Maha Elbayad

Ha Nguyen

Fethi Bougares

Natalia Tomashenko

Antoine Caubrière

Benjamin Lecouteux

Yannick Estève

Laurent Besacier

ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020

published or not. The documents may come

Introduction

While cascaded speech-to-text translation (AST) systems (combining source language speech recognition (ASR) and source-to-target text translation (MT)) remain state-of-the-art, recent works have attempted to build end-to-end AST with very encouraging results [START_REF] Bérard | Listen and translate: A proof of concept for end-to-end speech-to-text translation[END_REF][START_REF] Weiss | Sequence-tosequence models can directly transcribe foreign speech[END_REF][START_REF] Bérard | End-to-End Automatic Speech Translation of Audiobooks[END_REF][START_REF] Jia | Leveraging weakly supervised data to improve end-to-end speech-to-text translation[END_REF][START_REF] Sperber | Attention-passing models for robust and data-efficient end-to-end speech translation[END_REF]. This year, IWSLT 2020 offline translation track attempts to evaluate if endto-end AST will close the gap with cascaded AST for the English-to-German language pair.

Another increasingly popular topic is simultaneous (online) machine translation which consists in generating an output hypothesis before the entire * Equal contribution.

input sequence is available. To deal with this low latency constraint, several strategies were proposed for neural machine translation with input text [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF][START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF][START_REF] Ma | Monotonic multihead attention[END_REF]. Only a few works investigated low latency neural speech translation [START_REF] Niehues | Lowlatency neural speech translation[END_REF]. This year, IWSLT 2020 simultaneous translation track attempts to stimulate research on this challenging task.This paper describes the ON-TRAC consortium automatic speech translation (AST) systems for the IWSLT 2020 Shared Task [START_REF] Ebrahim Ansari | Findings of the IWSLT 2020 Evaluation Campaign[END_REF]. ON-TRAC Consortium is composed of researchers from three French academic laboratories: LIA (Avignon Université), LIG (Université Grenoble Alpes), and LIUM (Le Mans Université).

We participated in:

• IWSLT 2020 offline translation track with end-to-end models for the English-German language pair,

• IWSLT 2020 simultaneous translation track with a cascade of an ASR system trained using Kaldi [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF] and an online MT system with wait-k policies [START_REF] Dalvi | Incremental decoding and training methods for simultaneous translation in neural machine translation[END_REF][START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF].

This paper goes as follows: we review the systems built for the offline speech translation track in §2. Then, we present our approaches to the simultaneous track for both text-to-text and speech-to-text subtasks in §3. We ultimately conclude this work in §4.

Offline Speech translation Track

In this work, we developed several end-to-end speech translation systems, using a similar architecture as last year [START_REF] Nguyen | ON-TRAC consortium end-to-end speech translation systems for the IWSLT 2019 shared task[END_REF] and adapting it for translating English speech into German text (En-De). All the systems were developed using the ESPnet [START_REF] Watanabe | Espnet: End-toend speech processing toolkit[END_REF] end-to-end speech processing toolkit.

Data and pre-processing

Data. We relied on MuST-C (Di Gangi et al., 2019) English-to-German (hereafter called MuST-C original), and Europarl (Iranzo-Sánchez et al., 2020) English-to-German as our main corpora. Besides, we automatically translated (into German) the English transcription of MuST-C and How2 [START_REF] Sanabria | How2: a large-scale dataset for multimodal language understanding[END_REF] in order to augment training data. This resulted in two synthetic corpora, which are called MuST-C synthetic and How2 synthetic respectively. The statistics of these corpora, along with the provided evaluation data, can be found in Table 1. We experimented with different ways of combining those corpora. The details of these experiments are presented later in this section.

Speech features and data augmentation. 80dimensional Mel filter-bank features, concatenated with 3-dimensional pitch features1 are extracted from windows of 25ms with a frame shift of 10ms.

We computed mean and variance normalization on these raw features of the training set, then applied it on all the data. Beside speed perturbation with factors of 0.9, 1.0, and 1.1, SpecAugment [START_REF] Daniel S Park | Specaugment: A simple data augmentation method for automatic speech recognition[END_REF] is applied to the training data (Ko et al., Text preprocessing. The same as last year, we normalize punctuation, and tokenize all the German text using Moses.2 Texts are case-sensitive and contain punctuation. Moreover, the texts of the MuST-C corpus contain multiple non speech events (i.e 'Laughter', 'Applause' etc.). All these marks are removed from the texts before training our models. This results in a vocabulary of 201 characters. We find that some of these characters should not appear in the German text, for example, ˇ" (, 你, 葱, 送, etc. Therefore, we manually exclude them from the vocabulary. In the end, we settle with an output vocabulary of 182 characters.

Architecture

We reuse our last year attention-based encoderdecoder architecture. As illustrated in Figure 1, the encoder has two VGG-like [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] CNN blocks followed by five stacked 1024-dimensional BLSTM layers. Each VGG block is a stack of two 2D-convolution layers followed by a 2D-maxpooling layer aiming to reduce both time (T) and frequency (D) dimensions of the input speech features by a factor of 2. After these two VGG blocks, input speech features' shape is transformed from (T ×D) to (T /4×D/4).

We used Bahdanau's attention mechanism [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF] in all our experiments. The decoder is a stack of two LSTM layers 1024 dimensional memory cells. We would like to men- tion that Transformer based models have also been tested using the default ESPnet architecure and showed weaker results compared to the LSTMbased encoder-decoder architecture.

Hyperparameters' details. All of our models are trained in maximum 20 epochs, with early stopping after 3 epochs if the accuracy on the development set does not improve. Dropout is set to 0.3 on the encoder part, and Adadelta is chosen as our optimizer. During decoding time, the beam size is set to 10. We prevent the models from generating too long sentences by setting a maxlenratio 3 = 1.0.

All our end-to-end models are similar in terms of architecture. They are different mainly in the following aspects: (1) training corpus;

(2) type of 3 maxlenratio = maximum_output_length encoder_hidden_state_length tokenization units;4 (3) fine-tuning and pretraining strategies. Description of different models and evaluation results are given in Section 2.4.

Speech segmentation

Two types of segmentation of evaluation and development data were used for experiments and submitted systems: segmentation provided by the IWSLT organizers and automatic segmentation based on the output of an ASR system.

The ASR system, used to obtain automatic segmentation, was trained with the Kaldi speech recognition toolkit [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF]). An acoustic model was trained using the TED-LIUM 3 corpus [START_REF] Hernandez | TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation[END_REF]. 5 This ASR system produces recognized words with timecodes (start time and duration for each word). Then we form the speech segments based on this output following the rules: (1) if silence duration between two words is longer than a given threshold Θ = 0.65 seconds, we split the audio file; (2) if the number of words in the current speech segment exceeds 40, then Θ is reduced to 0.15 seconds in order to avoid too long segments. These thresholds have been optimised to get segment duration distribu-No.

Set

BLEU TER BEER CharacTER BLEU(ci) TER(ci) tion in the development and evaluation data that is similar to the one observed in the training data.

1
It will be shown in next subsection that this ASR segmentation improves results over the provided segmentation when the latter is noisy (see experimental results on iwslt/tst2015).

Experiments and results

After witnessing the benefit of merging different corpora from our submission last year [START_REF] Nguyen | ON-TRAC consortium end-to-end speech translation systems for the IWSLT 2019 shared task[END_REF], we continue exploring different combinations of corpora in this submission. As shown in the first two rows of

Overview of systems submitted

Two conclusions that can be drawn from Table 2 are (1) ensembling all six models is the most promising among all presented models, (2) our own segmentation (tst2015 ASR segmentation) is better than the default one. Therefore, we choose as our primary submission the translations of the ASR segmentations generated by the ensemble of all six models. Model 3* and 4* (Table 2) are also used to translate our contrastive submission runs, whose ranks are shown in Table 3. The official results for all our submitted systems can be found in Table 4. They confirm that our segmentation approach proposed is beneficial.

Simultaneous Speech Translation Track

In this section, we describe our submission to the Simultaneous Speech Translation (SST) track. Our pipeline consists of an automatic speech recognition (ASR) system followed by an online machine translation (MT) system. We first define our online ASR and MT models in §3.1 and §3.2 respectively. Then, we outline in §3.3 how we arrange the two systems for the speech-to-text subtask. We detail our experimental setup and report our results on the text-to-text subtask in §3.4 and on the speechto-text in §3.5.

Online ASR

Our ASR system is a hybrid HMM/DNN system trained with lattice-free MMI [START_REF] Povey | Purely sequence-trained neural networks for ASR based on lattice-free MMI[END_REF], using the Kaldi speech recognition toolkit [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF]. The acoustic model (AM) topology consists of a Time Delay Neural Network (TDNN) followed by a stack of 16 factorized TDNNs [START_REF] Povey | Semi-orthogonal low-rank matrix factorization for deep neural networks[END_REF]. The acoustic feature vector is a concatenation of 40-dimensional MFCCs without cepstral truncation (MFCC-40) and 100-dimensional ivectors for speaker adaptation [START_REF] Dehak | Front-end factor analysis for speaker verification[END_REF]. Audio samples were randomly perturbed in speed and amplitude during the training process. This approach is commonly called audio augmentation and is known to be beneficial for speech recognition [START_REF] Ko | Audio augmentation for speech recognition[END_REF].

Online decoding with Kaldi. The online ASR system decodes under a set of rules to decide when to stop decoding and output a transcription. An endpoint is detected if either of the following conditions is satisfied:

(a) After t seconds of silence even if nothing was decoded.

(b) After t seconds of silence after decoding something, if the final-state was reached with cost relative < c.

(c) After t seconds of silence after decoding something, even if no final-state was reached.

(d) After the utterance is t seconds long regardless of anything else.

Each rule has an independent characteristic time t and condition (b) can be duplicated with different times and thresholds (t, c). The value of cost relative reflects the quality of the output, it is null if a finalstate of the decoding graph had the best cost at the final frame, and infinite if no final-state was active.

Online MT

Our MT systems are Transformer-based [START_REF] Vaswani | Attention is all you need[END_REF] wait-k decoders with unidirectional encoders. Wait-k decoding starts by reading k source tokens, then alternates between reading and writing a single token at a time, until the source is depleted, or the target generation is terminated. With a source-target pair (x, y), the number of source tokens read when decoding y t following a wait-k policy is z k t = min(k + t -1, |x|). To stop leaking signal from future source tokens, the energies of the encoder-decoder multihead-attention are masked to only include the z t tokens read so far.

Unlike Transformer wait-k models introduced in [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF] where the source is processed with a bidirectional encoder, we opt for a unidirectional encoding of the source. In fact, this change alleviates the cost of re-encoding the source sequence after each read operation. Contrary to offline task, where bidirectional encoders are superior, unidirectional encoder achieve better quality-lagging trade-offs in online MT. [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF] optimize their models with maximum likelihood estimation w.r.t. a single wait-k decoding path z k :

log p(y | x, z k) = |y| t=1 log p θ (y t |y <t , x ≤z k t). (1)
Instead of optimizing a single decoding path, we jointly optimize across multiple wait-k paths. The additional loss terms provide a richer training signal, and potentially yield models that could perform well under different lagging constraints. Formally, we consider an exhaustive set of wait-k paths and in each training epoch we encode the source sequence then uniformly sample a path to decode with. As such, we optimize:

Z = z k | k ∈ {1, . . . , |x|} , (2) E z [log p(y|x, z)] ≈ z∼∈Z log p θ (y|x, z). (3)
We will refer to this training with multi-path.

Cascaded ASR+MT

For speech-to-text online translation we pair an ASR system with our online MT system and decode following the algorithm described in Algorithm 1.

In this setup, the lagging is controlled by the endpointing of the ASR system. The online MT system follows the lead of the ASR and translates prefix-to-prefix. Since the MT system is not trained to detect end of segments and can only halt the translation by emitting </s>, we constrain it to decode α|x asr | + β tokens, where x asr is the partial transcription and (α, β) two hyper-parameters.

Along with the hyper-parameters of the ASR's endpointing rules, we tune (α, β) on a development set to achieve good latency-quality trade-offs.

Text-to-text translation subtask

Training MT. We train our online MT systems on English-to-German MuST-C (Di Gangi et al., 2019) Algorithm 1 ASR+MT decoding algorithm Input: source audio blocks x. Output: translation hypothesis y. Initialization: action=READ, z=0, t=1,

x asr =(), y=(<s>) Hyper-parameters sz, α, β. while y t = </s> do while action = READ ∧ z < |x| do Read sz elements from x. z += sz Feed the new audio blocks to the ASR system. and WMT'19 data, 6 namely, Europarl [START_REF] Koehn | Europarl: A parallel corpus for statistical machine translation[END_REF], News Commentary [START_REF] Tiedemann | Parallel data, tools and interfaces in OPUS[END_REF] and Common Crawl [START_REF] Smith | Dirt cheap web-ccale parallel text from the common crawl[END_REF]. We remove pairs with a length-ratio exceeding 1.3 from Common Crawl and pairs exceeding a length-ratio of 1.5 from the rest. We develop on MuST-C dev and report results on MuST-C tst-COMMON. For open-vocabulary translation, we use SentencePiece [START_REF] Kudo | SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing[END_REF] to segment the bitexts with byte pair encoding [START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF]. This results in a joint vocabulary of 32K types. Details of the training data are provided in Table 5. We train Transformer big architectures and tie the embeddings of the encoder with the decoder's input and output embeddings. We optimize our models with label-smoothed maximum likelihood [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] with a smoothing rate = 0.1. The parameters are updated using Adam (Kingma and Ba, 2015) (β 1 , β 2 = 0.9, 0.98) with a learning rate that follows an inverse squareroot schedule. We train for a total of 50K updates and evaluate with the check-pointed weights corresponding to the lowest (best) loss on the development set. Our models are implemented with Fairseq [START_REF] Ott | fairseq: A fast, extensible toolkit for sequence modeling[END_REF]. We generate translation hypotheses with greedy decoding and evaluate the latency-quality trade-off by measuring casesensitive detokenized BLEU [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] and word-level Average Lagging (AL) [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework[END_REF].

Results. We show in Figure 2 the performance of our systems on the test set (MuST tst-COMMON) measured with the provided evaluation server. 7We denote with k train =∞ a unidirectional model trained for wait-until-end decoding i.e. reading the full source before writing the target. We evaluate four wait-k systems each trained with a value of k train in {5, 7, 9, ∞} and decoded with k eval ranging from 2 to 11. We then ensemble the aforementioned wait-k models and evaluate a multipath model that jointly optimizes a large set of wait-k paths. The results demonstrate that multipath is competetive with wait-k without the need to select which path to optimize (some values of k, e.g.

5, underperform in comparison

Speech-to-text translation subtask

Training ASR. We train our system following the tedlium recipe8 while adapting it for the IWSLT task. The TDNN layers have a hidden dimension of 1536 with a linear bottleneck dimension of 160 in the factorized layers. The i-vector extractor is trained on all acoustic data (speech perturbed + speech) using a 10s window. The acoustic training data includes TED-LIUM 3, How2 and Europarl. These corpora are detailed in Table 6 and represent about 900 hours of audio. As a language model, we use the 4-grams small model provided with TED-LIUM 3. The vocabulary size is 152K, with 1.2 million of 2-grams, 622K 3-grams and 70K 4-grams.

The final system is tuned on TED-LIUM 3 dev and tested with TED-LIUM 3 test and MuST-C tst-COMMON. Results are shown in Table 7.

Training MT. To train the MT system for the ASR+MT cascade we process source-side data (English) to match transcriptions of the ASR. This consists of lower-casing, removing punctuation and converting numbers into letters. For this task we use two distinct English and German vocabularies of 32K BPE tokens each. We train Transformer big architectures with tied input-output decoder embeddings following the setup described in §3. C's sentence-level aligned segments are streamed and decoded online and the lagging is measured in milliseconds. Note that in this task we use a single ASR model and only ensemble the MT wait-k models. The cascade of an online ASR with wait-k MT follows the same trends as the text-totext models. In particular, multi-path is competitive with specialized wait-k models and ensembling boosts the BLEU scores by 0.67 points on average.

Conclusion

This paper described the ON-TRAC consortium submission to the IWSLT 2020 shared task. In the continuity of our 2019 participation, we have submitted several end-to-end systems to the offline speech translation track. A significant part of our efforts was also dedicated to the new simultaneous translation track: we improved wait-k models with unidirectional encoders and multi-path training and cascaded them with a strong ASR system. Future work will be dedicated to simultaneous speech translation using end-to-end models.

Acknowledgements

This work was funded by the French Research Agency (ANR) through the ON-TRAC project under contract number ANR-18-CE23-0021.

Figure 1 :

 1 Figure 1: Architecture of the speech encoder: a stack of two VGG blocks followed by 5 BLSTM layers.

6

 http://www.statmt.org/wmt19/

Figure 2 :

 2 Figure 2: [Text-to-Text] Latency-quality trade-offs evaluated on MuST-C tst-COMMON with greedy decoding. Offline systems have an AL of 18.55 words. The red vertical bars correspond to the AL evaluation thresholds.

 Figure 3: [Speech-to-Text] Latency-quality trade-offs evaluated on MuST-C tst-COMMON with greedy decoding. Offline systems have an AL of 5806 ms. The red vertical bars correspond to the AL evaluation thresholds.

Table 1 :

 1 Statistics of training and evaluation data. The statistics of tst2019 and tst2020 are measured on the segmented version provided by IWSLT2020 organizers.

	Name	#segments	Total length (in hours)
	MuST-C train	229.703	400
	MuST-C dev	1.423	2.5
	MuST-C tst-COMMON	2.641	4.1
	MuST-C tst-HE	600	1.2
	Europarl train	32.628	77
	Europarl dev	1.320	3.1
	How2 synthetic	176.564	285.5
	tst2019	2.813	5.1
	tst2020	2.263	4.1

Table 2 :

 2 Detokenized case-sensitive BLEU scores for different experiments -* represents experiments that apply SpecAugment.

	Model	iwslt seg	ASR seg
	3*	constrastive5 constrastive3
	4*	constrastive4 constrastive2
	Ensemble constrastive1	primary

Table 3 :

 3

The ranking of out submitted systems. Model 3* and 4* are respectively corresponding to No.3* and No.4* of Table 2.

Table 4 :

 4 IWSLT 2020 official results (offline track) on tst2019 and tst2020.

		2019.contrastive1 17.57 71.68 47.24	58.03	18.64	69.66
	2	2019.contrastive2 17.83 71.60 48.66	53.49	18.9	69.26
	3	2019.contrastive3 19.03 66.96 49.12	54.10	19.97	65.01
	4	2019.contrastive4 15.08 78.79 45.87	59.06	16.06	76.62
	5	2019.contrastive5 15.87 74.17 46.18	59.96	16.86	72.15
	6	2019.primary	20.19 66.38 49.89	52.51	21.23	64.26
	7	2020.contrastive1 18.47 71.85 48.92	55.83	19.46	69.88
	8	2020.contrastive2 19.31 69.30 49.55	52.68	20.36	67.14
	9	2020.contrastive3 20.51 64.88 50.19	53.06	21.5	62.99
	10 2020.contrastive4 15.48 83.45 46.68	57.56	16.42	81.33
	11 2020.contrastive5	16.5	75.15 47.23	57.90	17.42	73.22
	12	2020.primary	22.12 63.87 51.20	51.46	23.25	61.85

Table 2

 2

	, merging How2
	synthetic with the baseline (MuST-C original + Eu-
	roparl) does not bring significant improvement. It is
	noticeable that this pool is worse than the baseline
	on both tst2015 (iwslt seg) and tst2015 (ASR seg).
	However, we find that applying data augmentation
	(SpecAugment) on this same combination helps
	outperform the baseline on every investigated test-
	set, most significantly on MuST-C tst-COMMON,
	and MuST-C tst-HE. Therefore, SpecAugment is
	consistently applied to all the experiments that fol-
	low. Adding MuST-C synthetic to this pool sur-
	prisingly decreases BLEU scores on both MuST-C
	testsets, while significantly increases the scores on
	both tst2015 (iwslt seg) and tst2015 (ASR seg).
	Not being able to investigate further on this matter
	due to time constraint, instead of fine-tuning 4*, we
	decided to fine-tune 3*, which performs reasonably

well among all the testsets, on MuST-C original and MuST-C original+synthetic. We witness that the impact of fine tuning is very limited. One can also see once again that adding MuST-C synthetic does not make much difference. Finally, the last row of the table shows the results of ensembling all six models at decoding time. It is clear from the table that ensembling yields the best BLEU scores across all the testsets.

 if Endpoint detected ∨ z = |x| then Output transcription and append it to x asr . action = WRITE end if end while if |y| < α|x asr | + β then Given y and x asr , predict the next token y t+1

	t += 1			
	else			
	action = READ			
	end if			
	end while			
		Pairs	English words	German words
	Europarl	1,730K	43,7M	41,1M
	Common Crawl	1,543K	31,0M	30,0M
	News Commentary	320K	7,0M	7,2M
	MuST-C	214K	3,9M	3,7M

Table 5 :

 5 Parallel training data for the MT systems.

Table 6 :

 6 Corpora used for the acoustic model.

). Ensembling the

Table 7 :

 7 WERs for the ASR system with offline and online decoding (AL=5s for online)

Pitch-features are computed using the Kaldi toolkit(Povey et al.,

2011) and consist of the following values[START_REF] Ghahremani | A pitch extraction algorithm tuned for automatic speech recognition[END_REF]: (1) probability of voicing (POV-feature), (2) pitch-feature and (3) delta-pitch feature. For details, see http://kaldi-asr.org/doc/ process-kaldi-pitch-feats_8cc.html

http://www.statmt.org/moses/

All systems use 182 output caracter tokens except system 1 which has 201

The off-limit TED talks from IWSLT-2019 were excluded from the training subset

https://github.com/pytorch/fairseq/ blob/simulastsharedtask/examples/ simultaneous_translation

https://github.com/kaldi-asr/kaldi/ tree/master/egs/tedlium