
HAL Id: hal-02895654
https://hal.science/hal-02895654v1

Preprint submitted on 10 Jul 2020 (v1), last revised 10 Jul 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Representation of References in the pi-calculus
Daniel Hirschkoff, Enguerrand Prebet, Davide Sangiorgi

To cite this version:
Daniel Hirschkoff, Enguerrand Prebet, Davide Sangiorgi. On the Representation of References in the
pi-calculus. 2020. �hal-02895654v1�

https://hal.science/hal-02895654v1
https://hal.archives-ouvertes.fr

On the Representation of References in the1

pi-calculus2

Daniel Hirschkoff3

ENS de Lyon, France4

Enguerrand Prebet5

ENS de Lyon, France6

Davide Sangiorgi7

Università di Bologna, Italy8

INRIA, France9

Abstract10

The π-calculus has been advocated as a model to interpret, and give semantics to, languages with11

higher-order features. Often these languages make use of forms of references (and hence viewing a12

store as set of references). While translations of references in π-calculi (and CCS) have appeared,13

the precision of such translations has not been fully investigated. In this paper we address this issue.14

We focus on the asynchronous π-calculus (Aπ), where translations of references are simpler. We15

first define πref, an extension of Aπ with references and operators to manipulate them, and illustrate16

examples of the subtleties of behavioural equivalence in πref. We then consider a translation of17

πref into Aπ. References of πref are mapped onto names of Aπ belonging to a dedicated "reference"18

type. We show how the presence of reference names affects the definition of barbed congruence. We19

establish full abstraction of the translation w.r.t. barbed congruence and barbed equivalence in the20

two calculi. We investigate proof techniques for barbed equivalence in Aπ, based on two forms of21

labelled bisimilarities. For one bisimilarity we derive both soundness and completeness; for another,22

more efficient and involving an inductive ‘game’ on reference names, we derive soundness, leaving23

completeness open. Finally, we discuss examples of uses of the bisimilarities.24

2012 ACM Subject Classification Theory of computation → Semantics and reasoning25

Keywords and phrases Process calculus, Bisimulation, Asynchrony, Imperative programming26

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.3127

Funding Hirschkoff and Prebet acknowledge support from the European Research Council (ERC)28

under the European Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157),29

and from LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program30

"Investissements d’Avenir" ANR-11-IDEX-0007. Sangiorgi acknowledges support from the MIUR-31

PRIN project ‘Analysis of Program Analyses’ (ASPRA, ID: 201784YSZ5_004), and from the European32

Research Council (ERC) Grant DLV-818616 DIAPASoN.33

1 Introduction34

The π-calculus has been advocated as a model to interpret, and give semantics to, languages35

with higher-order features. Often these languages make use of forms of references (and hence36

viewing a store as set of references). This therefore requires representations of references using37

the names of the π-calculus. There are strong similarities between the names of the π-calculus38

and the references of imperative languages. This is evident in the denotational semantics of39

these languages: the mathematical techniques employed in modelling the π-calculus (e.g.,40

[25, 6]) were originally developed for the semantic description of references. Yet names and41

references behave rather differently: receiving from a name is destructive —it consumes a42

value —whereas reading from a reference is not; a reference has a unique location, whereas a43

name may be used by several processes both in input and in output; etc. These differences44

© Daniel Hirschkoff, Enguerrand Prebet and Davide Sangiorgi;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 31; pp. 31:1–31:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2020.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 On the Representation of References in the pi-calculus

make it unclear if and how interesting properties of imperative languages can be proved via45

a translation into the π-calculus.46

A subset of the π-calculus that often appears in the literature, for its expressive power47

and elegant theory, is the Asynchronous π-calculus (Aπ). Aπ allows one to provide a simpler48

representation of references, where a reference ` storing a value n is just an output message49

`〈n〉 (in Aπ output is not a prefix, hence it has no process continuation). A process that50

wishes to access the reference is supposed to make an input at ` and then immediately emit51

a message at ` with the new content of the reference. For instance a process reading on the52

reference and binding its content to x in the continuation P is53

`(x). (`〈x〉 | P) .
Another reason that makes this representation of references in Aπ interesting is the bisimilarity54

of Aπ, called asynchronous bisimilarity. It differs from standard bisimilarity in the input55

clause, in which a transition P n〈m〉−−−→ P ′ (where P is receiving m on n) can be answered by56

a bisimilar process Q thus:57

n〈m〉 | Q =⇒ Q′ (∗)58

(provided P ′ and Q′ are bisimilar), where =⇒ stands for zero or several internal communication59

steps. Intuitively, Q does not necessarily perform an input on n in response to the transition60

done by P . To see why this clause could be interesting with references, consider a process61

that performs a useless read on a reference ` and then continues as P2; in a language with62

references this would be equivalent to P2 itself. When written in Aπ, the process with the63

useless read becomes P1
def= `(x). (`〈x〉 | P2) where x does not appear in P2. In ordinary64

bisimilarity, P1 is immediately distinguished from P2, as the latter cannot answer the input65

transition P1
`〈n〉−−−→ `〈n〉 | P2. However, the answer is possible using the clause (∗), as we have66

`〈n〉 | P2 =⇒ `〈n〉 | P2 .

We are not aware of studies that investigate the faithfulness of the above representation67

of references in Aπ. In this paper we address this issue. For this, we first define πref, an68

extension of Aπ with references and operators to manipulate them. We then consider a69

translation of πref into Aπ and:70

we study the properties of this translation;71

we establish proof techniques on Aπ to reason about references.72

The calculus with references, πref, has constructs for reading from a reference, writing73

on a reference, and a swap operation for atomically reading on a reference and placing a74

new value onto it. Modern computer architectures offer hardware instructions similar to75

swap, e.g., test-and-set, or control-and-swap constructs to atomically check and modify the76

content of a register. These constructs are important to tame the access to shared resources.77

In distributed systems, swap can be used to solve the consensus problem with two parallel78

processes, whereas simple registers cannot [8].79

The swap construct is also suggested by the translation of references into Aπ. The pattern80

for accessing a reference ` is `(x). (`〈n〉 | P). This yields four cases, depending on whether x81

is used in P82

and whether x is equal to n:83

n 6= x n = x

x free in P swap read
x not free in P write useless read

84

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:3

We define a type system in Aπ to capture the intended pattern of usage of names that85

represent references, called reference names, in particular the property that there is always86

a unique output message available at these names. The type system has linearity features87

similar to π-calculus type systems for locks [13] or for receptiveness [22].88

Imposing a type system has consequences on behavioural equivalences. Since the set89

of legal contexts becomes smaller, the behavioural equivalence itself becomes coarser. For90

instance, in the case of reference names, a process P is supposed to be tested only in a91

context that guarantees that all references mentioned in P are ‘allocated’ (thus, an input92

at a reference name ` is never ‘stuck’, as an output message at ` must always exist). A93

consequence of these is a read in which the value read is not used is irrelevant (see formally94

law (1)).95

In both calculi, as behavioural equivalence we use barbed congruence and barbed equivalence.96

These equivalences equate processes which, roughly, in all contexts give rise to ‘matching97

reductions’.98

We establish an operational correspondence between the behaviour of a process in πrefand99

its encoding in Aπ, and from this we establish full abstraction of the translation of πref
100

into Aπ with respect to both barbed equivalence and barbed congruence in the two calculi.101

We then investigate proof techniques for barbed equivalence in Aπ, based on two forms of102

labelled bisimilarities. For one bisimilarity we derive both soundness and completeness. This103

bisimilarity is similar to, but not the same as, asynchronous bisimilarity. For instance, it104

is defined on ‘reference-closed’ processes (intuitively, processes in which all references are105

allocated); therefore inputs on reference names from the tested processes are not visible106

(because such inputs are supposed to consume the unique output message at that reference107

that is present in the tested processes). The output clause of bisimilarity on reference names108

is also different, as we have to make sure that the observer respects the pattern of usage for109

reference names; thus the observer consuming the output message on a reference name `110

should immediately re-install an output on `.111

The second bisimilarity is more efficient because it does not require processes to be112

‘reference-closed’. Thus output messages on reference names consumed by the observer need113

not be immediately re-installed. However sometimes access to a certain reference is needed114

by a process in order to answer the bisimulation challenge from the other process. And115

depending on the content of such references, further accesses to other references may be116

needed. Since we wish to add only the needed references, this introduces an inductive game, in117

which a player requires a reference and the other player specifies the content of such reference,118

within the coinductive game of bisimulation. We show that the resulting bisimilarity is sound,119

and leave completeness as an open problem. Finally, we discuss examples of uses of the120

bisimilarities.121

Related Work. The classic encoding of references in the π-calculus [16] follows their encoding122

into CCS [15]: a reference is a stateful recursive process, which may be interrogated using two123

names, one for read operations, the other for write operations. Properties of this encoding124

have been explored [20], comparing the π-calculus to Concurrent Idealised Algol [3], an125

extension of Idealised Algol [19] with shared variables concurrency. The encoding has been126

shown to be sound but not complete.127

Many works have studied the effect of type systems on behavioural equivalence, formalised128

using both barbed congruence and labelled bisimilarity. (See the references in the books [24,129

7]). To our knowledge, no such study has been done regarding the discipline for reference130

names which we use in this work. This discipline bears similarities with receptiveness [22],131

CONCUR 2020

31:4 On the Representation of References in the pi-calculus

which is also related to the results in [23, 14]. We can also remark that our notion of complete132

processes is reminiscent of the notion of catalysers used by Dezani et al. [5] in session types133

to enforce progress.134

Section 5 discusses further related work.135

Paper outline. In Section 2, we introduce πref and discuss examples of behavioural equiv-136

alences between πref processes. In Section 3 we present Aπ with reference names, using a137

type system that captures the usage of such names. We show the encoding of πref into such138

Aπ and prove its full abstraction for barbed equivalence and congruence. In Section 4 we139

introduce the two new labelled bisimilarities for Aπ, we establish soundness and completeness140

for one and soundness for the other (we conjecture that also completeness holds), and present141

a useful ‘up-to’ technique for the second one. Finally we illustrate the benefits of using the142

proof techniques based on the labelled bisimilarities of Aπ on some examples.143

The proofs of most of the results in this work are presented in a full version of this144

paper [9].145

2 Asynchronous Processes Accessing References: πref
146

In this section, we introduce πref, the asynchronous π-calculus extended with primitives to147

interact with memory locations.148

2.1 Syntax and Semantics149

We assume an infinite set Names of names and a distinct infinite set Refs of references.150

These sets do not contain the special symbol ?, that stands for the constant “unit”. We use151

a, b, c, . . . , p, q, . . . to range over Names; `, . . . to range over Refs; and n,m, . . . , x, y, . . . to152

range over All def= Names∪Refs∪{?}. The grammar for the calculus πref is the following; for153

simplicity, we develop our theory on the monadic calculus (one value at a time is handled).154

P ::= 0
∣∣ a(x).P

∣∣ a〈n〉 ∣∣ !P
∣∣ P1 | P2

∣∣ (νa)P
∣∣ [n = m]P155 ∣∣ (ν` = n)P

∣∣ ` / n.P
∣∣ ` . (x).P

∣∣ ` on n(x).P156
157

The operators in the first line are the standard π-calculus constructs for the inactive158

process, input, asynchronous output, replication, parallel composition, name restriction, and159

matching (however matching here is defined on both names and references). In the second160

line, we find the operators to handle references: reference restriction, or allocation (creating161

a new reference ` with initial value n), write (setting the content of ` to n), read (reading in162

x the value of `), swap (atomically reading on x and replacing the content of the reference163

with n).164

As usual, we often omit 0, and abbreviate a〈?〉 as a (and similarly for inputs a.P). We165

use a tilde, ·̃, for (possibly empty) finite tuples; then (νã) is a sequence of restrictions; and166

(νL̃) a sequence of reference allocations (i.e., a piece of store), using L to represent a single167

allocation such as ` = n. Given the binders (νa)P and (ν` = n)P (for a and `, respectively),168

a(x).P , ` . (x).P and ` on n(x) (for x), we define bn(O), fn(O) (resp. fr(O), br(O)), for the169

bound and free names (resp. references) of some object O (process, action, etc.). The set170

of names of O is defined as the union of its free and bound names; and analogously for171

references. In a(x).P or a〈x〉, name a is the subject whereas x is the object.172

We assume the calculus is simply-typed. Any basic type system for the π-calculus would173

do. In this paper, we assume Milner’s sorting: names and references are partitioned into174

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:5

R-Equiv:
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q
R-Ctxt:

P −→ P ′

E[P] −→ E[Q]

R-Comm:
a(x).P | a〈n〉 −→ P{n/x}

R-Read:
`, n /∈ br(νL̃)

(ν` = n)(νL̃)(` . (x).P | Q) −→ (ν` = n)(νL̃)(P{n/x} | Q)

R-Write:
`, n /∈ br(νL̃)

(ν` = m)(νL̃)(` / n.P | Q) −→ (ν` = n)(νL̃)(P | Q)

R-Swap:
`, n,m /∈ br(νL̃)

(ν` = m)(νL̃)(` on n(x).P | Q) −→ (ν` = n)(νL̃)(P{m/x} | Q)

Figure 1 πref, reduction relation

a collection of types (or sorts). Name types contain names, and reference types contain175

references. Then a sorting function maps types onto types. If a name type s is mapped176

onto a type t, this means that names in s may only carry, or contain, objects in t; if s is a177

reference type then only objects of type t may be stored in s. We shall assume that there is a178

sorting system under which all processes we manipulate are well-typed. For simplicity we use179

simple types; e.g., the sorting is non-recursive (meaning that the graph that represents the180

sorting function, in which the nodes are the types, does not contain cycles). In the remainder181

we assume that all objects (processes, contexts, actions, etc.) respect a given sorting.182

The definition of structural congruence, ≡, is the expected one from the π-calculus,183

treating the (ν` = n) operator like a restriction (see Appendix B.1).184

Contexts, ranged over by C, are process expressions with a hole [] in it. We write C[P]185

for the process obtained by replacing the hole in C with P . Active (or evaluation) contexts,186

ranged over by E, are given by:187

E ::= []
∣∣ E | P ∣∣ (νa)E

∣∣ (ν` = n)E .

The reduction relation −→ is presented in Figure 1. It uses active contexts to isolate the188

subpart of the term that is active in a reduction. We write =⇒ for the ‘multistep’ version of189

−→, whereby P =⇒ P ′ if P may become P ′ after a (possibly empty) sequence of reductions.190

Rules R-Read, R-Write and R-Swap in Figure 1 describe an interaction between the process191

and a reference `. These rules make use of a store (νL̃); this is necessary because there192

might be references that depend on `, and as such cannot be moved past the restriction193

on `. An example is (ν` = a)(ν`′ = `)` / b.P : the write operation is executed by applying194

rule R-Write, with (νL̃) = (ν`′ = `), as the restriction on `′ cannot be brought above the195

restriction on `. We recall that br(νL̃) are the references bound by the ν.196

As usual in concurrent calculi, the reference behavioural equivalence will be barbed197

congruence (in its variant sometimes called reduction-closed barbed congruence), a form of198

bisimulation on reduction that uses closure under contexts and simple observables. In the199

context closure, however, we make sure that all references mentioned in the tested process200

CONCUR 2020

31:6 On the Representation of References in the pi-calculus

have been allocated. As often in π-calculi, we also consider barbed equivalence, that uses only201

active contexts.202

P exhibits a barb at a (so a is in Names), written P ↓a, if P ≡ (ν b̃)(νL̃)(a〈m〉 | P ′) with203

a /∈ b̃. We write P ⇓a if P =⇒ P1 and P1 ↓a for some P1.204

I Definition 1. Given a relation R on processes, and P R Q, we say that P,Q (in R) are205

– closed under reductions if P −→ P ′ implies there is Q′ s.t. Q =⇒ Q′ and P ′ R Q′;206

– preserved by a set C of contexts if C[P] R C[Q] for all C ∈ C;207

– compatible on barbs if P ↓a implies Q ⇓a, for all a.208

A process P is reference-closed if fr(P) = ∅. A context C is closing on the references of209

a process P if C[P] is reference-closed; similarly, C is closing on the references of P,Q if it210

closing on the references of both P and Q. Since reductions may only decrease the set of211

free names of a process, the property of being reference-closed is preserved by reductions.212

I Definition 2 (Barbed congruence and equivalence in πref). Barbed congruence is the largest213

symmetric relation ∼=ref in πref such that whenever P R Q then P,Q are: closed under214

reductions if P,Q are reference-closed; preserved by the contexts that are closing on references215

for P,Q; compatible on barbs if P,Q are reference-closed. Barbed equivalence, ∼=e
ref , is216

defined in the same way, but using active contexts in place of all contexts.217

The restriction to closing contexts (as opposed to arbitrary contexts) yields laws such as218

` . (x).P ∼=ref P, (1)219

whenever x /∈ fn(P). Closing contexts ensure that the reading on ` is not blocking, and220

therefore possible observables in P are visible on both sides.221

As the quantification on contexts refers to the free references of the tested processes,222

transitivity of barbed congruence and equivalence requires some care. As usual in the223

π-calculus, barbed equivalence is not preserved by the input construct, and the closure of224

barbed equivalence under all (well-typed) substitutions coincides with barbed congruence.225

2.2 Behavioural Equivalence in πref: Examples226

We present a few examples that illustrate some subtleties of behavioural equivalence in227

πref. These examples will be formally treated in Section 4.2 for Examples 3 and 4, and in228

Appendix A for Examples 5 and 6.229

The first example shows that processes may be equivalent even though the store is public230

and holds different values. (In the example, the reference ` is actually restricted, but the231

process P underneath the restriction, representing an observer, is arbitrary).232

I Example 3. For any P , we have P1 ∼=ref P2, for233

P1
def= (ν` = a)(P | !` / a | !` / b) P2

def= (ν` = b)(P | !` / a | !` / b)

In the second example, the write on top of P is not blocking, provided that the same writing234

is anyhow possible, and provided that the current value of the store can be recorded.235

I Example 4. We have P1 ∼=ref P2, for

P1
def= ` / b.P | !` / b | !` . (x). ` / x P2

def= P | !` / b | !` . (x). ` / x

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:7

On the left, it would seem that P runs under a store in which ` contains b; whereas on the236

right, P could also run under the initial store, where ` could contain a different value, say a.237

However the component !` . (x). ` / x allows us to store a in x and then write it back later,238

thus overwriting b.239

I Example 5. We have Ps 6∼=e
ref Qs, where

Ps
def= (νt)` / b. (t | !t. ` / a. (c | ` / b. (t | c))) Qs

def= (νt)` / a. (t | !t. ` / b. (c | ` / a. (t | c)))

The discriminating context being large, the formal discussion is moved in Appendix A.240

Intuitively, Ps and Qs are refinements of the processes in Example 3, in that their initial241

writes store different values on the reference `, but both processes maintain the capability242

of writing both values in `. The difference with Example 3 are the additional inputs and243

outputs on name c, which are generated along the transitions. These allow an observer to244

distinguish Ps from Qs by exploiting the swap construct. We informally explain the reason.245

If the two processes have written the same value, say a, in `, then Qs has generated the246

same number of inputs and outputs on c, while Ps must have generated an extra output. An247

observer can use swap to read the content of `, so to check that the value is indeed a, and248

write back a fresh name, say e. Now the observer can tell that Ps has an extra output on c:249

process Qs cannot add a further output, because this would require overwriting e in `, which250

can be tested by the observer at the end.251

We have seen in Example 3 two equivalent processes whose initial store (a single reference)252

is different. The equivalence holds intuitively because the values that the two processes253

can store are the same. Using two references, it is possible to complicate the example. In254

Example 6, the processes are equivalent and yet the pairs of values that may be simultaneously255

stored in the two references are different for the two processes. For each reference separately,256

the set of possible values is the same. But setting a reference to a certain value implies first257

having set the other reference to some specific values. (The processes could be distinguished258

if an observer had the possibility to simultaneously read the two references.)259

I Example 6. Consider two references `1, `2 where booleans (represented as 0,1 below) can260

be stored. Then for any P , we have P1 ∼=ref P2, where261

P1
def= (ν`1 = 0, `2 = 0)(P | (νt)(t | !t. `1 / 1. `1 / 0. `2 / 1. `2 / 0. t))262

P2
def= (ν`1 = 0, `2 = 0)(P | (νt)(t | !t. `1 / 1. `2 / 1. `1 / 0. `2 / 0. t))263

264

P1 and P2 can write 0 and 1 in references `1 and `2, but not in the same order. By doing so,265

we see that if P1 loops, the content of `1 and `2 will evolve thus: (0, 0)→ (1, 0)→ (0, 0)→266

(0, 1)→ (0, 0), while for P2 the loop is different: (0, 0)→ (1, 0)→ (1, 1)→ (0, 1)→ (0, 0).267

In particular, P2 can always go through the state (1, 1), independently of the transitions268

of P , while P1 cannot, in general, reach this state.269

The example above relies on the fact that the domain of possible values for `1 and `2 is270

finite. A more sophisticated example, without such assumption, is given in the Appendix A.271

3 Mapping πref onto the Asynchronous π-calculus272

We present the encoding of πref into Aπ, which follows the folklore encoding of references273

into Aπ.274

CONCUR 2020

31:8 On the Representation of References in the pi-calculus

3.1 The Asynchronous π-calculus275

Below is the grammar of the asynchronous π-calculus, Aπ; we reuse all notations from πref.276

P ::= 0
∣∣ n(x).P

∣∣ !P
∣∣ n〈m〉 ∣∣ P1 | P2

∣∣ (νn)P
∣∣ [n = m]P277

278

The reduction semantics, as well as barbed equivalence and congruence (written ∼=e
a and279

∼=a, respectively), are standard (defined as in πref, and recalled in Appendix B.1). We recall280

the standard definition of asynchronous bisimilarity, ≈a, from [1]. To define ≈a, as well as281

the other forms of bisimilarity we introduce in Section 4, we rely on the early transition282

system for Aπ. In this LTS, which is presented in Appendix B.1 labels are either free inputs283

of the form n〈m〉 (reception of name m on n), output (n〈m〉), bound output ((νm)n〈m〉) or284

internal communication (τ).285

I Definition 7. A symmetric relation R between processes is an asynchronous bisimulation286

if whenever P R Q and P µ−→ P ′, one of these two clauses hold:287

– there is Q′ such that Q µ̂=⇒ Q′ and P ′ R Q′;288

– µ = n〈m〉 and there is Q′ such that Q | n〈m〉 =⇒ Q′ and P ′ R Q′.289

Asynchronous bisimilarity, ≈a, is the largest asynchronous bisimulation.290

I Theorem 8 ([1]). Relations ∼=e
a and ≈a coincide.291

3.2 Encoding πref
292

In π-calculi such as Aπ, there are no references, only names. To make the encoding easier to293

read, we assume however that the set of names contains the set of references {`, · · · } of πref.294

We call such names reference names, and call plain names the remaining names. Reference295

names will be used to represent the references of πref.296

The encoding EJ·K, from πref to Aπ, is a homomorphism on all operators (thus, e.g.,
EJP1 | P2K

def= EJP1K | EJP2K, and EJa(m).P K def= a(m). EJP K), except for reference constructs
for which we have:

EJ(ν` = m).P K def= (ν`)(`〈m〉 | EJP K) EJ` / v.P K def= `(_). (`〈v〉 | EJP K)

EJ` . (x).P K def= `(x). (`〈x〉 | EJP K) EJ` on n(x).P K def= `(x). (`〈n〉 | EJP K)

(We write `(_).Q for an input whose bound name does not appear in Q.) In the encoding, an297

object m stored at reference ` is represented as a message `〈m〉. Accordingly, the encoding of298

a write ` / v.P is `(_). (`〈v〉 | EJP K), meaning that the process acquires the current message299

at ` (which is thus not available anymore) and replaces it with an output with the new value.300

The encoding of a read ` . (x).P follows a similar pattern, this time however the same value301

is received and emitted: `(x). (`〈x〉 | P). The encoding of swap combines the two patterns.302

3.3 Types and Behavioural Equivalences with Reference Names303

To prove a full abstraction property for the encoding, we use types to formalise the behavioural304

difference between reference names and plain names in the asynchronous π-calculus. The305

typing discipline can be added onto any basic type system for the π-calculus. As for πref,306

we follow Milner’s sorting. The types of the sorting impose a partition on the two sets of307

names (reference names and plain names). Thus we assume such a sorting, under which308

all processes are well-typed. We separate the base type system (Milner’s sorting) from the309

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:9

TNil
∅ ` 0

TOut
∅ ` a〈m〉

TInp
∅ ` P

∅ ` a(x).P
TRep

∅ ` P
∅ ` !P

TPar
∆1 ` P ∆2 ` Q

∆1]∆2 ` P | Q
TResN

∆ ` P
∆ ` (νa)P

TResR
∆, ` ` P

∆ ` (ν`)P

TRefO
` ` `〈m〉

TRefI
` ` P

∅ ` `(x).P

Figure 2 Typing conditions for reference names in Aπ processes

typing rules for reference names so as to show the essence of the latter rules. Accordingly,310

we only present the additional typing constraints for reference names.311

We write: RefTypes for the the set of reference types (i.e., types that contain reference312

names); Type(n) is the type of name n; ObType(n) is the type of the objects of n (i.e., the313

type of the names that may be carried at n). For example in well-typed processes such as314

n〈m〉 and n(m).P , name m will be of type ObType(n).315

Notations. We use `, . . . to range over reference names, a, b, . . over plain names, n,m, . . .316

over the set of all names. ∆ ranges over finite sets of reference names. We sometimes write317

∆− x as abbreviation for ∆− {x}. Moreover ∆1]∆2 is defined only when ∆1 ∩∆2 = ∅, in318

which case it is ∆1 ∪∆2; we write ∆, x for ∆] {x}.319

The type system is presented in Figure 2. Judgements have the form ∆ ` P , where P is320

an Aπ process. Rule TRefO along with Rule TPar ensures that every reference names in ∆321

appears in subject of exactly one unguarded output. Rule TResR ensures that new reference322

names are always in ∆ while Rule TRefI ensures that ∆ is constant after a communication323

between references (by re-emitting an output after one has been consumed).324

Intuitively, if ∆ ` P , then P must make available the names in ∆ immediately and exactly325

once in output subject position. We say that ` is output receptive in P if there is exactly326

one unguarded output at `, and moreover this output is not underneath a replication. Then327

∆ ` P holds if328

– any ` ∈ ∆ is output receptive in P ;329

– in any subterm of P of the form (ν`′)Q or `′(m).Q, name `′ is output receptive in Q.330

This intuition is formalised in Lemma 9, and in Proposition 10 that relates types and331

operational semantics.332

Typing is important because it allows us to derive the required behavioural equivalences.333

For instance, allowing parallel composition with the ill-typed process `(x). 0 would invalidate334

barbed equivalence between the (translations of the) terms in law (1).335

In the remainder of the paper, it is assumed that all processes are well typed, meaning336

that each process P obeys the underlying sorting system and that there is ∆ s.t. ∆ ` P337

holds. Two processes P,Q are type-compatible if both ∆ ` P and ∆ ` Q, for some ∆; we338

write ∆ ` P,Q in this case. In the remainder of the paper, all relations are on pairs of339

type-compatible processes. Similarly, all compositions (i.e., of a context with processes) and340

actions are well-typed.341

The type system satisfies standard properties, like uniqueness of typing (∆ ` P and342

∆′ ` P imply ∆ = ∆′), and preservation by structural congruence (P ≡ Q and ∆ ` P imply343

CONCUR 2020

31:10 On the Representation of References in the pi-calculus

∆ ` Q). As claimed above, if ∆ ` P , then names in ∆ are output receptive:344

I Lemma 9. If ∆, ` ` P then P ≡ (νñ)(`〈m〉 | Q), with ` 6∈ ñ, and there is no unguarded345

output at ` in Q.346

The following standard property relies on the standard LTS for Aπ, which is given in347

Appendix B.1.348

I Proposition 10 (Subject reduction). If ∆ ` P and P µ−→ P ′, then349

1. if µ = τ , µ = a〈m〉, µ = a〈m〉 or µ = (νb)a〈b〉, then ∆ ` P ′.350

2. if µ = (ν`)a〈`〉 then ∆, ` ` P ′.351

3. if µ = `〈m〉 and ` /∈ ∆, then ∆, ` ` P ′352

4. if ` /∈ ∆, then ∆, ` ` P | `〈m〉.353

5. if µ = `〈m〉 or µ = (νb)`〈b〉, then ∆− ` ` P ′.354

6. if µ = (ν`′)`〈`′〉, then (∆− `), `′ ` P ′.355

We can remark that in case 3, we have ` /∈ ∆, as otherwise the context would not be able356

to trigger an input (since, by typing, it could not generate an output on `).357

Barbed congruence. As usual in typed calculi, the definitions of the barbed relations take358

typing into account, so that the composition of a context and a process be well-typed. In the359

case of reference names, an additional ingredient has to be taken into account, namely the360

accessibility of reference names. If a process has the possibility of accessing a reference, then361

a context in which the process is tested should guarantee the availability of that reference.362

For this, we define the notion of completing context and complete process. Then, roughly,363

barbed congruence becomes “barbed congruence under all completing contexts”.364

A process P is complete if each reference name that appears free in P is ‘allocated’ in P .365

We write frn(P) for the set of free reference names in P .366

I Definition 11 (Open references and complete processes). The open references of P such367

that ∆ ` P are the names in frn(P)\∆; similarly the open references of processes P1, . . . , Pn368

is the union of the open references of the Pi’s. P is complete if it contains no open reference.369

frn(P) ⊆ ∆ and ∆ ` P , for some ∆.370

A context C is completing for P if C[P] is complete.371

(Note that an Aπ complete process might have free reference names, if these are not open372

references; in contrast, a πref reference-closed process does not have free references.)373

I Lemma 12. P is complete iff ∅ ` (νñ)P where ñ def= frn(P).374

Completing contexts are the only contexts in which processes should be tested. We375

constrain the definitions of typed barbed congruence and equivalence accordingly. The376

grammar for the active contexts in Aπ is as expected:377

E ::= []
∣∣ E | P ∣∣ (νn)E .

I Definition 13 (Barbed congruence and equivalence in Aπ with reference names). Barbed378

congruence is the largest symmetric relation ∼=Arn in Aπ such that whenever P R Q then379

P,Q are: closed under reductions whenever they are complete; closed under the contexts that380

are completing for P,Q; compatible on barbs whenever they are complete. Barbed equivalence,381

∼=e
Arn, is defined analogously except that one uses active contexts in place of all contexts.382

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:11

This typed barbed equivalence is the behavioural equivalence we are mainly interested in.383

The reference name discipline weakens the requirements on names (by limiting the number of384

legal contexts), hence the corresponding typed barbed relation is coarser. We are not aware385

of existing works in the literature that study the impact of the reference name discipline on386

behavioural equivalence.387

I Lemma 14. For all compatible P , Q, P ∼=e
a Q (and hence also P ≈a Q) implies P ∼=e

Arn Q.388

We show in Section 4 that the inclusion is strict.389

3.4 Validating the Encoding390

We now show that the two notions of barbed congruence coincide via the encoding.391

I Theorem 15 (Operational correspondence). If P −→ P ′, then EJP K −→ EJP ′K.392

Conversely, if EJP K −→ Q, then P −→ P ′, with EJP ′K ≡ Q.393

The next lemma shows that, up to asynchronous bisimilarity, we can ‘read back’ well-typed394

processes in Aπ, via the encoding, as processes in πref. And similarly for contexts.395

I Lemma 16. If ∅ ` P , then there exists R in πref such that EJRK ≈a P .396

Theorem 15 and Lemma 16 are the main ingredients to derive the following theorem:397

I Theorem 17 (Full abstraction). For any P,Q in πref: P ∼=ref Q iff EJP K ∼=Arn EJQK;398

and similarly P ∼=e
ref Q iff EJP K ∼=e

Arn EJQK.399

4 Bisimulation with Reference Names400

4.1 Two Labelled Bisimilarities401

In this section we present proof techniques for barbed equivalence based on the labelled402

transition semantics of Aπ. For this we introduce two labelled bisimilarities.403

The first form of bisimulation, reference bisimilarity, only relates complete processes;404

processes that are not complete have to be made so. Intuitively, in this bisimilarity processes405

are made complete by requiring a closure of the relation with respect to the (well-typed)406

addition of output messages at reference names (the ‘closure under allocation’ below).407

Moreover, when an observer consumes an output at a reference name, say `〈n〉, then,408

following the discipline on reference names, he/she has to immediately provide another such409

output message, say `〈m〉. This is formalised using transition notations such as P `〈n〉[m]−−−−−→ P ′,410

which makes a swap on ` (reading its original content n and replacing it with m). As a411

consequence of the appearance of such swap transitions, ordinary outputs at reference names412

are not observed in the bisimulation. Similarly for inputs at reference names: an input413

P
`〈m〉−−−→ P ′ from a complete process P is not observed, since it is supposed to interact with414

unique output at ` contained in P (which exists as P is complete). Finally, an observer415

should respect the completeness condition by the processes and should not communicate416

a fresh reference name — to communicate such a reference, say `, an allocation for ` (an417

output message at `) has first to be added.418

A relation R is closed under allocation if P R Q implies P | `〈n〉 R Q | `〈n〉 for any `〈n〉419

such that P | `〈n〉 and Q | `〈n〉 are well-typed. We write P `〈n〉[m]−−−−−→ P ′ if P `〈n〉−−−→ P ′′ and420

CONCUR 2020

31:12 On the Representation of References in the pi-calculus

P ′ = `〈m〉 | P ′′, for some P ′′; similarly for P (νn)`〈n〉[m]−−−−−−−−→ P ′. Then, as usual, P `〈n〉[m]=====⇒ P ′421

holds if P =⇒ P ′′
`〈n〉[m]−−−−−→ P ′′′ =⇒ P ′ for some P ′′, P ′′′, and similarly for P (νn)`〈n〉[m]========⇒ P ′.422

We let α range over the actions µ plus the aforementioned ‘update actions’ `〈n〉[m] and423

(νn)`〈n〉[m].424

Setting m to be the object of an update actions, we write ∆ ` α when: (i) if the object425

of α is a free reference name then it is in ∆, and (ii) α is not an input or an output at a426

reference name.427

I Definition 18 (Reference bisimilarity). A symmetric relation R closed under allocation is a428

reference bisimulation if whenever P R Q with P,Q complete, ∆ ` P,Q and P α−→ P ′ with429

∆ ` α, then430

1. either there exists Q′ such that Q α̂=⇒ Q′ and P ′ R Q′ for some Q′431

2. or α is an input a〈m〉 and Q | a〈m〉 =⇒ Q′ with P ′ R Q′ for some Q′.432

Reference bisimilarity, written ≈, is the largest reference bisimulation.433

We now show that ≈ coincides with barbed equivalence. The structure of the proof is434

standard, however some care has to be taken to deal with closure under parallel composition.435

I Lemma 19. If P ≈ Q, and ∅ ` R, then P | R ≈ Q | R.436

I Proposition 20 (Substitutivity for active contexts). If P ≈ Q, then E[P] ≈ E[Q] for any437

active context E.438

I Theorem 21 (Labelled characterisation). P ≈ Q iff P ∼=e
Arn Q.439

In reference bisimilarity, the tested processes are complete: hence all their references440

must explicitly appear as allocated, and when a reference is accessed, an extension of the441

store is made so to remain with complete processes (and if such an extension introduces442

other new references, a further extension is needed). The goal of the bisimilarity ≈ip below443

is to allow one to work on processes with open references, and make the extension of the444

store only when necessary. The definition of the bisimulation exploits an inductive predicate445

to accommodate finite extensions of the store, one step at a time. This predicate can be446

thought of as an inductive game, in which the ‘verifier’ can choose rule Base and close the447

game, or choose rule Ext and a reference `; in the latter case the ‘refuter’ chooses the value448

stored in `.449

I Definition 22 (Inductive predicate). The predicate ok(∆,R, P,Q, µ) (where ∆ is a set450

of names, R a process relation, P,Q processes, and µ an action) holds if it can be proved451

inductively from the following two rules:452

Base

{
Q | n〈m〉 =⇒ Q′ for µ = n〈m〉
Q

µ=⇒ Q′ otherwise
P ′ R Q′

ok(∆,R, P ′, Q, µ)

Ext
` /∈ ∆ ∀ m : ok((∆, `),R, P ′ | `〈m〉, Q | `〈m〉, µ)

ok(∆,R, P ′, Q, µ)

I Definition 23 (Bisimilarity with inductive predicate, ≈ip). A symmetric relation R is a453

≈ip-bisimulation if whenever P R Q with ∆ ` P,Q, and P µ−→ P ′ with ∆′ ` P ′, we can454

derive ok(∆ ∪∆′,R, P ′, Q, µ). We write ≈ip for the largest ≈ip-bisimulation.455

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:13

The names in ∆ ∪∆′ are the reference names that appear in output subject position456

in P ′ or Q. Therefore, when using rule Ext of the inductive predicate, the condition ` /∈ ∆457

ensures us that the message at ` can be added without breaking typability.458

The following up-to technique allows us to erase common messages on reference names459

along the bisimulation game.460

For this, we use the notation Ms, where s is a finite list of pairs (`,m), to describe parallel461

compositions of outputs on reference names (i.e., Ms
def=
∏

(`,m)∈s `〈m〉), and ∆s `Ms where462

∆s contains all first components of pairs of s. Intuitively, Ms represents a chunk of store.463

I Definition 24 (≈ip-bisimulation up to store). An ≈ip-bisimulation up to store is defined like464

≈ip-bisimulation (Definition 23), using a predicate ok′(∆∪∆′,R, P ′, Q, µ). This predicate is465

defined by a modified version of rule Ext where ok′ is used instead of ok, both in the premise466

and in the conclusion, and the following modified version of the Base rule:467

Base-Up

P ′ ≡ P ′′ |Ms

{
Q | n〈m〉 =⇒≡ Q′′ |Ms for µ = n〈m〉
Q

µ=⇒≡ Q′′ |Ms otherwise
P ′′ R Q′′

ok′(∆,R, P ′, Q, µ)

Rule Base-Up makes it possible to erase common store components before checking that the468

processes are related by R.469

I Proposition 25. If R is a ≈ip-bisimulation up to store, then R⊆ ≈ip.470

I Proposition 26 (Soundness of ≈ip). ≈ip ⊆ ≈.471

Intuitively, the inclusion holds because a ≈ip-bisimulation is closed by parallel composition472

with Ms processes. We leave the opposite direction, completeness, as an open issue.473

4.2 Examples474

We now give examples of uses of the various forms of labelled bisimulation (≈a, ≈, ≈ip, ≈ip475

up to store) for Aπ to establish equivalences between processes with references. In some476

cases, we use the ‘up-to structural congruence’ (≡) version of the bisimulations — a standard477

‘up-to’ technique. In the examples we consider barbed equivalence; the results can be lifted478

to barbed congruence using closure under substitutions.479

The first example is about a form of commutativity for the write construct.480

I Example 27. We wish to establish !` / a. ` / b ∼=e
ref !` / b. ` / a. For this, we prove the law481

!` / a. ` / b ∼=e
ref !` / a | !` / b, which will be enough to conclude, by commutativity of parallel482

composition. The two given processes are mapped into Aπ as483

P1
def= !`(_). (`〈a〉 | `(_). `〈b〉) and P2

def= (!`(_). `〈a〉) | (!`(_). `〈b〉).484

We can derive P1 ≈a P2, using the singleton relation R def= {(P1, P2)}, and showing that R485

is an asynchronous bisimilarity up-to context and structural congruence [18] (this known486

’up-to’ technique allows one to remove additional processes created from the replications487

after a transition). We can then conclude by Lemma 14.488

We now consider Examples 3 and 4 from Section 2.489

CONCUR 2020

31:14 On the Representation of References in the pi-calculus

Proof of Example 3. Let R1, R2 be the encodings of P1, P2 in the example:490

R1
def= (ν`)

(
`〈a〉 | EJP K | !`(_). `〈a〉 | !`(_). `〈b〉

)
491

R2
def= (ν`)

(
`〈b〉 | EJP K | !`(_). `〈a〉 | !`(_). `〈b〉

)
492
493

We then have R1 =⇒≡ R2 and R2 =⇒≡ R1, which implies R1 ≈a R2 (where ≈a is494

asynchronous bisimilarity), as {(R1, R2)} ∪ I, where I = {(P, P)} is the identity relation, is495

an asynchronous bisimulation up to ≡. We can then conclude by Theorems 8 and 17. J496

Proof of Example 4. Let R1, R2 be the encodings of P1, P2 in the example:497

R1
def= `(_). (`〈b〉 | EJP K) | !`(_). `〈b〉 | !`(x). (`〈x〉 | `(_). `〈x〉)498

R2
def= EJP K | !`(_). `〈b〉 | !`(x). (`〈x〉 | `(_). `〈x〉)499

500

Then for all m, processes `〈m〉 | R1 and `〈m〉 | R2 are complete. We define501

R def= {
(
R1 | `〈m〉 | BX , R2 | `〈m〉 | BX

)
} ,

where X def= {x1, . . . , xn} is a possibly empty finite set of names, and502

BX
def= `(_). `〈x1〉 | . . . | `(_). `〈xn〉

Then R∪ I is a ≈ip-bisimulation.503

Reusing the same notations, R′ def= {
(
R1 | BX , R2 | BX

)
} is an ≈ip-bisimulation up to504

store: this up-to technique allows us to remove the `〈m〉 particles. J505

The following example shows some benefits of using ≈ip and ≈ip up to store in the proof of506

a property that generalises (the Aπ version of) law (1), which involves a ‘useless read’.507

I Example 28. Consider ∅ ` P0 R Q0, whereR is an asynchronous bisimulation, ObType(`) ∈508

RefTypes, and x is a fresh name. Then ∅ ` `(x). (P0 | `〈x〉) ≈ Q0.509

In general, `(x). (P0 | `〈x〉) and Q0 are not related by ≈a (take P0 = Q0 = a〈n〉), thus510

the inclusion in Lemma 14 is strict.511

To prove `(x). (P0 | `〈x〉) ≈ Q0 using a ≈-bisimulation, we need a relation such as512

R1
def= {(`(x). (P0 | `〈x〉), Q0)}513

∪ {(`(x). (P0 | `〈x〉) | `〈`′〉 | `′〈m〉, Q0 | `〈`′〉 | `′〈m〉)
∣∣ for any m}514

∪ {(`(x). (P0 | `〈x〉) | `〈`′〉 | `′〈m〉 |Ms, Q0 | `〈`′〉 | `′〈m〉 |Ms)
∣∣ for any m,Ms}515

∪ {P | `〈`′〉 | `′〈m〉 |Ms, Q | `〈`′〉 | `′〈m〉 |Ms)
∣∣ for any m,Ms,with P R Q}516

517

and prove that R1 ∪R−1
1 (where R−1

1 is the inverse of R1) is a ≈-bisimulation.518

We can simplify the proof and avoid the several quantifications in R1 (in particular on519

Ms, whose size is arbitrary), and prove that R2 is an ≈ip-bisimulation, for520

R2
def= R∪ {(P | `〈m〉, Q | `〈m〉), for any m,with P R Q}521

∪ {(`(x). (P0 | `〈x〉), Q0), (Q0, `(x). (P0 | `〈x〉))}.522
523

The last component ofR2 is dealt with using rule Ext of the inductive predicate (Definition 22),524

and this brings in the second component (the closure of R under messages on `).525

We can simplify the proof further, by removing such second component, and show that526

R3 is an ≈ip-bisimulation up to store, for527

R3
def= R∪ {(`(x). (P0 | `〈x〉), Q0), (Q0, `(x). (P0 | `〈x〉))}.528

529

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:15

5 Future work530

In languages with store, which are usually sequential languages, bisimulation is commonly531

defined on configurations. In πref, a configuration would be written (νñ)〈P, s〉, where s is532

an explicit store and ñ is a set of private names shared between process P and store s. We533

could in principle read back ≈ onto πref, and define a behavioural equivalence between πref
534

configurations. The LTS on configurations would then have specific actions to describe how535

an observer may act on the visible part of the store. The labelled transition semantics for536

πref and πref configurations would however be more complex than those for Aπ; for instance537

the forms of actions, expressing external observations, would be much broader.538

The swap operation arises naturally in the encoding into Aπ. We do not know if and539

how swap increases the discriminating power of external observers. We believe that, without540

swap, the two processes in Example 5 could not be distinguished. This point deserves further541

investigation, which we leave for future work. Similarly we leave for future work proving or542

disproving the completeness of the bisimilarity with an inductive predicate (Definition 23).543

It would be interesting to see if the labelled bisimilarities we have considered, whose544

bisimulation clauses are different from those of ordinary bisimilarity, can be recovered in an545

abstract setting, e.g., using coalgebras [12, 2, 21]. This would be particularly interesting for546

≈ip-bisimulation, whose definition involves a mixture of induction and coinduction.547

Equivalences for higher-order languages with state are known to be hard to establish.548

Various approaches exist, from Kripke logical relations to trace semantics and game seman-549

tics [10, 11, 17, 4]. It would be interesting to compare the proof techniques offered by these550

approaches with those shown in this paper, and developments of them. More generally, more551

experimentation is needed to test the bisimilarities proposed in this paper and the associated552

proof techniques, on examples from high-level languages that include higher-order features,553

mutable state, and concurrency.554

References555

1 R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous556

pi-calculus. Theor. Comput. Sci., 195(2):291–324, 1998.557

2 F. Bonchi, D. Petrişan, D. Pous, and J. Rot. A general account of coinduction up-to. Acta558

Informatica, pages 1–64, 2016.559

3 S. D. Brookes. The Essence of Parallel Algol. Inf. Comput., 179(1):118–149, 2002.560

4 S. Castellan, P. Clairambault, J. Hayman, and G. Winskel. Non-angelic concurrent game561

semantics. In Foundations of Software Science and Computation Structures - 21st International562

Conference, FOSSACS 2018, pages 3–19, 2018.563

5 M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global progress for dynami-564

cally interleaved multiparty sessions. Math. Struct. Comput. Sci., 26(2):238–302, 2016.565

6 M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully abstract model for the π-calculus. Inf.566

Comput., 179(1):76–117, 2002.567

7 M. Hennessy. A distributed Pi-calculus. Cambridge University Press, 2007.568

8 M. P. Herlihy. Impossibility and universality results for wait-free synchronization. In Proceedings569

of the Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC ’88,570

pages 276–290, 1988.571

9 D. Hirschkoff, E. Prebet, and D. Sangiorgi. Online appendix to this paper. available from572

https://perso.ens-lyon.fr/enguerrand.prebet/research/refapi-full.pdf, 2020.573

10 C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisimulations and kripke574

logical relations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles575

of Programming Languages, POPL, pages 59–72, 2012.576

CONCUR 2020

31:16 On the Representation of References in the pi-calculus

11 G. Jaber and N. Tzevelekos. Trace semantics for polymorphic references. In Proceedings of the577

31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, pages 585–594,578

2016.579

12 B. Jacobs. Introduction to coalgebra. towards mathematics of states and observations. Draft,580

2014.581

13 N. Kobayashi. A partially deadlock-free typed process calculus. Transactions on Programming582

Languages and Systems, 20(2):436–482, 1998. A preliminary version in 12th Lics Conf. IEEE583

Computer Society Press 128–139, 1997.584

14 M. Merro, J. Kleist, and U. Nestmann. Mobile objects as mobile processes. Information and585

Computation, 177(2):195–241, 2002.586

15 R. Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall,587

1989.588

16 R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and II). Inf.589

Comput., 100:1–77, 1992.590

17 A. S. Murawski and N. Tzevelekos. Full abstraction for reduced ML. Ann. Pure Appl. Logic,591

164(11):1118–1143, 2013.592

18 D. Pous and D. Sangiorgi. Advanced Topics in Bisimulation and Coinduction (D. Sangiorgi593

and J. Rutten editors), chapter Enhancements of the coinductive proof method. Cambridge594

University Press, 2011.595

19 J. C. Reynolds. The essence of ALGOL. In Algorithmic Languages, pages 345–372. North-596

Holland, 1981.597

20 C. Röckl and D. Sangiorgi. A pi-calculus process semantics of concurrent idealised ALGOL. In598

Foundations of Software Science and Computation Structure, Second International Conference,599

FoSSaCS’99, volume 1578 of Lecture Notes in Computer Science, pages 306–321. Springer,600

1999.601

21 J. Rot, F. Bonchi, M. M. Bonsangue, D. Pous, J. Rutten, and A. Silva. Enhanced coalgebraic602

bisimulation. Math. Struct. Comput. Sci., 27(7):1236–1264, 2017.603

22 D. Sangiorgi. The name discipline of uniform receptiveness. Theor. Comput. Sci., 221(1-2):457–604

493, 1999.605

23 D. Sangiorgi. Typed pi-calculus at work: A Correctness Proof of Jones’s Parallelisation606

Transformation on Concurrent Objects. TAPOS, 5(1):25–33, 1999.607

24 D. Sangiorgi and D. Walker. The pi-calculus: a Theory of Mobile Processes. Cambridge608

university press, 2003.609

25 I. Stark. A fully abstract domain model for the pi-calculus. In Proceedings, 11th Annual IEEE610

Symposium on Logic in Computer Science, pages 36–42. IEEE Computer Society, 1996.611

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:17

A Additional Material for the Examples in Section 2.2612

Proof of Example 5. To get a idea of how Ps and Qs evolve, let us consider first E
def= (ν` =613

z)[]. Then E[Qs] can reduce to one of the following:614

1. (ν` = z)(νt)` / a. (t | !t. ` / b. (c | ` / a. (t | c)))615

2. (ν` = a)(νt)(t | !t. ` / b. (c | ` / a. (t | c))) | cn | cn616

3. (ν` = a)(νt)(` / b. (c | ` / a. (t | c)) | !t. ` / b. (c | ` / a. (t | c))) | cn | cn617

4. (ν` = b)(νt)(` / a. (t | c) | !t. ` / b. (c | ` / a. (t | c))) | cn | cn+1 .618

Similarly, E[Ps] can reduce to those four processes but with the role of a and b swapped.619

Notice that when E[Qs] =⇒ Q′, then there is a correspondence between the value stored in620

` (i.e a or b) and the presence of more c processes than c processes (or the same number).621

We now consider the following context:

E0
def= (ν` = z)([] | ` on z(x). [x = b]s0. s1. (P11 | P12) | s0 | s1)

P11
def= ` . (x). [x = z]s11 | s11 P12

def= c. ` . (x). [x = z]s12 | s12

with s0, s11, s12 fresh names.622

At first s0 and s1 are the only observables, meaning E0[Ps] ↓s0 and E0[Ps] ↓s1 , but then623

E0[Ps] −→−→−→ (ν` = z)((νt)(t | !t. ` / a. (c | ` / b. (t | c))) | s1. (P11 | P12) | s1) def= P ′624

where the three reductions have been derived using rules R-Write, R-Swap, and R-Comm625

respectively. Finally, we have P ′ 6⇓s0 , whereas P ′ ↓s1 .626

Thus, to avoid the observable s0, process E0[Qs] must reduce to a process with b stored627

in ` before doing the swap in E0. This implies that the swap is executed in a state that628

corresponds to case 4 above. So for any Q′ with E[Qs] =⇒ Q′ and Q′ 6↓s0 and Q′ ⇓s1 , such629

process Q′ has one of the following forms:630

1. Q′1
def= (ν` = a)((νt)(t | !t. ` / b. (c | ` / a. (t | c)) | cn | cn) | s1. (P11 | P12) | s1)631

2. Q′2
def= (ν` = a)((νt)(` / b. (c | ` / a. (t | c)) | !t. ` / b. (c | ` / a. (t | c)) | cn | cn)632

| s1. (P11 | P12) | s1)633

3. Q′3
def= (ν` = b)((νt)(` / a. (t | c) | !t. ` / b. (c | ` / a. (t | c)) | cn | cn+1) | s1. (P11 | P12) | s1)634

4. Q′4
def= (ν` = z)((νt)(` / a. (t | c) | !t. ` / b. (c | ` / a. (t | c)) | cn | cn+1) | s1. (P11 | P12) | s1)635

Then we use either P11 or P12 depending on the form of Q′. If Q′ is of the first three forms,636

then we use P11.637

Indeed, P ′ −→−→ (ν` = z)((νt)(t | !t. ` / a. (c | ` / b. (t | c))) | P12) def= P ′′ using rules638

R-Read and R-Comm respectively. Notice that P ′′ 6⇓s11 . On the other hand, z does not appear639

anywhere else than in a matching in Q′, thus there is no reduction Q′ =⇒ Q′′ with Q′′ 6↓s11640

for any Q′′.641

In the other case, it holds that Q′4 −→−→−→ (ν` = z)((νt)(` / a. (t | c) | !t. ` / b. (c |642

` / a. (t | c)) | cn | cn) | P11) def= Q′′ using rules R-Comm, R-Read, and R-Comm respectively.643

Then we have Q′′ 6⇓s12 . However, the only output c is behind a write ` / a in P ′. Thus, there644

is no P ′ =⇒ P ′′ with P ′′ 6↓s12 .645

We can finally conclude Ps 6∼=ref Qs. J646

Proof of Example 6. Recall the definitions of the two processes (we rename the processes647

that are given in the main text, to ease readability):648

P
def=(ν`1 = 0, `2 = 0)(R | (νt)(t | !t. `1 / 1. `1 / 0. `2 / 1. `2 / 0. t))649

Q
def=(ν`1 = 0, `2 = 0)(R | (νt)(t | !t. `1 / 1. `2 / 1. `1 / 0. `2 / 0. t))650

651

CONCUR 2020

31:18 On the Representation of References in the pi-calculus

To prove their equivalence, we introduce the following processes:652

P ′
def= !t. `1(_). (`1〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈1〉 | `2(_). (`2〈0〉 | t))))653

Q′
def= !t. `1(_). (`1〈1〉 | `2(_). (`2〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈0〉 | t))))654

655

656

P1 = Q1
def= t657

P2
def= `1(_). (`1〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈1〉 | `2(_). (`2〈0〉 | t))))658

Q2
def= `1(_). (`1〈1〉 | `2(_). (`2〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈0〉 | t))))659

P3
def= `1(_). (`1〈0〉 | `2(_). (`2〈1〉 | `2(_). (`2〈0〉 | t)))660

Q3
def= `2(_). (`2〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈0〉 | t)))661

P4
def= `2(_). (`2〈1〉 | `2(_). (`2〈0〉 | t))662

Q4
def= `1(_). (`1〈0〉 | `2(_). (`2〈0〉 | t))663

P5 = Q5
def= `2(_). (`2〈0〉 | t)664

665

P ′ and Q′ are the encodings of the replicated part of P and Q. Then Pi and Qi are the666

processes that can be reached from P ′ and Q′.667

We now show that the relation R∪R−1 is an ≈ip-bisimulation where we have:668

R def=
{

(`1〈n1〉 | (νt)(P ′ | Pi), `1〈n′1〉 | (νt)(Q′ | Qj))
for any n1, n

′
1 ∈ {0, 1}, i, j

}
669

∪
{

(`2〈n2〉 | (νt)(P ′ | Pi), `2〈n′2〉 | (νt)(Q′ | Qj))
for any n2, n

′
2 ∈ {0, 1}, i, j

}
670

∪
{

(`1〈n1〉 | `2〈n2〉 | (νt)(P ′ | Pi), `1〈n′1〉 | `2〈n′2〉 | (νt)(Q′ | Qj))
for any n1, n

′
1, n2, n

′
2 ∈ {0, 1}, i, j

}
671

672

First, note that the only free names appearing in those processes are `1 and `2. Thus for any673

P R Q, the only actions to consider are τ, `i〈n〉 and `i〈n〉, for i = 1, 2.674

For any P R Q, we have:675

If P τ−→ P0, then P0 R Q676

If P `i〈n〉−−−→ P0, then P0 R Q | `i〈n〉677

If P `i〈n〉−−−→ P0, then either Q `i〈n〉−−−→ Q0 and P0 R Q0, or Q
`i〈1−n〉−−−−−→ Q0. In this case, we678

use rule Ext (from Definition 22) to add the other location if ∆ 6= `1, `2. Then after at679

most 5 internal transitions (by cycling around the Pi or Qj), we obtain a process Q0 that680

can make the required transition Q0
`i〈n〉−−−→ Q′0 with P0 R Q′0.681

As R ∪ R−1 is an ≈ip-bisimulation, we have R ⊆ ≈. Moreover, (ν`1, `2)(EJRK | []) is682

an active context, so this implies EJP K ≈ EJQK. By Theorems 21 and 17, we can conclude683

P ∼=e
ref Q.684

To extend this result to barbed congruence, we notice that for all σ,685

1. either Pσ = (ν`1 = 0, `2 = 0)(Rσ | (νt)(t | !t. `1 / 1. `1 / 0. `2 / 1. `2 / 0. t)686

2. or Pσ = (ν`1 = 0, `2 = 0)(Rσ | (νt)(t | !t. `1 / 0. `1 / 0. `2 / 0. `2 / 0. t)687

3. or Pσ = (ν`1 = 1, `2 = 1)(Rσ | (νt)(t | !t. `1 / 1. `1 / 1. `2 / 1. `2 / 1. t)688

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:19

As P ∼=e
ref Q holds for any R, it also holds for any Rσ, which prove the first case. Moreover,689

the proof never uses the fact that 0 and 1 are distinct, so we can prove in the same way that690

cases 2 and 3 hold.691

We conclude P ∼=ref Q. J692

We now present an additional example, which corresponds to a generalisation of Example 6.693

I Example 29. Here we remove the assumption that the two references can only hold values694

0 and 1. This enables the context to store fresh names in references. If used with the original695

processes, these are distinguished by using those fresh values to block transition along the696

lines of Example 5. To make these processes equivalent again, we could add in parallel a697

buffer as in Example 4. However, by making these additions, we would also enable P1 to698

desynchronise the content in `1 and `2 and have (1, 1). The solution is to prevent those699

buffers from writing at a different ‘time’ than the ‘time’ they have read. For this we introduce700

a more complex buffer Bji . Consider the following processes:701

Bji
def= r(xj). 0

∣∣ !r(xj). ti. `j on xj(yj). (r〈yj〉 | ti)702

Sji
def= !ti. `j . (xj). (ti | (νr)(r〈xj〉 | Bji))703

704
705

P
def= (νt1, t2, t3, t4)

(
t1
∣∣ !t1. `1 / 1. t2 | S1

1 | S2
1
∣∣ !t2. `1 / 0. t3 | S1

2 | S2
2706 ∣∣ !t3. `2 / 1. t4 | S1

3 | S2
3
∣∣ !t4. `2 / 0. t1 | S1

4 | S2
4

)
707

Q
def= (νt1, t2, t3, t4)

(
t1
∣∣ !t1. `1 / 1. t2 | S1

1 | S2
1
∣∣ !t2. `2 / 1. t3 | S1

2 | S2
2708 ∣∣ !t3. `1 / 0. t4 | S1

3 | S2
3
∣∣ !t4. `2 / 0. t1 | S1

4 | S2
4

)
709
710

We have P ∼=ref Q. If we take E def= (ν`1 = 0)(ν`2 = 0)[], we have711

E[Q] −→−→ (ν`1 = 1)(ν`2 = 1)Q′ for some Q′. However, there is no sequence of reductions712

such that E[P] =⇒ (ν`1 = 1)(ν`2 = 1)P ′ for any P ′.713

If we forget all Sji ’s, then these processes are similar to the ’loop’ used in the previous714

example but split into multiple replications. Those Sji ’s help to equate the two processes715

even if the context can write any value in `1, `2.716

Process Sji can only be activated when ti is available. It then reads the content of `j to717

initialise a new buffer Bji .718

Process Bji contains value xji that is the object of r〈xji 〉. Process B
j
i can be stopped by719

making the communication with the first input on r, or can be used to swap its content with720

the content of `j . Note that this swap can only be done when ti is available, so it cannot be721

used to desynchronise the content in `1, and `2.722

B Definitions and Results about Aπ with references723

B.1 Operational Semantics of Aπ: Reduction and Labelled Transitions724

Reduction725

Structural congruence is defined as the smallest congruence that satisfies the following axioms:
P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P

P | (νn)Q ≡ (νn)P | Q if n /∈ fn(P) (νn)(νm)P ≡ (νm)(νn)P (νn)0 ≡ 0

[x = x]P ≡ P

CONCUR 2020

31:20 On the Representation of References in the pi-calculus

Inp:
n(x).P n〈m〉−−−→ P{m/x}

Out:
n〈m〉 n〈m〉−−−→ 0

Open:
P

n〈m〉−−−→ P ′

(νm)P (νm)n〈m〉−−−−−−→ P ′ if m 6= n
Rep:

P | !P µ−→ P ′

!P µ−→ P ′

Res:
P

µ−→ P ′

(νn)P µ−→ (νn)P ′ if n /∈ µ
Par:

P
µ−→ P ′

P | Q µ−→ P ′ | Q if bn(µ) ∩ fn(Q) = ∅

Comm:
P

n〈m〉−−−→ P ′ Q
n〈m〉−−−→ Q′

P | Q τ−→ P ′ | Q′

Close:
P

n〈m〉−−−→ P ′ Q
(νm)n〈m〉−−−−−−→ Q′

P | Q τ−→ (νm)(P ′ | Q′) if m /∈ fn(P)
Match:

P
µ−→ P ′

[n = n]P µ−→ P ′

Figure 3 Labelled Transition Semantics for Aπ

Active contexts in Aπ are defined by:

E ::= []
∣∣ E | P ∣∣ (νn)E .

Reduction is defined by the following rules:

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q
P −→ Q

P −→ P ′

E[P] −→ E[Q] n(x).P | n〈m〉 −→ P{m/x}

Labelled Transition Semantics726

Actions of the LTS are defined as follows:

µ ::= n(m)
∣∣ n〈m〉 ∣∣ (νm)n〈m〉

∣∣ τ .

Transitions are defined in Figure 3. The symmetric versions of rules PAR, COM and CLOSE727

are omitted. Weak transitions are defined by =⇒ def= τ−→
∗
, µ=⇒ def= =⇒ µ−→=⇒, and µ̂=⇒ def= µ=⇒ if728

µ 6= τ and =⇒ otherwise.729

B.2 Type System for Output Receptiveness: Proof of Subject730

Reduction731

We prove subject reduction, which we first recall:732

I Proposition 10 (Subject reduction). If ∆ ` P and P µ−→ P ′, then733

1. if µ = τ , µ = a〈m〉, µ = a〈m〉 or µ = (νb)a〈b〉, then ∆ ` P ′.734

2. if µ = (ν`)a〈`〉 then ∆, ` ` P ′.735

3. if µ = `〈m〉 and ` /∈ ∆, then ∆, ` ` P ′736

4. if ` /∈ ∆, then ∆, ` ` P | `〈m〉.737

5. if µ = `〈m〉 or µ = (νb)`〈b〉, then ∆− ` ` P ′.738

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:21

6. if µ = (ν`′)`〈`′〉, then (∆− `), `′ ` P ′.739

Proof. We note the type of P ′ as ∆′.740

For µ = n〈m〉, we have P ≡ (νã, ˜̀)(n(x).P1 | P2) and P ′ ≡ (νã, ˜̀)(P1{m/x} | P2) for741

some ã, ˜̀, P1, P2 with m /∈ ã ∪ ˜̀.742

We take ∆1 ` P1 and ∆2 ` P2. This means ∆2 = ∆] ˜̀. Depending on whether n is743

a reference name or not, we have that ∆1 = n or ∆1 = ∅ respectively. In both cases,744

∆1 ` P1{m/x} and ∆1]∆2 ` P1{m/x} | P2. Thus ∆′ = ∆1]∆, meaning that ∆′ = ∆, n745

if n is a reference name and ∆′ = ∆ otherwise.746

For µ = n〈m〉, we have P ≡ (νã, ˜̀)(n〈m〉 | P2) and P ′ ≡ (νã, ˜̀)P2 for some ã, ˜̀, P1, P2747

with n,m /∈ ã ∪ ˜̀.748

We take ∆1 ` n〈m〉 and ∆2 ` P2. This means ∆1]∆2 = ∆] ˜̀, and ∆2 = ∆′] ˜̀. As749

n /∈ ˜̀, ∆′ = ∆ \∆1. Thus ∆′ = ∆− ` if n is a reference name and ∆′ = ∆ otherwise.750

For µ = (νm)n〈m〉, we have P ≡ (νã, ˜̀,m)(n〈m〉 | P2) and P ′ ≡ (νã, ˜̀)P2 for some751

ã, ˜̀, P1, P2 with n /∈ ã∪ ˜̀∪ {m}. With the same notation, we have that ∆2 = ∆′] ˜̀, and752

if m is a plain name then ∆1]∆2 = ∆] ˜̀ and ∆1]∆2 = ∆] ˜̀,m otherwise. Thus we753

have four cases for ∆′ shown in the table below:754

n\m plain reference
plain ∆ ∆,m

reference ∆ \ n ∆,m \ n
755

For µ = τ , we look at the interaction that has occurred. This can be mimicked using two756

transitions, one for the output and one for the input for which we have already proven757

the resulting typing.758

P
a〈m〉−−−→ a〈m〉−−−→ P ′, it is straightforward.759

P
(νb)a〈b〉−−−−−→ a〈b〉−−→ P ′′ with P ′ = (νb)P ′′. We have ∆ ` P ′′ then ∆ ` (νb)P ′′.760

P
(ν`)a〈`〉−−−−−→ a〈`〉−−→ P ′′ with P ′ = (ν`)P ′′. We have ∆, ` ` P ′′ then ∆ ` (ν`)P ′′761

P
`〈m〉−−−→ `〈m〉−−−→ P ′. We have ` /∈ ∆ after the output, so we can subject reduction for the762

input transition.763

P
(νb)`〈b〉−−−−−→ `〈b〉−−→ P ′′ with P ′ = (νb)P ′′. We have ∆ ` P ′′ then ∆ ` (νb)P ′′764

P
(ν`′)`〈`′〉−−−−−−→ `〈`′〉−−−→ P ′′ with P ′ = (ν`′)P ′′. We have ∆, `′ ` P ′′ then ∆ ` (ν`′)P ′′765

J766

B.3 Properties of the encoding767

I Lemma 16. If ∅ ` P , then there exists R in πref such that EJRK ≈a P .768

Proof. We construct R by induction on the structure of P , we only discuss the two cases769

below, the other cases are immediate.770

For ∅ ` (ν`)P , we know that ` ` P so we have two cases according to Lemma 9:771

P ≡ `〈m〉 | P ′. Thus (ν`)P ≡ (ν`)(`〈m〉 | P ′) with ∅ ` P ′. By induction, we have Q′772

with EJQ′K ≈a P
′. Therefore we have EJ(ν` = m)Q′K ≈a (ν`)P .773

P ≡ (νm)(`〈m〉 | P ′). We reason by induction on the type of `. Ifm is a plain name, we774

can conclude as above with EJ(νm)(ν` = m)Q′K. Otherwise, m is reference name and775

there exists R such that (νm)(ν`)(`〈m〉 | P ′) ≡ EJRK. As (ν`)P ≡ (νm)(ν`)(`〈m〉 |776

P ′) we are done.777

For ∅ ` `(x).P , we know that ` ` P then778

either P ≡ `〈m〉 | P ′ with ∅ ` P ′. By induction, we have EJQ′K ≈a P
′ in which case779

we take ` . (x).Q′ or ` on m(x).Q′ depending on whether m = x or not,780

CONCUR 2020

31:22 On the Representation of References in the pi-calculus

or P ≡ (νm)(`〈m〉 | P ′) and then `(x).P ≈a (νm)`(x). (`〈m〉 | P ′) and we can refer781

to the first case.782

J783

B.4 Characterisation of ∼=e
Arn using ≈784

B.4.1 Soundness785

Reference Bisimulation up to ≡.786

Up-to techniques ease the task of proving bisimilarity between processes. Informally, the787

general idea is to use an extra relation (for instance ≡), and when we need to prove that788

P R Q, instead of proving that P ′ R Q′ (for some P ′, Q′ that satisfy the required conditions),789

we show P ′ ≡ R ≡ Q′. This often leads to smaller relations, which are easier to check.790

We say that a relation R is ≡-closed under allocation if P R Q implies P | `〈n〉 ≡R≡791

Q | `〈n〉 for any `〈n〉 such that P | `〈n〉 and Q | `〈n〉 are well-typed.792

I Definition 30 (Reference Bisimulation up to ≡). A symmetric relation R that is ≡-closed793

under allocation is a reference bisimulation up to ≡ if whenever P R Q with P,Q complete,794

∆ ` P,Q and P α−→ P ′ with ∆ ` α, we have795

1. either there exists Q′ such that Q α̂=⇒ Q′ and P ′ ≡R≡ Q′ for some Q′796

2. or α is an input a〈m〉 and Q | a〈m〉 =⇒ Q′ with P ′ ≡R≡ Q′ for some Q′.797

I Proposition 31. If R is a reference bisimulation up to ≡, then R ⊆ ≈.798

Proof. ≡R≡ is a reference bisimulation and R ⊆ ≡R≡. J799

I Lemma 32. If P ≈ Q, then (νn)P ≈ (νn)Q.800

Proof. R def= {((νn)P, (νn)Q) s.t P ≈ Q}∪ ≈ is a reference bisimulation up to ≡. J801

I Definition 33 (Bisimulation up to restriction and up to ≡). A symmetric relation R ≡-closed802

under allocation is a reference bisimulation up to restriction and up to ≡ if whenever P R Q803

with P,Q complete, ∆ ` P,Q and P α−→ P ′ with ∆ ` α, then804

1. either there exists Q′ such that Q α̂=⇒ Q′, P ′ ≡ (νñ)P ′′, Q′ ≡ (νñ)Q′′ with P ′′ R Q′′ for805

some P ′′, Q′, Q′′, ñ806

2. or α is an input a〈m〉 and Q | a〈m〉 =⇒ Q′ with P ′ ≡ (νñ)P ′′, Q′ ≡ (νñ)Q′′ with P ′′ R Q′′807

for some P ′′, Q′, Q′′, ñ.808

I Lemma 34. If R is a reference bisimulation up to restriction and up to ≡, then R ⊆≈.809

Proof. R def= {((νñ)P, (νñ)Q) s.t P R Q} is a reference bisimulation up to ≡. J810

The following lemma uses notation Ms, which has been introduced before Definition 24.811

I Lemma 35 (Extractable store). Let ∆ ` P , then P ≡ (νñ)(Ms | P ′) with ∅ ` P ′ for some812

Ms.813

Proof. We reason by induction on the structure of P . There are two cases depending on the814

size of ∆.815

If ∆ = ∅, then nothing has to be done.816

If ∆ = ∆′, `, then by Lemma 9, P ≡ (νñ)(`〈m〉 | Q) with ∆′,∆′′ ` Q. By induction,817

Q ≡ (νñ′)(Ms | Q′) with ∅ ` Q′. Therefore, P ≡ (νñ, ñ′)(Ms′ | Q′) with818

Ms′ = `〈m〉 |Ms.819

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:23

J820

For ` ` P , this lemma can be strengthened to P ≡ (νñ)(`〈m〉 |Ms | P ′) with ∅ ` P ′.821

We can now prove substitutivity for ≈ under parallel composition.822

I Lemma 19. If P ≈ Q, and ∅ ` R, then P | R ≈ Q | R.823

Proof. We show that R is a bisimulation up to restriction, with

R def= {(P | R,Q | R) s.t P ≈ Q, ∅ ` R}

R is closed by allocation.824

Suppose P | R and Q | R are complete, and P | R α−→ P̃ with ∆ ` α we distinguish825

according to the last rule used (Par, Comm or Close)826

If P | R α−→ P ′ | R, first note that P,Q are complete, so either Q α=⇒ Q′ and P ′ ≈ Q′ or827

α = a〈m〉 and Q | a〈m〉 =⇒ Q′ and P ′ ≈ Q′. In both cases, we have P ′ | R ≈ Q′ | R.828

If P | R α−→ P | R′, then Q | R α−→ Q | R′. For α = τ, a〈m〉, a〈m〉, (νb)a〈b〉, we have829

∅ ` R′. The only remaining case is when α = (ν`)a〈`〉 (by typing, R cannot perform830

an output on a reference). In that case, ` ` R′. Thus R′ ≡ (νñ)(Ms | R′′) with ∅ ` R′′.831

By definition P | Ms ≈ Q | Ms hence P | Ms | R′′ R Q | Ms | R′′, which is sufficient832

as P | R′ ≡ (νñ)(P |Ms | R′′) and Q | R′ ≡ (νñ)(Q |Ms | R′′).833

If P | R τ−→ P ′ | R′, we distinguish according to the action performed by P :834

∗ For P a〈n〉−−−→ P ′ or P a〈n〉−−−→ P ′, then R
a〈n〉−−−→ R′ and R

a〈n〉−−−→ R′ respectively, so835

∅ ` R′. The remaining part of the proof is standard π-calculus reasoning.836

∗ For P `〈n〉−−−→ P ′, then R `〈n〉−−−→ R′ with ` ` R′. By Lemma 35,837

R′ ≡ (νñ)(`〈m〉 | Ms | R′′) with ∅ ` R′′. By definition, P | Ms ≈ Q | Ms.838

Moreover both processes are complete and P | Ms
`〈n〉[m]−−−−−→ P ′ | `〈m〉 | Ms. So839

Q | Ms
`〈n〉[m]=====⇒ Q′ and P ′ | `〈m〉 | Ms ≈ Q′. As all names in subject position840

in Ms are fresh for Q, we have Q | R τ=⇒≡ (νñ)(Q′ | R′′). Moreover we have841

P ′ | R′ ≡ (νñ)(P ′ | `〈m〉 | R′′), thus we are done.842

If P | R τ−→ (νn)(P ′ | R′), then the reasoning is similar.843

J844

B.4.2 Completeness845

We prove completeness. For this, we need the following lemmas.846

I Lemma 36. If (νn)(P | s〈n〉) ∼=e
Arn (νn)(Q | s〈n〉) with s fresh for P and Q, then847

P ∼=e
Arn Q.848

Proof. We show that the following R is included is barbed equivalence.

R = {(P,Q)
∣∣ (νn)(P | s〈n〉) ∼=e

Arn (νn)(Q | s〈n〉) with s fresh}

We will note P1 = (νn)(P | s〈n〉) and Q1 = (νn)(Q | s〈n〉)849

If P −→ P ′, then P1 −→ (νn)(P ′ | s〈n〉) so Q1 =⇒ Q2 with (νn)(P ′ | s〈n〉) ∼=e
Arn Q2.850

But we have Q2 ≡ (νn)(Q′ | s〈n〉) and Q =⇒ Q′.851

If P ↓a, then we have two cases:852

a 6= n, then P1 ↓a so Q1 ⇓a meaning that Q ⇓a as a 6= s.853

CONCUR 2020

31:24 On the Representation of References in the pi-calculus

a = n, then we consider E def= [] | s(x).x(_). s′ for a fresh s′. E[P1] −→−→ (νn)(P | s′)854

so (νn)(P | s′) ↓s′ . Therefore, E[Q1] =⇒=⇒⇓s′ which just means that E[Q1] ⇓s′ .855

However this can only be done by doing a communication on n, thus we must have856

Q ⇓n.857

Take an active context E completing for P and Q, we assume s is fresh for E, then E′ def=858

E | s(x). s′〈x〉 with s′ fresh is also completing for P1 and Q1, so E′[P1] ∼=e
Arn E

′[Q1]. We859

then have E′[P1] −→ (νn)(E[P] | s′〈n〉), so E′[Q1] =⇒ Q′ with (νn)(E[P] | s′〈n〉) ∼=e
Arn860

Q′, meaning in particular that Q′ 6↓s′ and Q′ ⇓s′′ which is only possible is Q′ ↓s′′ .861

Moreover, we have that E′[Q1] −→ (νn)(E[Q] | s′(x). s′′〈x〉) =⇒ Q′. The same also apply862

symmetrically for E′[Q1] −→ (νn)(E[Q] | s′(x). s′′〈x〉) ∼=e
Arn P

′ for some P ′. Thus we863

have (νn)(E[P] | s′′〈x〉) =⇒ P ′ ∼=e
Arn (νn)(E[Q] | s′′〈x〉) =⇒ Q′ ∼=e

Arn (νn)(E[P] | s′′〈x〉)864

which implies (νn)(E[P] | s′′〈x〉) ∼=e
Arn (νn)(E[Q] | s′′〈x〉).865

J866

I Lemma 37. If P | [x = y]s ∼=e
ArnQ | [x = y]s with x 6= y, then P ∼=e

Arn Q.867

Proof. We have [x = y]s ≈a 0 so P | [x = y]s ≈a P and similarly for Q. Thus by Lemma 14,868

P ∼=e
Arn P | [x = y]s ∼=e

Arn Q | [x = y]s ∼=e
Arn Q. J869

This result can be extended to an arbitrary number of [x = y]s in parallel.870

Proof of Completeness. We show that ∼=e
Arn is a reference bisimulation:871

It is closed by allocation872

Take P,Q complete with F def= fn(P) ∪ fn(Q), P ∼=e
Arn Q and P α−→ P ′873

1. When α = τ , we take E def= []. Then E[P] −→ P ′. So we have Q =⇒ Q′ with874

P ′ ∼=e
Arn Q

′.875

2. When α = a(n), we take E def= [] | a〈n〉. Then E[P] −→ P ′. So we have Q | a〈n〉 =⇒ Q′876

with P ′ ∼=e
Arn Q

′.877

3. When α = a〈n〉, we take E def= [] | a(x). [x = n]s | s with s fresh. Then E[P] −→−→ P ′878

with E[P] ↓s and P ′ 6↓s. This implies that E[Q] =⇒ Q′ with P ′ ∼=e
Arn Q

′. So we have879

Q′ 6↓s, which is only possible if Q a〈n〉===⇒ Q′.880

4. When α = (νn)a〈n〉, we take E def= [] | a(x). (s | s′〈x〉 |
∏
m∈F [x = m]s) | s with881

s, s′ fresh. Then E[P] −→−→ (νn)(P ′ |
∏
m∈F [n = m]s | s′〈n〉). This implies882

that E[Q] =⇒ Q′′ with (νn)(P ′ |
∏
m∈F [x = m]s | s′〈n〉) ∼=e

Arn Q′′. As Q′′ 6↓s, we883

necessarily have Q′′ ≡ (νn)(Q′ |
∏
m∈F [n = m]s | s′〈n〉). By Lemmas 36 and 37, this884

means that P ′ ∼=e
Arn Q

′. But then Q (νn)a〈n〉======⇒ Q′ so we can conclude.885

5. When α = `〈n〉[m], we take E def= [] | `(x). (`〈m〉 | [x = n]s) | s. Then E[P] −→−→ P ′886

with P ′ 6↓s. This implies that E[Q] =⇒ Q′ with P ′ ∼=e
Arn Q′. As Q′ 6↓s we have887

Q
`〈n〉[m]=====⇒ Q′.888

6. When α = (νn)`〈n〉[m], we take889

E
def= [] | `(x). (`〈m〉 | s | s′〈x〉 |

∏
m∈F [x = m]s) | s. Then890

E[P] −→−→ (νn)(P ′ |
∏
m∈F [n = m]s | s′〈n〉). This implies E[Q] =⇒ Q′′ with891

(νn)(P ′ |
∏
m∈F [n = m]s | s′〈n〉) ∼=e

Arn Q
′′. As Q′′ 6↓s, we necessarily have892

Q′′ ≡ (νn)(Q′ |
∏
m∈F [n = m]s | s′〈n〉). By Lemmas 36 and 37, this means P ′ ∼=e

Arn Q
′.893

But then Q (νn)`〈n〉[m]========⇒ Q′ so we are done.894

J895

D.Hirschkoff, E. Prebet and D. Sangiorgi 31:25

B.5 Proofs about ≈ip896

We show soundness of ≈ip-bisimulation up to store with respect to ≈ip-bisimilarity, and of897

≈ip-bisimilarity with respect to reference bisimilarity.898

Proof of Proposition 25. We show that

R′ def= {P |Ms, Q |Ms

∣∣ P R Q for any Ms}

is an ≈ip-bisimulation.899

If P | Ms R Q | Ms and P | Ms
µ−→ P̃ , we distinguish the sub-processes of P̃ that have900

changed:901

1. If P |Ms
µ−→ P ′ |Ms, then P

µ−→ P ′, and ok′(∆∪∆′,R, P ′, Q, µ). We show by induction on902

the proof of ok′(∆∪∆′,R, P ′, Q, µ) that ok((∆]∆s)∪ (∆′]∆s),R′, P ′ |Ms, Q |Ms, µ).903

First note that (∆] ∆s) ∪ (∆′] ∆s) = (∆ ∪ ∆′)] ∆s. In short, we prove that904

ok′(∆,R, P ′, Q, µ) implies ok(∆]∆s,R′, P ′ |Ms, Q |Ms, µ).905

(Base-Up) P ′ = P ′′ | Mt, Q
µ=⇒ Q′′ | Mt (or Q | n〈m〉 =⇒ Q′′ | Mt for µ = n〈m〉) and906

P ′′ R Q′′. Then P ′′ |Mt |MsR′Q′′ |Mt |Ms and Q |Ms
µ=⇒ Q′′ |Mt |Ms, so we can907

conclude with rule Base.908

(Ext) We use an induction on the size of s.909

If s is empty, then ` /∈ ∆]∆s, and we can apply rule Ext.910

If ` /∈ ∆]∆s, we can apply rule Ext as before. Otherwise, Ms = `〈m〉 | Ms′ for911

some m, s′. Moreover, we know that ok′((∆, `),R, P ′ | `〈m〉, Q | `〈m〉, µ). Thus, by912

induction, ok((∆, `]∆s′),R′, P ′ | `〈m〉 |Ms′ , Q | `〈m〉 |Ms′ , µ).913

2. If P |Ms
τ−→ P ′ |Ms′ , then there exists an input action µ′ = `〈m〉 such that P µ′

−→ P ′, and914

ok′(∆ ∪∆′,R, P ′, Q, µ). We show by induction on the proof of ok′(∆ ∪∆′,R, P ′, Q, µ),915

that ok((∆]∆s) ∪ (∆′]∆s′),R′, P ′ |Ms′ , Q |Ms, µ). First note that Ms ≡ `〈m〉 |Ms′916

and ∆]∆s = ∆′]∆s′ = (∆ ∪∆′)]∆s′ . In short, we prove that ok′(∆,R, P ′, Q, µ)917

implies ok(∆]∆s′ ,R′, P ′ |Ms′ , Q |Ms, µ).918

(Base-Up) P ′ = P ′′ |Mt and Q | `〈m〉 =⇒ Q′′ |Mt, and P ′′ R Q′′.919

Then P ′′ |Mt |Ms′ R′ Q′′ |Mt |Ms′ and Q |Ms ≡ Q | `〈m〉 |Ms′
τ=⇒ Q′′ |Mt |Ms′ ,920

so we can conclude with rule Base.921

(Ext) We use `′ for the name used in that rule here. We use an induction on the size922

of s′.923

If s′ is empty, then ` /∈ ∆]∆s′ , and we can apply rule Ext.924

If ` /∈ ∆]∆s′ , we can apply rule Ext as before. Otherwise, Ms′ = `′〈m′〉 |Mt′ for925

some m, t′. Moreover, we know that ok′((∆, `′),R, P ′ | `′〈m′〉, Q | `′〈m′〉, µ). Thus,926

by induction, ok((∆, `′]∆t′),R, P ′ | `′〈m′〉 |Mt′ , Q | `′〈m′〉 |Mt′ , µ).927

3. If P | Ms
µ−→ P | Ms′ , then µ is an output and Q | Ms

µ−→ Q | Ms′ so we can apply rule928

Base.929

J930

I Corollary 38. As ≈ is an ≈-bisimulation up to store, it is closed by parallel composition931

of Ms.932

I Lemma 39. For any ∆ ` P,Q and ` /∈ frn(P) ∪ frn(Q), and for all m, P | `〈m〉 ≈ip Q |933

`〈m〉 implies P ≈ip Q.934

This is true in particular for complete processes P,Q and any ` /∈ ∆.935

CONCUR 2020

31:26 On the Representation of References in the pi-calculus

Proof. First notice that P | `〈m〉 ≈ip Q | `〈m〉 iff P | `′〈m〉 ≈ip Q | `′〈m〉 for any `′ fresh.936

We show that {(P,Q) s.t P | `〈m〉 ≈ip Q | `〈m〉 for any fresh ` and any m} is an ≈ip-937

bisimulation.938

When P µ−→ P ′, we distinguish if ` appears in µ:939

If ` /∈ µ, then P | `〈m〉 µ−→ P ′ | `〈m〉 and ok((∆ ∪∆′, `),≈ip, P
′ | `〈m〉, Q | `〈m〉, µ). We940

reason by induction on this predicate.941

(Base) Then Q | `〈m〉 µ=⇒ Q′ | `〈m〉 and Q µ=⇒ Q′. Thus we conclude with rule Base.942

(Ext) If `′ /∈ ∆, `, then we can apply rule Ext.943

If ` ∈ µ, then we consider P | `′〈m〉 and Q | `′〈m〉 with `′ fresh and `′ 6= `, and do the944

same proof.945

J946

A consequence of this lemma is that an ≈ip-bisimulation to prove P ≈ip Q need not use rule947

Ext with ` fresh.948

Proof of Proposition 26. ≈ is closed by allocation by Corollary 38.949

For any P,Q complete:950

If P ≈ip Q and P µ−→ P ′, then by Lemma 39, we know ok(∆,≈ip, P
′, Q, µ) using rule Base,951

so Q µ=⇒ Q′ and P ′ ≈ip Q
′.952

If P `〈n〉[m]−−−−−→ P ′ (resp. (νn)`〈n〉[m]), then as before but for µ = `〈n〉 (resp. µ = (νn)`〈n〉),953

we have P µ−→ P ′′ and Q µ=⇒ Q′′ with P ′′ ≈ip Q
′′, and P ′ = P ′′ | `〈m〉. But then we have954

Q
`〈n〉[m]=====⇒ Q′ (resp. (νn)`〈n〉[m]) with Q′ = Q′′ | `〈m〉 and P ′ ≈ip Q

′ so we are done.955

J956

	Introduction
	Asynchronous Processes Accessing References: ref
	Syntax and Semantics
	Behavioural Equivalence in ref: Examples

	Mapping ref onto the Asynchronous -calculus
	The Asynchronous -calculus
	Encoding ref
	Types and Behavioural Equivalences with Reference Names
	Validating the Encoding

	Bisimulation with Reference Names
	Two Labelled Bisimilarities
	Examples

	Future work
	Additional Material for the Examples in Section 2.2
	Definitions and Results about A with references
	Operational Semantics of A: Reduction and Labelled Transitions
	Type System for Output Receptiveness: Proof of Subject Reduction
	Properties of the encoding
	Characterisation of .5-.5.5-.5.5-.5.5-.5eArn using
	Soundness
	Completeness

	Proofs about ip

