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Introduction

Moderate and large deviations of the sum of independent and identically distributed (i.i.d.) real-valued random variables have been investigated since the beginning of the 20th century. Kinchin [START_REF] Kinchin | Über einer neuen Grenzwertsatz der Wahrscheinlichkeitsrechnung[END_REF] in 1929 was the first to give a result on large deviations of i.i.d. Bernoulli distributed random variables. In 1933, Smirnov [START_REF] Smirnov | On the probabilities of large deviations[END_REF] improved this result and in 1938 Cramér [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] gave a generalization to i.i.d. random variables satisfying the eponymous Cramér's condition which requires the Laplace transform of the common distribution of the random variables to be finite in a neighborhood of zero. Cramér's result was extended by Feller [START_REF] Feller | Generalization of a probability limit theorem of Cramér[END_REF] to sequences of not necessarily identically distributed random variables under restrictive conditions (Feller considered only random variables taking values in bounded intervals), thus Cramér's result does not follow from Feller's result. A strengthening of Cramér's theorem was given by Petrov in [START_REF] Petrov | Generalization of Cramér's limit theorem[END_REF] together with a generalization to the case of non-identically distributed random variables. Improvements of Petrov's result can be found in [START_REF] Petrov | Large deviations for sums of independent non identically distributed random variables[END_REF]. Deviations for sums of heavy-tailed i.i.d. random variables were studied by several authors: an early result appears in [START_REF] Linnik | On the probability of large deviations for the sums of independent variables[END_REF] and more recent references are [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF][START_REF] Borovkov | Asymptotic analysis of random walks[END_REF][START_REF] Denisov | Large deviations for random walks under subexponentiality: the big-jump domain[END_REF][START_REF] Mikosch | Large deviations of heavy-tailed sums with applications in insurance[END_REF].

In [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF], A.V. Nagaev studied the case where the commom distribution of the i.i.d. random variables is absolutely continuous with respect to the Lebesgue measure with density p(t) ∼ e -|t| 1-ǫ as |t| tends to infinity, with ǫ ∈ (0, 1). He distinguished five exact-asymptotics results corresponding to five types of deviation speeds. In [START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF], S.V. Nagaev generalizes to the case where the tail writes as e -t 1-ǫ L (t) , where ǫ ∈ (0, 1) and L is a suitably slowly varying function at infinity. Such results can also be found in [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF][START_REF] Borovkov | Asymptotic analysis of random walks[END_REF]. Now, let us present the setting of this article. Let ǫ ∈ (0, 1) and let X be a real-valued random variable verifying: there exists q > 0 such that log P(X x) ∼ -qx 1-ǫ as x → ∞.

(1)

Such a random variable X is often called a Weibull-like (or semiexponential, or stretched exponential) random variable. One particular example is that of [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF] where X has a density p(x) ∼ e -x 1-ǫ . Moreover, unlike in [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF], this unilateral assumption is motivated by the fact that we focus on upper deviations of the sum. Observe that (1) implies that the Laplace transform of X is not defined on the right side of zero. Nevertheless, all moments of X + := max(X, 0) are finite. A weaker assumption on the left tail is required:

∃γ > 0 ρ := E[|X| 2+γ ] < ∞. (2) 
We assume that X is centered (E[X] = 0) and denote by σ the standard deviation of X (Var(X) = σ 2 ). For all n ∈ N * , let X 1 , X 2 , ..., X n be i.i.d. copies of X. We set

S n = X 1 + • • • + X n .
In this paper, we are interested in the asymptotic behavior of log P(S n x n ) for any positive sequence x n ≫ n 1/2 . Not only does the logarithmic scale allow us to use the modern theory of large deviations and provide simpler proofs than in [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF][START_REF] Borovkov | Asymptotic analysis of random walks[END_REF][START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF], but we also obtain more explicit results. According to the asymptotics of x n , only three logarithmic asymptotic ranges appear. First, the Gaussian range: when

x n ≪ n 1/(1+ǫ) , log P(S n x n ) ∼ log(1 -φ(σ -1 n -1/2 x n ))
, φ being the distribution function of the standard Gaussian law. Next, the domain of validity of the maximal jump principle: when x n ≫ n 1/(1+ǫ) , log P(S n x n ) ∼ log P(max(X 1 , . . . , X n )

x n ). Finally, the transition (x n = Θ(n 1/(1+ǫ) )) appears to be an interpolation between the Gaussian range and the maximal jump one. Logarithmic asymptotics were also considered in [START_REF] Lehtomaa | Large deviations of means of heavy-tailed random variables with finite moments of all orders[END_REF] for a wider class of distributions than in the present paper. Nevertheless, the setting was restricted to the particular sequence x n = n (that lies in the maximal jump range). In [START_REF] Eichelsbacher | Moderate deviations for iid random variables[END_REF], the authors gave a necessary and sufficient condition on the logarithmic tails of the sum of i.i.d. real-valued random variables to satisfy a large deviation principle which covers the Gaussian range. In [START_REF] Arcones | Large and moderate deviations of empirical processes with nonstandard rates[END_REF], Arcones proceeded analogously and covered the maximal jump range for symmetric random variables. In [START_REF] Gantert | The maximum of a branching random walk with semiexponential increments[END_REF], the author studied a more general case of Weibull-like upper tails with a slowly varying function L, at a particular speed of the maximal jump range: -ǫ) . The transition at x n = Θ(n 1/(1+ǫ) ) is not considered in [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF][START_REF] Borovkov | Asymptotic analysis of random walks[END_REF]. It is treated in [START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF] and in [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF]Theorems 2 and 4]. Nevertheless, the rate function is given through non explicit formulae and hence is difficult to interpret. The main contribution of this work is to provide an explicit formula for the rate function at the transition. Moreover, we provide probabilistic proofs which apply both to the Gaussian range and to the transition. The paper is organized as follows. In Section 2, we recall two known results (Theorems 1 and 2) and state the main theorem (Theorem 3). Section 3 is devoted to preliminary results. In particular, we recall a unilateral version of Gärtner-Ellis theorem inspired from [START_REF] Plachky | A theorem about probabilities of large deviations with an application to queuing theory[END_REF] (Theorem 5) and establish a unilateral version of the contraction principle for a sum (Proposition 6), which has its own interest and which we did not find in the literature. The proof of Theorem 3 can be found in Section 4. On the way, we prove Theorem 1. And, to be self-contained, we give in Section 5 a short proof of Theorem 2 which is new, up to our knowledge.

x n = n 1/(1

Main result

In this section, we summarize all regimes of deviations for the sum S n defined in Section 1. The two following results are known (see, e.g., [START_REF] Eichelsbacher | Moderate deviations for iid random variables[END_REF] and [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF]).

Theorem 1 (Gaussian range). For n 1/2 ≪ x n ≪ n 1/(1+ǫ) , we have:

lim n→∞ n x 2 n log P(S n x n ) = - 1 2σ 2 .
Theorem 2 (Maximal jump range). For x n ≫ n 1/(1+ǫ) , setting M n := max(X 1 , . . . , X n ),

lim n→∞ 1 x 1-ǫ n log P(S n x n ) = lim n→∞ 1 x 1-ǫ n log P(M n x n ) = lim n→∞ 1 x 1-ǫ n log P(X x n ) = -q.
The Gaussian range occurs when all summands contribute to the deviations of S n in the sense that log P(S n

x n ) ∼ log P(S n x n , ∀i ∈ 1, n X i < x ǫ n ). In the maximal jump range, the main contribution of the deviations of S n is due to one summand, meaning that log P(S n x n ) ∼ log P(X x n ). Now we turn to the main contribution of this paper: we estimate the deviations of S n at the transition x n = Θ(n 1/(1+ǫ) ) and provide an explicit formula for the rate function. Notice that the sequence n 1/(1+ǫ) is the solution (up to a scalar factor) of the following equation in x n :

x 2 n /n = x 1-ǫ n ,
equalizing the speeds of of the deviation results obtained in the Gaussian range and in the maximal jump range. It appears that the behavior at the transition is a trade-off between the Gaussian range and the maximal jump range driven by the contraction principle for the distributions

L(S n-1 | ∀i X i < x ǫ n ) ⊗ L(X n | X n x ǫ n
) and the function sum. Theorem 3 (Transition). For all C > 0 and

x n = Cn 1/(1+ǫ) , lim n→∞ n x 2 n log P(S n x n ) = -inf 0 t 1 q(1 -t) 1-ǫ C 1+ǫ + t 2 2σ 2 =: -J(C).
Let us give a somewhat more explicit expression for the rate function

J. Let f (t) = q(1 - t) 1-ǫ /C 1+ǫ +t 2 /(2σ 2 ). An easy computation shows that, if C C ′ ǫ := (1+ǫ)((1-ǫ)qσ 2 ǫ -ǫ ) 1/(1+ǫ) , then f is decreasing and its minimum 1/(2σ 2 ) is attained at t = 1. If C > C ′
ǫ , then f has two local minima, at 1 and at t(C): the latter corresponds to the smallest of the two roots in [0, 1] of f ′ (t) = 0, equation equivalent to

t(1 -t) ǫ = (1 -ǫ)qσ 2 C 1+ǫ . If C ′ ǫ < C C ǫ := (1 + ǫ)(qσ 2 (2ǫ) -ǫ ) 1/(1+ǫ) , then f (t(C)) f (1). And, if C > C ǫ , then f (t(C)) < f (1). As a consequence, for all C > 0, J(C) =    1 2σ 2 if C C ǫ , q(1-t(C)) 1-ǫ C 1+ǫ + t(C) 2 2σ 2 if C > C ǫ .
As a consequence, we see that the transition interpolates between the Gaussian range and the maximal jump one. First, when x n = Cn 1/(1+ǫ) , the asymptotics of the Gaussian range coincide with the one of the transition for

C C ǫ . Moreover, t(C ǫ ) = (1 -ǫ)/(1 + ǫ) and one can check that -1/(2σ 2 ) = -q(1 -t(C ǫ )) 1-ǫ /C 1+ǫ ǫ -t(C ǫ ) 2 /(2σ 2 ). Finally, for C > C ǫ , by the definition of t(C), we deduce that, as C → ∞, t(C) → 0 leading to t(C)∼(1 -ǫ)qσ 2 C -(1+ǫ) . Consequently, C 1+ǫ J(C) → 1 as C → ∞,
and we recover the asymptotic of the maximal jump range (recall that, when

x n = Cn 1/(1+ǫ) , x 2 n /n = C 1+ǫ x 1-ǫ n ).
In Section 4, we give a proof of Theorem 3 which also encompasses Theorem 1. Before turning to this proof, we establish several intermediate results useful in the sequel.

Preliminary results

First, we present a classical result, known as the principle of the largest term, that will allow us to consider the maximum of several quantities rather than their sum. The proof is standard (see, e.g., [START_REF] Dembo | Large deviations techniques and applications[END_REF]Lemma 1.2.15]).

Lemma 4 (Principle of the largest term). Let (v n ) n 0 be a positive sequence diverging to ∞, N be a positive integer, and, for i = 1, . . . , N, (a n,i ) n 0 be a sequence of non-negative numbers. Then,

lim n→∞ 1 v n log N i=1 a n,i = max i=1,...,N lim n→∞ 1 v n log a n,i .
The next theorem is a unilateral version of Gärtner-Ellis theorem, which was proved in [START_REF] Plachky | A theorem about probabilities of large deviations with an application to queuing theory[END_REF].

Its proof is omitted to lighten the present paper.

Theorem 5 (Unilateral Gärtner-Ellis theorem). Let (Y n ) n 0 be a sequence of real random variables and a positive sequence (v n ) n 0 diverging to ∞. Suppose that there exists a differentiable function Λ defined on R + such that Λ ′ is a (increasing) bijective function from R + to R + and, for all λ 0:

1 v n log E e vnλYn ---→ n→∞ Λ(λ).
Then, for all c 0,

-inf t>c Λ * (t) lim n→∞ 1 v n log P(Y n > c) lim n→∞ 1 v n log P(Y n c) -inf t c Λ * (t),
where, for all t 0, Λ * (t) := sup{λt -Λ(λ) ; λ 0}. Now, we present a unilateral version of the contraction principle for a sequence of random variables in R 2 with independent coordinates where the function considered is the sum of the coordinates. Observe that only unilateral assumptions are required. The proof of the upper bound uses the same kind of decomposition as in the proof of [ 

I i (a) = -inf u<a lim n→∞ 1 v n log P(Y n,i > u) and I i (a) = -inf u<a lim n→∞ 1 v n log P(Y n,i > u).
Assume that: (H) for all M > 0, there exists d > 0 such that

lim n→∞ 1 v n log P(Y n,1 > d, Y n,2 < -d) < -M and lim n→∞ 1 v n log P(Y n,1 < -d, Y n,2 > d) < -M.
Then, for all c ∈ R, one has

-inf t>c I(t) lim n→∞ 1 v n log P(Y n,1 + Y n,2 > c) lim n→∞ 1 v n log P(Y n,1 + Y n,2 c) -inf t c I(t)
where, for all t ∈ R, Proof. Obviously, the functions I 1 , I 1 , I 2 , and I 2 are nondecreasing. Let us prove that I is nondecreasing, the proof for I being similar. Let t 1 < t 2 , let η > 0, and let a ∈ R be such that I(t 2 ) I 1 (a) + I 2 (t 2 -a) -η. Since I 2 is nondecreasing, we have

I(t) := inf
I(t 1 ) I 1 (a) + I 2 (t 1 -a) I 1 (a) + I 2 (t 2 -a) I(t 2 ) + η,
which completes the proof of the monotony of I, letting η → 0.

Lower bound. Let c ∈ R, let t > c, and let δ > 0 be such that 0

< 2δ < t-c. For all (a, b) ∈ R 2 such that a + b = t, we have lim 1 v n log P(Y n,1 + Y n,2 > c) lim 1 v n log P(Y n,1 > a -δ) + lim 1 v n log P(Y n,2 > b -δ) -I 1 (a) -I 2 (b). Therefore, lim 1 v n log P(Y n,1 + Y n,2 > c) sup t>c sup (a,b)∈R 2 a+b=t (-I 1 (a) -I 2 (b)) = -inf t>c I(t).
Upper bound. Let c ∈ R and let M > 0. Let d > 0 be given by assumption (H). Define

Z = {(a, b) ∈ [-d, ∞) 2 ; a + b c} and K = {(a, b) ∈ [-d, ∞) 2 ; a + b = c}. Write P(Y n,1 + Y n,2 c) P(Y n,1 > d, Y n,2 < -d) + P(Y n,1 < -d, Y n,2 > d) + P (Y n,1 , Y n,2 ) ∈ Z =: Q n,1 + Q n,2 + Q n,3 .
By assumption,

lim 1 v n log(Q n,1 ) < -M and lim 1 v n log(Q n,2 ) < -M. Let us estimate lim v -1 n log Q n,3 . For all (a, b) ∈ K, -inf u<a v<b lim 1 v n log P Y n,1 > u, Y n,2 > v -inf u<a lim 1 v n log P(Y n,1 > u) -inf v<b lim 1 v n log P(Y n,2 > v) = I 1 (a) + I 2 (b).
Defining θ [δ] := min(θ -δ, δ -1 ) for all δ > 0 and for all θ ∈ (-∞, ∞], there exists u a < a and v b < b such that

-lim 1 v n log P Y n,1 > u a , Y n,2 > v b (I 1 (a) + I 2 (b)) [δ] . ( 3 
)
From the cover ((u a , ∞) × (v b , ∞)) (a,b)∈K of the compact subset K, we can extract a finite subcover ((u

a i , ∞) × (v b i , ∞)) 1 i p . Since Z ⊂ p i=1 (u a i , ∞) × (v b i , ∞),
we obtain, thanks to Lemma 4 and (3),

lim 1 v n log Q 3 lim 1 v n log p i=1 P Y n,1 > u a i , Y n,2 > v b i = max 1 i p lim 1 v n log P Y n,1 > u a i , Y n,2 > v b i max 1 i p -(I 1 (a i ) + I 2 (b i )) [δ] -inf (a,b)∈R 2 a+b=c (I 1 (a) + I 2 (b)) [δ] .
Letting δ → 0 and using the definition of I, we deduce that

lim 1 v n log Q 3 -inf (a,b)∈R 2 a+b=c (I 1 (a) + I 2 (b)) = -I(c) = -inf t c I(t).
Letting M → ∞, we get the desired upper bound.

Proof of Theorems 1 and 3

From now on, all non explicitly mentioned asymptotics are taken as n → ∞. Replacing X by q -1/(1-ǫ) X, we may suppose without loss of generality that

log P(X x) ∼ -x 1-ǫ as x → ∞. (4) 
The conclusions of Theorem 1 and 3 follow from Lemmas 8, 9, 12 below, and the principle of the largest term (Lemma 4).

Principal estimates

By (4), the Laplace transform Λ X of X is not defined at the right of zero. In order to use the standard exponential Chebyshev inequality anyway, we introduce the following decomposition:

P(S n x n ) = n m=0 n m Π n,m (x n )
where, for all m ∈ 0, n and for all a 0,

Π n,m (a) := P(S n a, ∀i ∈ 1, m X i x ǫ n , ∀i ∈ m + 1, n X i < x ǫ n ).
Note that the only relevant truncation is at x ǫ n (and not at x n as in [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF]). The asymptotics we want to prove are given by Lemmas 8 and 9, the proofs of which rely on the unilateral version of Gärtner-Ellis theorem (Theorem 5) and on the unilateral sum-contraction principle (Proposition 6).

Lemma 8. Let C > 0. If n 1/2 ≪ x n Cn 1/(1+ǫ) and t > 0, then lim n x 2 n log Π n,0 (tx n ) = - t 2 2σ 2 . ( 5 
)
Proof. Let us introduce X with distribution L(X | X < x ǫ n ). For all n ∈ N * , let X 1 , X 2 , ..., X n be i.i.d. copies of X and let

S n = X 1 + • • • + X n , so that Π n,0 (tx n ) = P(S n tx n , X 1 , . . . , X n < x ǫ n ) = P(S n tx n )P(X < x ǫ n ) n ∼ P(S n tx n ),
by [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF]. We want to apply Theorem 5 to the random variables

S n /x n with v n = x 2 n /n. For u > 0, n x 2 n log E e u x 2 n n Sn xn = n 2 x 2 n log E e uxnX n ½ X<x ǫ n - n 2 x 2 n log P(X < x ǫ n ). ( 6 
)
The second term in the right side of the above equation goes to 0 as n → ∞ since log P(X <

x ǫ n ) ∼ -P(X > x ǫ n ) = O(e -x ǫ(1-ǫ) n /2
), by [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF]. As for the first term, if y < x ǫ n , then x n y/n x 1+ǫ n /n C 1+ǫ . Now, up to changing γ in γ ∧ 1, ( 1) is true for some γ ∈ (0, 1] and there exists c > 0 such that, for all s C 1+ǫ , |e s -

(1 + s + s 2 /2)| c|s| 2+γ . Hence, E e uxnX n ½ X<x ǫ n -e u 2 x 2 n σ 2 2n 2 E e uxnX n ½ X<x ǫ n -E 1 + ux n X n + u 2 x 2 n X 2 2n 2 ½ X<x ǫ n + E 1 + ux n X n + u 2 x 2 n X 2 2n 2 ½ X<x ǫ n -1 + u 2 x 2 n σ 2 2n 2 + 1 + u 2 x 2 n σ 2 2n 2 -e u 2 x 2 n σ 2 2n 2 cρ ux n n 2+γ + E 1 + ux n X n + u 2 x 2 n X 2 2n 2 ½ X x ǫ n + o x 2 n n 2 . ( 7 
)
For n large enough, applying Hölder's inequality,

E 1 + ux n X n + u 2 x 2 n X 2 2n 2 ½ X x ǫ n E[X 2 ½ X x ǫ n ] E[X 2+γ ] 2/(2+γ) P(X x ǫ n ) γ/(2+γ) = o x 2 n n 2 , ( 8 
)
by ( 4). Combining ( 6), [START_REF] Dyszewski | The maximum of a branching random walk with stretched exponential tails[END_REF], and (8), we get

n x 2 n log E e u x 2 n n Sn xn → u 2 σ 2 2 := Λ(u).
Since Λ * (t) = t/2σ 2 , (5) stems from Theorem 5.

Lemma 9. Let C > 0. If x n = Cn 1/(1+ǫ) , then lim n x 2 n log Π n,1 (x n ) = -J(C). Proof. Recall that, for n ∈ N * , Π n,1 (x n ) = P(S n x n | X 1 x ǫ n , X 2 , . . . , X n < x ǫ n )P(X x ǫ n )P(X < x ǫ n ) n-1 .
Using (4), it suffices to prove that

n x 2 n log P(S n x n |X 1 x ǫ n , X 2 , . . . , X n < x ǫ n ) → -J(C).
To do so, we apply the contraction principle of Proposition 6 to (Y n,1 , Y n,2 ) with

L(Y n,1 ) = L(x -1 n X 1 | X 1 x ǫ n ) and L(Y n,2 ) = L(x -1 n (X 2 + • • • + X n ) | X 2 , . . . , X n < x ǫ n ),
and v n = x 2 n /n. First, one has obviously, P(X ux n | X x ǫ n ) = 1 for u 0 and P(X ux n | X x ǫ n ) = 0 for u 1. In addition, for u ∈ (0, 1), using (4),

log P(X ux n | X x ǫ n ) ∼ -(ux n ) 1-ǫ .
Using the notation of Proposition 6, it follows that I 1 (a) = I 1 (a) = I 1 (a), where

I 1 (a) = sup u<a -lim n x 2 n log P(X ux n | X x ǫ n ) =        0 if a < 0, C -(1+ǫ) a 1-ǫ if a ∈ [0, 1], ∞ if a > 1. (9) 
Moreover, for all u > 0,

n x 2 n log P(X 2 + . . . + X n ux n | X 2 , . . . , X n < x ǫ n ) = n x 2 n log Π n-1,0 (ux n ) → - u 2 2σ 2 ,
by Lemma 8. Thus, we have

I 2 (b) = b 2 /(2σ 2
) for all b > 0 and, since I 2 is a nondecreasing and nonnegative function, we get I 2 (b) = 0 for all b 0. This, together with (9), leads to: for all t ∈ R,

I(t) = inf a+b=t (a,b)∈R 2 {I 1 (a) + I 2 (b)} = inf t-1 b t {I 1 (t -b) + I 2 (b)} = inf t-1 b t (t -b) 1-ǫ C 1+ǫ + b 2 2σ 2 , since b < t -1 entails I 1 (t -b) = ∞ and b > t entails I 1 (t -b) + I 2 (b) > I 1 (0) + I 2 (t).
It is a standard result (see, e.g., [15, 4.c.]) that I is upper semicontinuous. Since I is also nondecreasing, I is right continuous and we get inf t 1

I(t) = inf t>1 I(t) = I(1).
Applying Proposition 6, this completes the proof.

Notice that the very same argument shows that:

• if x n = Cn 1/(1+ǫ) , then, for all m 1, lim n x 2 n log Π n,m (x n ) = -J(C); • if x n ≪ n 1/(1+ǫ) , then, for all m 1, lim n x 2 n log Π n,m (x n ) = - 1 2σ 2 .
Our last step consist in proving that these estimates also hold for

n m=2 n m Π n,m (x n ) instead of Π n,m (x n ).

Two uniform bounds

Lemma 10. Fix a sequence x n → ∞. For all δ ∈ (0, 1) and M > 0, there exists n(δ, M) 1 such that, for all n n(δ, M), for all m ∈ 0, n , for all u ∈ [0,

Mnx -ǫ n ], log P(S m u, ∀i ∈ 1, m X i < x ǫ n ) - (1 -δ)u 2 2nσ 2 .
In particular, if

x n Cn 1/(1+ǫ) , taking M = C 1+ǫ , the bound holds for u ∈ [0, x n ].
Proof. Using the fact that ½ t 0 e t , for all λ > 0, 1) is true for some γ ∈ (0, 1] and there exists c(M) > 0 such that, for all s Mσ -2 , we have e s 1+s+s 2 /2+c(M)|s| 2+γ . Hence, for λ

P(S m u, ∀i ∈ 1, m X i < x ǫ n ) e -λu E[e λX ½ X<x ǫ n ] m . Up to changing γ in γ ∧ 1, (
= u(nσ 2 ) -1 Mσ -2 x -ǫ n , E[e λX ½ X<x ǫ n ] 1 + λ 2 σ 2 2 + c(M)ρλ 2+γ 1 + λ 2 σ 2 2 (1 + δ),
as soon as 2c(M)ρσ -2 (Mσ -2 x -ǫ n ) γ δ, i.e. for n n(δ, M). Thus, since m n,

log P(S m u, ∀i ∈ 1, m X i < x ǫ n ) -λu + nλ 2 σ 2 2 (1 + δ) = - (1 -δ)u 2 2nσ 2 .
Lemma 11. Fix a sequence x n → ∞. For all δ ∈ (0, 1), there exists n(δ) 1 such that, for all n n(δ), for all m 2, for all u ∈ [0,

x n ], log P(S m u, ∀i ∈ 1, m X i x ǫ n ) -(1 -δ) u 1-ǫ + m(1 -2 -ǫ )x ǫ(1-ǫ) n .
Proof. The result is trivial for u < mx ǫ n . In the sequel, we suppose u mx ǫ n . Let q ′ = 1 -2δ/3 and q ′′ = 1 -δ/3, so that 1 -δ < q ′ < q ′′ < 1. Choose x(δ) > 0 such that, for all x x(δ), log P(X x) -q ′′ x 1-ǫ . One has:

P(S m u, ∀i ∈ 1, m X i x ǫ n ) P(S m u, ∀i ∈ 1, m x ǫ n X i < u) + P(∃i ∈ 1, m X i u, ∀i ∈ 1, m X i x ǫ n ).
First, [START_REF] Gantert | The maximum of a branching random walk with semiexponential increments[END_REF] as soon as x ǫ n x(δ) (remember that u mx ǫ n x ǫ n ), i.e. as soon as n n 1 (δ). Secondly, denoting by a i integers,

P(∃i ∈ 1, m X i u, ∀i ∈ 1, m X i x ǫ n ) mP(X u)P(X x ǫ n ) m-1 me -q ′ (u 1-ǫ +(m-1)x ǫ(1-ǫ) n )
P(S m u, ∀i ∈ 1, m x ǫ n X i < u) = ∀i x ǫ n u i <u ½ u 1 +•••+um u m i=1 P(X ∈ du i ) ∀i ⌈x ǫ n ⌉ a i ⌈u⌉ ½ a 1 +•••+am u m i=1 P(a i -1 < X a i ) ∀i ⌈x ǫ n ⌉ a i ⌈u⌉ ½ a 1 +•••+am u m i=1 e -q ′′ (a i -1) 1-ǫ ∀i x ǫ n u i <u+2 ½ u 1 +•••+um u m i=1 e -q ′′ (u i -2) 1-ǫ du i ∀i x ǫ n u i <u+2 u 1 +•••+um u e -q ′ (u 1-ǫ 1 +•••+u 1-ǫ m ) du 1 • • • du m ,
as soon as n is large enough (n n 2 (δ) n 1 (δ)) so that, for all v x ǫ n , q ′′ (v -2) 1-ǫ q ′ v 1-ǫ . Now, the function f : (u 1 , . . . , u m ) → -q ′ (u 1-ǫ 1 +• • •+u 1-ǫ m ) is convex, so f reaches its maximum on the domain of integration at the points where all the u i equal x ǫ n , except one equal to u -(m -1)x ǫ n . Therefore,

P(S m u, ∀i ∈ 1, m X i x ǫ n ) (u + 2) m exp -q ′ (u -(m -1)x ǫ n ) 1-ǫ + (m -1)x ǫ(1-ǫ) n . Let f (m, u) = (u -(m -1)x ǫ n ) 1-ǫ + (m -1)x ǫ(1-ǫ) n -u 1-ǫ . Since ∂f ∂u (m, u) = (1 -ǫ) 1 (u -(m -1)x ǫ n ) ǫ - 1 u ǫ > 0 and f (m, mx ǫ n ) = x ǫ(1-ǫ) n m(1 -m -ǫ ) x ǫ(1-ǫ) n m(1 -2 -ǫ ),
we get

P(S m u, ∀i ∈ 1, m x ǫ n X i < u) (u + 2) m exp -q ′ u 1-ǫ + m(1 -2 -ǫ )x ǫ(1-ǫ) n . (11) 
Finally, putting together [START_REF] Gantert | The maximum of a branching random walk with semiexponential increments[END_REF] and [START_REF] Kinchin | Über einer neuen Grenzwertsatz der Wahrscheinlichkeitsrechnung[END_REF], and using the fact that, for m 2, m-1 m(1 -2 -ǫ ) and (u + 2) m + m (u + 3) m ,

P(S m u, ∀i ∈ 1, m X i x ǫ n ) (u + 3) m exp -q ′ u 1-ǫ + m(1 -2 -ǫ )x ǫ(1-ǫ) n exp -(1 -δ) u 1-ǫ + m(1 -2 -ǫ )x ǫ(1-ǫ) n as soon as log(u + 3) log(x n + 3) δ 3 (1 -2 -ǫ )x ǫ(1-ǫ) n ,
i.e. for n n(δ) n 2 (δ).

Upper bound for the sum of the Π n,m

Using the uniform bounds of Lemmas 10 and 11, we are able to bound the remaining term n m=2 n m Π n,m (x n ) with an argument mimicing the proof of the upper bound in our unilateral sum-contraction principle.

Lemma 12. If n 1/2 ≪ x n ≪ n 1/(1+ǫ) , then lim sup n→∞ n x 2 n log n m=2 n m Π n,m (x n ) - 1 2σ 2 . If x n = Cn 1/(1+ǫ) , then lim sup n→∞ n x 2 n log n m=2 n m Π n,m (x n ) -J(C). Proof. Suppose n 1/2 ≪ x n Cn 1/(1+ǫ) . Fix some integer r 1. Noticing that (x, y) ∈ (R + ) 2 x + y 1 ⊂ r k=1 (x, y) ∈ (R + ) 2 x k -1 r , y 1 - k r , we have, for all m ∈ 2, n , Π n,m (x n ) = P(S n x n , ∀i ∈ 1, m X i x ǫ n , ∀i ∈ m + 1, n X i < x ǫ n ) r k=1 P S n-m k -1 r x n , ∀i ∈ 1, n -m X i < x ǫ n P S m 1 - k r x n , ∀i ∈ 1, m X i x ǫ n r k=1 exp -(1 -δ) ((k -1)/r) 2 x 2 n 2nσ 2 + 1 - k r 1-ǫ x 1-ǫ n + m(1 -2 -ǫ )x ǫ(1-ǫ) n ,
for n large enough, applying Lemmas 10 and 11. Hence,

log n m=2 n m Π n,m (x n ) log r k=1 exp -(1 -δ) ((k -1)/r) 2 x 2 n 2nσ 2 + 1 - k r 1-ǫ x 1-ǫ n + log n m=2 n m e m(1-2 -ǫ )x ǫ(1-ǫ) n
where the latter sum is bounded.

• If x n ≪ n 1/(1+ǫ) , then x 2 n /n ≪ x 1-ǫ n and, applying the principle of the largest term (Lemma 4), we get lim sup

n→∞ n x 2 n log n m=2 n m Π n,m (x n ) -(1 -δ) r -1 r 2 1 2σ 2 , so, letting r → ∞ and δ → 0, lim sup n→∞ n x 2 n log n m=2 n m Π n,m (x n ) - 1 2σ 2 . • If x n = Cn 1/(1+ǫ) , then x 2 n /n = C 2 n (1-ǫ)/(1+ǫ) = C 1+ǫ x 1-ǫ n
and, applying the principle of the largest term (Lemma 4), we get lim sup

n→∞ n x 2 n log n m=2 n m Π n,m (x n ) -(1 -δ) r min k=1 ((k -1)/r) 2 2σ 2 + 1 C 1+ǫ 1 - k r 1-ǫ , so, letting r → ∞ and δ → 0, lim sup n→∞ n x 2 n log n m=2 n m Π n,m (x n ) -min t∈[0,1] t 2 2σ 2 + (1 -t) 1-ǫ C 1+ǫ = -J(C).

Proof of Theorem 2

To be complete, we mention a short proof of Theorem 2 that we did not find in the literature.

Recall that we may assume that q = 1 without loss of generality (see the beginning of Section 4). First, P(M n x n ) = 1 -(1 -P(X x n )) n ∼ nP(X x n ), so x -1+ε n log P(M n x n ) → -1 by (4). As for S n , we introduce the following decomposition P(S n x n ) = P n + R n where P n := P(S n x n , ∀i ∈ 1, n X i < x n ) and R n := P(S n x n , ∃i ∈ 1, n X i x n ).

Theorem 2 is a direct consequence of Lemmas 4, 13, and 14.

Lemma 13. If x n ≫ n 1/(1+ǫ) , then

lim 1 x 1-ǫ n log R n = -1. ( 12 
)
Proof. Notice that P(S n-1 0)P(X x n ) R n nP(X x n ).

The central limit theorem provides P(S n-1 0) → 1/2 and the result follows.

Lemma 14. If x n ≫ n 1/(1+ǫ) , then lim 1 x 1-ǫ n log P n -1.

(13)

Proof. Using the fact that ½ x 0 e x , for all q ′ ∈ (0, 1),

P n e -q ′ x 1-ǫ n E e q ′ x -ǫ n X ½ X<xn n = e -q ′ x 1-ǫ n E e q ′ x -ǫ n X ½ X<x ǫ n + E e q ′ x -ǫ n X ½ x ǫ n X<xn n . [START_REF] Mikosch | Large deviations of heavy-tailed sums with applications in insurance[END_REF] First, there exists c > 0 such that, for all t u, e t 1 + t + ct 2 . Therefore, E e q ′ x -ǫ n X ½ X<x ǫ n E 1 + q ′ x -ǫ n X + c(q ′ x -ǫ n X) 2 = 1 + O(x -2ǫ n ). Second, integrating by parts, E e q ′ x -ǫ n X ½ x ǫ n X<xn = xn x ǫ n e q ′ x -ǫ n y P(X ∈ dy) = -e q ′ x -ǫ n y P(X y)

xn x ǫ n + q ′ x -ǫ n xn
x ǫ n e q ′ x -ǫ y P(X y)dy.

Let q ′′ ∈ (q ′ , 1). Using (4), for n large enough, we deduce that E e q ′ x -ǫ n X ½ x ǫ n X<xn e q ′ P(X x ǫ n ) + q ′ x -ǫ n xn x ǫ n e q ′ x -ǫ n y-q ′′ y 1-ǫ dy.

The convex function f n (y) = q ′ x -ǫ n y -q ′′ y 1-ǫ attains its maximum on [x ǫ n , x n ] on the boundary. Since f n (x ǫ n ) = q ′ -q ′′ x ǫ(1-ǫ) n , f n (x n ) = (q ′ -1)x 1-ǫ n , and q ′ ∈ (0, 1), f n (x n ) f n (x ǫ n ) for n large enough, whence

E e q ′ x -ǫ n X ½ x ǫ n X<xn (1 + q ′ x 1-ǫ n )e q ′ -q ′′ x ǫ(1-ǫ) n = O(x -2ǫ n ).
Consequently, for x n ≫ n 1/(1+ǫ) , 1 x 1-ǫ n log P n -q ′ + n x 1-ǫ n log(1 + O(x -2ǫ n )) = -q ′ + O n x 1+ǫ n , and the conclusion follows letting q ′ → 1.

Remark 7 .

 7 a,b∈R a+b=t I 1 (a) + I 2 (b) and I(t) := inf a,b∈R a+b=t I 1 (a) + I 2 (b). Moreover I and I are nondecreasing functions. A sufficient condition for assumption (H) is: for i ∈ {1, 2}, lim a→∞ I i (a) = ∞.