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Abstract

Multi-view learning makes use of diverse models arising from
multiple sources of input or different feature subsets for the
same task. For example, a given natural language processing
task can combine evidence from models arising from character,
morpheme, lexical, or phrasal views. The most common strat-
egy with multi-view learning, especially popular in the neural
network community, is to unify multiple representations into
one unified vector through concatenation, averaging, or pool-
ing, and then build a single-view model on top of the unified
representation. As an alternative, we examine whether build-
ing one model per view and then unifying the different models
can lead to improvements, especially in low-resource sce-
narios. More specifically, taking inspiration from co-training
methods, we propose a semi-supervised learning approach
based on multi-view models through consensus promotion,
and investigate whether this improves overall performance.
To test the multi-view hypothesis, we use moderately low-
resource scenarios for nine languages and test the performance
of the joint model for part-of-speech tagging and dependency
parsing. The proposed model shows significant improvements
across the test cases, with average gains of −0.9 ∼ +9.3
labeled attachment score (LAS) points. We also investigate
the effect of unlabeled data on the proposed model by varying
the amount of training data and by using different domains of
unlabeled data.

1 Introduction
Multi-view data consist of different manifestations of the
same data, often in the form of different features, and such
data are abundant in real-world applications (Xu, Tao, and
Xu 2013). Character-, word- level representations, stem, pre-
fix, and suffix are examples of multi-view data in Natural
Language Processing (NLP).

The use of multi-view data has resulted in considerable
success in various NLP problems. Combining different word
representations at the character, token, or sub-word levels
has proven to be helpful for dependency parsing (Botha et
al. 2017; Andor et al. 2016), Part-of-Speech (POS) tagging
(Plank, Søgaard, and Goldberg 2016), and other NLP tasks.
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Given multiple views, a simple but popular approach is to
unify multiple representations into a combined one through
concatenation, averaging, or pooling. This approach is espe-
cially popular in neural networks as it is very straightforward
to concatenate multiple representations without any mod-
ification of the model. All the aforementioned work also
considered this approach. However, is it the best usage of
multi-view data? A simple input concatenation can lead to
overfitting problem as the model might ignore the specific
statistical property of each view (Zhao et al. 2017).

Recently, META-BILSTM (Bohnet et al. 2018) was pro-
posed to extend the naive solution of concatenating input
representations in the context of POS tagging, and it showed
superior performance compared to simple view concatenation
on input representations. META-BILSTM builds a single-
view model of each view (lower layer) and concatenates
the series of single-view-model outputs to form an input to
the meta layer, as shown in Figure 2. All the components
of META-BILSTM (per-view models and meta layer) are
trained jointly, as expressed in Eq.(2).

In this study, we first examine whether META-BILSTM
can be beneficial in the context of more complex tasks,
namely multi-tasking in POS tagging and dependency pars-
ing. The study then proposes Co-meta, a semi-supervised
approach, to improve each single-view model through the
consensus promotion of the multiple single-view models
on unlabeled data. The proposed Co-meta is motivated by
Co-Training (Blum and Mitchell 1998), a classic approach
similar to multi-view learning, which enables exploration of
unlabeled data and is known to be helpful in low-resource set-
tings. Overall, Co-Training and many of its variants improve
the multi-view models by maximizing agreement between the
multi-view models on unlabeled data, and thus can improve
performance in low-resource settings.

Thus, this study raises the question of whether classi-
cal Co-Training style approaches can further improve the
META-BILSTM model in low-resource settings. Specifically,
we explore two questions: (1) can respective models from
different views learn from each other on unlabeled data?
Moreover, (2) can this help the performance of low-resource
models? We study whether improving each multi-view model
by promoting the consensus in a Semi-Supervised Learning



(SSL) fashion can lead to learning better meta models in the
context of joint tagging and dependency parsing.

Once we apply META-BILSTM, we obtain several pars-
ing models trained by each view. Then the main challenge
that arises with regard to our SSL approach (Co-meta) is
deciding what and how much a single view should learn from
other views. We suggest three different methods for determin-
ing what to learn from each other, namely, Entropy, Voting,
and the Ensemble-based approach. Then, to determine how
much to learn from the determined example, we introduce
confidence score in section 3.3.

We employ our SSL methods and META-BILSTM on top
of the graph-based parser with a bi-affine classifier proposed
by (Dozat, Qi, and Manning 2017), and investigate the ef-
fectiveness of our approach on both low- and high-resource
scenario experiment setups using the Universal Dependency
2.3 dataset (Zeman and others 2018). Co-meta, the pro-
posed model shows consistent improvement across the test
cases, with an average of −0.9 ∼ +9.3 Labeled Attachment
Score (LAS) gains in low-resource and 0.2 ∼ 1.1 in high-
resource settings, respectively. The study also investigates
whether the proposed method depends on unlabeled data by
changing the amount and varying the domains of unlabeled
data, and its effect on the proposed model. In summary, our
contributions to joint parsing are as follows:

1. Proposal of a new formulation Co-meta that leverages
consensus promotion on top of a META-BILSTM model.

2. Analysis of the relation of each multi-view model perfor-
mance to that of the meta model.

3. Exploring different semi-supervised scenarios, where the
amount of unlabeled data and the domains of unlabeled
data are varying.

4. Generalization of META-BILSTM and Co-meta by ex-
panding an additional-view model on top of the existing
model using external word embedding.

2 Related Work
2.1 Dependency Parsing with Multi-Task

Structure
Dependency parsing is an essential component of many NLP
applications because of its ability to capture complex rela-
tional information in a sentence. Typically, the goal of depen-
dency parsing is to derive a tree structure for a sentence x
= (w1, w2 ...wn) following a given dependency grammar. A
syntactic dependency tree consists of dependency arcs (each
arc is a relation between a Head, wh, and one or more de-
pendent words wm); each arc is labeled Dep to define the
relation between wm and wh. Dependency parsing is widely
used for tasks such as named entity recognition (Kazama and
Torisawa 2008), discourse understanding (Sagae 2009), and
information extraction (Fares et al. 2018).

Recent breakthroughs in multi-task learning have made it
possible to effectively perform different tasks with the same
model. The multi-task approach enriches context-sensitive
feature representations by learning different tasks using
shared parameters (Hashimoto et al. 2016). In NLP, this ap-
proach has been widely used to learn joint models performing

tagging and parsing simultaneously, and all state-of-the-art
(SOTA) models now use a multi-task structure. In general,
given an input sentence x and a set of gold labels y = (l1,
l2...ln), where each li consists of labels for tagging and pars-
ing, the goal of the multi-task structure is to train a joint
model that can provide at the simultaneously a POS tagger
and a dependency parser.

There are many variants of multi-task learning for tagging
and parsing. These variants consist in models sharing parame-
ters between the tasks (Straka 2018) and models sharing vari-
ants (Che et al. 2018; Lim et al. 2018). On top of this, recent
systems trained with Language Model (LM) representations
have shown even better results. One of these models, ELMo
(Peters et al. 2018), which is trained with unsupervised textual
representations using BiLSTM. Models with ELMo obtained
the best performance in the 2018 CoNLL shared task (Che et
al. 2018; Lim et al. 2018). Another more-recent and cutting-
edge LM, BERT (Devlin et al. 2019), which is trained by bidi-
rectional transformers with a masked language model strat-
egy, shows outstanding results in parsing (Kondratyuk 2019;
Kulmizev et al. 2019). While many variants exist, all these
models basically produce a single parser and tagger based
on a single concatenated view. In contrast, Bohnet et al. pro-
posed an approach to build several POS taggers trained by
individual lexical representations and generated a multi-view
model only for POS tagging.

2.2 Co-Training
The standard multi-view learning approaches try to learn
a model by jointly optimizing all the multi-view models
arising from different views as opposed to combining input
level multi-view data. The most representative and one of the
earliest multi-view learning methods is Co-Training (Blum
and Mitchell, 1998). Co-Training and many of its variants
(Nigam and Ghani 2000; Muslea, Minton, and Knoblock
2002; Yu et al. 2011) try to maximize the mutual agreement
of multi-view models on unlabeled data promoting consensus
principle. The unified model is said to have improved when
each view provides some knowledge that the other views
do not possess; that is, different views hold complementary
information.

3 Proposed Approach
We first consider the baseline model introduced by (Lim et al.
2018) and extend it so as to get a multi-view model structure
following (Bohnet et al. 2018). Then, in section 3.3, we pro-
pose a new semi-supervised learning (SSL) approach called
Co-meta. We detail the proposed loss function (Section 3.4)
for Co-Training while taking into account the provided meta
structure.

3.1 The BASELINE Model
As it is known that using information from multiple views
yield better performance, most SOTA multi-task parsers use
both word-level and character-level views to get a lexical
embedding v(wc)

1:n from a sequence of n words w1:n. Most of
these approaches simply concatenate word embedding v(w)

i



Figure 1: Overall structure of our baseline model.

and the character-level embedding v(c)i of wi to form v
(wc)
i .

For example, Figure 1 shows a multi-task parsing architecture
for low-resource scenarios proposed by (Lim et al. 2018).
It obtained good results on the CoNLL 2018 shared task
(Zeman et al. 2018). Specifically, the parser transforms the
sequence of shared lexical representation v(wc)

i to a context-
sensitive vector contextualized by BiLSTM with a hidden
layer r0 as:

h
(pos)
i = BiLSTM(r

(pos)
0 , (v

(wc)
1 , .., v(wc)

n ))i

h
(dep)
i = BiLSTM(r

(dep)
0 , (v

(wc)
1 , .., v(wc)

n ))i

The system uses vector h(pos)i to predict POS with a
Multi-layer Perceptron (MLP) classifier, and h(dep)i forHead
andDepwith a bi-affine classifier (Dozat and Manning 2016).
During training, it learns the parameters of the network θ that
maximize the probability P (yj |xj , θ) from the training set T
based on the conditional negative log-likelihood loss of our
baseline B_loss(θ). Thus,

B_loss =
∑

(xj ,yj)∈T

− logP (yj |xj , θ) (1)

ŷ = argmax
y

P (y|xj , θ)

where (xj , yj) ∈ T denotes an element from the training set
T , y is a set of gold labels (lPOS , lHead, lDep), and ŷ is a set
of predicted labels. The model of Lim et al.1 is subsequently
used as the BASELINE model.

3.2 Supervised Learning on META(META-BASE)
In order to examine whether a multi-view learning approach
similar to that of Bohnet et al. would also be helpful to
perform tagging and parsing jointly, we propose the meta
structure shown in Figure 2. We use Lim et al.’s multi-task
structure of tagging and parsing as our default single-view
model and call the overall system META-BASE.

We define a model Mvi for each view vi ∈ V , where
V is the set of all views. For example, Figure 2 contains

1The parser achieved the 2nd and 4th ranks with regard to UAS
and LAS, respectively, out of 27 teams in the CoNLL 2018 shared
task.

Figure 2: Overall structure of our Co-meta model.

different views for word, character, and meta levels, and V
is expressed as V = {word,char,meta}. Each model Mvi

consists of a BiLSTMvi that contextualizes its view with a
representation hvii for word wi, and an MLP classifier to
predict POS tag and a bi-affine classifier (Dozat and Man-
ning 2016) to predict parsing outputs Head and Dep. As the
input of each view, Mword and M char consume the word-
and character-level embedding, respectively, andMmeta con-
sumes the concatenation of two models’ contextualized out-
puts as [hword

i ;hchari ]. Each Mvi is parameterized by the
network parameter θvi, and the overall network parameter θ
is defined as the union of the network parameters of all views,
that is, θ = ∪vi∈V θvi.

During supervised learning, we train θ to maximize the
probability P (yj |xj , θ) for the input and labeled instance
pair (xj , yj) in the training set T by optimizing over the
supervised loss (S_loss) as follows:

S_loss =
∑

(xj ,yj)∈T

− logP (yj |xj , θ) (2)

which is simply the standard cross entropy loss, where
logP (yj |xj , θ) stands for

∑
vi∈V logP (yj |xj , θvi) for

brevity. Note that the predicted POS results are added to
the parser’s classifier as an embedding (learnable parameters)
during training.

3.3 Co-meta
Co-meta stands for the Co-Training approach on the meta
structure. The main idea of Co-Training is to augment train-
ing data with each model’s confident prediction on unlabeled
data so that each model can learn from other models’ pre-
dictions. While not exactly following the Co-Train approach,
we adopt the idea of one model teaching other models. We
propose to extract the best possible parsing result using all
models’ predictions as ŷ∗ on a given instance x in unlabeled
set U , and make each single-view model learn from ŷ∗ by
optimizing over the proposed unsupervised loss (C_loss) as
follows:

C_loss = −
∑

vi∈V \{meta}

∑
x∈U

g(ŷ∗, ŷvi) logP (ŷ∗|x, θvi). (3)



Here, ŷvi = argmaxy P (y|x, θvi) stands for the output
for view vi and the g(ŷ∗, ŷvi) stands for the confidence score,
which measures the confidence of ŷvi with respect to ŷ∗. The
ways to obtain ŷ∗ can be divided into three variants depending
on how one extracts ŷ∗. We detail the notions of Entropy-
based, Voting-based, and Ensemble-based extraction.

• Entropy-based extraction selects the entire prediction of
model Mvi∗ and set ŷ∗ = ŷvi

∗
where the prediction of

view vi∗ has the lowest entropy for its prediction score
, i.e. vi∗ = argmaxvi∈V P (ŷ

vi|x, θvi). In the entropy-
based approach, the view vi∗ only teaches other views and
does not teach itself.

• Voting-based extraction selects the most popular label
among the three models for each word wm. When there is
no agreement between the output of each model, we select
the prediction of M (meta).

• Ensemble-based extraction selects ŷ∗ using an ensemble
method, that is, ŷ∗ = softmax(

∑
vi∈V P (ŷ

vi|x, θvi)).

In addition, we scale the loss function with the confi-
dence score g(ŷ∗, ŷvi), which measures the similarity be-
tween the two arguments. The idea is to assess how much
confidence one should have in updating model θvi with in-
stance ŷ∗. We hypothesize that if the prediction ŷvi has
a similar structure to the extracted ŷ∗, then the vi-view
model is aligned with the extracted output and thus can
confidently learn from ŷ∗. In more detail, confidence score
g(ŷvi, ŷvj) =

∑n
t=1 I(y

vi
t, y

vj
t)/n ranging from 0 to 1 is

a simple agreement measure between ŷvi, ŷvj normalized
by the sentence length n. Note that we update the parame-
ters of each view model but do not update the parameters of
M (meta) using C_loss to avoid overfitting.

The idea of learning from model’s own prediction was
explored by (Dong and Schäfer 2011) in the context of self-
training but without the confidence score. In our experiments,
all the models without a confidence score showed a decrease
of performance for all the three variants of ŷ∗.

3.4 Joint Semi-Supervised Learning
While labeled data T is small in low-resource scenarios, we
often have larger unlabeled data U . We thus need to leverage
the supervised model Eq.(2) using unlabeled data. Since our
C_loss only requires prediction result ŷ, we can train both T
and U as a joint loss (J_loss) as follows:

J_loss =
∑

(xj ,yj)∈T

− logP (yj |xj , θ) (4)

−
∑
vi∈V

∑
xk∈U

g(ŷ∗k, ŷ
vi
k ) logP (ŷ∗k|xk, θvi)

where T ⊆ U might apply to U , T when using T with-
out labels. During the joint learning phase, we use the in-
dividual CrossEntropy objective function to compute all
the losses with an Adam optimizer. In what follows, let’s
call Co-meta the training process with J_loss on the meta-
LSTM structure.

4 Experiments
4.1 Data Sets
We evaluate Co-meta on the Universal Dependency 2.32

test set for nine languages, following the criteria from (de
Lhoneux, Stymne, and Nivre 2017), with regard to typolog-
ical variety, geographical distance, and the quality of the
treebanks. Our testing languages are thus Ancient Greek,
Chinese, Czech, English, Finnish, Greek, Hebrew, Kazakh,
and Tamil. During training, we use pre-trained word embed-
dings3 and unlabeled data4 from the CoNLL 2018 shared task
to initialize our word embedding v(w) and the SSL presented
in the previous section. When we employ Language Models,
we use pretrained models provided by (Lim et al. 2018) for
ELMo and Google5 for BERT. We use the gold segmentation
result for the training and test data.

4.2 Evaluation Metrics
There are two major evaluation metrics in dependency pars-
ing. The Unlabeled Attachment Score (UAS) is used to eval-
uate the structure of a dependency graph. It measures to what
extent the structure of the parsed tree is correct, without tak-
ing into account the labels on the different arcs of the tree.
The Labeled Attachment Score (LAS) is the same as UAS,
but takes into account dependency labels.

As for POS tagging, we measure the percentage of words
that are assigned the correct POS label. We evaluate our
tagger and parser based on the official evaluation metric
provided by the CoNLL 2018 shared task6.

4.3 Experimental Setup
We sample 50 instances from labeled data as a training
set to test the low-resource scenario following (Guo et al.
2016). In addition, we test our models on extremely low-
resource scenarios to investigate the effect of our semi-
supervised approach. We borrow hyperparameter settings
from the BASELINE and apply them on the single-view layers
in the META-BILSTM structure. In each epoch, we run over
the training data with a batch size of 2 and run only a batch
from randomly chosen unsupervised data. We evaluate our
models on the test sets, and report the average of the three
best performing results, trained with different initial seeds,
within 1,000 epochs. All the reported scores without any
mention are based on the scores from the meta-layer output.

5 Results
Our study has different goals: (1) study the impact of multi-
view based learning, META-BASE Co-meta, on tagging
and parsing in low-resource scenarios, (2) check whether
Co-meta can increase the consensus between single-view
models and the effect of this promoted consensus on
the performance of each-view model and on the overall

2http://hdl.handle.net/11234/1-2895
3http://hdl.handle.net/11234/1-1989
4https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-

1989#
5https://github.com/google-research/bert
6https://universaldependencies.org/conll18/evaluation.html



Table 1: LAS and UPOS scores of M (meta) model output on the test set using 50 training sentences and unlabeled sentences
based using Co-meta, META-BASE, and our BASELINE model (Lim et al. 2018). We report META-BASE to decompose the
performance gain into the gains due to META-BASE (supervised) and Co-meta (SSL). *Kazakh only has 31 labeled instances.
Thus we use only 31 sentences and its unlabeled data are sourced from Wikipedia whereas other languages take the unlabeled
data from the given training corpus after removing label information.

VOTING ENTROPY ENSEMBLE META-BASE BASELINE
corpus unlabeled LAS POS LAS POS LAS POS LAS POS LAS POS
cs_cac (Czech) 23478 47.4 79.4 47.4 79.7 48.7 81.4 45.9 79.0 39.4 74.6
fi_ftb (Finnish) 14981 21.7 43.2 22.0 44.7 21.8 43.5 21.9 44.6 22.6 39.2
en_ewt (English) 12543 45.1 75.7 46.3 76.7 46.5 76.3 45.4 75.2 42.8 71.1
grc_perseus (Ancient Greek) 11460 30.8 70.1 31.7 70.9 31.3 70.7 30.9 70.4 29.5 65.8
he_htb (Hebrew) 5240 47.9 76.9 47.8 77.2 48.4 77.4 47.6 76.7 45.1 75.2
zh_gsd (Chinese) 3997 36.1 70.7 35.1 70.8 36.9 71.1 35.1 70.6 34.8 68.7
el_bdt (Greek) 1162 60.0 84.3 60.6 83.2 60.5 84.2 57.8 82.6 51.7 80.0
ta_ttb (Tamil) 400 38.1 69.1 39.0 69.7 40.0 69.3 38.3 67.3 34.0 61.9
kk_ktb (Kazakh)∗ 12000∗ 27.6 56.9 27.9 57.0 28.7 57.1 27.8 57.7 26.2 53.0
Average - 39.4 69.6 39.8 70.0 40.3 70.1 39.0 69.3 36.2 65.5

Table 2: LAS on Greek(el_bdt) corpus for each model, with
the average confidence score g(ŷ) comparing M (word) and
M (char) over the entire test set using 100 training sentences.

Method WORD CHAR META CONFIDENCE
ENTROPY 61.8 66.7 69.1 0.871
ENSEMBLE 61.4 66.9 69.0 0.879
WITHOUT 57.6 65.2 67.4 0.799

META-BILSTM system, (3) study the effect of unlabeled
data on Co-meta, and finally (4) investigate to what ex-
tent the efficacy of Co-meta remains when the approach is
applied to high-resource scenarios.

5.1 Results in Low-Resource Settings
Impact of Multi-View Learning. Table 1 shows the exper-
imental results of M (meta) on the test data of each language.
We see that the proposed Co-Training method shows average
performance gains of −0.9 ∼ +9.3 LAS points in parsing
and +1.7 ∼ 6.9 points in tagging compared to BASELINE.

Note that the proposed META-BASE approach also shows
a LAS improvement of −0.6 ∼ +6.5 for BASELINE as well.
Breaking down the contribution of improvement, Co-meta
shows −0.3 ∼ +2.8 LAS improvement over META-BASE
and this improvement is comparable to the improvement of
META-BASE over BASELINE.

Comparison of Co-meta Variants. When we compare
the three proposed Co-Training approaches, one can see
that the ENSEMBLE approach seems to work better than EN-
TROPY, and VOTING is always worst. This is because the
best-voted labels for each token do not guarantee to get an
optimal structure over the parse tree at the sentence-level,
since the VOTING model has a relatively high chance of
learning from the inconsistent graph that has multi-roots and
cycling heads among tokens.

Lastly, we also try running Co-meta experiments with-
out confidence scores, i.e., we set the confidence score as
1. We find that, with this configuration, performance always
decreases in comparison to META-BASE, and thus, we con-
clude that the proposed confidence score plays a major role
in stabilizing the Co-Train approach.

Interaction among the layers? More detailed per-layer
analysis of the LAS scores is available in Table 2 for the
case of Greek corpus. Among the three views, CHAR always
outperforms WORD, and all three views improve after using
Co-meta: improvements of 1.6-1.7 LAS point for META,
1.5-1.7 for CHAR and 3.8-4.2 for WORD.

We make three interesting observations. First, we note
that the model with lower performance, namely WORD view
in our example, always benefits the most from other better-
performing views. Second, the evolution of low-performing
views towards better results has a positive effect on META
view, and thus on the overall performance. While the score
CHAR increases by 1.5, META increases by 1.7. If the lower-
performing-view model was not helping, then the improve-
ment would be upper-bounded by the performance gain of
the higher-performing model. Note that we do not update
the META layer θ(meta) when using Co-meta, and all the
gains result from the improvements of the single-view lay-
ers. Lastly, we can observe the CONFIDENCE scores be-
tween word and char views on the last column increase when
we apply Co-meta. As the Higher CONFIDENCE denotes
that models predict a similar tree structure, we can confirm
that Co-meta indeed promotes the consensus between the
views.

Sensitivity to the Domain of the Unlabeled Set. In Table
3, we investigated a more realistic scenario for our semi-
supervised approach for two languages, Chinese and Greek,
by using out-of-domain data: Wikipedia and a crawled corpus.
In the case of Chinese, the crawled out-domain corpus shows
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Figure 3: Evaluation results for Chinese (zh_gsd) based on the different sizes of the train set and proposed models. We apply
ENSEMBLE based Co-meta with the fixed size of 12k unlabeled sentences while varying training set size.

Table 3: Scores of Co-meta with the ENSEMBLE method
on different domains of unlabeled data with 100 training
sentences.

Labeled Unlabeled size LAS UAS POS
el_bdt el_bdt 1162 69.0 75.6 88.5

(Greek) wikipedia 12000 68.7 75.1 88.7
crawl 12000 68.3 74.8 88.4

zh_gsd zh_gsd 3997 45.3 57.9 76.9
(Chinese) wikipedia 12000 46.3 59.1 77.6

crawl 12000 46.1 59.0 77.8

better results than the in-domain corpus for both ENTROPY-
based and ENSEMBLE-based Co-meta, by up to 1.1 UAS
and 0.9 POS points. In contrast, for Greek, the in-domain cor-
pus (el_bdt) shows a better result than the out-domain corpus
even when the size of el_bdt is only about 13% of the others.
We conjecture that as the Chinese has large character sets,
the exposure to diverse characters helps learning regardless
of the domain.

Effect of Training Size on Performance. Table 1 shows
positive results for the Co-meta given fixed size train data.
However, would Co-meta be useful even with extremely
low resource scenarios (<50 sentences)? And also in a more
favorable scenario, when more resources are available for
training (e.g. >1000 sentences)? To answer these questions,
we conducted an experiment using the zh_gsd (Chinese) cor-
pus with training sets of different sizes, but with a fixed set of
12k unlabeled data. The results are visible in Figures 3(A,B).

Figure 3(A) shows our results for the lower resource sce-
nario (with less than 50 sentences for training). Co-meta
outperforms META-BASE and BASELINE except when only
five sentences are used for training. We conjecture that this
result is attributable to the fact that too little vocabulary is

used to allow meaningful generalization. A similar behav-
ior was observed for fi_ftb in Table 1: in this experiment,
there is only 241 token available for fi_ftb, whereas other lan-
guages had on average ∼1388. However, as observed in Fig-
ure 3, once we expand the labeled instances (>20 sentences),
Co-meta and META-BASE always outperform BASELINE,
both in lower (3A) and higher resource (3B) settings. Also
note that Co-meta always outperforms META-BASE, includ-
ing when one only has 5 labeled instances for training.

We can refine our analysis by examining the different
layers of META-BASE and Co-meta that appear on Figure 3
A-1. META-BASE is detailed on Figure 3 C-2 and Co-meta
on Figure 3 C-1. In most cases, META stays close to the
highest performing view (the WORD layer for most cases).
One interesting fact is that the WORD as well as meta layer
of META structures outperform the BASELINE which is built
on a combined view.

The biggest contrast between Co-meta and META-BASE
is the gap between the performances of the WORD and the
CHAR layers. A closer look at META-BASE(C-2) seems to
indicate that the performance of the META layer cannot differ
too much from the lower-performing layer (CHAR in our
case). When the gap between WORD and CHAR becomes
too large (>5 points), then the performance gain of META
layer is parallel to that of CHAR layer for train size of 10–
50 even when the WORD layer makes steeper performance
gains. In contrast, the Co-meta’s META layer from 3(C-1)
shows more stable performance as the gap between CHAR
and WORD is minimal as the two layers learn from each other.

To summarize from Table 1 and Figure 3, the proposed SSL
approach is always beneficial for the META-BILSTM struc-
ture when comparing the LAS scores between Co-meta and
META-BASE. However, the META-BILSTM structure itself
might not benefit when too few tokens exist in the train set.
In general, we hypothesis that for META-BILSTM structure



Table 4: LAS for the English (en_ewt) corpus for each model,
with the external language models with the entire train set.

Model LM LAS UAS POS
UDPIPE (2019) - 86.97 89.63 96.29
BASELINE (2018) - 86.82 89.63 96.31
METABASE - 86.95 89.61 96.19
CO-META - 87.01 89.68 96.17
BASELINE (2018) ELMo 88.14 91.07 96.83
METABASE ELMo 88.28 91.19 96.90
CO-META ELMo 88.25 91.19 96.84
UDIFY (2019) BERT-MULTI 88.50 90.96 96.21
UUPARSER (2019) BERT-MULTI 87.80 - -
BASELINE BERT-MULTI 89.34 91.70 96.66
METABASE BERT-MULTI 89.49 92.01 96.75
CO-META BERT-MULTI 89.52 91.99 96.80
CO-META BERT-BASE 89.98 92.25 97.03

to be useful, the train set should consist of more than 300
tokens (more than 20 sentences) to provide generality.

5.2 Results in High-Resource Settings
Although the lack of annotated resources for many languages
has given rise to low-resource approaches, several languages
exist with plenty of resources. We thus need to examine
whether our approach is also effective in more favorable set-
ting, when large scale resources are available. A comprehen-
sive overview is shown in Table 4, where different systems
using no language model (first part of the table), or ELMo
(Peters et al. 2018) or BERT (Devlin et al. 2019) language
models are evaluated.

Table 4 includes a comparison of our results using the
approach presented in this paper with four state-of-the-art
systems. The first system is BASELINE (introduced in section
3.1), which obtained the best LAS measure for English in
the 2018 CoNLL shared task. The second is UDPIPE (Straka
2018; Kondratyuk 2019) which was one of the best perform-
ing systems during the 2018 CoNLL shared task (best MLAS
score, that combines tagging and parsing, and 2nd for the
average LAS score). UDPIPE uses a multi-task learning ap-
proach with a loosely-joint LSTM layer between tagger and
parser. The third system is UDIFY (Kondratyuk 2019) (de-
rived from UDPIPE), where the LSTM layer is replaced with
BERT embedding, which is in turn fine-tuned during train-
ing. The fourth system is UUPARSER wherein concatenated
word, character and BERT embedding serves as an input, i.g.,
hi =[v(wc);v(bert)].

Effect of Co-meta On High-Resource Settings without
LMs. By expanding the baseline with our meta-LSTM and
SSL approach, we observe a slight improvement of up to
0.19 and 0.04 points against the BASELINE and UDPIPE, re-
spectively. In contrast, we find that both META-BASE and
Co-meta slightly underperform the BASELINE in tagging,
which goes against our intuition. One possible reason might
be that there is enough data to get accurate results using a
supervised learning approach while SSL suffers from unex-
pected surface sequences. Another evidence of this is that

SSL did not bring further improvement when using more
than 10,000 training sentences. In contrast, interestingly, Chi-
nese for which we had a relatively small train set (3,997), is
positively affected by SSL, with a gain of up to 0.21 LAS
points comparing to UDPIPE, 1.12 points with BASELINE.
We assume that the main reason for this is the character set.
Languages with a bigger character set size and little training
data gain more influence with SSL.

Effect of Co-meta On High-Resource Settings with
LMs. While we train our model with a LM, we concate-
nate the last layer of the LM embedding with the input of
the BiLSTM (meta) presented in the previous section. Fi-
nally, the input of our meta model consists of three different
contextualized features as [h(word)

i ;h(char)i ;v(lm)
i ].

On average, adding a LM provides excellent results for
both dependency parsing and POS tagging outperforming
cases without LMs by large margins, up to 1.27 LAS for
ELMo and 2.97 for BERT. Furthermore, our parser with
Co-meta globally shows better results than the state-of-
the-art parsers that use ELMo (Lim et al. 2018) and BERT-
Multilingual model (Kondratyuk 2019). However, it should
be noted that the UDIFY model used by (Kondratyuk 2019)
(that includes Bert-Multilingual as a LM) was first trained
with 75 different languages using Universal Dependency
corpora and then tuned for English, and it is not clear how this
training process affects the performance. Thus, we add the
results of UUPARSER and BASELINE with BERT to represent
fine-tuning in a monolingual way only and still found that
CO-META+BERT-MULTI shows better performance.

We generalized Co-meta by adding an additional view:
LM embedding. We conclude that Co-meta can, surpris-
ingly, result in positive effects by more than 1–1.7 points
compared to competing models and by 0.2 compared to the
BASELINE even in a high-resource setting.

6 Conclusion
In this paper, we have presented a multi-view learning
strategy for joint POS tagging and parsing using Co-
Training methods. The proposed entropy and ensemble-based
Co-meta yield the best result. This strategy is especially
well suited for low-resource scenarios, when only a very
small sample of annotated data is available, along with larger
quantities of unlabeled data. Our experiment shows statisti-
cally significant gains (-0.9 to +9.3 points compared to the
baseline), largely due to the proper integration of unlabeled
data in the learning process. As future research, we wish to
apply Co-meta to other sequence-labeling tasks such as
Named Entity Recognition and semantic role labeling.
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