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Abstract—This paper addresses the problem of ultrasound (US) image
restoration. In contrast to most of the existing approaches that only
take into account fundamental radiofrequency (RF) data, the proposed
method also considers harmonic US images. An algorithm based on the
alternating direction of multipliers method (ADMM) is proposed to solve
the joint deconvolution problem. Simulation results show the interest of
the proposed approach when compared to classical US image restoration
schemes based only on fundamental data.

I. IMAGE MODEL

Ultrasound (US) image formation is based on the propagation
of US waves inside human tissues. These waves are produced by
piezoelectric elements of the US probe, and correspond to short pulses
at a given central frequency. While propagating, wave distortions
may occur creating backscattered echoes at multiples of the US
probe central frequency and forming the so-called tissue harmonic
images. However, because of the strong attenuation, only the first
harmonic is exploited in most applications. Tissue harmonic imaging
presents several advantages compared to conventional (fundamental)
US imaging, such as better spatial resolution and improved contrast
to noise ratio [1]. However, harmonic images have also an important
drawback related to high attenuation with imaging depth. Building
a mathematical model relating the unknown US image, referred to
as tissue reflectivity function (TRF), to the observed fundamental
and harmonic images has been the object of recent research studies.
Although a nonlinear equation characterizes the propagation of US
waves in biological tissues, a linear model is classically used,
motivated by weak scattering conditions in US [2], [3]. Specifically,
US images are modeled as the convolution between the imaging
system PSF and the TRF. In this study, two linear models are used
for the fundamental and harmonic images. These models are defined
as follows:

yf = Hfr + nf (1)

yh = WHhr + nh, (2)

where yf ∈ RN and yh ∈ RN are the observed fundamental and
harmonic radiofrequency RF images that have been vectorized in
lexicographical order, r ∈ RN is the unknown TRF to be estimated,
Hf and Hh ∈ RN×N are block circulant with circulant blocks
matrices accounting for 2D convolution with circulant boundary
conditions, nf and nh ∈ RN are additive white Gaussian noises
and W ∈ RN×N is a diagonal matrix gathering the attenuation
coefficients for each image depth. Estimating r from yf and yh is
formulated in this work as the following minimization problem:

min
r

1

2
‖yf −Hfr‖22 +

1

2
‖yh −WHhr‖22 + µ‖r‖1 (3)

where ||.||1 is the `1-norm that is commonly used for regularizing
the TRF solution, see, e.g., [4], [5].

II. TRF RESTORATION ALGORITHM

In order to solve (3), we propose to use the well-known ADMM
framework [6] classically used to solve problems of the form

min
u,v

f1(u) + f2(v) s.t. Au+Bv = c (4)

where f1 and f2 are closed convex functions and A,B and u,v, c
are matrices and vectors of appropriate sizes. We reformulate (3) as

min
u

1

2
‖yf −Hfu‖22 +

1

2
‖yh −Wz‖22 + µ‖w‖1 (5)

where z = Hhr, w = u = r, and we introduce the vector
v = [ wz ]. The minimization problem (5) fits the general frame-
work of ADMM in (4) by choosing f1(u) = 1

2
‖yf − Hfu‖22,

f2(v) = 1
2
‖yh −Wz‖22 + µ‖w‖1, A =

[
IN
Hh

]
, B =

[
−IN 0
0 −IN

]
and c = 0N . As a consequence, (5) can be solved by an iterative
algorithm (iterations are denoted by k) minimizing the associated
augmented Lagrangian LA(u,v,λ) with respect to each variable,
with the Lagrangian multiplier λ = [λ1 λ2]T . The resulting variable
updates are summarized below (see Algo.1 for further details)
Step 1: Update u using an analytical solution in the Fourier domain
(see Algo.1, lines 3 and 4 ):

uk+1 ∈ argmin
u

1

2
‖yf −Hfu‖22 +

β

2
‖Au+Bvk +

λk

β
‖22 (6)

Step 2.1: Update w using the soft thresholding operator associated
with the `1-norm [7] (see Algo.1, line 6):

wk+1 ∈ argmin
w

µ‖w‖1 +
β

2
‖uk+1 −w +

λk
1

β
‖22 (7)

Step 2.2: Update z using an analytical solution (Algo. 1, line 7).

zk+1 ∈ argmin
w

1

2
‖yh −Wz‖22 +

β

2
‖Hhu

k+1 − z +
λk

2

β
‖22 (8)

Step 3: Update the Lagrangian multiplier λ (see Algo. 1, line 8).

III. EXPERIMENTS AND RESULTS

The performance of the proposed algorithm is evaluated on a sim-
ulated image with controlled ground truth. The results are compared
to a classical TRF restoration scheme based only on the fundamental
data, i.e., that solves (3) without the second data fidelity term. To
generate the fundamental and harmonic images, the TRF mimicking a
human kidney was convolved with two PSFs of central frequency 3.5
MHz and 7 MHz. Furthermore, the harmonic image was attenuated
with depth, as highlighted in Fig. 1(d). The resulting images and
quantitative results are reported in Fig. 1 and in Tab. I. They show
the gain in estimation performance due to the joint use of fundamental
and harmonic images.
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Fig. 1: (a) TRF mimicking a human kidney (r of size 1300 × 300 pixels), (b) simulated fundamental image yf , (c) simulated harmonic
image yh, (d) attenuation map used to simulate the harmonic image in (c), with value equal to 1 (no attenuation) close to the probe and
0.1 (high attenuation) at the bottom of the image, (e) TRF estimated by LASSO from the fundamental US image in (b), (f) TRF estimated
by the proposed method from fundamental and harmonic US images in (b) et (c). Note that all US images are shown, for visualization
purpose, in B-mode (log-compressed demodulated RF images). A zoom of the region in the red rectangle allows to appreciate fine details
in the ground truth TRF, observed images and restored TRFs.

Algorithm 1: Proposed TRF algorithm in US imaging
Input: yf , yh, Hf , Hh

1 Set k = 0, µ > 0, β > 0, u0, v0, λ0, kmax, imax, tol
2 while no convergence and k < kmax do

// Step 1: Analytical solution of (6)
3 uk+1 ← (HT

f Hf + βHT
hHh + βIN )−1(HT

f yf+

4 βHT
h z

k − λk
1 −HT

h λ
k
2 + βwk);

// Solution of (6) in the Fourier Domain 1

5 uk+1 ← F ∗(Λ∗
fΛf + βΛ∗

hΛh + βIN )−1(Λ∗
fFyf+

6 βΛ∗
fFz

k − Fλk
1 − Λ∗

fFλ
k
2 + βFwk);

// Step 2.1: Solution of (7) by soft
thresholding

7 tk = uk+1 + λk
1/β;

8 wk+1 ← softµ
β

(tk) = max(|tk| − µ

β
, 0)sign(tk);

// Step 2.2: Analytical solution of (8)
9 zk+1 ← (WTW + βIN )−1(WT yh + βHhu

k+1 + λk
2);

// Step 3: Update Lagrangian multiplier
10 λk+1 = λk + β(Auk+1 +Bvk+1);
11 k ← k + 1;
12 end
// 1 where:
I Hf and Hf BCCB matrix ⇒ Hf = F ∗ΛfF and

Hh = F ∗ΛhF.
I F and F ∗ are the Fourier and inverse

Fourier transforms.
I Λf = diag(F lf ) and Λh = diag(F lh).
I lf and lh stands for the first column of

the blurring matrix Hf and Hh.

SSIM(%) RMSE ISNR(dB)

Lasso 29.59 0.0929 4.637
Proposed method 61.18 0.0602 6.757

TABLE I: Quantitative results corresponding to the selected regions
(in red) of images in Fig. 1, computed using the estimated and ground
truth TRF. SSIM stands for structure similarity index [8], RMSE is
the root mean squared error and ISNR the improvement in signal-to-
noise ratio.
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