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Abstract. Observations of surface oscillations of the Sun can
be analyzed to probe the solar interior. We use data obtained
by the LOWL instrument (LOWL is an abbreviation for low
degree with degree denoted by L) installed on Mauna Loa,
Hawaii, since 1994 to investigate solar internal rotation. A 2 Di-
mensional Regularized Least-Squares (2D RLS) inverse method
based on an expansion of the solution on B-splines of arbitrary
order is presented and applied to a 2 year dataset. This method
insures the regularity of the solution in the center and intro-
duces surface constraints. The choice of trade-off parameters in
the regularization term is discussed using an L-curves analysis
and we discuss the influence of the choice of the order of deriva-
tives in the regularization terms for the description of the deep
interior. We study the latitudinal resolution of the inversion of
a-coefficients compared to that of the inversion of individual
splittings built from these coefficients.

Compared to the previous inversion of the first three months
of LOWL data made by Tomczyk et al. (1995b), our solution
is extended up to the surface by adding high degree modes and
constraining the rotation to fit the spectrographic observations
(Snodgrass 1984). In the radiative zone we obtain more rigid
rotation and our solution is compatible with a rotation of the
solar core of the order or smaller than the surface rotation at
mid latitude.

Key words: Sun: interior – Sun: oscillations – Sun: rotation –
methods: numerical

1. Introduction

One of the main interests of helioseismology is the description
of the Sun’s internal rotation rate versus depth and latitude. Over
the past decade, increasingly accurate observational data have
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become available from ground based observations (e.g. Chap-
lin et al. 1996; Harvey et al. 1996; Lazrek et al. 1996; Woodard
& Libbrecht 1993; Appourchaux et al. 1994; Tomczyk et al.
1995a). These and other datasets have allowed several teams
to infer the solar internal rotation profile using 1D (Duvall et
al. 1984), 1.5D (Christensen-Dalsgaard & Schou 1988; Dziem-
bowski et al. 1989) and 2D (Sekii 1990, Schou 1991) inversion
codes (see Schou et al. (1994) for a more complete list of his-
torical references). All these inversions tend to show a rotation
profile which is approximately constant on radii throughout the
convection zone, with a sharp transition to a latitudinal inde-
pendent rotation rate below the base of the convection zone.

One of the objectives of the Global Oscillations at Low Fre-
quency (GOLF, Gabriel et al. 1995), Michelson Doppler Imager
(MDI, Scherrer et al. 1995) and Variability of solar IRadiance
and Gravity Oscillations (VIRGO, Fröhlich et al. 1995) experi-
ments aboard the SOlar and Heliospheric Observatory (SOHO)
satellite is to obtain a more accurate set of measurements of
low- and high-degree acoustic modes in order to specify what
happens in the deep interior (r/R� < 0.4), near the surface
(r/R� > 0.85) and in the transition zone below the convection
zone. Nevertheless, ground-based experiments have been oper-
ating for many years and can provide spectra obtained over much
longer time periods than are currently available to the SOHO
experiments. In particular, in this paper we use data from the
LOWL experiment covering a two year period of observation
on which we apply a 2D RLS inversion code using an approxi-
mation of the rotation rate by piecewise polynomials projected
on a B-splines tensorial product.

We briefly present the well known forward problem in
Sect. 2 and discuss the relevant hypothesis and the boundary
conditions for the rotation rate. In Sect. 3 we recall basic prin-
ciples for the 2D RLS method. We present the LOWL data and
discuss the choice of inversion parameters for this particular
dataset in Sect. 4. The results of inverting the observed fre-
quency splittings are presented in Sect. 5, and our conclusions
are presented in Sect. 6. In addition, Appendices A and B give
some details about splines basis and the minimization process



T. Corbard et al.: Solar internal rotation from LOWL data 299

and Appendix C recalls the concept of averaging kernels for a
linear inversion.

2. Forward problem and hypothesis

2.1. Basic equations

The Sun is oscillating simultaneously in many thousands of
global acoustic modes. The observation of these modes at the
solar surface and the knowledge of their sub-surface properties
are the basis by which helioseismology can sound the interior
of the Sun.

Each mode can be described by three integers: the degree l,
the azimuthal order m and the radial order n. In a spherically
symmetric non-rotating star the eigenfrequencies of the modes
are independent of m. The rotation of the Sun induces a pre-
ferred axis of symmetry and the frequency difference between
westward and eastward propagating waves on the solar surface
contains the signature of the global rotation of the Sun.

The rotation period for the Sun (about 1 month) is very
long compared to the periods of the observed p-modes (about 5
minutes), thus we can use a linear perturbation theory to predict
the effect of rotation on the p-modes. According to this theory
and under the assumption that the effect of the magnetic field
is negligible, the difference between the frequency νnlm of a
mode with azimuthal order m and the frequency νnl that this
mode would have in a non-rotating (but otherwise identical) star
is given in terms of the eigenfunctions of the non rotating star
(e.g. Hansen et al. 1977; Christensen-Dalsgaard & Berthomieu
1991).

If we denote by ξnl and ηnl the radial and horizontal dis-
placement of the fluid from its equilibrium position, the dis-
placement ξ has the form:

ξ(r, θ, φ, t) =

(
ξnl(r)Y m

l (θ, φ), ηnl(r)
∂Y m

l (θ, φ)
∂θ

,

ηnl(r)
sin(θ)

∂Y m
l (θ, φ)
∂φ

)
e2iπνnlmt, (1)

where (r, θ, φ) are the spherical polar coordinates defined from
the solar rotation axis θ = 0 and Y m

l (θ, φ)’s are spherical har-
monics. The so-called frequency splitting ∆νnlm = νnlm− νnl
can be written as a weighted average of the unknown rotation
rate Ω:

∆νnlm = m

∫ R�

0

∫ 1

0
Knlm(r, µ)Ω(r, µ)drdµ (2)

with µ = cos(θ) and where the full kernels Knlm derived from
the first order perturbation theory are given by:

Knlm(r, µ) =
(2Knl(r)Gml(µ) + η2

nl(r)Xml(µ))ρ(r)r2

Inl
, (3)

with:
Knl(r) = ξnl(r)2 + (L2 − 1)ηnl(r)2 − 2ξnl(r)ηnl(r),
Gml(µ) = Pm

l (µ)2,

Xml(µ) = (1− µ2) d2

dµ2 (Gml),

Inl =
∫ R�

0

[
ξnl(r)2 + L2ηnl(r)2

]
ρ(r)r2dr,

(4)

where Pm
l (µ) are normalized Legendre polynomials, ρ(r) is the

density and L2 = l(l + 1).
In first approximation, we can neglect terms with first and

second derivatives of the rotation rate (by partial integration
with respect to the colatitude of Eq.(2)) assuming that one has
smooth variation in latitude and the so-called rotational kernel
reduces to (Cuypers 1980):

K̃nlm(r, µ) =
Knl(r)Gml(µ)ρ(r)r2

Inl
, (5)

The radial partKnl(r) of the rotational kernel is the same as
in the 1D inversion problem where the rotation is supposed to be
latitudinal independent i.e. Ω(r, µ) = Ω(r) (e.g. Gough 1981).
The kernel Eq. (3) is symmetric about the equator and the factor
of two is introduced by the assumption that the rotation rate has
a similar symmetry property i.e. Ω(r,−µ) = Ω(r, µ). The func-
tions ξnl(r), ηnl(r) are determined by solving the differential
equations describing the motion of a self-gravitating fluid body
in a standard solar model (Unno et al. 1989).

We note that the approximation Eq. (5) of the rotational ker-
nel includes a term −ηnl(r)2 which does not appear in Sekii’s
approximation (Sekii 1993) and which becomes of significant
importance compared to the l(l + 1)ηnl(r)2 term only for the
low l. For higher degree modes, this kernel reduces to Sekii’s
approximation and the terms of Eq. (3) that are neglected have
been shown by Pijpers and Thompson (1996) to be small com-
pared to K̃nlm except near the inner turning point of the modes.
Therefore their contribution to the integral Eq. (2) is negligible
for the observed modes. Nevertheless, while this approximation
of the rotational kernel simplifies the problem and decreases the
number of calculations, our work takes into account the full ker-
nel and this should have a significant effect especially if f- or
even g-modes become available. We note however that, for the
present data, using the full or the approximate kernel leads to
the same solution in the zones that are sounded by the observed
modes.

The object of all the 2D inversion codes is to infer the ro-
tation rate versus depth and latitude Ω(r, µ) from the observed
splittings ∆νnlm by inverting the integral relation Eq.(2).

2.2. Boundary conditions

2.2.1. At the surface

Some direct observations of the rotation at the solar surface are
available and one may want to force the inferred rotation to
match the observed surface rotation. The sidereal rotational fre-
quencies are obtained as a function of latitude at the solar surface
by different techniques such as the Doppler shift of photospheric
spectral lines or by tracking sunspots, small magnetic features
or supergranulation cells (see the review by Schröter (1985)).
The values which are derived are within a few percent but they
lead to a different variation of the solar rotation as a function
of latitude during the solar cycle. These differences could be
explained by the different depths where indicators are anchored
but a complete interpretation of these observations is strongly
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related to a better theoretical understanding of the interaction
between rotation, convection and magnetic fields.

The rotation of surface layers has been determined spectro-
scopically from standard techniques used at Mount Wilson by
Snodgrass (1984). In this work we use the rotation results from
Doppler velocity measurements made at the Mount Wilson 150
foot tower telescope between 1967 and 1984 and related by
Snodgrass & Ulrich (1990). The sidereal plasma rotation rate
averaged over the entire period is given by:

Ωp = Ap + Bpµ
2 + Cpµ

4

Ap = 453.8± 1.0 nHz
Bp = −54.6± 0.8 nHz
Cp = −75.4± 1.1 nHz

(6)

All the magnetic tracers are believed to represent the rota-
tion of deeper layers. The observation of small magnetic features
leads to a rotation rate slower than the rotation rate of the su-
pergranular pattern but faster than the rotation rate of sunspot
groups or the plasma ( Komm & Howard 1993). Thus it gives
a mean value of the rotation rates estimated by the different
indicators and we also use these data to study the sensitivity
of the inversion to different surface constraints. The fit of the
main sidereal rotational rate of small magnetic features that we
use is given by Komm & Howard (1993) from the analysis of
magnetograms taken with the NSO Vacuum Telescope on Kitt
peak between 1975 and 1991:

Ωm = Am + Bmµ
2 + Cmµ

4

Am = 463.6± 0.7 nHz
Bm = −64.5± 4.3 nHz
Cm = −67.2± 4.8 nHz

(7)

The surface rates (Eqs. (6), (7)) are averaged over a long
period and are not contemporaneous with the LOWL observa-
tions. Moreover they describe the rotation of layers that are not
necessarily strictly the solar surface. This might introduce spu-
rious effects in the inversion results if these observations were
used as strong constraints. For this reason, we choose to take
into account these data in a more flexible way by introducing
a parameter λs as explained in Appendix B and discussed in
Sect. 4.2.3.

2.2.2. At the center

At the limit r = 0 the rotation rate Ω has no latitudinal depen-
dence. Thus the functional space where we search the rotation
rate must generate only functions which are in agreement with
the physical condition:

lim
r→0

∂Ω(r, µ)
∂θ

= 0. (8)

This condition insures the regularity of the solution at the center
and is easy to insert in the inversion process as discussed in
Appendix A.

3. The inversion method

The problem of inverting Eq. (2) is intrinsically an ill-
posed problem because of its global (or integral) nature (e.g.

Craig & Brown 1986). Furthermore this is strengthened in the
helioseismic case because of the lack of modes able to sound the
deepest and shallowest layers of the Sun: only a small percent-
age of the observed p-modes have their corresponding rotational
kernels Eq. (3) with significant amplitude below 0.4R� or with
their lower turning point between 0.95R� and the surface (see
Fig. 2). Then the solution is not well constrained at these depths
and the global nature of the problem implies that this leads to
difficulties in the whole domain and that there is no unique so-
lution for the problem.

In order to discretize Eq. (2), we project the unknown rota-
tion rate on a tensorial product of B-splines (see Appendix A):

Ω(r, µ) =
nr∑
p=1

nµ∑
q=1

ωpqϕp(r)ψq(µ). (9)

Then, we apply a regularized least-squares method on val-
ues of both observed splittings and observed surface rotation in
order to find the set of coefficients ωpq . The aim of regulariza-
tion is to stabilize the inversion process by ruling out rapidly
oscillating solutions which are physically unacceptable.

In our inversion we adopt a Tikhonov regularization method
(Tikhonov & Arsenin 1977) by solving:

min
Ω

(J(Ω) + T (Ω)) , (10)

where J(Ω) is the least-squares term (see Appendix B for de-
tails) and T (Ω) is of the form:

T (Ω) = λrTr + λµTµ, (11)

with:

Tr =
∫ 1

0

∫ R�

0
fr(r, µ)

(
∂iΩ(r, µ)

∂ri

)2

drdµ, (12)

Tµ =
∫ 1

0

∫ R�

0
fµ(r, µ)

(
∂jΩ(r, µ)
∂µj

)2

drdµ. (13)

This can be regarded as a measure of smoothness of the rotation
Ω(r, µ). The functions fr and fµ are used to assign different
weights to the smoothing terms for different positions r andµ. It
should be noticed, however, that well chosen functions together
with first derivatives (i = j = 1) can lead to the definition of

flatness given by Sekii (1991): T (Ω) =
∫∫

‖∇Ω‖2rdrdθ. The

choice of the so-called trade-off parameters λr and λµ depends
on the data from which we perform the inversion and is discussed
in the next section.

Finally, let us define the χ2 which characterizes how the
observed splittings are approached by the solution Ω̄(r, µ):

χ2 =
∑
nlm

(
∆νnlm −

∫∫
Knlm(r, µ)Ω̄(r, µ)drdµ
σnlm

)2

. (14)

This value corresponds to the first term in the sum that defines
J(Ω) Eq. (B2).
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Fig. 1. l − ν diagram showing the modes included in the LOWL 2
year dataset. Solid lines indicate the values of ν/L that correspond to
modes with turning points rt=0.4, 0.85, 0.95R� from the left to the
right.

4. Data and inversion parameters used

4.1. The data: LOWL observations

The LOWL instrument is a Doppler imager based on a Potas-
sium Magneto-Optical Filter that has been operating on Mauna
Loa, Hawaii since 1994 (see Tomczyk et al. (1995a) for a de-
tailed description). Both low- and intermediate-degree p-modes
can be observed with this instrument.

The modes used in this paper are shown in Fig. 2. The es-
timations of frequency splittings result from a two year period
of observation ( 2/26/94 - 2/25/96 ). The first year of observa-
tion has been analyzed and inverted by Tomczyk et al. (1996)
and is referred as the one year dataset in the following. The
second year of observations has been analyzed separately and
an unweighted average of the two resulting datasets has been
performed to produce the data that we use in this work. These
data contain 1102 modes (n, l) with degrees up to l = 99 and
frequencies lower than ν = 3500 µHz. For each mode, individ-
ual splittings are given by, at best, five a-coefficients of their
expansion on orthogonal polynomials Ql

j(m) defined by Schou
et al. (1994):

∆νnlm =

N l
j∑

j=1

anlj Q
l
j(m)

{
N l
j = 2l l = 1, 2

N l
j = 5 l ≥ 3

(15)

Estimations of standard deviations are given for each of these
a-coefficients. To first order, the solar rotation contributes only
odd j a-coefficients to the expansion Eq. (15). Even indexed
a-coefficients arise from aspherical perturbations, centrifugal
distortion and magnetic fields.

We have inverted both odd indexed a-coefficients and the set
of splittings reconstructed from these coefficients. The errors
assigned to these splittings are discussed in Appendix B. A χ2

value can be calculated from the inversion of the a-coefficients
by the first term in the sum Eq. (B7).

Fig. 2. Basis of nr = 21 B-splines functions of order 3 with a dis-
tribution of break points calculated from the density of turning points
relative to the set of modes plotted in Fig. 2

4.2. The choice of inversion parameters

4.2.1. Splines basis

In all inversions shown in this paper the set of all B-splinesψq(µ)
with 1 ≤ q ≤ nµ = 10, forms a basis for the linear space of
the set of the piecewise polynomials of order 3 having their first
derivatives continuous in ]0, 1[ and with a distribution of break
points, i.e. a partition ∆ of [0, 1] (see Appendix A), equidistant
inµ = cos(θ). Doing this we obtain a finer discretization near the
equator than near the pole, in agreement with the fact that among
all of the observed modes only a few of them have significant
amplitude near the pole. The choice of only a few basis functions
(nµ = 10) to describe the latitudinal dependence of the rotation
rate is related to the low number of odd indexed a-coefficients
(3 maximum) given by observers to describe the azimuthal- or
m-dependence of each splitting through Eq. (15).

B-splines in radiusϕp(r) with 1 ≤ p ≤ nr = 21 will also be
piecewise polynomials of order 3 with their first derivatives con-
tinuous at each break point, but the partition of [0, R�] is chosen
such that the number of basis functions used to describe an in-
terval in radius is proportional to the number of modes having
their turning points located in this interval (Fig. 2). Compared
with an equally spaced partition with the same number of points,
this distribution allows a better resolution in the layers which
are well described by the data and acts as a regularization term
in less well constrained zones.

4.2.2. The trade-off parameters λr and λµ

Currently, most inverters who use this kind of regularization
in helioseismic inversions take i = j = 2 in the regularization
terms Eqs. (12) and (13) (Schou et al. 1994). Here the code
allows constraining with the first derivative of the rotation in
latitude (i.e. j = 1). Using a high weight in the core (with a
function fµ(r, µ) ∝ 1/r2 for example), this constraint is in bet-
ter agreement with the regularity condition at the center given by
Eq. (8). Both cases (j = 1, 2) have been performed and are dis-
cussed in the following with fr = r/R2

� and fµ = R2j−1
� r−2j .

A generalization of the so-called L-curves currently used in
one dimensional problems (Hansen 1992a, b) can be a guide for
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Fig. 3a and b. L-curves obtained by inverting the a-coefficients from
the dataset shown in Fig. 2. a Regularization term in radius (Tr) (with
second derivative (i = 2)) and b regularization term in latitude (Tµ)
(with first derivative (j = 1)) against the χ2

ν value. Each graph marker
corresponds to one value of λr . Full curves join points with the same
ratio α = λr

λµ
(α = 104, 102, 1, 10−2, 10−4 from the top to the bottom)

and dotted curves have the same λr .

the choice of the trade-off parameters λr and λµ. The aim is to
find parameters that minimize both the χ2 value obtained for
the fit of data and the two regularization terms Tr and Tµ. In
the limit of strong regularization (large λr and λµ) which aims
to minimize Tr and Tµ , a small decrease in Tr and Tµ can be
obtained only at the expense of a rapidly increasing χ2

ν value
and the solution does not give a good fit of the data anymore.
On the other hand, in the limit of low regularization which aims
to minimize the χ2

ν value, a little better fit of the data can be
obtained only at the expanse of a strong increase of the terms Tr
and Tµ and the solution presents important oscillations. A good
choice of trade-off parameters should be near the intersection
of these two limit regimes.

Fig. 3 is a plot of the value of each regularization term
against the χ2

ν = χ2/ν value for different choices of λr and
λµ (ν being the number of degrees of freedom of the system i.e.
the difference between the total number of a-coefficients Na

and the number nµ(nr − 1) + 1 (see Appendix A) of searched
coefficients wpq).

An interesting result is that, on Fig. 3a, all the points which
are labeled by the same λr but different λµ have nearly the
same location except for values of α = λr

λµ
≤ 10−4 and λr ≥

10−4. We define the corner of a curve that joins points with the
same ratio α (full curves on Fig. 3) as the nearest point of the
curve to the intersection of the two limit regimes asymptotes.
For α = 10−4 the χ2

ν value begins to increase rapidly for the
largest values of λr (the star graph marker goes on the right).
For α < 10−4 (not shown on the figure) the corners of the L-
curves give larger values of Tr and the corresponding values of
parameters must be disregarded because they do not lead to the
best compromise between the regularization and the fit of the
data. Thus it appears that, near the corners of the L-curve, the
χ2
ν and Tr values do not depend on the value of λµ for a large

domain of variation of the parameter α (10−4 ≤ α ≤ 104):
they depend only on λr. Consequently we minimize both the
Tr and χ2

ν values by choosing λr at the corner of the L-curve
i.e. λr = 10−6

The choice of λµ is then given by the analysis of Fig. 3b. On
this figure, as α decreases the position of the L-curve becomes
lower showing that for a given value of λr, the λµ value must
be as large as possible (keeping in the previous interval for α)
if one wants to reduce the value of the regularization term in
latitude.

According to these two figures, a choice near λr =
10−6, λµ = 10−2 tends to minimize both the χ2

ν value and the
two regularization terms. When the regularization term in lat-
itude Tµ is chosen with second derivative (j = 2), the corre-
sponding plots have similar behaviors but the domain of vari-
ation of α, for which χ2 and Tr depend only on λr, is smaller
(10−3 ≤ α ≤ 104). In this case the optimal choice for trade-off
parameters becomes λr = 10−6, λµ = 10−3. The inversion of
individual splittings, instead of a-coefficients, leads to the same
results for the choice of trade-off parameters and the L-curves
analysis is not sensitive to the surface constraints parameter λs.

L-curves are a useful tool to study variations and mutual
dependencies of each term in Eq. (10) for different choices of
trade-off parameters and functionsfr and fµ. Nevertheless other
criteria for the optimal choice of trade-off parameters are pos-
sible (Craig & Brown 1986; Thompson & Craig 1992). In par-
ticular, for the solar rotation problem, the method of generalized
cross validation (GCV) (Golub & Van Loan 1989) has been ap-
plied to the 1D RLS inversion method by Thompson (1992) and
Barrett (1993). For a local estimation of the quality of the solu-
tion, we must look at the balance between the effect of propagat-
ing input errors and the resolution (as defined in Appendix C)
reached at a target location (r0, µ0). Thus a local optimal choice
of trade-off parameters could be based on plots showing reso-
lution against the error on the inferred rotation rate for different
choices of trade-off parameters. Such curves have been plotted
by Christensen-Dalsgaard et al. (1990) for different 1D inver-
sion techniques and by Schou et al. (1994) for a 2D inversion.
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Fig. 4a and b. Inferred surface rotation rates against latitude from in-
verting a-coefficients. The solid curves show the observations of the
plasma surface rotation Eq. (6). The dot-dashed curve shows the ob-
servations of the small magnetic feature surface rotation Eq. (7). The
dashed curves show the inferred rotation rates: a inversion without sur-
face constraint, b inversion with plasma surface constraints and λs = 1
(This solution is the same as the one shown in Fig. 7).

4.2.3. Surface constraints and the λs parameter

Different surface constraints can be used and introduced in
Eq. (B2) with the parameter λs which defines the weight as-
signed to the fit of surface observations. The choice of surface
constraints is suggested by the behavior of Ω(R�, µ) obtained
if we do not impose any surface constraint (λs = 0) and with
the previous choice of trade-off parameters (Fig. 4a).

This figure clearly points out that the surface rotation esti-
mated from the helioseismic data alone is closer to the plasma
observations than to the small magnetic feature observations.
However, the estimated surface rotation has no latitudinal de-
pendence in the region covering 30◦ around the equator which
is in evident contradiction with all surface observations and can
be a consequence of the lack of high degree modes in the data.
Thus we have to fix the value of λs in such a way that the rota-
tion rate obtained at the surface becomes close to the imposed
surface values Ωs(i) at the nµ = 10 points.

Let us define the χ2
surface value by:

χ2
surface =

1
nµ

nµ∑
i=1

(
Ωs(i)− Ω(R�, µi)

σi

)2

, (16)

and the relative contribution p(λs, r0, µ0) of the surface term to
the estimated rotation rate at (r0, µ0) by (according to Eq. (C1)):

p(λs, r0, µ0) =
100

Ω̄(r0, µ0)

nµ∑
i=1

C̃i(r0, µ0)Ωm
p

(µi), (17)

where C̃i(r0, µ0) is a function of λs.
The Fig. 5a shows the variations against λs of the relative

contribution of the surface term to the estimated rotation rate at
the solar surface (r0 = R�) and at the equator (µ0 = 0).

Fig. 5a–c. Variation of, a the relative contribution of the surface term
in the estimation of the rotation rate at the surface and the equator
(i.e. p(λs, R�, 0.) Eq. (17)), b the χ2

surface value and c the χ2
ν value,

against λs and by inverting a-coefficients. Dot-dashed curves are for
the small magnetic feature observations and full curves for the plasma
observations used as surface constraints.

The Fig. 5b and c show the variations of χ2
surface and χ2

ν

against λs for the two kinds of observations Eq. (6) and Eq. (7)
used as surface constraints. With the use of plasma rotation
observations, we can obtain a small χ2

surface value for λs = 1
and the helioseismic data still contributes more than 30 percent
in the computation of the surface rotation rate. If we want to
obtain roughly the same value of the χ2

surface with the use of the
small magnetic feature observations, we have to set λs = 10
and then the helioseismic data contributes less than 10 percent
in the computation of the surface rotation rate.

Furthermore, as χ2
surface decreases, the χ2

ν value increases
greatly for the small magnetic feature constraint (from 2.0 for
λs = 0 up to 2.5 for λs = 10) but not so much for the plasma
constraints (Fig. 5b, 5c). This behavior and the very large value
of χ2

surface in Fig. 5b for small magnetic feature clearly indicates
that the use of these observations for surface constraints is not
compatible with helioseismic data, probably because these ob-
servations correspond to the rotation not of the solar surface but
of deeper layers.

The Fig. 6 shows the variation of the surface contribution
with depth (at fixed λs = 1. and at the equator), showing that
the major contribution of the surface constraints occurs above
0.98R�. Nevertheless some residual (negative) contributions
exist below this depth and are more important for the small
magnetic feature observations than for the plasma observations.

For these reasons we choose in the following to use plasma
observations as surface constraints with λs = 1. With this
choice, the inferred rotation rate, shown in Fig. 4b as a func-
tion of latitude at the surface, is close to the observed one and
remains compatible with LOWL data (Fig. 5c).
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Fig. 6. Variation with depth of the relative contribution of the surface
term in the estimation of the rotation rate at the equator and for λs = 1.
The line styles are the same as in Fig. 5a-c.

5. Results and discussions

The 2D solar rotation rate obtained by inverting the a-
coefficients of LOWL data and the corresponding averaging ker-
nels are given respectively in Figs. 7 and 9. In order to see what
could hypothetically be achieved with individual splittings, we
made the ( unjustified ) assumption that the higher a-coefficients
are all identically zero and built the corresponding individual
splittings. The inversion of these splittings and the correspond-
ing averaging kernels are given respectively in Figs. 8 and 10.
The averaging kernels are presented in Appendix C and can be
used to assess the quality of the solution and the resolution that
we can obtain at different target locations.

5.1. About the χ2 value

Let us discuss first, the χ2
ν values obtained at the corner of L-

curves. This value is not enough to quantify the quality of the
solution but can reveal some problems in the analysis or in the
data themselves. The inversion of a-coefficients with λs = 0.
leads to a value around χ2

ν = 2.0. The value of 2.0 for this
parameter is highly improbable for a system with many degrees
of freedom and reveals that we can not produce a rotation profile
by our RLS inversion that agrees strictly with the LOWL data.
We note however that this value was higher (around 2.5 at the
corner of the L-curves) with a data set covering only the first
year of observations. With the two years dataset, the inversion
of only the modes for which ν/L > 40 µHz leads to the same
value of χ2

ν = 2.0, so that the more superficial p-modes do not
appear to be particularly subject to systematic errors which was
a concern in an analysis of the first 3 months of LOWL data
(Tomczyk et al. 1995b).

We remark that the χ2/N value obtained by inverting indi-
vidual splittings with weights (or errors) specified as explained
in Appendix B (where N is the difference between the number
of splittings and the number of searched coefficients), is around
χ2/N = 0.13. Nevertheless, this value is not significant because
although the hypothesis of independence of individual splittings
is useful to compute their weights in the minimization process
(see Appendix B, Eq. (15) implies that individual splittings are
dependent, so that the real number of degrees of freedom is still

Fig. 7. Inferred rotation rate obtained by inverting a-coefficients, plot-
ted against the solar radius for ten latitudes from the equator up to the
pole. Bold curves correspond to colatitudes θ = 90, 60, 30, 0◦ from the
top to the bottom. Dotted curves are the corresponding 1σ errors.

given from the number of a-coefficients (assumed to be inde-
pendent) even when individual splittings are inverted. Since, the
total number of splittings is on average about 15 times higher
than the number of odd indexed a-coefficients, the resulting χ2

ν

value is still around 0.13 × 15. ' 2.0. We note however that
this discussion is valid only on average because the actual ratio
between the number of individual splittings and a-coefficients
is obviously l-dependent leading to a radial gradient in the ap-
parent improvement on the errors.

The input errors of the a-coefficients are derived from the
formal errors when fitting the power spectra and are known to
underestimate the true errors. This is the most likely cause for
the large values of the χ2

ν . Additionally, systematic errors in the
data could contribute to the value of the χ2

ν . Also, our results
are obtained under the assumption that the hypothesis made in
Sect. 2, and the integral expression Eq. (2) for the splittings, are
valid for all observed modes. Overly constraining the hypothesis
in the forward analysis, as well as some unknown bugs in the
inversion process, may also increase the value of χ2

ν .

5.2. Inversion of a-coefficients

Fig. 7 shows the variations of the inferred rotation rates against
the solar radius from the inversion of a-coefficients. The dif-
ferent inversion parameters have been chosen as discussed in
the previous sections with, in particular, λs = 1 for the plasma
surface constraints. The solution shown in this figure is in good
agreement with the result obtained at θ = 30, 60, 90◦ between
0.2 and 0.85 solar radius by Tomczyk et al. (1995b) who have in-
verted a-coefficients from the first three months of LOWL data.
The rotation rate presents no variation with latitude at 0.2R�
with a value around 410 nHz and a transition, between 0.65
and 0.75R�, to a latitudinal dependent rotation that leads to
rotation rates around 370 nHz at 30◦ of colatitude, 410 nHz
at mid-latitude and 460 nHz at the equator for depths between
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Fig. 8. The same as Fig. 7 but using individual splittings

0.75 and 0.85R�. By inverting the a-coefficients, the inferred
rotation has no significant latitudinal variation between 0.75 and
0.95R� in zones covering 20◦ around the pole and 20◦ around
the equator.

In the radiative interior, between 0.45 and 0.65R� we find
no significant variation of the rotation rate with radius and lati-
tude. Tomczyk et al. (1995b) found a local maximum at 0.4R�
occurring for all latitudes. This latitudinal independence was
due to the fact that at these radii the kernels for all latitudes
were all centered at the equator and very similar. In our results
with two years of data, the rotation rate for colatitudes from the
equator to 60◦ is found constant for radii between 0.3 to 0.7 R�
at a value of 430 nHz. Around r = 0.4 R� we find a small latitu-
dinal dependence with a maximum at the pole. This difference
with previous work may be due to a better latitudinal localiza-
tion of the averaging kernels obtained at this depth with the two
year dataset (kernels at r0 = 0.4R�, θ0 = 90◦ and r0 = 0.4R�,
θ0 = 45◦ are clearly distinguishable (Fig. 9)). However, this
small latitudinal dependence remains marginally significant if
we take into account the errors found on the solution at this
depth (σ over 5 nHz at the equator and at the pole).

5.3. Inversion of individual splittings

Fig. 8 shows the inferred rotation rate deduced from the inver-
sion of individual splittings. Doing so is equivalent to assuming
that the higher (unmeasured) a-coefficients are zero. The rota-
tion rate is very close to that of Fig. 7 except in the convection
zone near the equator and the pole. These differences may be
analyzed by looking at the averaging kernels.

The kernels obtained by inverting individual splittings
(Fig. 10) indicate that we can obtain a better latitudinal resolu-
tion than by inverting a-coefficients (Fig. 9) for targets located at
radii larger than 0.5R�. In fact, by using a-coefficients directly,
the number of these coefficients (i.e. 3) seems to set a limit to
the latitudinal resolution around ∆θ = 90◦/3 = 30◦ (∆θ ' 29◦

is the best latitudinal resolution reached in Fig. 9). This result

is not surprising since, in a first approximation, the a1 coef-
ficients correspond to rotation constant on spheres and higher
order coefficients specify the deviation from this solid rotation,
then their number is strongly related to the latitudinal resolution
that we can expect. Obviously, the better latitudinal resolution
reached in individual splittings inversion induces higher 1σ er-
rors on the solutions (e.g. σ = 2.98 nHz at r0 = 0.9R� at the
equator in Fig. 10 against σ = 0.72 nHz for the same location
in Fig. 9) so that the rotation obtained near the equator remains
compatible, at the 1σ level, with that given by the inversion of
a-coefficients. Nevertheless, this is not the case near the pole
where the difference in the rotation rates is over 3σ. In this zone
we must look not only at the resolution but also at the localiza-
tion of averaging kernels. By inverting a-coefficients, averaging
kernels calculated at the pole remain localized at best at 30◦

of colatitude for all depths (see θ for the four lower panels in
Fig. 9) although, by inverting individual splittings, we can ob-
tain a peak with a maximum value separated only by 15◦ from
the pole at 0.9R�. These remarks could be enough to explain
the differences in rotation rates obtained near the pole in the
convection zone and seems to argue in favor of the use of the
inversion of individual splittings to probe these zones since the
inversion of a-coefficients does not allow us to constrain lati-
tudes higher than 60◦. Nevertheless, we must keep in mind that
the rotation obtained near the pole is related to the real rotation
rate only under the assumption that the aj coefficients are null
for j > 3. These coefficients are certainly small but not null,
therefore this result will change when more accurate data will
become available.

Thus, when using a-coefficients inversion, the regulariza-
tion forces flatness in latitude when there are no data and the
resolution is poor. On the other hand, when using individual
splittings, we are forcing the behavior of the rotation near the
pole leading to an apparent, but not real, increase in the resolu-
tion. This result is however interesting from the point of view
of exploring what one might get in terms of averaging kernel
and latitudinal resolution if one had more a-coefficients or even
individual splittings.

5.4. The rotation of surface layers

The rotation of layers just beneath the solar surface, and in the
convection zone is of great importance for our understanding of
the solar dynamo and its observed consequences. Some radial
gradient of the solar rotation has been suspected in order to ex-
plain the different rotation rates, deduced from the observations
of various surface indicators, as a consequence of the different
depths where these tracers are anchored (e.g. Snodgrass & Ul-
rich 1990). Therefore it is of interest to look at the rotation rate
calculated in this zone by inverting helioseismic data. In the two
year dataset, modes with ν/L < 40 µHz are no longer thought
to be subject to systematic errors and according to Figs. 2 and
2 we believe that the number of superficial p-modes are now
enough to try to describe the rotation between 0.85 and 0.95
solar radii.
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Fig. 9. Averaging kernels corresponding
to the inversion of a-coefficients (Fig. 7).
For each panel, the contour spacing is de-
fined by the value of the averaging kernel
at (r, θ) divided by eight. Positive con-
tours are shown solid, and negative con-
tours dotted. For clarity the zero contour
have been omitted. ∆ is the geometrical
distance between the position (r, θ) of the
maximum value of the peak and the point
(r0, θ0) shown by a star. ∆r and ∆θ de-
note the radial and latitudinal resolution as
defined in Appendix C. σ is the 1σ error
(in nHz) calculated at (r0, θ0) and shown
by dotted lines on Fig. 7.

Fig. 10. Averaging kernels corresponding
to the inversion of individual splittings
(Fig. 8) (See caption Fig. 9).

The introduction of the surface constraints does not modify
the solution below 0.95R�. Above this depth, the contribution
of surface constraints increases and represents more than 70
percent in the calculation of the inferred rotation rate at the
surface (Fig. 6).

In Figs. 7 and 8 the solution reaches a maximum at 0.9R�
between the pole and 30◦ of latitude. The radial and latitudinal
resolution obtained at 0.9R� (∆r ' 0.06R�, ∆θ ' 13◦ at

θ0 = 45◦ in Fig. 10) indicates that the positive gradient between
0.85 and 0.90R� may be real in zones between 30◦ and 60◦ of
latitudes.

The discussion in Sect. 4.2.3 has shown that the LOWL data
are more compatible with the plasma observations than with the
small magnetic feature observations. Fig. 7 shows that the in-
ferred rotation rate at 0.95R� is close to the small magnetic
features rate Ωm (Ω ' 464 nHz at the equator). Therefore our
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inversion should argue in favor of this depth for the location
where small magnetic features are anchored. Nevertheless, this
result is different from the one obtained by Thompson et al.
(1996) with Global Oscillation Network Group (GONG) data
in which the inferred rotation rate at the surface (without setting
surface constraints) is close to the rate deduced from the obser-
vation of small magnetic features and reaches a maximum near
0.95R� with a value Ω ' 470 nHz at the equator which can
correspond to the value observed by Snodgrass & Ulrich (1990)
for the rotation of supergranular network. From the inversion of
LOWL data, this value is never reached but the observation of
modes with higher degrees is certainly necessary for making a
more reliable inference about the rotation of these layers.

Finally, we note that Antia et al. (1996), who have investi-
gated the Sun’s rotation rate in the equatorial plane by inverting
BBSO datasets for the years 1986, 1988, 1989 and 1990, have
found a locally enhanced rotation rate near 0.9R�. They have
pointed out that this behavior shows variation with time. Our
solution covering years 1994 to 1996 does not show a bump
with significant amplitude near 0.9R� in the equatorial plane.

5.5. The solar tachocline

At the base of the convection zone, from 0.75 down to 0.65
solar radii, the rotation rate makes a transition to a latitudi-
nally independent behavior which persists in the whole radia-
tive interior. This transition layer is sometimes called the solar
tachocline and the evaluation of its thickness which can be re-
lated to the horizontal behavior of the turbulent viscosity is of
primary importance for our understanding of the eddy diffusiv-
ity (Spiegel & Zahn 1992). If we assume that this transition oc-
curs at all latitudes with roughly the same thickness, we can use
in this zone the results obtained by inverting a-coefficients that
provide worse latitudinal resolution but better radial resolution
than the inversion of individual splittings. Unfortunately, the ra-
dial resolution reached in the transition zone (∆r ' 0.08R� at
the equator down to ∆r ' 0.14R� at the pole in Fig. 9) does
not allow us to specify how sharp this transition is. It is not more
than 0.1 solar radius but it could be less. Thus in our analysis,
the solar tachocline remains unresolved, even with a two year
dataset. The radial resolution reached at 0.7R� with the one
year dataset was slightly poorer (namely ∆r ' 0.083R� com-
pared to ∆r ' 0.076R� at the equator). This small increase in
the radial resolution could be due to the lower errors of the 2 year
dataset but we think that we are approaching the fundamental
limit of resolution at least at the base of the convection zone
with this modeset. Further improvement will be very difficult
and we may need to resort to non-linear inversion methods. For
this work, continuing the ground-based observations in addition
to the space missions would be very important if the width and
position of the solar tachocline does not vary too much during
the solar cycle.

Fig. 11. Inferred rotation rate obtained by inverting individual split-
tings with j = 2 in the regularization term Tµ Eq. (13), λr = 10−6,
λµ = 10−3.

5.6. The rotation of the core

Below 0.4R� our solution is compatible with a core that rotates
slower than the radiative interior and gives Ω0 = 260± 80 nHz
for the value in the center. As already discussed in Tomczyk et
al. (1996), this low value of Ω0 is partly due to the low frequency
splittings measured for the modes l = 1 and that we use in our
inversion. Nevertheless, at these depths the averaging kernels
are large, not well localized and consist of several peaks, so that
the result and the corresponding errors are difficult to interpret.
In particular, the latitudinal independence found at these depths
results from the choice j = 1 in the regularization term Tµ
Eq. (13).

Fig. 11 shows an instructive example of a solution obtained
by setting j = 2 and taking the trade-off parameters given by
the corner of the L-curves that correspond to this choice (see
Sect. 4.2.2). Above 0.4R� the solution is roughly identical to
the solution of Fig. 8. The fact that we insure the regularity of
the solution at the center avoids finding several values at r = 0
and gives in that case Ω0 = 330±80 nHz, but the solution shows
a significant latitudinal variation below 0.4R� contrary to the
case with j = 1. Therefore the latitudinal dependence is very
sensitive to the order of the derivative used in the regularization
term and reveals that a reliable description of the latitudinal
dependence in this region requires data with lower errors for
the low-degree p-modes. Thus we think that the choice j = 1 in
our code provides an initial way to sound the very deep interior
from such global inversions, without searching for a description
of a latitudinal dependence in the core that requires very low
errors in the data.

6. Conclusion

A two dimensional regularized least-squares inversion code
with expansion of the solution in B-splines has been presented.
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It includes a condition that insures the regularity of the solu-
tion at the center and provides the possibility of adding surface
constraints on the rotation rate.

We have inverted the two year LOWL rotational splitting
dataset to derive the rotation rate of the solar interior matched
to the observed plasma surface rotation rate. Both the inversion
of the three a-coefficients and of the individuals splittings re-
constructed from these a-coefficients have been performed. The
comparison of the results gives an estimation of the improve-
ment of the latitudinal resolution which could be obtained by
the knowledge of the individual splittings.

Between 0.4 and 0.85R�, our results are in good agreement
with the previous work of Tomczyk et al. (1995b) who have
used the first three month dataset. The small maximum at 0.4R�
obtained previously is however smoothed for polar latitudes and
disappears for equatorial rotation.

The 2 year dataset allows a description of the internal rota-
tion rate with depth and latitude from 0.4 up to 0.95 solar radii
with increasing radial resolution. At the base of the convection
zone, the width of the transition zone is found to be smaller than
0.1 solar radii, in agreement with Thompson et al. (1996). We
have shown that the LOWL data are compatible with the sur-
face rotation estimated by plasma observations and confirm an
increase of the rotation below the surface up to values measured
by magnetic feature observations for equatorial latitudes.

Our solution is compatible with a solar core that rotates
slower than the radiative interior. However, improved observa-
tions are needed to sound the region below 0.4R� more accu-
rately and with latitudinal resolution. In addition to the ground
based networks, the instruments aboard the SOHO satellite will
hopefully provide these observations in the near future and add
the possibility of detecting low frequency p-modes as well as
g-modes which have their maximum amplitude in the solar core.
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Appendix A: the space of solutions

In this work, we search the rotation rate as a piecewise polyno-
mial of arbitrary order in two dimensions. Let us define more
precisely what piecewise polynomials are: a piecewise poly-
nomial P (q) of order m on a given partition ∆ of [q1, qn]
∆ ≡ [q1 < q2 < ... < qn−1 < qn] is defined as a function
which coincides, on each sub-interval [qi, qi+1] 1 ≤ i < n with
a polynomial of degreem−1. We can define at each break point
the kind of connection which is required between the right and
the left pieces of polynomials. Formally, the rules of connec-
tion can differ from one break point to the next: at some of
them, P (qi) can be discontinuous, at some others the left and
right pieces can be tied to fulfilling the continuity of their first
derivatives or only of P (qi), ...etc.

It can be shown that a basis of such a space of piece-
wise polynomials can be obtained from B-splines in 1 dimen-
sion and a tensorial product of B-splines in two dimensions
(Schumaker 1981). B-splines basis are a local basis. Moreover,
at a given q (q ∈ [q1, qn]), only m B-splines of order m are not
identically zero and their sum is equal to 1. These properties
have two principal useful consequences in our case. First they
are easy to compute and the evaluation of the rotation at a given
target location needs only a few calculations. Second, they al-
low us to easily study the boundary conditions in the core and
at the solar surface.

Using ϕp(0) = δp,1 and ϕp(R�) = δp,nr we obtain respec-
tively at the surface and the center:

Ω(R�, µ) =
nµ∑
q=1

ωnrqψq(µ), (A1)

lim
r→0

∂Ω(r, µ)
∂θ

= 0 ⇔ ω1q = Ω0 = Ω(0, µ) ∀q ∀µ. (A2)

From Eq. (A1), the knowledge of the surface rotation at nµ
different and well chosen latitudes allows us to fix in theory the
nµ coefficients ωnrq , (q = 1..nµ) which form a vector named
Ω2 in the following. Nevertheless, the observations of the sur-
face motions Eq. (6) are given with some error bars. Moreover,
the depth which defines the solar surface depends on the choice
of indicator and may differ from the surface of the solar model
which gives the upper boundary for the p-modes. Consequently,
we prefer to include these observations in the minimization pro-
cedure rather than to calculate directly the vector Ω2 only from
data concerning the motion of the surface.

The relation Eq. (A2) allows us to search less coefficients
to describe the core than for the rest of the solar interior. This
is reasonable because of the lack of observed modes able to
describe this zone even if we invert data including both low and
intermediate degrees. This introduces a scalar value Ω0 which
is the value of the rotation at the center of the Sun and that is
used only to describe the rotation rate in depth where the first
B-spline ϕ1(r) is not identically zero i.e. in most practical cases
under 0.2 solar radii (see Sect. 4.1, Fig. 2)

The relation Eq. (9) becomes:

Ω(r, µ) = Ω0ϕ1(r) + ϕnr (r)
nµ∑
q=1

ωnrqψq(µ)

+
nr−1∑
p=2

nµ∑
q=1

ωpqϕp(r)ψq(µ). (A3)
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Appendix B: the functions J (Ω)

We apply a least-squares method on values of both observed
splittings and observed surface rotation. More precisely, we
search the vector

Ω =


Ω1

· · ·
Ω2

· · ·
Ω0

where:

{
Ω1 ≡

(
ωpq

)
p=2..nr−1
q=1..nµ

Ω2 ≡
(
ωnrq

)
q=1..nµ

(B1)

by minimizing the quantity:

J (w)(Ω)= ‖P (w)(W −RΩ)‖2 + λs ‖Ps(Ωs −LΩ2)‖2, (B2)

where:

– P (w), Ps are the diagonal matrix of the inverse of errors
given on splittings and surface rotation values. These errors
are therefore used as weights in the whole minimization
procedure.

– W is the vector of observed splittings ∆νnlm,
– R is a matrix computed by the discretization of Eq. (2) using

Eq. (A3) and Gaussian integrations.
– Ωs is the vector of the values of the surface rotation Ωs ≡

(Ω(R�, µi))i=1..nµ according to Eq. (6),
– L is a matrix defined by: L ≡ (Liq) i=1..nµ

q=1..nµ

Liq = ψq(µi)

according to Eq. (A1)and
– λs is a parameter used to define the weight assigned to the

fit of surface observations. If Ω̃(λs) is the solution of the
problem:

min
Ω

J (w)(Ω), (B3)

and Ω̃ the solution of the equality constrained least-squares
problem:

min
LΩ2=Ωs

‖P (w)(W −RΩ)‖2, (B4)

then lim
λs→∞

Ω̃(λs) = Ω̃ (Golub & Van Loan 1989). There-

fore a high value of the parameter λs tends to give a good fit
of these observations but one can take small values or even
λs = 0 if the observed p-modes are thought to be adequate
to describe the surface rotation.

Unfortunately, up to now most of the observers do not give
individual splittings∆νnlm but rather few coefficients (typically
N l
j = 5 or 9) of their expansion on chosen polynomials Ql

j(m)
(Eq. (15)). This latter equation can be rewritten in matrix form:

W = QA, (B5)

by building the vector A of odd indexed a-coefficients for all
modes (n, l) and the appropriate rectangular matrixQ of poly-
nomials Qi(m)(i = 1, 3, 5). Therefore, there are two ways for
performing the inversion: we can build all individual splittings
from Eq. (B5) and minimize J (w)(Ω); or we can express a-
coefficients as a linear combination of individual splittings:

A = Q†W , (B6)

where Q† is the pseudo-inverse of Q (assuming that this one
exists for the chosen polynomials), and minimize:

J (a)(Ω)=‖P (a)(A−R(a)Ω)‖2 + λs ‖Ps(Ωs −LΩ2)‖2, (B7)

where: R(a) = Q†R. (B8)

In this case we can use directly the quoted errors on the a-
coefficients (matrix P (a)).

When we invert splittings, we must take care of weights that
we assign to individual splittings through matrixP (w): Eq. (15)
implies that individual splittings calculated from a-coefficients
are correlated and thus there is no evident diagonal matrixP (w).
One possibility is to calculate the true covariance matrix B(w)

on individual splittings using Eq. (B5):

B(w) = QP (a)Q>, (Q> being the transpose ofQ) (B9)

and to take only the diagonal part of this matrix as matrix
(P (w))−2 (Sekii 1991; Corbard et al. 1995). This leads to in-
dividual errors that depend on m. In this work, however, we
assume that individual splittings are uncorrelated and indepen-
dent of m for each (n, l) (Schou et al. 1992) and we calculate
their errors such that they lead at best in a least-squares sense to
the errors given on the a-coefficients if these ones were calcu-
lated by a least-squares fit to individual splittings. By this way,
we obtain individual errors that are higher than in the previous
case especially for low m.

In order to have a more immediate interpretation of the result
found by inverting individual splittings it will be of much interest
to have accurate observations for individual splittings along with
their associated errors. This is already the case with the ground
based GONG experiment and should probably be possible with
the SOHO space mission instruments.

In this paper J(Ω) denote both J (a)(Ω) and J (w)(Ω) de-
pending on the kind of inversion we perform.

Appendix C: averaging kernels

For all linear inversion techniques, the inferred rotation rate at a
target location (r0, µ0) can be expressed as a linear combination
of the data. Namely, in our implementation these data are the
splittings ∆νnlm and, if λs /= 0, the observed rotation rates at
the surface Ωm

p
(µi):

Ω̄(r0, µ0) =
∑
nlm

Cnlm(r0, µ0)∆νnlm

+
nµ∑
i=1

C̃i(r0, µ0)Ωm
p

(µi). (C1)

Averaging kernels κ(r0, µ0, r, µ) are defined by:

Ω̄(r0, µ0) =
∫ R�

0

∫ 1

0
κnlm(r0, µ0, r, µ)Ω(r, µ)drdµ. (C2)
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From Eqs. (2) and (C1) we get:

κnlm(r0, µ0, r, µ) =
∑
nlm

Cnlm(r0, µ0)Knlm(r, µ)

+
nµ∑
i=1

C̃i(r0, µ0)δ(r −R�, µ− µi). (C3)

Here δ(x, y) denote a Dirac distribution in two dimensions. Each
surface constraint induces a term proportional to a δ function,
localized at the corresponding point of the surface, in the aver-
aging kernel. The same relations exist when a-coefficients are
inverted instead of individual splittings.

From Eq. (C2) the value of the inferred rotation rate
Ω̄(r0, µ0) can be regarded as a weighted average of the true
rotation rate where the averaging kernel κ(r, µ, r0, µ0) is the
weighting function. Ideal averaging kernels would be close to
a δ(r − r0, µ − µ0) function leading to Ω̄(r0, µ0) = Ω(r0, µ0).
In practice averaging kernels have a peak near (r0, µ0) and we
can evaluate the latitudinal and radial full width at mid height
(FWMH) of this peak,∆θ and∆r, respectively. These quantities
provide a measure of the resolution of the inversion in the sense
that it gives a limit for the finest details that the inversion is able
to resolve for a given depth and latitude. It should be noted that
averaging kernels formally do not depend on the data but only
on errors on these data. Nevertheless they depend on the reg-
ularization used (high regularization decreases the resolution)
and the regularization used itself depends on the set of data that
we want to invert. A complete description of averaging kernels
and their properties can be found in Christensen-Dalsgaard et
al. (1990) and Schou et al. (1994).

References

Antia H.M., Chitre S.M., Thompson M.J., 1996, A&A 308, 656
Appourchaux T., Toutain T., Telljohann U., 1994, A&A 294, L13
Barrett R.K., 1993, On the optimal choice of regularization parame-

ter for the inversion of solar oscillation data. In: Brown T.M. (ed)
GONG 1992: Seismic Investigation of the Sun and Stars (A.S.P.
Conf. Ser. vol. 42), Astr. Soc. of the Pacific, San Francisco, p. 233

Chaplin W.J., Elsworth Y., Howe R., et al., 1996, MNRAS 280, 849
Christensen-Dalsgaard J., Berthomieu G., 1991, Theory of Solar Os-

cillations. In: Cox A.N., Livingstone W.C., Matthews M.S. (eds)
Solar Interior and Atmosphere. Univ. of Arizona Press, Tucson, p.
401

Christensen-Dalsgaard J., Schou J., 1988, Differential rotation in the
Solar Interior. In: Domingo V., Rolfe E.J. (eds) Seismology of the
Sun and Sun-like Stars (ESA SP-286), ESA Publication Division,
Noordwijk, p. 149

Christensen-Dalsgaard J., Schou J., Thompson M.J., 1990, MNRAS
242, 353

Corbard T., Berthomieu G., Gonczi G., Provost J., Morel P., 1995, So-
lar Rotation from 2D Inversion. In: Hoeksema J.T., Domingo V.,
Fleck B., Battrick B. (eds) Fourth Soho Workshop: Helioseismolo-
gie (ESA SP-376 vol. 2). ESA Publication Division, Noordwijk, p.
289

Craig I.J.D., Brown J.C., 1986, Inverse Problems in Astronomy: A
Guide to Inversion Strategies for Remotely Sensed Data. Adam
Hilger, Bristol

Cuypers J., 1980, A&A 89, 207
Duvall T.L. Jr., Dziembowski W.A., Goode P.R., et al., 1984, Nature

310, 22
Dziembowski W.A., Goode P.R., Libbrecht K.G., 1989, ApJ 337, L53
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