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1 Introduction and related works

We are interested in transporting items in a workshop, from their production spots, to
their consumption spots. For each type of items, there is one consumption machine, one
production machine and four dedicated carriage trolleys, of limited capacity. Initially, there
is one full trolley and one empty trolley in front of each machine. This problem comes from
a real industrial problem, in the context of a car manufacturer workshop. When a trolley
is full, an operator must transport it. He can transport several trolleys at the same time,
making a train with them, but there is a limit on the maximal size on the train he can form.
The production rate, and the consumption rate for a type of item is the same, therefore,
when a carriage is full at a production spot, another carriage is empty at the associated
consumption spot. The operator is also in charge of bringing back empty trolleys from their
consumption machines, to production machines. The production rate, and the capacity of
the trolley, permit to define a production cycle for each pair of machine. A production
cycle is the time taken by a production (resp. consumption) machine, to fill (resp. empty)
a trolley. The end time of a production cycle correspond to the beginning of the next cycle.
For each pair of machines, and for each of their cycles considered until the time horizon,
the goal is to deliver the trolleys which have been filled during the previous cycle to their
consumption spots, and the trolleys which have been emptied during the previous cycle to
their production spots.

The aim is to plan a route of the operator in order to satisfy pickup and delivery
requests with time windows constraints. A particularity of this problem is the periodicity
of the requests. Indeed, all the pickups and deliveries of a given item are almost completely
sequenced. However, the relative order of pickups and deliveries of distinct items still need
to be decided, potentially over a very long planning horizon.

This problem can be seen as a Pickup and Delivery Problem, with a single capacited
vehicle and time windows. It is part of the one-to-one pickup and delivery family (which
means that each pickup has a unique destination and conversely, each delivery has a unique
source)(Cordeau et al. 2008). The single vehicle case comes from a Traveling Salesman
Problem (TSP) in which precedences were added between clients. Since then, several ad-
ditional constraints have been considered, such as time windows, limited capacity or LIFO
loading (deliveries must respect a last-in-first-out rule). One can find complete survey on
pickup and delivery problem in (Parragh et al. 2008) and (Berbeglia et al. 2007). There
are temporal specificities in our problem. Indeed, each request has a twin request with the
same time window: for each request from point A to point B to transport a full (resp.
empty) trolley, there is a request from B to A for the empty (resp. full) trolley to do during



the same time. Moreover, each request is repeated over time until the horizon, that is, each
due date corresponds to a release date for the next request on the same pair of machine.
Routing problems can often be seen as scheduling problems with sequence-dependent
setup times. In fact, time windows and precedences constraints, as well as the fact that there
is no objective to optimize might suggest that the problem more adapted to scheduling
technologies (Beck et al. 2003). From a scheduling point of view, it is a single resource (the
driver of the train) scheduling problem. We have 4 types of activities: pickup and delivery
of a full and an empty trolley which can’t overlap. There is a precedence between a pickup
and its delivery, and each activity has a time window. Travel times between two activities
are then sequence-dependent. Finally the length of the train can be seen as a reservoir
resource with limited capacity, which is filled by pickups, and emptied by deliveries.

2 Constraint Models

We propose two constraint models to deal with this problem. One TSP-oriented based
on next variables, and one scheduling oriented. In the scheduling model, for each operation
i €T ={1,2,...,n}, we define the variable start; as the starting date of the operation i.
Moreover we introduce for each pair of operations ¢,j € 7', a Boolean variable x;; which
represent the relative ordering of the two operations. The link between these two sets of
variables is made with with the following constraint:

o = L& start; > start; +tti; + pi
1 0 & start; > start; + ttj; + p;

with #%;;, the travel time between operation i and j, and p; the processing time of 7. In
fact, we do not need a Boolean variable for every pair of tasks, and can easily reduce the
model. For all pair of operation ¢, j € T, such as i precede j, we avoid creating the variable
x;j, and directly post the following constraint : start; > start; + tt;; + p;.

Since production cycles are often much shorter than the planning horizon, the problem
involves a lot of precedences. Therefore, we can drastically reduce the size of the model.
Moreover, we observe that there are only two sensible ways to schedule the four activities
of a production cycle (pickup of the full trolley, pickup of the empty trolley, and the
corresponding deliveries). First, obviously pickups must precede their respective deliveries.
Second, since the second pickup and the first delivery take place at the same spot, it is
always preferable (w.r.t. the capacities and the time windows) to do the first delivery before
the second pickup. Therefore, there are only two possible orders: the operator may either
first pickup and deliver the full trolley, or first pickup and deliver the empty trolley. Hence,
only one variable is needed for these four tasks. In order to deal with the constraint on the
length of the train, we use the balance constraint introduced in (Laborie 2003).

The other model is inspired by the constraint model for TSP with time windows pro-
posed in (Ducomman et al. 2016). For each operation i, there is a variable next; that
indicates which operation directly follows i. Additional variables are needed in order to
post redundant constraints. pos; indicates the position of the operation 7 in the sequence
of operations, and z;; has the same semantic than in the first model. We add another
variable trainL; which represent the length of the train before the operation 7. Our model
only differ by the adding of the following constraints :

trainLyez:, = trainL; +1; Vi e TU{0} (1)
trainLg =0 (2)
POSdel;, > POS; Vie P (3)



with ;, the length of the trolley of the operation i (negative length for delivery), del; is the
associate delivery of the operation ¢, and P is the set of pickup operations. Constraint (1)
and (2) represent the accumulation on the train length during the sequence of operations
and use the ELEMENT constraint. The last constraint (3) ensures that each pickup precedes
its delivery. In addition, we use the CIRCUIT constraint to enforce the Hamiltonian circuit.

3 Experiments

In order to compare the two models, and in addition to the industrial instances, we
generated random instances '. We tried to generate only feasible instances, but we cannot
guaranty that all instances are. There are 4 categories of instances (A, B, C, D). Instances
A contain the least dense instances, i.e. with the least number of operations. They have
also more pairs of machines with the same production cycle. Conversely, instances D are
the most dense, and most asynchronous. We generate 10 instances of each category, and for
each of them we consider 3 different temporal horizons, leading to 120 instances in total.
The two models were implemented in the constraint solver Choco 2.

We observed that variable orderings following the chronological sequence tend to be
more efficient. For instance, in the TSP model, building a tour by selecting the nodes
from the first to be visited (pos;) to the last to be visited (pos,) was more effective
than assigning the positions in a different order. In the case of the scheduling model,
we use the following strategy: we say x;; dominate xy;, iff min(start;) < min(starty) and
min(start;) < min(start;) with at least one strict inequality or min(start;) < min(start;)
and min(start;) < min(starty) with at least one strict inequality, with min(start;) the
minimum value of start;. When choosing a variable to assign, we look for the boolean
variables which is not dominated by any other variables, ties are broken randomly. We
noticed a slight improvement when in addition we gave priority to the variables which
order operations in the same pair of machines before the other ones. That is, we don’t
deal with a variable x;; if the variable ordering the three remaining activities linked to
operation ¢, and the variable ordering the three remaining activities linked to operation j
are not instantiated. Generic heuristics such as dom/wdeg (Boussemart et al. 2004) were
significantly less effective than these simple orderings.

Similarly, we explore first the branch that minimizes the start time of the next operation.
In the TSP model, it means assigning pos; to j such that the minimum value of start; is
minimal. In the scheduling model, it means assigning z;; to 1 iff minimum value of start;
is lower than the minimum value of start;. For both, and thanks to the propagation on
the start’s variables, this heuristic acts more or less like a nearest neighborhood approach
and takes advantage of the travel time between activities.

We ran each instance 10 times with randomized heuristics: if there are ties, they are
broken randomly, and if not, one of the two best choices is chosen randomly with equal
probabilities. We also used a restart strategy (the Luby sequence (Luby et al. 1993)) to
improve the result. Each run has a timeout of 1 hour.

Table 1 shows the results. The first column denotes the category of the instance and
second column denotes the temporal horizon. For the two models (denoted by Scheduling
and TSP), 3 indicators are given, the number of solved instances (in average on 10 runs), the
average time, and the numbers of fails for solved instances. We observe that the scheduling-
based model can solve more instances in every category, and is faster in average. The average
number of fails for the TSP model shows the relative slowness of that model. Most of the
instances are unsolved.

! Available on https://github.com/AntuVal/SPDPTW
2 Prud’homme, C., Fages, J.-G. & Lorca, X. (2017), Choco Documentation.



Table 1. Comparison of the two models on the generated instances

Scheduling TSP
NbSolve| Time |NbFail|NbSolve| Time |NbFail
15000, 9.3 44.11 |174195| 9.0 18.39 | 13081 10
A |25000| 8.5 52.74 (143564 7.9 140.92 | 9445 10
40000| 8.0 36.48 | 29665 7.1 149.71 | 3803 10
15000, 4.8 390.61 (301231 2.1 943.88 | 18340 10
B [25000{ 2.5 381.94 [203849| 0.7 [1017.76| 2015 10
40000( 2.0 402.88 {419479| 0.1 1929.71| 283 10
15000 4.3 534.60 |387635| 2.0 541.68 | 14549 10
C [25000f 1.4 |1264.03|352172| 0.1 1693.80| 1521 10

Cat.| Hor. Nb Inst.

40000f 0.0 - - 0.0 - - 10
15000f 2.2 |495.55(112918| 0.8 [1271.75| 9484 10
D |25000] 0.2 [2565.44| 45153 | 0.0 - - 10
40000f 0.0 - - 0.0 - - 10

4 Conclusions

We introduced a one machine scheduling problem with several additional constraints.
That problem is not new in the definition of its constraints, but the temporal structure of
the instances makes it challenging. We proposed a randomly generated set of benchmark
instances, whose a large number stay unsolved. We observed that a light model based on
ordering pair of activities works better than a TSP-based model, which does not scale to
industrial instances.

As a large number of the generated instances remains unsolved, there are still works to
do. We are currently working on a Large Neighborhood Search (LNS) in order to improve
these results. In this scheme, we relax the due date of each task, and instead we minimize
the maximum lateness. Then during a LNS move, a subset of operations can be withdrawn
from the sequence and re-inserted so as to minimize this objective. We also aim to deal
with the entire problem, which is the team sizing for the whole shop. The goal is to plan
a route through the pair of machines, minimizing the number of trains in the shop.
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