t)
((
r(t, x(t), y(t)) + ζ(t)

)
dt+ A(t)dW1(t) +B(t)dW2(t)

)
+θ2(t)

((
r(t, x(t), y(t)) + γ

√
v(t)

)
dt+

√
v(t)dW3(t)

)
+(V θ(t)− θ1(t)− θ2(t))r(t, x(t), y(t))dt+ J(t−)cF (t)dt−D(t, F (t))dN(t),

V θ(0) = nF (0).

Moreover, let us remark that the survival benefits J(T )S(F (T )) are paid at the terminal

time T and therefore, do not affect the insurer’s hedging portfolio.
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In order to simplify the derivations, we introduce the 5-dimensional Itô process Z(t) =

(x(t), y(t), F (t), v(t), λ(t)) which models the five risk factors:

dZ(t) = µ(t, Z(t))dt+ σ(t, Z(t))dW (t), (3.1)

with

µ(t, Z(t)) =


δxσx − ax(t)

δyσy − by(t)(
r(t, x(t), y(t))− c+ uζ(t) + (1− u)γ

√
v(t)

)
F (t)

k(η − v(t))

qλ(t)

 , (3.2)

and

σ(t, Z(t)) =


σx 0 . . . . . . 0

0 σy 0 . . . 0

uF (t)A(t) uF (t)B(t) (1− u)F (t)
√
v(t) 0 0

0 . . . 0 σv
√
v(t) 0

0 . . . . . . 0 σλ
√
λ(t)

 . (3.3)

In the expression (3.1), W (t) is a 5-dimensional correlated Brownian motion with correlation

matrix Q, i.e. dWi(t)dWj(t) = ρijdt where ρij is the (i, j)-component of Q (for i, j =

1, . . . , 5).

Let ϕ := (ϕ(t), 0 ≤ t ≤ T ) denote the continuous-time fair valuation operator represent-

ing the fair price of the liabilities. We assume that ϕ is a function of (t, x(t), y(t), F (t), v(t), λ(t), J(t))

and is denoted by ϕJ(t)(t, Z(t)). We introduce the process X(t) = ϕJ(t)(t, Z(t)) − V θ(t)

representing the difference between the price of the liabilities and the value of the in-

surer’s hedging portfolio. Consequently, the process NAV (s) = −X(s) determines the

excess of the assets over the technical provision, and is called the net asset value. Let

Θ(s, Z(s)) = (θ1(s)A(s), θ1(s)B(s), θ2(s)
√
v(s), 0, 0) denote a 5-dimensional vector related

to the hedging strategy. By application of the multidimensional Itô’s lemma, we find the

dynamics:

dX(s) =
{
X(s)r(s, x(s), y(s)) + ϕ

J(s−)
t (s, Z(s)) +∇ϕJ(s−)(s, Z(s)) · µ(s, Z(s))− cJ(s−)F (s)

−ϕJ(s−)(s, Z(s))r(s, x(s), y(s)) +
(
ϕJ(s−)−1(s, Z(s)) +D(s, F (s))− ϕJ(s−)(s, Z(s))

)
J(s−)λ(s)

−θ1(s)ζ(s)− θ2(s)γ
√
v(s)

}
ds

+
1

2
Tr
(
σ(s, Z(s))Qσᵀ(s, Z(s)) Hessz ϕ

J(s−)(s, Z(s))
)
ds

+
(
ϕJ(s−)−1(s, Z(s)) +D(s, F (s))− ϕJ(s−)(s, Z(s))

)
dÑ(s)

+
(
∇ϕJ(s−)(s, Z(s))σ(s, Z(s))−Θ(s, Z(s))

)
dW (s).
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Here, ∇ϕ and Hessz ϕ denote the gradient and the Hessian of the function ϕ with respect

to Z, Tr denotes the trace of a matrix.

We are interested in finding the valuation operator ϕ which satisfies the property:

lim
h→0

E
[
X(t+ h)e−

∫ t+h
t r(s)ds −X(t)

∣∣∣Z(t) = z, J(t) = k
]

h

+
RM

[
X(t+ h)e−

∫ t+h
t r(s)ds −X(t)

∣∣∣Z(t) = z, J(t) = k
]

h

 = 0. (3.4)

As the one-period risk margin, we consider the standard deviation:

RM
[
X(t+ h)e−

∫ t+h
t r(s)ds −X(t)

∣∣∣Z(t) = z, J(t) = k
]

=
1

2
α

√
V ar

[
X(t+ h)e−

∫ t+h
t r(s)ds −X(t)

∣∣∣Z(t) = z, J(t) = k
]√

h.

The parameter α can be interpreted as the insurer’s risk aversion coefficient towards the

non-hedgeable risks.

We can choose the hedging strategy θ so that the insurer does not charge a risk margin

for the hedgeable financial risk. The optimal investments in the bond and the equity are then

determined by minimizing the instantaneous (local) variance of the net asset value process.

Therefore, we need to compute the quadratic variation [X]s and find the bivariate process

(θ1(s), θ2(s)) which minimizes this quantity. The quadratic variation is given by

[X]T =

∫ T

0

(
∇ϕ(s, Z(s))σ(s, Z(s))−Θ(s, Z(s))

)
Q
(
∇ϕ(s, Z(s))σ(s, Z(s))−Θ(s, Z(s))

)ᵀ
︸ ︷︷ ︸

g(s,θ1(s),θ2(s))

ds

+
(
ϕJ(s−)−1(s, Z(s)) +D(s, F (s))− ϕJ(s−)(s, Z(s))

)
dN(s). (3.5)

The optimal hedging strategy is then obtained by solving the first-order conditions:

∂g(s, θ1, θ2)

∂θ1
= −2

4∑
j=1

(
ρ1jA(s) + ρ2jB(s)

)(
∇ϕ(s, Z(s))σ(s, Z(s))−Θ(s, Z(s))

)
j

= 0,

∂g(s, θ1, θ2)

∂θ2
= −2

4∑
j=1

ρ3j
√
v(s)

(
∇ϕ(s, Z(s))σ(s, Z(s))−Θ(s, Z(s))

)
j

= 0.

We remark that the index j = 5 does not appear in the derivatives since the mortality

intensity is not correlated with the financial risk factors. The first-order conditions yield a
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system of two equations with two unknowns for which the solutions are given by

θ∗1(t, Z(t)) = uϕf (t, Z(t))F (t)

+
ϕx(t, Z(t))σxρ

x(t) + ϕy(t, Z(t))σyρ
y(t) + ϕv(t, Z(t))σv

√
v(t)ρv(t)

A(t)ρx(t) +B(t)ρy(t)
,

θ∗2(t, Z(t)) = (1− u)ϕf (t, Z(t))F (t)

+
ϕx(t, Z(t))σx√

v(t)

(
ρ31 − (ρ31A(t) + ρ32B(t))

ρx(t)

A(t)ρx(t) +B(t)ρy(t)

)
+
ϕy(t, Z(t))σy√

v(t)

(
ρ32 − (ρ31A(t) + ρ32B(t))

ρy(t)

A(t)ρx(t) +B(t)ρy(t)

)
+ϕv(t, Z(t))σv

(
ρ34 − (ρ31A(t) + ρ32B(t))

ρv(t)

A(t)ρx(t) +B(t)ρy(t)

)
,

with some deterministic functions, which take into account the correlation between the

different risk factors:

ρx(t) = A(t) + ρ12B(t)− ρ31ρ13A(t)− ρ31ρ23B(t),

ρy(t) = B(t) + ρ12A(t)− ρ32ρ13A(t)− ρ32ρ23B(t),

ρv(t) = ρ14A(t) + ρ24B(t)− ρ34ρ13A(t)− ρ34ρ23B(t).

As it is usually the case, it turns out that the optimal hedging strategy appears as a delta-

hedging strategy involving the sensitivities of the liabilities to the underlying financial risk

factors and adjusted for the dependence structure.

Plugging the optimal parameters into the quadratic variation (3.5) leads to

[X]∗T =

∫ T

0

(
∇ϕ(s, Z(s))σ(s, Z(s))−Θ∗(s, Z(s))

)
Q
(
∇ϕ(s, Z(s))σ(s, Z(s))−Θ∗(s, Z(s))

)ᵀ
ds

+
(
ϕJ(s−)−1(s, Z(s)) +D(s, F (s))− ϕJ(s−)(s, Z(s))

)
dN(s),

which represents the remaining quadratic variation. We remark that the vector
(
∇ϕσ−Θ∗

)
can be written as

(
∇ϕσ∗

)
for an approriate matrix σ∗.1 Similarly, the risk-adjusted drift

µ∗ can be obtained from

∇ϕJ(s−)(s, Z(s))·µ∗(s, Z(s)) = ∇ϕJ(s−)(s, Z(s))·µ(s, Z(s))−θ∗1(s)ζ(s, x(s), y(s))−θ∗2(s)γ
√
v(s).

1Given the optimal parameters, it is easy to decompose Θ∗ as Θ∗ = ∇ϕσ̃. Then the appropriate matrix

is σ∗ = σ − σ̃ since ∇ϕ(σ − σ̃) = ∇ϕσ −Θ∗.
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If we consider the gradient component related to f , we find that

ϕ
J(s−)
f (s, Z(s))µ∗,f (s, Z(s)) = ϕ

J(s−)
f (s, Z(s))

[(
r(s, x(s), y(s))− c+ uζ(s) + (1− u)γ

√
v(s)

)
F (s)

]
− ϕJ(s−)f (s, Z(s))uF (s)ζ(s)

− ϕJ(s−)f (s, Z(s))(1− u)F (s)γ
√
v(s)

= ϕ
J(s−)
f (s, Z(s)) (r(s, x(s), y(s))− c) .

Hence, the risk-adjusted drift of the fund F (t) is the risk-free rate r(t, x(t), y(t)) minus the

fee rate c, and the equity risk-premium is cancelled.

Under the optimal hedging strategy, we find that

lim
h→0

E
[
X(t+ h)e−r(t)h −X(t)|Z(t) = z, J(t) = k

]
h

= ϕkt (t, z) +∇ϕk(t, z) · µ∗(t, z) +
1

2
Tr
(
σ(t, z)Qσᵀ(t, z) Hessz ϕ

k(t, z)
)

−ckf +
(
ϕk−1(t, z) +D(t, f)− ϕk(t, z)

)
kλ− ϕk(t, z)r(t, x, y), (3.6)

and

lim
h→0

Var
[
X(t+ h)e−r(t)h −X(t)|Z(t) = z, J(t) = k

]
h

=
(
∇ϕk(t, z)σ∗(t, z)

)
Q
(
∇ϕk(t, z)σ∗(t, z)

)ᵀ
+
(
ϕk−1(t, z) +D(t, f)− ϕk(t, z)

)2
kλ. (3.7)

The last quantity represents the remaining quadratic variation and quantifies the non-

hedgeable risks of the net asset value process X. We can conclude that the continuous-time

fair valuation operator ϕ solves the following system of non-linear PDEs:

ϕkt (t, z) +∇ϕk(t, z) · µ∗(t, z) +
1

2
Tr
(
σ(t, z)Qσ(t, z)ᵀ Hessz ϕ

k(t, z)
)

− ckf +
(
ϕk−1(t, z) +D(t, f)− ϕk(t, z)

)
kλ(t)− ϕk(t, z)r(t, x, y)

+ α

√(
∇ϕk(t, z)σ∗(t, z)

)
Q
(
∇ϕk(t, z)σ∗(t, z)

)ᵀ
+
(
ϕk−1(t, z) +D(t, f)− ϕk(t, z)

)2
kλ = 0,

ϕk(T, z) = kS(f),

(3.8)

for k ∈ {0, . . . , n}. For each k, we have to deal with a 5-dimensional PDE. The number of

PDEs in the system (3.8) is equal to n+ 1.

3.2 The PDE, FBSDE and FSDE representations

It is well known that there is a close relation between partial differential equations (PDEs)

and backward stochastic differential equations (BSDEs). The solutions (ϕk(t, z))k=0,...,n to
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the PDEs (3.8) satisfy the following forward-backward stochastic differential equation (FB-

SDE) with jumps (see e.g. Barles et al. (1997) or Chapter 4 in Delong (2013)):

ϕJ(t)(t, Z(t)) = J(T )S(F (T ))

+

∫ T

t

ΥJ(s−)
(
s, Z(s), ϕJ(s−)(s, Z(s)), ϕJ(s−)−1(s, Z(s))

)
ds+

∫ T

t

D(s, F (s))J(s−)λ(s)ds

−
∫ T

t

(
cJ(s−)F (s) + ϕJ(s−)(s, Z(s))r(s, x(s), y(s))

)
ds

−
∫ T

t

∇ϕJ(s−)(s, Z(s))σ(s, Z(s))dW (s)

−
∫ T

t

(
ϕJ(s−)−1(s, Z(s))− ϕJ(s−)(s, Z(s))

)
dÑ(s), (3.9)

Z(t) = Z(0) +

∫ t

0

µ∗(s, Z(s))ds+

∫ t

0

σ(s, Z(s))dW (s),

dJ(t) = −dN(t), (3.10)

where

ΥJ(s−)
(
s, Z(s), ϕJ(s−)(s, Z(s)), ϕJ(s−)−1(s, Z(s))

)
= α

{(
∇ϕJ(s−)(s, Z(s))σ∗(s, Z(s))

)
Q
(
∇ϕJ(s−)(s, Z(s))σ∗(s, Z(s))

)ᵀ
+
(
ϕJ(s−)−1(s, Z(s)) +D(s, F (s))− ϕJ(s−)(s, Z(s))

)2
J(s−)λ(s)

}1/2

. (3.11)

The equation (3.9) is a one-dimensional BSDE with jumps where the generator and the

terminal condition depend on a process satisfying a forward stochastic differential equation.

In our case, the FSDE is a 6-dimensional equation given by (3.10), where five components

are diffusions and one component is driven by a step process. The BSDE (3.9) can also be

written as a FSDE:

ϕJ(t)(t, Z(t)) = ϕn(0, Z(0))

−
∫ t

0

ΥJ(s−)
(
s, Z(s), ϕJ(s−)(s, Z(s)), ϕJ(s−)−1(s, Z(s))

)
ds−

∫ t

0

D(s, F (s))J(s−)λ(s)ds

+

∫ t

0

(
cJ(s−)F (s) + ϕJ(s−)(s, Z(s))r(s, x(s), y(s))

)
ds

+

∫ t

0

∇ϕJ(s−)(s, Z(s))σ(s, Z(s))dW (s)

+

∫ t

0

(
ϕJ(s−)−1(s, Z(s))− ϕJ(s−)(s, Z(s))

)
dÑ(s). (3.12)
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Starting from an initial price of the liabilities: ϕn(0, Z(0)) (i.e. for n policyholders at time

t = 0 with initial values of the risk factors: z = Z(0)), the FSDE (3.12) describes the price

dynamics of the insurance liabilities through time.

The function Υ in (3.12) represents the price for the non-hedgeable risks: the first term

in (3.11) is the residual risk from the diffusion component (interest rate, volatility, equity

and systematic mortality risks) and the second term in (3.11) is the residual risk from the

jump component (unsystematic mortality risk). We can notice that the risk margin for the

non-hedgeable financial risks takes into account the correlation matrix between these risks.

The second term in (3.12) represents the price for the expected death benefits. The first

two terms in (3.12) decrease the price as they are released over time. The next two terms

increase the price. The third term stands for the continuous fees paid by the policyholders to

cover the guarantees and benefits (since the fees to hedge the future liabilities are collected

by the insurer, the price of the future liabilities must increase over time). The fourth term

describes the effect of interest accrual and the time value of money on the price dynamics.

The fifth term shows the impact of the diffusion component. Finally, the last term depicts

the consequence of the death of a policyholder on the price (there is one policyholder less

J(s−) 7→ J(s) = J(s−)− 1 ).

In order to derive a numerical algorithm to determine the price at time 0, i.e ϕn(0, Z(0)),

we treat ϕn(0, Z(0)) as parameters for the moment and view the FSDE (3.12) as a way of

computing the values of ϕJ(t)(t, Z(t)) knowing the initial price ϕn(0, Z(0)) and the dynamics

of ϕ. We consider a temporal discretization for the risk factors and the FSDE (3.12). For

a set of time steps 0 = t0 < t1 < . . . < tN = T , we consider the simple Euler scheme for

n = 1, . . . , N − 1:

Z(tn+1)− Z(tn) ≈ µ∗(tn, Z(tn))∆tn + σ(tn, Z(tn))∆W (tn),

for the diffusion process (3.1) and

Ñ(tn+1)− Ñ(tn) = N(tn+1)−N(tn)− J(tn)λ(tn)∆tn,

for the compensated jump process (2.3). For the FSDE, the Euler scheme has the following
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form:

ϕJ(tn+1)(tn+1, Z(tn+1)) = ϕJ(tn)(tn, Z(tn))

− α
{(
∇ϕJ(tn)(tn, Z(tn))σ∗(tn, Z(tn))

)
Q
(
∇ϕJ(tn)(tn, Z(tn))σ∗(tn, Z(tn))

)ᵀ
+
(
ϕJ(tn)−1(tn, Z(tn)) +D(tn, F (tn))− ϕJ(tn)(tn, Z(tn))

)2
J(tn)λ(tn)

}1/2

∆tn

−D(tn, F (tn))J(tn)λ(tn)∆tn

+
(
cJ(tn)F (tn) + ϕJ(tn)(tn, Z(tn))r(tn, x(tn), y(tn))

)
∆tn

+∇ϕJ(tn)(tn, Z(tn))σ(tn, Z(tn))∆W (tn)

+
(
ϕJ(tn)−1(tn, Z(tn))− ϕJ(tn)(tn, Z(tn))

)
∆Ñ(tn)

(3.13)

where

∆tn = tn+1 − tn, ∆W (tn) = W (tn+1)−W (tn), ∆Ñ(tn) = Ñ(tn+1)− Ñ(tn).

To move from time tn to time tn+1, there are two unknown functions: the gradient of

the price, ∇ϕJ(tn)(tn, Z(tn)), and the price with one policyholder less, ϕJ(tn)−1(tn, Z(tn)).

Following the work of Weinan et al. (2017) and Chan-Wai-Nam et al. (2019) (we remark

that in both cases, the authors only consider BSDEs without jumps), we approximate both

functions by the use of neural networks.

3.3 Feed-forward neural networks as function approximators

Hereafter, we briefly introduce feed-forward neural networks (short neural networks). In

regression theory, networks can be seen as a broad generalization of generalized linear models

(GLMs) where the linear predictor is replaced by a non-linear one.

Let us assume that the input is in dimension d0 (the state variable x) and the output is

in dimension d1 (the number of value functions to estimate). The network is characterized

by a number of layers L+ 1 ∈ N\{1, 2} with m`, ` = 0, . . . , L, the number of neurons (units

or nodes) on each layer: the first layer is the input layer with m0 = d0, the last layer is the

output layer with mL = d1, and the L− 1 layers between are called hidden layers, where we

choose for simplicity the same dimension m` = m, ` = 1, . . . , L− 1. A network is a function

from Rd0 to Rd1 defined as the composition

x ∈ Rd0 7→ N (x) = AL ◦ % ◦ AL−1 ◦ . . . ◦ % ◦ A1(x) ∈ Rd1

Here, A`, ` = 1, . . . , L, are affine transformations represented by

A`(x) =W`x+ β`,
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for a matrix of weights W` and a bias term β`. The non-linear function % : R → R is

called the activation function and is applied component-wise on the outputs of A`, i.e.,

% (x1, . . . , xm) = (% (x1) , . . . , % (xm)). Standard examples of activation functions are the

sigmoid, the ReLU, the elu and tanh. For a general introduction on neural networks, we

refer to Goodfellow et al. (2016).

The universal approximation theorem of Hornik et al. (1989) states that networks can

approximate any continuous function on a compact support arbitrarily well if we allow for

arbitrarily many neurons q1 ∈ N in the hidden layer.

In the Euler scheme (3.13) of the FBSDE, we approximate the gradient and the price

with one less policyholder by two respective neural networks. Moreover, in practice, prices

need to be computed several times for different input parameters. Therefore, as suggested

in Weinan et al. (2017), we determine the price at time 0 in a region of input parameters

instead of a single space-point by including a third neural network. Overall, we have the

three following networks as depicted in Figure 1:

N1. The price at time 0, ϕJ(0)(0, Z(0)), is approximated by a neural network N1 : (z, k) ∈
R6 7→ ϕk(0, z) ∈ R with parameters φ:

ϕJ(0)(0, Z(0)) = N φ
1 (Z(0), J(0)).

N2. The gradient, ∇ϕJ(tn)(tn, Z(tn)), is approximated by a second neural network N2 :

(t, z, k) ∈ R7 7→ ∇ϕk(t, z) ∈ R5 with parameters χ:

∇ϕJ(tn)(tn, Z(tn)) = N χ
2 (tn, Z(tn), J(tn)).

N3. The price with one less policyholder, ϕJ(tn)−1(tn, Z(tn)), is approximated by a third

neural network N3 : (t, z, k − 1) ∈ R7 7→ ϕk−1(t, z) ∈ R with parameters ψ:

ϕJ(tn)−1(tn, Z(tn)) = N ψ
3 (tn, Z(tn), J(tn)− 1).

By the use of the Euler scheme (3.13) and the neural networks, we can obtain a Monte-

Carlo approximation ϕ̂ of ϕJ(T )(T, Z(T )) which depends on the parameters of the neural

networks (φ, χ, ψ). These parameters are then estimated in order to minimize the quadratic

loss function:

l(φ, χ, ψ) = E
[∣∣∣J(tN)S(F (tN))− ϕ̂J(tN )(tN , Z(tN))

∣∣∣2] . (3.14)

The parameters can now be optimized by stochastic gradient descent-type (SGD) algorithm

as it is usually done to train neural networks. In this paper, we use the Adaptive Moment

Estimation (Adam) optimizer proposed by Kingma and Ba (2014) and the algorithm is

implemented with the Keras R package (Chollet et al. (2017)), which is a user-friendly API

to TensorFlow.
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Figure 1: Illustration of the network architecture for solving the system of non-linear PDEs

with N time steps. The network N1 stands for the price at time 0, the network N2 approxi-

mates the gradient and the network N3 is related to the jump component and approximates

the price with one policyholder less.

Remark 3.1. • One can notice either from the PDEs (3.8) or the FSDE (3.12) that we

face a recursive problem: in order to determine the price of the insurance liabilities

for n initial policyholders, we need to know the price for k ∈ {0, . . . , n − 1}. One

possibility of implementation would have been to solve n recursive optimizations with

one neural network for the gradient in each optimization. Instead, we consider only

one optimization with two neural networks (one for the gradient, one for the jump

component) in order to reduce the computational cost of the problem.

• Contrary to Weinan et al. (2017), we consider one single network for all time steps

instead of one neural network per time step in order to reduce the numbers of param-

eters to be estimated. Chan-Wai-Nam et al. (2019) showed that this neural network

architecture significantly improves the precision of the results and the stability of the

algorithms.

4 Numerical results

This section presents numerical results of our neural networks to price equity-linked contracts

with death and survival benefits. In Section 4.1, we briefly discuss our input parameters and

the hyperparameters of the neural networks. In Section 4.2, we solve the system of PDEs

(3.8) with our neural networks and analyse the impact of various model parameters on the

price of equity-linked contracts. In Section 4.3, we assess the accuracy of our approach for

some specific contracts. Let us point out that we only investigate the initial price of the

contracts, i.e. at time t = 0.
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4.1 Specification of the insurance-financial model and neural net-

works

For the financial and insurance model, we consider a realistic set of model parameters which

are consistent with previous studies:

• For the two-factor interest rate model, we consider

a = 0.2770, σx = 0.0118, b = 0.0551, σy = 0.0136,

which are based on Russo and Torri (2019). Moreover, we chose: δx = δy = −0.1, ψ(t) =

0.02.

• For the Heston stochastic volatility model, the parameters are

κ = 0.0231, η = 0.9052, σv = 0.1434, γ = 0.0113,

which are consistent with Li et al. (2016).

• For the force of mortality dynamics, we choose the parameters from Luciano and Vigna

(2008) which correspond to UK individuals aged 65 at time 0:

q = 0.11, σλ = 0.007.

• The correlation matrix for the interest rate factors, the equity, the volatility and the

mortality intensity is given by

Q =


1 −0.4 0.35 0 0

−0.4 1 0.08 0 0

0.35 0.08 1 −0.3 0

0 0 −0.3 1 0

0 0 0 0 1

 (4.1)

which is consistent with Grzelak et al. (2011).

Additional input parameters are presented in Table 1. We point out that the pricing

neural network should not only deliver one price but a surface of prices which is a function

of the interest rate factors, the premium, the volatility, the number of policyholders and the

force of mortality at time t = 0. Hence, we are interested in determining the price denoted by

ϕJ(0)(0, Z(0)). Here, Z(0) = (x(0), y(0), F (0), v(0), λ(0)) stands for the set of initial values for

the interest rate factors, the premium, the volatility and the force of mortality respectively,

and J(0) stands for the number of policyholders at the inception. In our numerical example
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Parameter Value Parameter Value

c 0.01 x(0) 0

D? 1.02 y(0) 0

S? 1.02 F (0) 1

T 1 v(0) 0.1

∆t 0.01 λ(0) 0.015

α 0.1 J(0) 100

Table 1: The base values of the initial parameters.

we investigate ranges of input parameters by changing the values for v(0), F (0), λ(0), J(0)

specified in Table 1 by +/ − 25%. For the interest rates, we consider the ranges x(0) ∈
[0, 0.01], y(0) ∈ [0, 0.01].

For the neural network architecture, different hyperparameters need to be chosen. Each

of the neural networks N1, N2, N3 defined in Section 3.3 consists of two hidden layers of

20 neurons. For the activation function, we considered the ELU (exponential linear unit)

which tends to accelerate the learning process (Clevert et al. (2015)). Moreover, neural

networks tend to have convergence issues when their inputs are not scaled and centered,

and perform best when the inputs are in the range ∼ [−1, 1]. Therefore, we considered a

min-max normalization of the inputs before passing them to the neural networks. Hence, we

applied the function

g : R 7→ [−1, 1] : g(x) = 2×
(

x−min(x, 0)

max(x, 0)−min(x, 0)

)
− 1.

Finally, we chose a batch size and a number of epochs equal to 200.2 We considered 10000

sample paths for each risk factor and the default learning rate of the Adam optimizer. We

tried different hyperparameters and we did not observed significant improvements in training

of the neural networks.

4.2 Pricing in the general case and sensitivity analysis

Each equity-linked life insurance contract provides insurance death and survival benefits

linked to the policyholder’s account value. These financial guarantees ensure that the benefits

are not lower than the minimal guarantee levels stipulated at the inception of the contract.

We set the benefits:

D(t, F (t)) = (D∗ − F (t))+, S(F (T )) = (S∗ − F (T ))+.

2The computation time for the training of the price surface takes about 10 min on a computer with an

Intel Core i7-4970MQ processor running at 2.90 GHz with 16 GB of RAM.
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The contract payoffs if the policyholder’s account value goes below D∗ at the time of death

or below S∗ in case of survival at the end of the contract. Hence, we are interested in the

fair valuation of the financial guarantees embedded in the insurance contracts.

4.2.1 Neural network’s convergence diagnostics

First, we consider the convergence of our algorithm for one price with the initial values

Z(0) = (0, 0, 1, 0.1, 0.015) and J(0) = 100 policyholders from Table 1. Figure 2 represents

the convergence of the price and the mean square error against the number of epochs used for

training the neural networks. Let us recall that our objective in the reinforcement learning

is to minimize the mean square error (3.14), hence we present the mean square error loss

function to validate the convergence. We observe that, with the initialization of our algorithm

by default, the price reaches a plateau after around 100 epochs. After 100 epochs, the MSE

continues to slightly decreases but without significant impact on the price. We arrive at the

price of the portfolio of the equity-linked contracts equal to ϕJ(0)(0, Z(0)) = 6.069.
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Figure 2: Diagnostics of the neural network training. On the left: Convergence of the price

at time 0 per epoch. On the right: Mean Square Error per epoch.

Now, we study the convergence of the algorithm for a surface of prices for different

sets of initial parameters Z(0) and J(0). The sets were constructed by taking the values

given in Table 1 and changing v(0), F (0), λ(0), J(0) by +/ − 25% and considering x(0) ∈
[0, 0.01], y(0) ∈ [0, 0.01]. Figure 3 shows the price convergence for 5 random choices of initial

sets of parameters. We observe that the machine learns the price essentially in the first 100

epochs and then stabilizes. We remark that the price of the portfolio of the equity-linked
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contracts can possibly be negative as the contracts contain a fee rate. If the price is negative,

it means that the fees deducted from the policyholder’s account are too high in comparison

with the guarantees embedded in the contract and the insurer expects to earn a profit.

From Figures 2-3 and similar analysis we performed, we can conclude that our algorithm

is stable and the convergence is achieved.
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Figure 3: On the left: Convergence of the price at time 0 during the neural network training

for five randomly chosen initial parameters. On the right: Mean Square Error per epoch

during the neural network training of the surface of prices.

4.2.2 Price sensitivity analysis

Hereafter, we illustrate the impact of various model parameters on the price of the portfolio

of the equity-linked contracts. One of the purpose of this exercise is to validate that our

PDEs provide a reasonable pricing operator.

Figure 4 represents the effect of the initial interest rate factors x(0) and y(0) on the price.

As expected, the price decreases as the interest rate factors increase due to the time value

of money. In particular, if both factors increase from 0 to 0.01, the price decreases by 16%.

Figure 5 shows the effect of varying the initial premium F (0) and the number of policy-

holders J(0) on the price. Obviously, the price of the portfolio of the equity-linked contracts

increases with the number of policyholders since more policyholders mean more benefits to

pay. Moreover, we note that the price of the portfolio of the equity-linked contracts decreases

with the initial premium. Indeed, the increase of the initial fund value decreases the prob-

ability that the fund will go below the death guarantee level D∗ and the survival guarantee
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Figure 4: The price of the portfolio of equity-linked contracts for a range of the initial interest

rate factors x(0) ∈ [0; 0.01] and y(0) ∈ [0; 0.01].

level S∗, and therefore decreases the price of the contract. We can observe that the price

can double if the initial premium decreases by 10% as depicted in Figure 5.

Figure 6 depicts the impact of varying the initial volatility parameter v(0) and the ini-

tial force of mortality λ(0) on the price of the portfolio of the equity-linked contracts. As

expected, we note that the price is an increasing function of the initial volatility. A highly

volatile market environment implies that the stock and the fund values are less predictable,

which will result in a higher risk charge required by the insurer in order to cover the guar-

antees. When the initial force of mortality increases, the value of the death benefit increases

while the value of the survival benefit decreases as policyholders are more likely to die. On

Figure 6, the price is a fairly constant function of the initial force of mortality, showing

that the value reduction of the survival benefit compensates the value increase of the death

benefit, at least for D∗ = S∗ = 1.02 as in our numerical example.

We also investigate the impact of the correlation between the fund and the interest rate

factor x as well as the correlation between the fund and the volatility on the price of the

liabilities. The results are presented in Table 2. As expected, the lower the correlation

coefficient, the lower the price for the portfolio of the equity-linked contracts. This property

reflects diversification effect between the financial risks and is consistent with the findings

reported in Gudkov et al. (2019) and Dai et al. (2015).

Finally, we test the effect of the risk aversion coefficient α. We expect that the more risk

averse the insurer is, the larger the risk margin he will keep to cover the non-hedgeable risks
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Figure 5: The price of the portfolio of equity-linked contracts for a range of the initial

premiums F (0) ∈ [0.75; 1.25] and the numbers of policyholders J(0) ∈ [75; 125].

Change of the correlation Change of the price

ρxf ρfv

+0.1 +0.106% +0.131%

−0.1 -0.248% -0.447%

Table 2: The percentage change of the price of the portfolio of equity-linked contracts for a

correlation change by ±0.1.

and the larger the price of the portfolio of the equity-linked contracts. This is confirmed in

Figure 7. We note that the relation between the price and the risk aversion α is not linear.

The case α = 0 corresponds to the best estimate of the liability, which we discuss in the next

subsection, when the insurer does not set any risk margin for the non-hedgeable risks.

4.3 Numerical comparisons

Hereafter, we assess the accuracy of our neural network approach by comparing it with

Monte-Carlo pricing for two particular cases.
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Figure 6: The price of the portfolio of equity-linked contracts for a range of the initial

volatilities v(0) ∈ [0.075; 0.125] and the forces of mortality λ(0) ∈ [0.01125; 0.01875].

4.3.1 Best Estimate Liability

In insurance, the Best Estimate Liability (BEL) plays a central role in the valuation of

insurance liabilities. It is defined as the expected present value of the future cashflows

discounted by the risk-free rate. For our portfolio of the equity-linked life insurance contracts,

the BEL is given by

BEL = E
[
e−

∫ T
t r(τ)dτJ(T )S(F (T )) +

∫ T

t

e−
∫ s
t r(τ)dτD(s, F (s))J(s)λ(s)ds

−
∫ T

t

e−
∫ s
t r(τ)dτcJ(s)F (s)

∣∣∣J(t), x(t), y(t), F (t), v(t), λ(t)

]
(4.2)

where the first term is the expected survival benefits, the second term - the expected death

benefits and the third term - the expected fees. By the Feynman-Kac formula, the BEL is

also solution to the following system of PDEs:
ϕkt (t, z) +∇ϕk(t, z) · µ∗(t, z) +

1

2
Tr
(
σ(t, z)Qσ(t, z)ᵀ Hessz ϕ

k(t, z)
)

− ckf +
(
ϕk−1(t, z) +D(t, f)− ϕk(t, z)

)
kλ(t)− ϕk(t, z)r(t, x, y) = 0,

ϕk(T, z) = kS(f),

(4.3)

for k ∈ {0, . . . , n}.
The system (4.3) corresponds to our pricing equation (3.8) without the risk margin (with

α = 0). To assess the accuracy of our neural network, we compare the price obtained by an
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Figure 7: The price of the portfolio of equity-linked contracts in terms of the risk aversion

parameter α.

approximation of the BEL (4.2) by 200.000 Monte-Carlo simulations and the price obtained

by our neural network using the same parameters as in Table 1. Figure 8 shows that there

is a good convergence of the neural network to the Monte-Carlo price. After 100 epochs, we

obtain a relative error of c.a. 0.1%.

We could include the value of the BEL as an initial point from which we start to calibrate

our neural networks for the price of the portfolio of unit-linked contracts since we expect

that the true price with a risk margin for α > 0 should be close to the price with α = 0. Our

tests showed that such an approach does not speed up the calibration of our neural networks

mainly due to the fact that we still have to initiate the neural network for the gradient from

a random starting point.

4.3.2 Pricing a portfolio of GMMB contracts in the Black-Scholes framework

In the following example, we consider a portfolio of equity-linked contracts in which only a

survival benefit is guaranteed. Such contracts are often called Guaranteed Minimum Ma-

turity Benefits (GMMB). We consider a simplified financial-actuarial market, namely the

Black-Scholes financial market model and a jump process J(t) with constant mortality λ to

model the deaths of policyholders. Under these assumptions, the pricing PDEs (3.8) reduce
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Figure 8: Neural Network price convergence to the Monte-Carlo price for the BEL and the

Mean Square Error per epoch

to 
ϕkt (t, f) + ϕkf (t, f)fr +

1

2
ϕkff (t, f)f 2σ2

f − ϕk(t, f)r

+
(
ϕk−1(t, f)− ϕk(t, f)

)
kλ

(
1− α√

kλ

)
= 0,

ϕk(T, f) = kS(f),

(4.4)

for k ∈ {0, . . . , n}.
We remark that this PDE was considered in (Delong et al. (2019a), Example 4.5). The

first part of the PDE (4.4) exactly corresponds to the standard Black-Scholes PDE but

the second part adds a risk margin for the uncertainty about the number of survivals which

cannot be completely hedged. Applying the Feynman-Kac formula, the solution of the PDEs

(4.4) is given by

ϕn(0, F (0)) = EQ̃ [e−rTJ(T )S(F (T ))
]
, (4.5)

where under Q̃, the jump process has now a stochastic mortality intensity given by

λ̃(t) = λ

(
1− α√

J(t)λ

)
.

We choose the parameters: r = 0.02, F (0) = 1, σf = 0.1, S∗ = 1.02, T = 1, n = 100, α =

0.1. Under these parameters, λ̃(t) is strictly positive which allows us to use a step process

to simulate the number of deaths under the measure Q̃.
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Figure 9 compares the Monte-Carlo price obtained by approximating (4.5) with 200.000

simulations and the price obtained by neural networks by solving the PDEs (4.4). We clearly

observe a fast convergence after only 25 epochs and a relative error of c.a. 0.2% after 100

epochs.
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Figure 9: Neural Network price convergence to the Monte-Carlo price for the GMMB and

Mean Square Error per epoch.

Summing up, both examples show that our algorithm is accurate. The remaining error is

due to discretization steps applied in reinforcement learning, when we look for the optimal

strategy in a discrete time, and Monte-Carlo simulations of discretized stochastic processes.

Moreover, we note that our remaining MSE is of the order [10−2; 10−1] which is consistent

with orders obtained in Chan-Wai-Nam et al. (2019). The second example in this section

also shows that our approach to handling the jump component performs very well.

5 Conclusion

In this paper, we have derived a partial differential equation for fair pricing of equity-linked

life insurance contracts in a general financial-actuarial market with stochastic interest rate,

equity, volatility and mortality. We assumed that the insurer can hedge its liabilities with

a bank account, a bond and an equity and requires a compensation for non-hedgeable risks

in the form of an instantaneous standard deviation risk margin. We derived a system of

PDEs which described the fair valuation operator. We used the connection with BSDEs

with jumps and proposed an efficient neural network architecture to solve the PDEs. The
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network consists essentially of two subnetworks: one to approximate the gradient component

and one to approximate the jump component. We also included a third subnetwork for the

price at time 0 which allows us to derive the price for a range of initial parameters rather

than just one price.

Numerical results provided convergence diagnostics, price sensitivities to various model

parameters and some comparisons with Monte-Carlo methods. In particular, we observed

a fast convergence and stabilization of the price after a few dozens of epochs and a good

approximation compared to prices obtained by Monte-Carlo simulations. In terms of sensi-

tivity, we proved that the calibrated price agreed with intuition.

Our paper provides a stable computational algorithm for fair pricing of insurance liabil-

ities in incomplete markets which can be used for a wide variety of financial and insurance

products. Moreover, our neural network offers potential other applications in fields where

a system of non-linear PDEs naturally arises, such as quantum mechanics, game theory,

dynamic programming and many more.
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