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Bisimilar Booleanization of Multivalued Networks

Franck Delaplace�, Sergiu Ivanov

IBISC - Paris-Saclay University, Univ. Evry

Abstract

Discrete modelling frameworks of Biological networks can be divided in two
distinct categories: Boolean and multivalued. Although multivalued net-
works are more expressive for qualifying the regulatory behaviours mod-
elled by more than two values, the ability to automatically convert them to
Boolean network with an equivalent behaviour breaks down the fundamental
borders between the two approaches. Theoretically investigating the conver-
sion process provides relevant insights into bridging the gap between them.
Basically, the conversion aims at finding a Boolean network bisimulating a
multivalued one. In this article, we investigate the bisimilar conversion where
the Boolean integer coding is a parameter that can be freely modified. Based
on this analysis, we define a computational method automatically inferring
a bisimilar Boolean network from a given multivalued one.

Keywords: Boolean Network, multivalued network, Bisimulation,
Biological network modelling, Automatic conversion inference

1. Introduction

Discrete network based modelling frameworks, seminally introduced by
S. Kauffman (Glass and Kauffman, 1973; Kauffman, 1969) and R. Thomas (Thi-
effry and Thomas, 1995; Thomas et al., 1995) for regulation network mod-
elling can be divided in two distinct categories: Boolean networks and multi-
valued networks. In the former, the states of genes are modelled by Boolean
values, with propositional logic as the modelling framework, whereas in the
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latter the state is extended to the integer domain, also called multivalued,
using Presburger arithmetic as modelling framework. It is often admitted
that multivalued networks provide more expressiveness for modelling gene
expression behaviour by distinguishing between more than two states (i.e.,
off or on) for specifying the regulatory activity. However, the ability to au-
tomatically convert a multivalued network to a Boolean one with the same
dynamical behaviour weakens this distinction from an analytical standpoint
since the analysis of the dynamics can be performed on the Boolean network
directly.

More generally, the Boolean conversion of a multivalued network offers
the opportunity to bridge the gap between the two modelling formalisms
that enables to inherit, adapt and extend the theoretical results defined in
a framework to the other (Tonello, 2019). Moreover, this allows the use of
software based on propositional logic that could prove computationally more
efficient than the algorithms developed for Presburger arithmetic for the same
problem. In particular, a wide spectrum of problems in modelling regulatory
networks by symbolic characterization of stable states can be formalized as
problems of logical valuation of variables satisfying a formula in the Boolean
case (the SAT problem) or finding solutions complying to a set of linear
constraints for the integer case (integer linear programming, ILP). (Aloul
et al., 2002) provide an experimental comparison of ILP and SAT solvers
applied to the SAT problem.

By considering these opportunities, the issue is thus to investigate meth-
ods for converting multivalued networks to Boolean while preserving the
dynamical behaviour. This conversion is primarily based on an encoding of
integers by Boolean profiles, establishing the equivalence between the two
kinds of values. The challenge is to extend this equivalence to state transi-
tions in order to certify the behavioural integrity.

In (Didier et al., 2011), G. Didier, E. Remy and C. Chaouiya extensively
study the conditions for the conversion of multivalued networks to Boolean
ones using Van Ham code (Van Ham, 1979) (Section 4). To overcome the po-
tential limitation of Van Ham code restraining the dynamics to a sub-region
of the Boolean state space, A. Fauré and S. Kaji study the conversion based
on Summing code (Section 4), which provides several alternative Boolean
profiles for encoding an integer, such that the resulting Boolean dynamics
is deployed on the whole Boolean state space (Fauré and Kaji, 2018). Fol-
lowing similar motivations, E. Tonello also studies the conversion based on
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this code (Tonello, 2019). Regarding conversion tool, A. Naldi developed the
Java library biolqm (Naldi, 2018), which is a toolkit dedicated to qualitative
analysis of biological regulatory networks, and which includes a multivalued
to Boolean converter. The converter is based on Van Ham coding and en-
sures that the trajectories always converge to the region of the valid Boolean
codings, called the admissible region (Section 3), thereby avoiding potential
spurious equilibria outside this region. This converter is also available in
ginsim 3.0 environment (Chaouiya et al., 2012), which relies on biolqm.

These research works elegantly pave the formal foundation of the multi-
valued to Boolean network conversion. However, the results are intrinsically
dependent on a specific coding, the Summing and Van Ham code. Moreover
they are mainly designed for the asynchronous mode. Therefore, it appears
interesting to generalise this approach by distinguishing the properties that
purely relate to the conversion process from those depending on the code for
highlighting the foundations of this process.

The behavioural equivalence is formally defined by the reachability preser-
vation property, namely: whenever an integer state is reachable from another
one, the equivalent Boolean state of the former is also reachable by the equiv-
alent Boolean state of the latter, and conversely. Reachability preservation
relies on the existence of a bisimulation (Sangiorgi, 2011) between both net-
works, parametrised by the Boolean-to-integer coding. While preserving the
reachability is essential, it also appears desirable to extend the preservation
to structural properties of the interactions and other properties related to
equilibrium. In this article, we study the network conversion by regarding
it as a bisimulation process applied to any Boolean coding of the integers.
Based on this study, we propose an algorithm inferring the formulas of a
Boolean network behaviourally equivalent to the input multivalued network.

After recalling the main notions of multivalued networks (Section 2), we
examine the bisimulation properties between the dynamics of the networks
and the admissibility conditions for stating a bisimulation between a mul-
tivalued and Boolean networks (Section 3) with regard to different codings
(Section 4). Then, we study the extension of the properties preserved by con-
version (Section 5). Finally we define a method inferring a Boolean network
bisimilar to the multivalued one whatever the coding procedure (Section 6).
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We use the following notations:

Set. The complement of a subset EzE 1, E 1 � E is denoted by �E 1. A
singleton teu is denoted by its element e. The set of parts of E is noted
2E � tE 1 | E 1 � Eu.

State. A state s is an application from variables Y to a domain of values D,
i.e., s � ty1 ÞÑ d1, . . . , yn ÞÑ dnu and DY � pY Ñ Dq denotes the state space
defined on variables Y . We define JLKY as the state domain defined on the
integral interval between 0 and L, i.e., JLKY � pY Ñ tdi | 0 ¤ di ¤ Luq. The
restriction/projection of a state s P DY on W � Y is denoted sW P DW . This
notation also holds for function on states, i.e., dom gW � DW . A substitution
within a state s is the replacement of the value of a variable of s by another
value, formally defined as: sry ÞÑvs � szty ÞÑ syu Y ty ÞÑ vu. The distance on
states is defined as: dps, s1q �

°n
i�1 |syi � s

1
yi
|.

2. multivalued networks

A multivalued network xg, Y y defined on a set of variables Y is a dynamical
system characterized by an evolution function g.

Let L � tLi P N | 1 ¤ i ¤ nu, n � |Y | be an indexed set of integral values
(levels), we define: JLKY �

�n
i�1JLiKyi as the product of finite multivalued

state domains. The evolution function on this domain g : JLKY Ñ JLKY is
composed of a collection of local evolution functions g � pg1, � � � , gnq such
that gi : JLKY Ñ JLiKyi is defined as follows (see Figure 1 for an example):

gipsq �

$'''''''''''&'''''''''''%

1 if C1psq

2 if C2psq

� � �

l if C lpsq

� � �

Li if CLpsq

0 otherwise

(1)

where C l is the guard of level l such that all the guards are mutually exclusive,
namely:

@s P JLKY , @ 1 ¤ l, l1 ¤ Li : l � l1 ùñ  pC lpsq ^ C l1psqq.
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Hence, the application gipsq equals level l if and only if the guard C lpsq is
satisfied, and by convention 0 is returned when no guards are satisfied.

Model of dynamics. The model of dynamics of a multivalued network xg, Y y
is formalized by a labelled transition system xJLKY ,M,ÝÑgy where the la-
bels are sets of variables that determine which variables are updated jointly
during a transition. The mode M � 2Y describes the organization of the
joint updates per transition. For example, in the asynchronous mode, 1Y �
ttyiuuyiPY , the state of one variable only is updated per transition and in the
parallel or synchronous mode tY u, all the variables are updated together.
The mode is also introduced in the network specification if needed, i.e.,
xg, Y,My.

Thus, only the state of the variables in m P M can be updated by a
transition s

m
ÝÑg s

1 whereas the state of the other variables remains un-
changed i.e., s1 � gmpsq Y s�m. A transition that does not change the state,
s

m
ÝÑg s, is called a self-loop. The global transition relation corresponds to

the union of all transition relations labelled by the components of the mode:
ÝÑg�

�
mPM

m
ÝÑg .

Hereafter, f : BX Ñ BX ,B � t0, 1u, always stands for a Boolean func-
tion, g : JLKY Ñ JLKY designates a multivalued/integer function, and Y
corresponds to a set of integer variables. w P BX represents a Boolean state
whereas s P JLKY a multivalued one.

Multivalued network is subjected to properties distinguishing the evolu-
tion behaviour capabilities. Specifically, the dynamics in which transitions
modify the current level by 1 only (i.e., @s ÝÑ s1, @yi P Y : dpsyi , s

1
yi
q ¤ 1) is

said unitary stepwise.

Equilibrium. A state s is an equilibrium, if it can be reached1 infinitely once
met:

@s1 P NY : s ÝÑ� s1 ùñ s1 ÝÑ� s. (2)

An attractor is a set of equilibria that are mutually reachable and a stable
state is an attractor of cardinality 1.

Figure 1 shows an example of a multivalued network and the resulting
dynamics for the asynchronous mode with two stable states that are respec-
tively 13 and 00.

1ÝÑ� denotes the reflexive and transitive closure of ÝÑ.
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g �

$'''''''''''&'''''''''''%

x �

#
1 y ¥ 1

0 otherwise

y �

$'''&'''%
3 x � 1^ y ¥ 2

2 px � 1^ y � 1q _ px � 0^ y � 3q

1 px � 1^ y � 0q _ px � 0^ y � 2q

0 otherwise

x y
�

�
�

00

13

01

02

03

10

11

12

y

x

y

x

y

x

x

y

y

y

Figure 1: A multivalued network with the interaction graph (below) and the asynchronous
dynamics (right), with the self-loops removed.

Interaction graph. An interaction graph xY, y portrays the interdepen-
dencies of the variables in the network xg, Y y. An interaction yi yj exists
whenever changing the value of yi may lead to a change in the value of yj:

yi yj
def
� Ds, s1 P NY : syi � s1yi ^ s�yi � s1�yi ^ gjpsq � gjps

1q. (3)

The signed interaction graph xY, , σy refines the nature of the interac-
tions by signing the arcs with σ : p q Ñ t�1, 0, 1u to represent a monotone
relation between the source and target variables of the interaction (4); either
increasing (label 1, denoted 1�1), or decreasing (label �1, denoted 1�1), or
neither (label 0, denoted 1�1), and formally defined as:

yi
� yj

def
� yi yj^

@s, s1 P NY : syi ¤ s1yi ^ s�yi � s1�yi ùñ gjpsq ¤ gjps
1q

yi
� yj

def
� yi yj^

@s, s1 P NY : syi ¤ s1yi ^ s�yi � s1�yi ùñ gjpsq ¥ gjps
1q

(4)
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3. Network bisimulation

By definition (Sangiorgi, 2011), bisimulation between the dynamics of net-
works preserves the reachability, thereby maintaining the trajectories and the
attractors in both ways. Definition 1 illustrated in Figure 2 formally defines
functional bisimulation, which depends on a partial function ψ : BX Ñ JLKY
decoding a Boolean state to an integer state.

Definition 1. Given a Boolean network B � xf,X,MXy and a multivalued
network N � xg, Y,MY y, a pair of functions pψ, µq, with ψ : BX Ñ JLKY a
partial function and µ : MX Ñ MY a total function, form a bisimulation if
and only if the following properties hold:

1. (forward simulation) for any two Boolean states w,w1 P domψ and

m PMX , w
m
ÝÑf w

1 implies ψpwq
µpmq
ÝÑg ψpw

1q:

@w,w1 P domψ, @m PMX : w
m
ÝÑf w

1 ùñ ψpwq
µpmq
ÝÑg ψpw

1q;

2. (backward simulation) for any two multivalued states s, s1 P JLKY , for
any w P BX such that ψpwq � s, and for any n PMY , s

n
ÝÑg s

1 implies
that there exists a w1 P BX and an m P MX such that ψpw1q � s1,
µpmq � n and w

m
ÝÑf w

1:

@s, s1 P JLKY , @w P BX , @n PMY : ψpwq � s^ s
n
ÝÑg s

1 ùñ�
Dw1 P BX , Dm PMX : µpmq � n^ ψpw1q � s1 ^ w

m
ÝÑf w

1
�
.

w

w1

m

ψpwq

ψpw1q

µpmq

(a) Forward simulation

s

s1

n

@w P ψ�1psq

Dw1 P ψ�1ps1q

Dm P µ�1pnq

(b) Backward simulation

Figure 2: Illustration of a bisimulation pψ, µq between a Boolean and a multivalued net-
work. ψ�1psq and µ�1pnq denote the preimages of s and n under ψ and µ respectively.

Two networks B and N complying with Definition 1 with respect to ψ
are said bisimilar, noted B �ψ N . Although, (1.2) and (1.1) are similar in
their definition, it is worth noticing that they however differ in the following
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point: all the transitions on the integer state space should fulfill (1.2) whereas
only the transitions defined on the domain of ψ, domψ, should comply with
(1.1). domψ circumscribes the admissible region (Fauré and Kaji, 2018;
Tonello, 2019), where each Boolean state encodes an integer state and each
transition is bisimilar to a multivalued one. Hence, no transitions from a state
located in the admissible region can escape from this region, thus avoiding
aberrant cases exemplified in (Tonello, 2019). From (1.2), we deduce that ψ
is a surjective partial function defined on BX but it is not necessary injective
and thus not bijective. Hence, the preimage of an integer state is a set:
ψ�1psq � tw P BX | ψpwq � su.

The issue is to determine the conditions on a Boolean network enabling
a bisimulation with a multivalued network. These conditions depend on
a general relation between the integer and Boolean function including the
mode.

3.1. From global to local bisimulation discovery

Integer states are coded by the Boolean states in which the Boolean vari-
ables storing the code constitute the support of the integer variables. The
support function associates each subset of integer variables to its support:p� : 2Y Ñ 2X . This function has the following properties: 1) the Boolean
variables are exactly the supports of the integer variables, 2) the supports
are pairwise disjoint, and 3) they are modular in the sense that the union of
the supports is the support of the union of the integer variables:

1q X � pY and,
2q @yi, yj P Y : yi � yj ðñ pyi X pyj � H and,

3q @Y 1, Y ” � Y : {Y 1 Y Y ” �xY 1 Y xY ”.

(5)

For example, the state spy1,y2q � p0, 1q is encoded by w � p00, 01q by using the
classical binary code or the Gray code. The variables of the Boolean network
will be therefore the variables supporting the Boolean code of the integer
variables of Y (X � pY ). The states of Boolean variables are respectively:
w
xy11 � 0, w

xy12 � 0, w
xy21 � 0, w

xy22 � 1. Note that there are two kinds of
indices: one for the multivalued variables, and the other for the Boolean
variables of the corresponding supports.

We consider henceforth that ψ fits all supports, i.e.,

ψ P
¤
W�Y

�
B
xW Ñ JLKW

�
.
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The function ψ transforms the Boolean state of the support into an integer
state in a modular manner, by decoding distinct sub-parts of a Boolean state
separately, so that the decoding of the whole integer state is the union of the
local decoding results:

@W � Y, @w P B
pY : ψpw

xW q � ψpwqW . (6)

From (5,6) we deduce the following relation on two disjoint sets of variables
representing the modularity of the decoding:

ψpw
{WYW 1

q � ψpw
xW qYψpwyW 1

q � ψpwqW YψpwqW 1 ,WXW 1 � H,W,W 1 � Y.

Moreover, the mode of the converted Boolean network must be compat-
ible with the modularity of the coding. A mode is local-to-support when
the parallel updates of the Boolean variables operate inside supports only,
namely M is local-to-support if and only if: @m P M, Dyi P Y : m � pyi.
The asynchronous mode is always local-to-support and the parallel local-
to-support mode update all the support variable in parallel: tpyiuyiPY . The
parallel mode for the Boolean network is not local-to-support since the joined
update is accross all the supports.

Within the framework, inferring a Boolean network bisimilar to a multi-
valued one is reduced to the discovery of a Boolean network in bisimulation
with a local multivalued network xgi, Y y where only the state of a single vari-
able evolves. A Boolean network in bisimulation with the entire multivalued
network results from the union of Boolean networks in bisimulation with lo-
cal multivalued networks (Proposition 1). Hence, for each gi, we focus on the
discovery of the appropriate evolution function of the support f

pyi and the
determination of the admissible modes for enabling the bisimulation.

Proposition 1. Consider the multivalued network N � xg, Y,1Y y and the
family pBiqyiPY of Boolean networks over the supports of the variables in Y :
Bi � xf pyi , X,Myiy, Myi � 2 pyi. Then the following holds:�
@yi P Y : xf

pyi , X,Myiy � xgi, Y,1yiy
�
ùñ xf,X,

¤
yiPY

Myiy � xg, Y,1Y y.

where f � pf
pyiqyiPY and g � pgiqyiPY are the global evolution functions col-

lecting their respective local evolution functions.
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According to the definition of a transition (Section 2) and to Proposi-
tion 1, for establishing a bisimulation relation between a multivalued transi-
tion function f and a Boolean transition function g, it suffices that the local
integer evolution function applied to the decoding gi �ψpwq coincide with the
Boolean evolution function ψ � f

pyipwq or, more generally, with the evolution
taken under a local-to-support mode:

ψ � f � g � ψ Global function
ψpfmpwq Y w pyizmq � gi � ψpwq,m � pyi Local-to-support mode

(7)

If ψ is a bijective function then (7) is expressed as f � ψ�1 � g �ψ, which
corresponds to the conjugated evolution function defined in Didier et al.
(2011).

Theorem 1 shows that Property (7) is necessary and sufficient to ascertain
that a multivalued network bisimulates a Boolean network with a local-to-
support mode.

Theorem 1. Let N � xgi, Y,1yiy be a multivalued network, B � xf
pyi ,
pY ,My

a Boolean network with M a local-to-support mode, and ψ : B
pyi Ñ JLKyi, a

surjective function, Property 7 is met between the evolution functions of B
and N if and only if B �ψ N .

3.2. Bisimulation admisibility

The bisimulation necessitates to comply with conditions involving the
mode and the coding. In this section we focus on the admissibility condition
for the bisimulation extending the result of Theorem 1.

Admissibility based on mode and coding. The mode may prevent the bisim-
ulation by forbidding the implementation of a Boolean transition simulating
a multivalued transition. For example, assume that gip0q � 2 leading to the

multivalued transition 0
yiÝÑ 2, the Boolean transition simulating it is nat-

urally 00
w
py1
,w
py2ÝÑ 11 using the Gray code or any coding procedures detailed

in Section 4. However, this Boolean transition cannot be implemented in
the asynchronous mode because both variables of the support should be up-
dated jointly which is prohibited by the mode policy. Now, assume that the

binary code is used leading to the Boolean transition 00
w
py1
,w
py2ÝÑ 10 then the

asynchronous Boolean transition is enabled by updating the first Boolean
support variable (w

py1) only. Hence, the mode selection strongly depends on
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a relation between the mode and the coding. Therefore the primary admissi-
bility condition for the bisimulation lies on the mode selection of the Boolean
network with regards to the coding that should enable the simulation for all
multivalued transitions considered independently. Formally, a transition of
a Boolean network B � xf,W,My always fulfils:

@w,w1 P BW , @m PM : w
m
ÝÑ w1 ùñ dpw,w1q ¤ |m|.

Otherwise, the transition cannot be implemented due to the number of mod-
ifications exceeding the permitted capacity offered by the mode. The per-
missible distance for enabling a transition has connexion with the distance
on Boolean coded integers. All the codings ψ described in Section 4 fulfil the
condition stipulating that the distance between multivalued states is always
lower or equal to the (Hamming) distance of their Boolean code:

@syi , s
1
yi
P JLiKyi : ψpw

pyiq � syi , ψpw
1
pyi
q � s1yi ùñ dpsyi , s

1
yi
q ¤ dpw

pyi , w
1
pyi
q.

Thereby, if a Boolean network B bisimulates a multivalued network N �
xgi, Y,1yiy, we deduce from these two previous properties that:

@s P JLKY , @w,w1 P B
pY , @m PM :

ψpw
pyiq � syi ^ψpw

1
pyi
q � gipsq ^w

m
ÝÑ w1 ùñ dpsyi , s

1
yi
q ¤ dpw,w1q ¤ |m|.

This property characterizes the unique necessary bisimulation admissibility
condition with regards to a local-to-support mode used for Boolean network
and the codings of Section 4. An admissibility test can be finally derived
establishing a condition between the multivalued network and the mode of
the Boolean network directly:

@s P JLKY , @yi P Y : dpsyi , gipsqq ¤ mint|m| | m PMu. (8)

As practical consequence, the local-to-support parallel/synchronous mode
enables the bisimulation with any multivalued network and only the unitary
stepwise multivalued network (Section 2) can be bisimulated by asynchronous
Boolean network since the cardinality of the modalities is always 1.

Family of admissible bisimilar Boolean networks. Theorem 1 states the equiv-
alence between bisimilarity and Property 7 for local-to-support modes. we
extend this result to a larger family of modes that are admissible with re-
spect to the parallel mode. Informally, a modality m is m0-admissible if, for
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any Boolean state w, running f on w under m or under m0 yields (possi-
bly different) states belonging to the same preimage under ψ. Definitions 2
and 3 detail this compatibility formally. Both definitions assume the Boolean
network B � xf, pY ,M0y operating in mode M0 and the multivalued network
N � xgi, Y,1yiy.

Definition 2. A mode component m P M is m0-admissible with respect
to the functional bisimulation B0 �ψ N denoted by admψpm,m0q, if the
following holds:

@w P B
pY : ψpfm0pwq Y w�m0q � ψpfmpwq Y w�mq.

w w1

w2

fm0

fm

ψpwq ψpw1q � ψpw2q

ψ ψ

Figure 3: Illustration of m0-admissibility admψpm,m0q of a mode component m with
respect to the bisimulation B �ψ N .

Figure 3 illustrates the implications of Definition 2. Essentially, two mode
components are admissible with respect to the bisimulation relation �ψ if the
image of any Boolean state under these two mode components yields Boolean
states which are mapped by ψ to the same multivalued state. Notice that
it follows directly from the definition that admissibility is an equivalence
relation on mode components. Admissibility can be naturally lifted from
mode components to modes:

Definition 3. A mode M is M0-admissible with respect to the functional
bisimulation B �ψ N , denoted by admψpM,M0q, iff the following conditions
hold:

1. @m0 PM0, Dm PM : admψpm,m0q;

2. @m PM, Dm0 PM0 : admψpm,m0q.

12



According to the definition, a mode M is M0-admissible if, for every
modality m P M , there exists a modality m0 P M0 such that m is m0-
admissible. Note that this requirement does not imply the existence of a
bijection between M and M0: two functions M0 Ñ M and M Ñ M0 are
indeed required by, respectively, clauses (1) and (2) of Definition 3, but they
may not be each other’s inverses.

Lemma 1. The relation of admissibility with respect to the functional bisimu-
lation B �ψ N , defined on all possible modes of B, is an equivalence relation.

Intuitively, two modes are admissible with respect to a functional bisimu-
lation �ψ if the application of ψ to the transitions in both dynamics leads to
the same dynamics that corresponds to the dynamics of N . This implies that
admissible modes cannot be distinguished with respect to the bisimulation
relation. The following theorem formally captures this observation.

Theorem 2. Given the functional bisimulation B �ψ N between the Boolean

network B � xf, pY ,M0y and the multivalued network N � xgi, Y,1yiy, any

Boolean network B1 � xf, pY ,My with admψpM,M0q functionally bisimulates
N as well:

@M � 2
pY : B �ψ N ^ admψpM,M0q ùñ B1 �ψ N.

N � xgi, Y,1yiy

B � xf, pY ,M0y B1 � xf, pY ,My
�ψ �ψ

admψpM,M0q

Figure 4: Diagrammatic illustration of Theorem 2.

Figure 4 illustrates the statement of the previous theorem diagrammati-
cally. Given a boolean network B which is functionally bisimilar to a mul-
tivalued network N under the mapping ψ, any other Boolean network B1

with the same variables and evolution functions as B1, and with an admissi-
ble mode with respect to ψ, is also functionally bisimilar to the multivalued
network N . Theorem 2 allows us to prove the bisimilarity of a network with
another mode provided that Property (7) holds and the mode is admissible.
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Corollary 1. Let B � xf, pY ,My, B1 � xf, pY ,M 1y be two Boolean networks,
ψ : B

pY Ñ JLKY a surjective function, and N � xgi, Y,1yiy a multivalued
network. If Property 7 holds for B, N , and ψ, and if admψpM,M 1q, then
B1 �ψ N.

4. Boolean coding

The coding procedure characterizes a function ψ mapping a Boolean pro-
file to an integer. We study two fundamental codes that are suitable for
asynchronous Boolean dynamics: the Summing code and the Gray code. Ta-
ble 1 shows both codings for encoding levels ranging from 0 to 3.

Summing code. For the Summing code, the integer is the sum of the states
of the Boolean support variables:

ψpw
pyiq �

¸
pyikP pyi

w
pyik .

The size of the support is linear in the maximal level, |pyi| � L, and different
encodings are possible for the same integer. The number of different codes
for an integer 0 ¤ l ¤ L is

�
L
l

�
. Van Ham code (Van Ham, 1979) is a sub-case

of the Summing code in which the unitary stepwise evolution restricts the
filling of 1 from left to right. The van Ham code is emphasized in bold in
Table 1.

Gray code. The Gray code associates Boolean states differing in only one po-
sition to consecutive integers. The coding function is bijective and constructs
the integer value from a Boolean state by first transforming a Gray code pro-
file into its equivalent binary code and then by computing the integer from
this coding2:

ψpw
pyiq �

| pyi |̧

k�1

2| pyi|�k.
kà
j�1

w
pyij .

The support size is logarithmic in the maximal level: |pyi| � rlog2pL� 1qs.

The Summing code is defined on the whole Boolean state space (i.e.,
domψ � B

pY ). The Gray code can be also defined on the whole Boolean space

2` is the exclusive or, xor.
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0 1 2 3

p0, 1, 0q p1,1,0q

p0,0,0q p1,0,0q p0, 1, 1q p1,1,1q

p0, 0, 1q p1, 0, 1q

- Summing code -

p0, 0q p0, 1q p1, 1q p0, 1q

- Gray code -

Table 1: Example of codes for levels ranging from 0 to 3. The states correspond to the
variable profiles ppyi1, pyi2, pyi3q. The links connect codes differing by 1, and the codes in
bold correspond to Van Ham sequence.

when the maximal number of levels is L � 2k�1. The Van Ham code, on the
other hand, never covers the entire Boolean space, except when the maximal
level is 1 corresponding to Boolean. All these codings associate the integer
0 to the 0 Boolean profile. Furthermore, they all fulfil the neighbourhood
preserving property (9) defined in Didier et al. (2011) and stressing that
the distance of 1 between two integer states should map to a distance of 1
between the corresponding Boolean states, and conversely:

@s, s1 P JLKY : dps, s1q � 1 ùñ Dw P ψ�1psq, Dw1 P ψ�1ps1q : dpw,w1q � 1 ^

@w,w1 P domψ : dpw,w1q � 1 ùñ dpψpwq, ψpw1qq � 1.

(9)

These codes are individual representatives of families of linear and log-
size codes which can be obtained by a permutation π on the integer states,
i.e., ψ1 � π � ψ. This permutation may notably relax the neighbourhood
preserving property. In literature, the study of the multivalued-to-Boolean
network conversion has been carried out extensively for Summing and Van
Ham codes (Didier et al., 2011; Fauré and Kaji, 2018; Tonello, 2019) but not
Gray code which provides the most compact binary representation of integers
and may be bijective.
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5. Extensions of property preservation

Although bisimulation preserves the essential property of reachability, it
appears desirable to preserve additional properties for performing an accu-
rate analysis of dynamics on the Boolean network directly. These additional
properties pertain to the nature of equilibria and the interaction graph.

5.1. Preservation of stability of the equilibria

By definition of the bisimulation, the equilibria of a multivalued network
match with the equilibria of a bisimilar Boolean network, and conversely.
However, when some equilibria are stable states, their nature may differ:
a stable state of the multivalued network can be represented by a cyclic
attractor over Boolean profiles, all coding for the same integer (Figure 5).
Nevertheless, any cyclic attractor will still be bisimulated by a cyclic attrac-

y �

$'''&'''%
3 y � 3

2 1 ¤ y ¤ 2

1 y � 0

0 otherwise

$'&'%
py1 � 1py2 � py1 _ py2 _ py3py3 � py1 ^ py2 ^ py3

$'&'%
py1 �  py2 _ py3py2 � py1 _ ppy2 ^ py3qpy3 � p py1 ^ py3q _ py2

2

30

1
110

111

000

001
010

011

100

101

011

101

110

111

000

001
010

100

multivalued network Bisimilar Boolean network

preserving stability

Bisimilar Boolean network

losing stability

Figure 5: Stability loss during bisimulation – synchronous mode.

tor since, by definition of coding, a transition between two different integer
states is always simulated by a transition with two different Boolean profiles.
Figure 5 shows an example where the self-loop of stable state 2 is simulated
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by a cyclic attractor over the three Boolean profiles coding for it (right-hand
side network). Indeed, for any integer level, the synchronous dynamics al-
lows reaching any of its codings from any other one. This case is however
not encountered for stable state 3 coded by a single Boolean profile. The
occurrence of such situations also depends on the concrete Boolean function,
as shown by the middle network that preserves the stability. Even though
in the former case the stable state is represented by a cyclic attractor, it
is worth noticing that the original level 2 can be recovered from the states
encompassed by the attractor since tψp101q, ψp011q, ψp110qu � t2u.

Maintaining the stability matters for the analysis performed on the Boolean
dynamics. In particular, the symbolic computation of stable states will fail
to find state 2 as equilibrium from the Boolean network since this state is
represented by a cyclic attractor. Therefore, such cases should be ruled out
to ensure a matching analysis of the dynamics on the two networks. To pre-
serve the stability of equilibria, we basically have to prevent reaching a code
of an integer level l from another code also encoding for l. This depends on
the mode and on the Boolean function (cf. Figure 5). The expected outcome
can be expressed as follows for a mode M :

@w P domψ, @m PM : wm � fmpwq ùñ ψpwq � ψpfmpwq Y w�mq. (10)

We examine two effective conditions for satisfying (10) that are inde-
pendent of the specification of the Boolean network. A simple one working
whatever the mode and the Boolean function is to remove the self-loops, and
thus establish bisimulation between reflexive reductions of the state graphs
of both networks, instead of operating on the original state graphs. The
equilibrium stability then remains preserved since no circuits can simulate
a self-loop and the important features of the reachability are not altered.
Another more explicit condition, based on the code and the cardinality of
modalities, forbids the access by a transition to another Boolean profile cod-
ing for the same integer.

Proposition 2. Let B � xf, pY ,My be a Boolean network bisimilar to a
multivalued network N � xg, Y,1Y y, with M a local-to-support mode. If the
following holds:

@yi P Y, @syi P JLKyi , @w,w
1 P ψ�1psyiq :

w � w1 ùñ dpw,w1q ¡ maxt|m| | m PMu,

then the equilibrium stability (10) is preserved.
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Consequently, if ψ is a bijection, the stability of equilibria is preserved
since every integer level is coded by a single Boolean profile. On the other
hand, the asynchronous mode preserves the stability under the Summing
code, since distances between two Boolean profiles coding for the same integer
are at least 2.

5.2. Interaction preserving

A Boolean network bisimulating a multivalued network is regulatory-
preserving if it is possible to unambiguously recover the signed interac-
tion graph of the multivalued network (migs), xY, , σy, from the signed

Boolean interaction graph of the bisimilar Boolean network (bigs), xpY , , σBy.
Retrieving migs from bigs is divided in two steps: retrieving the interaction
graph and finding the signs.

Interaction graph retrieval. The structure of migs is retrieved from the quo-
tient graph of bigs defined on the support of the integer variables, called the
support interaction graph (sig) xtpyiuyiPY , y, where an interaction between
two Boolean support variables induces an interaction between the supports
they belong:

pyi pyi def
� Dpyik P pyi, Dpyjr P pyj : pyik pyjr. (11)

As a consequence, the topological structure of migs is the same as that of
sig by merely replacing the supports by the integer variables they support
(Proposition 3). In fact, sig essentially provides an intermediary representa-
tion used for recovering the interactions of migs and their signs.

Proposition 3. Let N be a multivalued network and B a Boolean network.
If N is bisimilar to B then migspNq is isomorphic to sigpBq.

Sign retrieval. The sign of an interaction is determined by bigs once the
conversion is achieved (see Figures 6, 7). Therefore the issue is to deduce
from the signs of the interactions between the Boolean variables the signs of
the corresponding interactions in migs. The recovery procedure is based on a
set of reference Boolean variables, considered as markers of sign, covering all
the supports such that the signs of the interactions between these variables
are the same as the signs of the interactions between the integer variables
they support. Hence the set of markers M

pY is a subset of Boolean variables

of pY defined by:
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Definition 4 (Markers of sign). Let xg, Y y a multivalued network bisimu-

lating a Boolean network xf, pY y with xY, , σy and xpY , , σBy as their

respective signed interaction graphs. M
pY �

pY is a set of markers of sign if
and only if:

1. The sign σ of an interaction between any two Boolean variables in
M
pY � pY is the same as the sign of the interaction between the in-

teger variables that they support:

@pyik, pyjr PMpY : pyik σ pyjr ðñ yi
σ yj.

2. All integer variables have markers:

@yi P Y : M
pY X pyi � H.

To operationally identify the markers from a code, we define a code-
based marker condition (12) directly linking the markers to the code for the
asynchronous mode. This condition asserts the monotony of the coding for
markers with respect to the integer and Boolean orders by stipulating that an
integer coded by a Boolean profile is less than another coded by this Boolean
profile where a marker value is substituted by 1 (Lemma 2).

Lemma 2. Let N � xg, Y y be a multivalued network in bisimulation with

an asynchronous Boolean network B � xf, pY ,1
pY y, and M

pY �
pY be a set of

Boolean variables complying to (4.2). If:

@pyik PMpY , @w P domψ : ψpwq ¤ ψpwr pyik ÞÑ1sq (12)

then M
pY fulfils Definition (4.1) and M

pY is a set of markers.

Therefore, the goal is to determine for each integer variable the set of
markers by checking (12) for a given coding. For the Summing code all the
Boolean variables are markers, and for the Gray code the variables storing
the most significant bit indexed by 1 (pyi1) are the markers.

Theorem 3. Let N � xg, Y y be a multivalued network in bisimulation with

an asynchronous Boolean network B � xf, pY ,1
pY y. The sets of markers M

pY

are respectively for the codes:
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� Summing code: M
pY �

pY ;

� Van Ham code: M
pY �

pY ;

� Gray code: M
pY � tpyi1 | yi P Y u.

6. Inference of Boolean formulas

An analytical definition of the Boolean network function is given by (7).
Although the function ψ�1 � g � ψ is closed on Boolean states when ψ is
bijective characterizing a Boolean network, the Boolean formulas are not ex-
plicitly defined. The lack of Boolean formulas makes the analysis harder in
practice, notably by preventing the characterization of the interaction graph
directly from formula specifications. Moreover, the analytical definition does
not hold when ψ is not bijective, since ψ�1 returns a set of Boolean profiles.
To circumvent this limitation, the objective is to infer the Boolean network
bisimilar to a multivalued network directly from the specification of the lat-
ter (1). As it is sufficient to find a bisimilar Boolean network for each local
multivalued evolution function gi (Proposition 1), the algorithm will act on
each function of integer variables independently. In this section we define
a method inferring the formulas fi,k for each support variable pyik of yi such
that the reflexive reduction of the resulting Boolean network is bisimilar to
the reflexive reduction of the initial multivalued network where the code is
a parameter of this method. Due to the reflexive reductions, this method
preserves the nature of the stable states (Section 5.1). For simplicity, the
inference is presented for the asynchronous mode with a unitary stepwise
multivalued network as input. However the inference can be applied to any
local-to-support mode. This point is discussed at the end of the section.

The definition of a formula fi,k for a support variable is divided in two
stages: The conversion of the guard into a Boolean form, and the derivation
of the admissibility condition for guard validation. The examples use the
Summing code which is the most complex coding for the inference.

Boolean conversion of the guard. Basically, the guard of level l1 must also be
satisfied in the Boolean network to simulate a transition shifting the current
level l to l1. The conversion of a multivalued guard to a Boolean guard
gathers the codes of the state profiles fulfilling the conditions of level l1, i.e.,
Cl1� yi

� tsp� yiq | C
l1psqu where p� yiq is the set of regulators of yi. As
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all these integer states satisfy the guard C l1 , their Boolean codes should also
satisfy the Boolean guard C l1

B defined as3:

C l1

B �
ª

sPCl1
� yi

�� ©
yjPp� yiq

ª
w
xyj
Pψ�1psyj q

mintermpw
xyjq

�
. (13)

For example, in the case of the multivalued network from Figure 1, the
states fulfilling the conditions to reach level 2 for y are px � 1, y � 1q for the
transition from level 1 to 2 for y, or px � 0, y � 3q for the transition from
level 3 to 2. The code for x is ψ�1

x p0q � tp0qu, ψ
�1
x p1q � tp1qu and the codes

for y are respectively for 1 and 3: ψ�1
y p1q � tp0, 0, 1q, p0, 1, 0q, p1, 0, 0qu and

ψ�1
y p3q � tp1, 1, 1qu. Hence, the Boolean guard of level 2 for y is:

C2
B �

px�1,y�1q��� pxloomoon
mintermxp1q

^

���p^py1 ^ py2 ^ py3qlooooooooooomooooooooooon
mintermyp1,0,0q

_p py1 ^ py2 ^ py3qlooooooooomooooooooon
mintermyp0,1,0q

_p py1 ^ py2 ^ py3qlooooooooomooooooooon
mintermyp0,0,1q

��

��


_

px�0,y�3q���  pxloomoon
mintermxp0q

^ppy1 ^ py2 ^ py3qlooooooomooooooon
mintermyp1,1,1q

��

Guard admissibility condition. The generation of the Boolean guard is how-
ever insufficient for obtaining the final formula because some support vari-
ables shift to 0 during the transition even though the guard is satisfied,
meaning that a direct evaluation of the Boolean guard would shift them
to 1. For example, in Figure 1, shifting from 3 to 2 for y is bisimilar to

p1, 1, 1q
py2ÝÑ p1, 0, 1q. In this case, we need to shift the state of py2 to 0 al-

though the guard is satisfied with sx � 0. We thus need to characterize the
situations in which the transition necessarily shifts the value of a support

3The minterm of a state is a conjunction of the variables such that the unique inter-
pretation satisfying it is the state itself, e.g., mintermpx1 � 0, x2 � 1q �  x1 ^ x2.
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variable to 1. This restricts the set of admissible encodings triggering the
guard, outside of which the transition always shifts the support variable state
to 0.

Let s
yiÝÑ s1 be an integer unitary stepwise transition with syi � l and

s1pyiq � l1 such that |l � l1| � 1, and pyi be the support of yi (pyik P pyi), we

denote by w ÝÑ w1 the asynchronous Boolean transition bisimilar to s
yiÝÑ s1.

Two cases where pyi,k � 1 should be considered depending on the encoding of
the levels: pyi,k is shifted from 0 to 1 during the transition (i.e., w

pyi,k � 0 and
w1ppyi,kq � 1), or pyi,k remains as 1 (i.e., w

pyi,k � 1 and w1ppyi,kq � 1).
In both cases, we characterize for each Boolean variable the set of codes

corresponding to the initial level l such that pyik is either shifted to or remains
at 1. The initial level l is determined from the target level l1 by considering
that it is either l1�1, l1 or l1�1 by definition of an unitary stepwise transition.

We define the set of codes for the initial level such that pyik is shifted from
0 to 1 during the transition (ψ is implicitly restricted to ψ : B

pyi Ñ JLKyi):

Ψ0Ñ1pl
1, pyikq � tw pyi P domψ | D maxp0, l1 � 1q ¤ l ¤ minpl1 � 1, Lq :

ψpw
pyiq � l ^ w

pyik � 0^ ψpw
pyi r pyik ÞÑ1sq � l1u.

Similarly, we define the set of codes for which a shift from 1 to 0 occurs:

Ψ1Ñ0pl
1, pyikq � tw pyi P domψ | D maxp0, l1 � 1q ¤ l ¤ minpl1 � 1, Lq :

ψpw
pyiq � l ^ w

pyik � 1^ ψpw
pyi r pyik ÞÑ0sq � l1u.

Finally, we define the set of codes where pyik is 1 in both l and l1:

Ψ1Ñ1pl
1, pyikq � tw pyi P domψ | D maxp0, l1 � 1q ¤ l ¤ minpl1 � 1, Lq,

Dw1
pyik
P ψ�1pl1q : ψpw

pyiq � l ^ w
pyik � 1^ w1

pyik
� 1u.

The set of Boolean states coding for level l, always reaching state 1 and never
a state 0 for pyik in a transition to a code of level l1, is defined as:

Ψ�Ñ1pl
1, pyikq � Ψ0Ñ1pl

1, pyikq Y pΨ1Ñ1pl
1, pyikqzΨ1Ñ0pl

1, pyikqq .
Note that the set difference in the previous equation is not necessarily empty.
Indeed, there may exist a pair of states w

pyi and w1
pyi
, with ψpw

pyiq � l and
ψpw1

pyi
q � l1, such that w

pyik � w1
pyik
� 1, but for which ψpw

pyi r pyik ÞÑ0sq � l1 also

holds. We need to exclude such states w
pyi from Ψ�Ñ1pl

1, pyikq, because they
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still allow reaching a Boolean profile coding for l1 by setting pyik to 0. The
resulting transition is bisimilar to an integer transition, and thus must be
kept.

The guard admissibility condition G of C l1

B is thus defined as the disjunc-
tion of the minterms of the admissible codes:

GΨ�Ñ1pl1, pyikq �
ª

cPΨ�Ñ1pl1, pyikq

mintermpcq. (14)

In our running example, consider the levels that potentially reach level
2 in a unitary stepwise transition (levels 1, 2, and 3). The final simplified
formulas of the code admissibility conditions GΨ�Ñ1p2,pykq, 1 ¤ k ¤ 3, for each
support variable are detailed in Table 2.

From these conditions (Table 2), we deduce that the asynchronous tran-
sitions from level 3 coded by p1, 1, 1q to level 2 all set to 0 one of the Boolean
support variables. Indeed, the update of py1 to 0 leads to p0, 1, 1q and similarly
for py2, p1, 0, 1q and py3, p1, 1, 0q that all represent a Summing code of level 2.

GΨ�Ñ1p2,py1q � py1 ^ y2q _ py2 ^ y3q _ p y2 ^ y3q
GΨ�Ñ1p2,py2q � py1 ^ y3q _ p y1 ^ y3q _ py2 ^ y3q
GΨ�Ñ1p2,py3q � py1 ^ y2q _ p y1 ^ y2q _ p y2 ^ y3q

Table 2: Guard admissibility condition for level 2 of the support variables of y.

Boolean formula of a support variable. The final formula fi,k for a support
variable pyi,k can be understood as the Boolean version of the guards restricted
to the codings admissible for their triggering, defined as:

fi,k �
ª

1¤l¤L

�
C l

B ^GΨ�Ñ1pl, pyikq

�
. (15)

The Boolean network gathers the formulas defined by (15) for each sup-
port variable. For the running example (Figure 1), the final Boolean network
provides a clean description of the formulas once simplified for the Summing
code (Figure 6) and the Gray code (Figure 7), that differ due to the codings.
Theorem 4 demonstrates the correction of the conversion method.

23



f �

$''&''%
px � py1 _ py2 _ py3py1 � pxpy2 � pxpy3 � px px

py1

py2py3

� �

�

�
��

0000

1111

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

py3

px

py2

px

py2

py3

px

py1

px

py1

py3

px

py1

py2

px

py1

py2

py3

px

px

py3

py2

py1

py2

py1

py3

py1

py1

py3

py2

py2

py3

Figure 6: A Boolean network bisimilar to the multivalued network in Figure 1, its inter-
action graph (right), and its asynchronous dynamics for the Summing code without the
self-loops (below).
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$&% px � py1 _ py2py1 � ppx^ py2q _ ppy1 ^ py2qpy2 � ppx^ py1q _ p px^ py1q
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Figure 7: A Boolean network bisimilar to the multivalued network in Figure 1, its in-
teraction graph (below), and its asynchronous dynamics for the Gray code without the
self-loops (right).

Bisimilar reflexive reduction. Under the asynchronous mode, some support
variables may maintain their value inducing self-loops that are not bisimilar
to any transition in the integer dynamics. In the running example, shifting

y from 2 to 3 is bisimilar to p1, 0, 1q
py2ÝÑ p1, 1, 1q, which modifies the value ofpy2. However, any of the Boolean variables may be updated in asynchronous

dynamics leading to two self loops on py1 and py3 for maintaining the state
of these variables at 1. Obviously, these self-loops are not bisimilar to the
integer state transition since the variation of the integer state from 2 to
3 is carried out by one transition only. No alternatives preventing these
additional self-loops in the Boolean network are possible since any one of the
Boolean variables may be updated, but the state must not change for py1 andpy3. This situation explains why our method operates on reflexive reductions
of the networks, effectively discarding these extra self-loops. Also notice that
this transformation can only be performed if the integer level 0 is coded
by the 0 Boolean profile, meaning that the behaviours of the multivalued
and Boolean networks match when no guards are satisfied. The reflexive
reduction of a network N is denoted N�.
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Theorem 4. Given a neighbourhood preserving Boolean coding ψ such that
0 is coded by the 0 Boolean profile, the inference by (15) from a multivalued
unitary stepwise network N � xg, Y,1Y y produces a Boolean network B �

xf, pY ,1
pY y such that the reflexive reductions of both networks are bisimilar:

N� �ψ B
�.

Extension to other modes. The method can be applied to any local-to-support
mode but the admissible region may be reduced compared to the asyn-
chronous mode. This reduction is caused by the decrease of the update
capacity allowed by the mode. Hence, by Definition 1, this implies select-
ing the appropriate codes for always reaching a code supporting an unitary
stepwise transition for each update according to the mode components. For
the running example, by using the parallel local-to-support mode with the
Summing code, M � ttxu, tpy1, py2, py3uu, all the Boolean variables of py are up-
dated jointly allowing to reach a single code instead of reaching the different
codes of the same integer by separate updates of variables. Thus, the coding
is reduced to Van Ham coding.

Moreover, the trajectories starting from a state located outside the ad-
missible region always end in the admissible region and no supplementary
equilibra are thus created (Proposition 4). This property generally holds for
any coding that partially covers the Boolean state space.

In conclusion, the domain of ψ may thus be reduced for a surjective
decoding function such as the Summing code without altering the asymptotic
dynamics, but remains unchanged for a bijective decoding.

Proposition 4. Let f be an evolution function defined according to (15) from

a multivalued unitary stepwise network N � xg, Y,1Y y. Let B � xf, pY ,My
be the corresponding Boolean network with M a local-to-support mode, and
ψ a decoding function such that N� �ψ B�. All the states of the Boolean
space eventually reach a state in the admissible region:

@w P B
pY , Dw

1 P domψ : w ÝÑ�
f w

1.

Complexity of the algorithm. Assume that the multivalued network has n
variables reaching at most level L, the upper bound on the number of reg-
ulators for a variable is r, the maximal number of support variables is m,
and the maximal bound of code variants is c. Then the complexity of the
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Boolean guard is in OpnLrrcmq and the complexity of computing the guard
admissibility condition is in OpnLcmq. Thus the complexity of the algorithm
is dominated by the complexity of the Boolean guard computation. Accord-
ingly, the computation time mainly depends on the maximal level and the
number of regulators. The algorithm is efficient in practice since the maximal
level and the number of regulators often remain tractable on real biological
network models.

7. Conclusion

The conversion of multivalued networks to Boolean networks bridges these
formalisms by providing a better understanding of the theoretical differences
and similarities between these frameworks, and by extending the use of ana-
lytical tools dedicated to Boolean networks to their multivalued counterpart.
The major property to be preserved at conversion is reachability, ensuring
the equivalence between the dynamics. Accordingly, the conversion is un-
derpinned by bisimulation (Section 3) which guarantees the preservation of
reachability. The fundamental analysis concludes with an original algorithm
that automatically generates a Boolean network bisimulating a multivalued
network. The input multivalued network operates under the asynchronous
mode, while the resulting Boolean network operates under a local-to-support
mode. The proposed framework explicitly distinguishes the conversion pro-
cess from choosing a Boolean encoding, which separates the properties related
to the bisimulation from those related to the encoding, or both.

A number of results relate to the asynchronous mode, which is stan-
dard for discrete biological network modelling (Thieffry and Thomas, 1995;
Thomas et al., 1995). Accordingly, our analysis promotes local-to-support
modes, which are a natural decomposition of the updates of Boolean vari-
ables. Indeed, the joint updates of Boolean support variables should always
correspond to a single transition in the multivalued dynamics. Hence, local-
to-support modes fit well with asynchronous updates of the multivalued vari-
ables, facilitating the conversion process.

Even though the preservation of reachability is central for conversion, this
property is not sufficient for analysis. Additional properties are also required
pertaining to the nature of the equilibria (Section 5.1) and to the interaction
graph (Section 5.2). The preservation of stable states ensures that both
networks have attractors of the same kind. In particular, this enables a fast
symbolic discovery of stable states using SAT solvers. The preservation of
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stable states needs to depend on the mode and the coding, in order to prevent
reciprocal transitions between Boolean profiles coding for the same integer.
The asynchronous mode fulfils this property for all codings.

The regulation graph of the multivalued network must also be retrieved
from the bisimilar Boolean network. All the codings comply with this prop-
erty. This property also addresses the issue of monotonicity preservation,
because preserving the sign means preserving the transition variation. For
Summing and Van Ham codes, the interactions on Boolean variables are all
identical to the interactions between the multivalued variables they support.
For Gray code, the interaction graph is retrieved from the support variable
carrying the most significant bit. Therefore Gray code possibly induces non-
monotonicity for the other support variables as shown in Figure 7.

Accordingly, the choice of the most suitable coding for the conversion
depends on several factors which are: the compactness of the coding, the
coverage of the Boolean space by the admissible region, the bijection of the
(de)coding function ψ, and the monotonicity preservation. A log-size cod-
ing with a bijective (de)coding function and a full coverage of the Boolean
space preserving the monotonicity would provide a Boolean simulation with
the most compact representation, a simple state conversion represented by
a conjugated function, without spurious trajectories outside the admissible
region, and following the same state variation in each trajectory. However,
none of these codings complies with all these requirements at the same time,
which introduces a trade-off between the desired preservation properties. Ta-
ble 3 summarizes these properties for each coding.
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Van Ham l No Yes Yes Yes

Summing l Yes No Yes Yes

Gray log2 l if L � 2k � 1 Yes Yes No

Table 3: Summary of the properties in a conversion of the codings.
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Such automatic conversion sketches a pipeline where the multivalued net-
work becomes an input specification for modelling while the bulk of the anal-
ysis is performed on the Boolean network. Such pipeline suggests that the
Boolean framework is central and sufficient for biological network modelling,
thus calling to focus theoretical efforts on this framework since the results
will benefit to both categories of discrete models via this pipeline.

A research perspective would concern the extension of the bisimulation to
other modes for the multivalued network, while considering families of local-
to-support modes for the Boolean network to fit the multivalued mode. An-
other perspective may focus on the bisimulation between Boolean networks
themselves. As bisimulation formally represents behavioural equivalence, we
could investigate the global properties of families of bisimilar Boolean net-
works in order to discover general rules governing their behaviour. Moreover,
given a Boolean network, we may exhibit a simpler bisimilar Boolean network
on which the analysis will be performed, and that will potentially improve
the efficiency of the dynamics analysis.

29



References

F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Generic ilp versus
specialized 0-1 ilp: An update. In IEEE/ACM international conference on
Computer-aided design, pages 450–457, 2002.

C. Chaouiya, A. Naldi, and D. Thieffry. Logical modelling of gene regulatory
networks with ginsim. In Bacterial Molecular Networks, pages 463–479.
Springer, 2012.

G. Didier, E. Remy, and C. Chaouiya. Mapping multivalued onto boolean
dynamics. Journal of theoretical biology, 270(1):177–184, 2011.
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Appendix

Proposition 1. The global Boolean transition relation is the union of the
local transition relations that are bisimilar to the local multivalued relations.
As the union of bisimilar relations is bisimilar to the union relation, we
deduce that the global Boolean relation is bisimilar to the global multivalued
relation.

Theorem 1. We prove that Property (7) is met if and only if N �ψ B. We
first prove the implication and next the reciprocal. Before, we prove the
following property for any mode component m PM used in the proofs:

�m � ppyizmY�pyiq (T1)

Proof.

�m = pY zm by definition of �m;

= ppyi Y�pyiqzm as �pyi � pY zpyi by definition;
= pyizmY�pyizm
= ppyizmY�pyiq since m � pyi by definition of the

local-to-support mode, meaning that
�pyizm � �pyi.

p ùñ q Assume that Property (7) is met for the local-to-support mode
M , i.e., @m PM : m � pyi ^ ψpfmpwq Y w pyizmq � gi � ψpwq.

� N simulates B. Let w
m
ÝÑf w

1,m PM , be a transition in the model of
B such that w,w1 P domψ. We define the transition ψpwq ÝÑ ψpw1q
by application of ψ on w and w1. We have:

ψpw1q � ψpfmpwq Y w�mq by definition of a transition
(Section 2);

� ψpfmpwq Y w pyizmY� pyiq by (T1);
� ψpfmpwq Y w pyizm Y w� pyiq from (5)
� ψpfmpwq Y w pyizmq Y ψpw� pyiq from (5) and (6);
� gi � ψpwq Y ψpw� pyiq from (7), true by hypothesis.

Set s � ψpwq and s1 � ψpw1q. Then s�yi � ψpw� pyiq, because w� pyi is
the Boolean encoding of the rest of the state s�yi . We finally have:

ψpwq ÝÑ ψpw1q � s ÝÑ gipsq Y s�yi � s
yiÝÑgi s

1,

which defines a transition of ÝÑgi with the asynchronous mode 1yi .
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� B simulates N . Let s
yiÝÑg s

1 be a transition in the model of N . As
ψ : B

pY Ñ JLKY is surjective, there exist two Boolean states w,w1 P B
pY

such that: ψpwq � s and ψpw1q � s1. We prove that we can select w1

in the preimage of s1 so that a transition w
m
ÝÑf w

1 exists in the model
of the Boolean network B.

Firstly, let us characterize s1 based on w.

s1 � gipsq Y s�yi by definition of transition
(Section 2);

� gi � ψpwq Y s�yi as ψpwq � s by hypothesis;
� ψpfmpwq Y w pyizmq Y s�yi from (7), true d by hypothesis;
� ψpfmpwq Yw pyizmq Yψpwy�yiq from (6) and ψpwq � s;
� ψpfmpwq Yw pyizmq Yψpw� pyiq by definition of the support (5);
� ψpfmpwq Y w pyizmq Y w� pyiq from (6);
� ψpfmpwq Y w pyizmY� pyi by definition of the support (5);
� ψpfmpwq Y w�mq by (T1).

Thus, we conclude that ψpw1q � s1 implies that w1 � fmpwq Y w
pyizm.

Hence, by definition of a transition, we have w
m
ÝÑf w

1, meaning that
B simulates N .

In conclusion, if Property 7 is verified then networks N and B are bisimilar
with respect to ψ.

p ðù q Assume that N �ψ B. Hence, for all transitions w
m
ÝÑf w1

such that w,w1 P domψ, there exist s, s1 P JLKY such that s ÝÑgi s
1 and

s � ψpwq, s1 � ψpw1q.
From the bisimulation, we deduce that:
s1 � ψpw1q by hypothesis;

� ψpfm Y w�mq by definition of w
m
ÝÑf w

1;
� ψpfm Y w pyizmY� pyiq by (T1);
� ψpfm Y w pyizm Y w� pyiq from (5);
� ψpfm Y w pyizmq Y ψpw� pyiq by (5), (6);
� ψpfm Y w pyizmq Y s�yi as s � ψpwq by hypothesis.

From the definition of a transition, we deduce the following:
s1 � gipsq Y s�yi as s ÝÑgi s

1 by hypothesis;
� gi � ψpwq Y s�yi as s � ψpwq by the bisimulation

hypothesis.

33



As �yi X yi � H because �yi � Y zyi, we can simplify the equation by
removing s�yi in both part, leading to:

ψpfm Y w pyizmq � gi � ψpwq for all w P domψ,

which defines Property (7).

Lemma 1. That admissibility for modes is reflexive and symmetric follows di-
rectly from Definition 3. To show transitivity of admissibility for modes, con-
sider three arbitrary modes M1,M2,M3 � 2

pY , such that both admψpM1,M2q
and admψpM2,M3q (with respect to the functional bisimulation B �ψ N).
We can show that clause (1) of Definition 3 is satisfied for modes M1 and M3

in the following way:

admψpM1,M2q ^ admψpM2,M3q
ùñ

�
@m2 PM2, Dm1 PM1 : admψpm1,m2q

�
^
�
@m3 PM3, Dm2 PM2 : admψpm2,m3q

�
Definition 3 (1)

ùñ @m3 PM3, Dm2 PM2, Dm1 PM1 :
admψpm2,m3q ^ admψpm1,m2q

ùñ @m3 PM3, Dm1 PM1 : admψpm1,m3q,

where the last transition is done by the symmetricity and transitivity of ad-
missibility for modalities. Showing that clause (2) of Definition 3 is satisfied
for M1 and M3 can be done symmetrically, which implies admψpM1,M3q and
the transitivity of admissibility for modes.

Theorem 2. Consider the Boolean network B � xf, pY ,M0y and the mul-
tivalued network N � xgi, Y,1yiy, related by the bisimulation B �ψ N .

Pick an M0-admissible mode M � 2
pY and consider the Boolean network

B1 � xf, pY ,My. We will show that B1 bisimulates N , B1 �ψ N , by directly
checking clauses (1) and (2) of the definition of bisimulation (Definition 1).

Clause (1) (forward simulation): Take two Boolean states w,w1 P domψ
such that w

m
ÝÑf w1 for some m P M . We can then write the following
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deduction:

w
m
ÝÑf w

1

ùñ Dm0 PM0, Dw
2 P domψ

w
m0ÝÑf w

2 ^ ψpw1q � ψpw2q M is M0-admissible
ùñ Dm0 PM0, Dw

2 P domψ

ψpwq
µpm0q
ÝÑ g ψpw

2q ^ ψpw1q � ψpw2q B �ψ N
ùñ Dm0 PM0, Dw

2 P domψ

ψpwq
µpm0q
ÝÑ g ψpw

1q.

Remark that since N is only allowed to update one variable, yi, µpm0q can
only be equal to tyiu.

Clause (2) (backward simulation): Take any two integer states s, s1 P JLKY
and an arbitrary Boolean state w P BX . Since N is only allowed to update
yi, we can carry out the following deduction:

ψpwq � s^ s
yiÝÑg s

1

ùñ Dw1 P BX , Dm0 PM0 : µpm0q � tyiu ^ ψpw
1q �

s1 ^ w
m0ÝÑf w

1

B �ψ N

ùñ Dw1 P BX , Dm0 PM0, Dw
2 P BX , Dm PM :

µpm0q � tyiu ^ ψpw
1q � s1 ^ w

m0ÝÑf

w1 ^ ψpw2q � ψpw1q ^ w
m
ÝÑf w

2

M is M0-admissible

ùñ Dw2 P BX , Dm PM : ψpw2q � s1 ^ w
m
ÝÑf w

2.

The two previous paragraphs show that the clauses of the definition of bisim-
ulation (Definition 1) are satisfied for the Boolean network B1, running under
mode M , and for the multivalued network N , meaning that B1 �ψ N . The
associated function mapping the modalities of B1 to those of N is the unique
total function 2

pY Ñ tyiu (i.e., the same as for the bisimulation B �ψ N).

Proposition 2. By definition of a transition (Section 3.2) we have:

@w,w1 P B
pY , @m PM : w

m
ÝÑ w1 ùñ dpw,w1q ¤ |m|,

Therefore if the different coding of multivalued state complies to:

@yi P Y, @syi P JLKyi , @w,w
1 P ψ�1psyiq :

w � w1 ùñ dpw,w1q ¡ maxt|m| | m PMu,
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We deduce that the transition cannot be achieved between codes of the same
integer, thus leading to:

@w,w1 P B
pY , @m PM : w � w1 ^ w

m
ÝÑ w1 ùñ ψpwq � ψpw1q,

As w1 � fmpwqYw�m by definition of a transition, this statement is equivalent
to (10), concluding that the equilibrium stability is preserved.

Lemma 2. let N be an asynchronous multivalued network bisimulating an
asynchronous Boolean network B with:
migspNq � xY, , σy, and bigspBq � xpY , , σBy, as their respective

signed interaction graphs; let M
pY �

pY be a set of Boolean variables com-
plying to (12), we prove Statement (4.1) by considering that Statement (4.2)
holds.

First we demonstrate two properties (L2.a) and (L2.b) used in the proof:

@w,w1 P domψ, @pyik PMpY :

w
pyik ¤ w1

pyik
^ w� pyik � w1

� pyik
ùñ ψpwq ¤ ψpw1q. (L2.a)

Proof. Assume that:
@w,w1 P domψ : w

pyik ¤ w1
pyik
^ w� pyik � w1

� pyik
for pyik PMpY .

Two cases occur:

1. w
pyik � w1

pyik
: in this case w � w1 leading to ψpwq � ψpw1q since ψ is a

function, thus satisfying ψpwq ¤ ψpw1q.

2. w
pyik   w1

pyik
: as only two values are possible, 0 or 1, we deduce that

w1
pyik
� 1. Hence, w1 can be defined as w1 � wr pyik ÞÑ1s. As pyik P M

pY

by hypothesis, we conclude from (12) that ψpwq ¤ ψpwr pyik ÞÑ1sq. This
inequality is equivalent to ψpwq ¤ ψpw1q.

@w,w1 P domψ : w
pyik ¤ w1

pyik
^ w� pyik � w1

� pyik
ùñ

ψpw
pyiq ¤ ψpw1

pyi
q ^ ψpw� pyiq � ψpw1

� pyi
q. (L2.b)

Proof. Assume that: @w,w1 P domψ : w
pyik ¤ w1

pyik
^ w� pyik � w1

� pyik
.

As w� pyi � w� pyik and since pyik P pyi, we have: w� pyik � w1
� pyi

ùñ w� pyi � w1
� pyi
,

thus implying that: @w,w1 P domψ : w
pyik ¤ w1

pyik
^ w� pyi � w1

� pyi
.
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Hence, from Property (L2.a) applied to w
pyi , w

1
pyi
, we deduce that:

@w,w1 P domψ : w
pyik ¤ w1

pyik
^ w� pyi � w1

� pyi
ùñ ψpw

pyiq ¤ ψpw1
pyi
q,

Moreover, as ψ is a function defined on supports, we have:

@w,w P domψ : w� pyi � w1
� pyi

ùñ ψpw� pyiq � ψpw1
� pyi
q

In conclusion, the following statement holds:

ψpw
pyiq ¤ ψpw1

pyi
q ^ ψpw� pyiq � ψpw1

� pyi
q.

Now we prove that Statement 4.1 is satisfied. The proof is given for positive
interaction.

p ùñ q By definition (3), a positive interaction, pyik � pyjr is defined as:

@w,w1 P domψ : w
pyik ¤ w1

pyik
^ w� pyik � w1

� pyik
ùñ fj,rpwq ¤ fj,rpw

1q.

From (L2.b), we can rewrite this statement as:

@w,w1 P domψ : ψpw
pyiq ¤ ψpw1

pyi
q^ψpw� pyiq � ψpw1

� pyi
q ùñ fj,rpwq ¤ fj,rpw

1q.

Let v � fj,rpwq Y w�xyjr
and v1 � fj,rpw

1q Y w1
�xyjr

, as fj,rpwq ¤ fj,rpw
1q by

hypothesis, we conclude that: ψpvq ¤ ψpv1q from (L2.a), thus leading to:

@w,w1 P domψ : ψpw
pyiq ¤ ψpw1

pyi
q ^ ψpw� pyiq � ψpw1

� pyi
q ùñ

ψpfj,rpwq Y w�xyjr
q ¤ ψpfj,rpw

1q Y w1
�xyjr

q.

As N and B are bisimilar, Property (7) holds. By application of this
property we have: ψpfj,rpwq Yw�xyjr

q � gj � ψpwq and similarly for w1. Thus
we deduce that:

@w,w1 P domψ : ψpw
pyiq ¤ ψpw1

pyi
q ^ ψpw� pyiq � ψpw1

� pyi
q ùñ

gj � ψpwq ¤ gj � ψpw
1q.

Finally, as codomψ � JLKY by definition, we can rewrite the previous state-
ment as follows by setting, s � ψpwq, s1 � ψpw1q :
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@s, s1 P JLKY : si ¤ s1i ^ s�i � s1�i ùñ gjpsq ¤ gjps
1q,

that defines the positive interaction on migs(N): yi
� yj.

p ðù q Assume that an interaction yi
� yj exists and there exist

two Boolean variables pyik P M
pY X pyi and pyjr P M

pY X pyj with no positive
interactions between these variables, i.e., pyik σ pyjr ùñ σ � �. We give
a proof for the case σ � �; the proof for σ � 0 is similar.

From definition of the interactions (3), we deduce that:

Dw,w1 P domψ : w
pyik ¤ w1

pyik
^ w� pyik � w1

� pyik
^ fj,rpwq ¡ fj,rpw

1q.

From Property (L2.b), we can rewrite the previous statement as:

Dw,w1 P domψ : ψpw
pyiq ¤ ψpw1

pyi
q ^ ψpw� pyiq � ψpw1

� pyi
q ^ fj,rpwq ¡ fj,rpw

1q.

Let v � fj,rpwq Y w�xyjr
and v1 � fj,rpw

1q Y w1
�xyjr

, as fj,rpwq ¡ fj,rpw
1q by

hypothesis, we conclude that: ψpvq ¡ ψpv1q from (L2.a), thus leading to:

@w,w1 P domψ : ψpw
pyiq ¤ ψpw1

pyi
q ^ ψpw� pyiq � ψpw1

� pyi
q ùñ

ψpfj,rpwq Y w�xyjr
q ¡ ψpfj,rpw

1q Y w1
�xyjr

q.

As N and B are bisimilar, Property (7) holds. By application of this
property we have: ψpfj,rpwq Yw�xyjr

q � gj � ψpwq and similarly for w1. Thus
we have:

Dw,w1 P domψ : ψpw
pyiq ¤ ψpw1

pyi
q^ψpw� pyiq � ψpw1

� pyi
q^gj�ψpwq ¡ gj�ψpw

1q.

As codomψ � JLKY by definition, we can rewrite the previous statement as
follows by setting, s � ψpwq, s1 � ψpw1q :

Ds, s1 P JLKY : si ¤ s1i ^ s�i � s1�i ^ gjpsq ¡ gjps
1q,

that contradicts the existence of a positive interaction yi
� yj, which is

false by hypothesis.

The proof for negative interaction follows the same scheme. Thus, we
conclude that Statement 4.1 is satisfied.

38



Corollary 1. If Property 7 holds then we deduce that B �ψ N from Theo-
rem 1. As B �ψ N andM is an admissible mode we conclude from Theorem 2
that B1 �ψ N .

Theorem 3. We prove that (12) holds for a set of Boolean variables belonging
to a support pyi.

Let pyik be a Boolean variable of this set, two cases occur: either w
pyik � 0,

or w
pyik � 1. For the latter, w is left untouched by substitution leading to

ψpwq � ψpwr pyik ÞÑ1sq since ψ is a function, thus fulfilling (12). Hence, we
address the case when w

pyik � 0 in the proofs.

Summing code. The following property holds when w
pyik � 0:¸

pyijP pyiz pyik

w
pyij �

¸
pyijP pyi

w
pyij ,

thus, we have:

ψpwr pyik ÞÑ1sq �
¸

pyijP pyiz pyik

w
pyij � 1 �

¸
pyijP pyi

w
pyij � 1 � ψpwq � 1.

We conclude that: ψpwq   ψpwr pyik ÞÑ1s.

Van Ham code. Van Ham code is a sub-code of the Summing code, thus
complying to its results.

Gray code. Let pyi1 be a Boolean variable carrying the most significant digit,
we separate pyi1 from the other variables in the definition of ψ:

ψpwq �

| pyi |̧

k�1

2| pyi|�k.
kà
j�1

w
pyij � 2| pyi|�1.w

pyi1 �

| pyi |̧

k�2

2| pyi|�k.
kà
j�1

w
pyij .

Hence, when w
pyi1 � 0, we deduce that ψpwr pyi1 ÞÑ1sq � 2| pyi|�1 � ψpwq,

leading to ψpwq   ψpwr pyi1 ÞÑ1sq.

Thus we conclude that pY is the set of markers for the Summing and
Van Ham code, while tpyi1 | yi P Y u are the markers for the Gray code by
application of Lemma 2.
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Theorem 4. We first show that the computation of the Boolean function f
defined by (15) is correct with respect to the integer function g and the asyn-
chronous mode (A). Next (B), we examine the satisfaction of Property (7).
Finally we demonstrate the bisimulation of the reflexive reduction for both
networks (C).

A) The construction of f is correct.

Let s
yiÝÑ s1 be a multivalued transition, such that s1yi � gipsq � l1 and

s1yj � syj for all 1 ¤ j ¤ n, j � i, by definition of the asynchronous dynamics.
We have: maxpl1 � 1, 0q ¤ syi ¤ minpl1 � 1, Liq since the evolution is unitary
stepwise. There exist two Boolean states w,w1 P B

pY such that ψpwq � s
as codom ψ � JLKY . We check that for all pyik P pyi if fi,kpwq � w1

pyik
then

ψpw1q � s1 and w� pyik � w1
� pyik

, thus proving the correction of fi,k. The
fact that w� pyik � w1

� pyik
is a direct consequence an asynchronous transition

updating one variable only.
Two cases are considered qualifying whether s1yi � 0 or s1yi � 0. For each,

we examine whether the target state of the support variable pyik is 0 or 1. Let
us consider the following cases:

1. s1yi � 0: By definition of a multivalued network (1) Cl1psq is necessary
satisfied as l1 � s1yi � 0. Let Rpyiq be the set of regulators of yi, we have:
sRpyiq P CRpyiq,l1 . Hence, we deduce that w

pyi satisfies the Boolean version
of the condition, CB

l1 , by construction of the Boolean condition (13).
Now we examine, the possible target states of the support variable pyik,
w1
pyik

:

� w1
pyik
� 1: in this case w

pyi belongs to Ψ�Ñ1pl
1, pyikq by definition,

meaning that w admissible for the guard. Thus we have:

fi,kpwq � CB
l1 pwq ^ CΨ�Ñ1pl1, pyikqpwq � 1.

� w1
pyik
� 0: in this case w

pyi does not belong to Ψ�Ñ1pl
1, pyikq by

definition meaning that w is not admissible for the guard. Thus
we have:

fi,kpwq � CB
l1 pwq ^ CΨ�Ñ1pl1, pyikqpwq � 0.

In both cases, fi,k provides the expected result.

2. s1yi � 0: By definition of the multivalued dynamics (1), no guards are
satisfied. The conjunction of the guards for all levels is unsatisfiable,
thus by definition of the part related to the guard in fi,k (13), we deduce
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that fi,kpwq � 0 by (15), which is the expected result as 0 is encoded
by a Boolean profile filled with 0 leading to w1

pyik
� 0 for all k.

f returns the appropriate result regarding a pair w,w1 encoding the pair
s, s1. If s � s1 then there exists a Boolean support variable pyik, 1 ¤ k ¤ |pyi|
such that: ψpfi,kpwq Yw� pyikq � s1, corresponding to the following condition:
fi,kpwq � w

pyik . Otherwise (s � s1) any index k satisfies ψpfi,kpwq Y w� pyikq �
s1. Notice that this part is not sufficient for proving bisimulation, since we
may have fi,jpwq � w1

pyij
� w

pyij by definition of the asynchronous dynamics,

thus also leading to a transition w
pyij
ÝÑ w by definition. This transition does

not simulate the transition s
yiÝÑ s1 when s � s, motivating the proof of

the bisimulation restricted to the reflexive reduction. However a multivalued
self-loop (s � s1) is simulated by a self-loop in the Boolean network by
construction of f .

B) Property (7) is satisfied.

Let s
yiÝÑ s1 be a multivalued asynchronous transition such that s � s1,

then there exist w,w1 P B
pY such that ψpwq � s, ψpw1q � s1, by construction

of f (A). Moreover, we have: ψpwq � ψpw1q, leading to w � w1, as ψ is
a function. Thus, a Boolean support variable pyik verifies that w

pyik � w1
pyik

,
as g and f are neighbourhood preserving (9). In this case, we have: w1 �
fi,kpwq Y w� pyik from (A). Thus, we have the following equalities:

s1 = ψpw1q by definition of ψ;
= ψpfi,kpwq Y w� pyikq by construction of f (A);
= ψpfi,k Y w pyiz pyikY� pyiq from (T1);
= ψpfi,k Y w pyiz pyik Y w� pyiq from (5);
= ψpfi,kYw pyiz pyikqYψpw� pyiq by (5), (6);
= ψpfi,k Y w pyiz pyikq Y s�yi as s � ψpwq.

As s1 � gipsq Y s�yi by definition of a transition, we deduce by simplification
of s�yi that: gipsq � gi�ψpwq � ψpfi,kYw pyiz pyikq, concluding that Property (7)
holds.

C) Bisimulation between reflexive reductions. It follows from (B), that we
can set that Property (7) holds whenever syi � gipsq. As the asynchronous

mode is local-to-support, and we always have s
yiÝÑ s1 ùñ syi � s1yi � gipsq

by reflexive reduction, we conclude by application of Theorem 1 that the
reflexive reduction of the multivalued and Boolean networks are bisimilar
with respect to ψ.
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Proposition 4. We denote: 0m a Boolean state with 0 for all variables in
m � pY .

If a state is in the admissible region then it always reaches states in
the admissible region, and only in the admissible region, by definition of
bisimulation.

If the Boolean state w P B
pY is outside of the admissible region, w R

domψ, then it is not accounted for by the computation of admissibility of
the guard condition, by definition of Ψ�Ñ1. Therefore we have: fmpwq �
0m, @m P M . Thus, all the trajectories starting from w successively cancel
(set to 0) the states of the variables of m P M whenever the result of the
cancellation leads to a state outside the admissible region; otherwise the
proposition holds. As

�
mPM m � pY by definition of a mode, the cancellation

process terminates at state 0
pY , which is always in the admissible region since

0
pyi , @yi P Y, is the sole code for the integer value 0, regardless of the variable

yi.

In conclusion, the trajectories starting from any w P B
pY eventually end

up in a state in the admissible region domψ.

42




