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ABSTRACT

Context. According to current pulsar emission models, photons are produced within their magnetosphere and current sheet, along
their separatrix, which is located inside and outside the light cylinder. Radio emission is favoured in the vicinity of the polar caps,
whereas the high-energy counterpart is presumably enhanced in regions around the light cylinder, whether this is the magnetosphere
and/or the wind. However, the gravitational effect on their light curves and spectral properties has only been sparsely researched.
Aims. We present a method for simulating the influence that the gravitational field of the neutron star has on its emission properties
according to the solution of a rotating dipole evolving in a slowly rotating neutron star metric described by general relativity.
Methods. We numerically computed photon trajectories assuming a background Schwarzschild metric, applying our method to neu-
tron star radiation mechanisms such as thermal emission from hot spots and non-thermal magnetospheric emission by curvature
radiation. We detail the general-relativistic effects onto observations made by a distant observer.
Results. Sky maps are computed using the vacuum electromagnetic field of a general-relativistic rotating dipole, extending previous
works obtained for the Deutsch solution. We compare Newtonian results to their general-relativistic counterpart. For magnetospheric
emission, we show that aberration and curvature of photon trajectories as well as Shapiro time delay significantly affect the phase
delay between radio and high-energy light curves, although the characteristic pulse profile that defines pulsar emission is kept.

Key words. radiation mechanisms: thermal – radiation mechanisms: non-thermal – relativistic processes – stars: neutron –
gamma rays: stars

1. Introduction
In 1967, Jocelyn Bell observed a radio source that with extreme
regularity displayed an emission peak every 1.337 s. This radio
source, called pulsar for pulsating star, was later identified as a
neutron star by Hewish et al. (1968). It is the collapsed core of a
giant star, stabilised by neutron degeneracy pressure. A neutron
star typically has a diameter of 20 km and a weight of 1.5 times
the mass of the Sun (Özel & Freire 2016). When simple argu-
ments about angular momentum and the magnetic flux conserva-
tion are followed, this stellar remnant also has a very high rota-
tion speed with periods between 1 ms and 20 s. It also harbours
the strongest known magnetic field in the Universe, which is at
about the quantum critical value of 4.4 × 109 T or even higher.

Neutron stars are surrounded by a plasma formed of electron-
positron pairs produced by photo-disintegration in a strong mag-
netic field at the surface of the star (Ruderman & Sutherland
1975). This plasma corotates with the neutron star, by the action
of the electromagnetic field, up to a limit called the light cylinder,
where the plasma corotation speed equals the speed of light, c
(Goldreich & Julian 1969), and is denoted by

rL =
c
Ω
, (1)

where Ω is the rotation rate of the neutron star. Beyond this limit,
the magnetic field lines are assumed to be open, that is, instead
of joining the two magnetic poles, they leave one pole to infinity.
To explain the characteristic emission of a pulsar, several mod-
els of neutron star magnetospheres have been developed. They
require empty gaps, allowing for an electric field parallel to the
magnetic field lines, which is responsible for particle accelera-

tion and radiation. The most popular models include the polar
cap (Ruderman & Sutherland 1975), the outer gap Cheng et al.
(1986), and the slot gap (Arons 1983; Dyks & Rudak 2003) with
possible extension to the striped wind (Kirk et al. 2002; Pétri
2011). Charged particles accelerated by this electrical field are
responsible for the pulsar emission, generating radio and high-
energy emission by inverse Compton scattering, synchrotron
radiation, or curvature radiation. This last is the focus of our
paper. The pulse that is periodically detected by an observer
is simply a consequence of the stellar magnetic field geometry
combined with its rotation.

Pulsars, especially accreting pulsars, can also present two hot
spots, located at the magnetic north and south poles, where mat-
ter falls onto the neutron star surface, with a thermal emission
mainly in the X-ray band (around 100 eV). This thermal emis-
sion from the hot spots is a valuable indicator for the magnetic
field topology on its surface. Recent observations from NICER
by Bilous et al. (2019) showed evidence for a multipolar com-
ponent on the surface. This clearly adds some complexity to the
pulsar magnetosphere picture, especially for millisecond pulsars,
for which the multipolar magnetic field strength even at the light
cylinder has not decayed much compared to the dipolar part.
Because of their size, neutron stars are highly compact. This
is defined by the ratio between their actual radius R and their
Schwarzschild radius, which is defined by

Rs = 2 Rg =
2 G M

c2 , (2)

with M the mass of the star and G the gravitational constant,
Rg being the gravitational radius of the star. Typically, this ratio
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is about Rs/R = 0.5. This extreme compactness causes non-
negligible relativistic effects on the electromagnetic field struc-
ture, as shown by Rezzolla et al. (2001), Pétri (2013, 2014, 2016)
and propagation of photons emitted in the vicinity of the neu-
tron star. In order to determine how this affects terrestrial obser-
vations of pulsars, we simulated the trajectory of photons in
the gravitational field of a neutron star using ray-tracing tech-
niques. These techniques are mostly divided into two methods.
A direct integration of the equation of motion in the prescribed
metric has been implemented by Vincent et al. (2011). It allows
for ray-tracing in a generic metric that is not necessarily ana-
lytical. Another approach performs the integration analytically
in a Schwarzschild or Kerr metric, leading to elliptical inte-
grals, as were found by Rauch & Blandford (1994). This sec-
ond technique is less general than the previous one, but we
found it much more accurate and faster than solving second-
order differential equations derived from the geodesic equations.
We also included the calculation of the time of flight of the pho-
ton (Shapiro delay), as in Bogdanov et al. (2007), to properly
compute the non-thermal magnetospheric emission and the ther-
mal hot-spot emission as received by an distant observer.

There are currently more than 2000 identified pulsars, and
although these stellar remnants are particularly known for their
typical pulsed radio emission (Lyne & Manchester 1988), the
Fermi large area telescope (Fermi/LAT) confirmed the existence
of pulsation in the gamma-ray domain (Abdo et al. 2013) for
more than 250 of these pulsars. This gamma-ray activity gives us
an insight into the pulsar magnetosphere, especially into where
the emission sites for high-energy emission are located, because
they must be well above the polar cap in order to avoid too
strong magnetic photon absorption in the magnetic field close
to the critical value of 4.4 × 109 T (Daugherty & Harding 1996).
For a more complete introduction on the topic, we refer to
Pétri (2018). The gamma-ray peaks show sharp features that are
interpreted as caustic effects produced by aberration and retar-
dation effects (Morini 1983; Dyks et al. 2004). Because radio
and gamma-rays are not released at the same location, a phase
alignment between both pulses is usually rarely seen, except for
some millisecond pulsars, suggesting that radio and gamma-rays
are produced at nearly the same sites. Moreover, Venter et al.
(2012) claimed that the emission altitude is about 30% of the
light cylinder radius rL. Distinguishing between the different
models such as the polar caps, the two-pole caustics, and the
outer gaps requires a careful analysis of their respective fea-
tures. Watters et al. (2009) therefore computed a comprehensive
atlas of pulsar light curves, followed by Venter et al. (2009) and
later by Pierbattista et al. (2015, 2016). An atlas like this con-
strains the pulsar geometry, obliquity, and line-of-sight incli-
nation. Variations of these models introduced altitude-limited
outer gaps and slot gaps or low-altitude slot gaps to improve
the light-curve fitting, most importantly for millisecond pulsars
(Abdo et al. 2010; Venter et al. 2012).

In this paper we self-consistently include general-relativistic
effects such as light bending and Shapiro time delay to compute
radio and high-energy pulse profiles. We employ semi-analytical
solutions for the electromagnetic field around a rotating dipole
in a slowly rotating neutron star metric (Pétri 2017), general-
ising the classical Deutsch solution (Deutsch 1955) to realistic
neutron stars treated as compact objects. As a starting exercise,
we re-explore thermal radiation from hot spots onto the neutron
star surface using simple assumptions. Details are given in the
appendix. In Sect. 2 we recall the magnetospheric and emis-
sion models, and we also explain the photon-trajectory integra-
tion techniques in Schwarzschild space-time. In Sect. 3 we test

our algorithm by computing single-photon trajectories as well
as some images of the neutron star surface as seen by a distant
observer. Finally, high-energy as well as radio emission maps are
investigated in depth in Sect. 4. Possible frame-dragging effects
for the fastest rotating pulsars are sketched in Sect. 5. Conclu-
sions are drawn in Sect. 6.

2. Emission model

The emission model we used in our computations has been thor-
oughly described in Pétri (2018). However, for completeness, we
recall the components required below.

1. Description of the emission sites according to the mag-
netic field topology. As a starting point, a rotating magnetic
dipole in vacuum is employed in general relativity (GR). Excel-
lent semi-analytical expressions are computed in Pétri (2017).
Frame-dragging is negligible, and therefore the Schwarzschild
metric prevails as the background gravitational field.

2. Prescription for particle composition and radiation. Parti-
cles usually follow magnetic field lines in the corotating frame,
emitting mostly curvature photons along the local direction of
field lines.

3. Non-thermal radiation processes also include synchrotron
and inverse Compton emission as possible mechanisms for
broad-band radiation, however.

4. Thermal surface emission from the heating of the polar
caps, which is mainly seen in X-rays.

5. Light bending and Shapiro time delay induced by the stel-
lar gravitational field. It is taken into account to produce sky
maps.

These items are discussed in the following paragraphs. We
conclude this section by discussing the numerical algorithm we
used to produce our pulsar light-curves.

2.1. Electromagnetic topology

Since the work of Deutsch (1955), an exact analytical expres-
sion for a magnetic dipole rotating in vacuum is known. The
general-relativistic extension to his solution was found by Pétri
(2017), using a semi-analytical radial expansion into rational
Chebyshev functions, which led to generalised spherical Hankel
functions for outgoing waves and is denoted by H (1)

`
. When the

metric tends to Minkowski space-time, they reduce to the stan-
dard spherical Hankel functions h(1)

`
(Arfken & Weber 2005).

Rezzolla et al. (2001) and Rezzolla & Ahmedov (2004) found
similar expressions about general-relativistic rotating dipoles in
vacuum without numerical integration.

In general relativity, c/Ω is not equal to the light-cylinder
radius rL because Ω is not the actual rotation rate of the neu-
tron star as seen by a local observer in a gravitational field. The
light-cylinder radius in Schwarzschild space-time rL is properly
defined by the location where the corotation speed reaches the
speed of light for a local observer, whose own clock ticks with
proper time dτ = α dt, where α =

√
1 − Rs/r is the lapse func-

tion. There the speed of light is reached for r Ω = α c, leading to
corrections to the light-cylinder radius that are given to second-
order accuracy by

rRG
L ≈ rL

1 − 1
2

Rs

rL
−

3
8

R2
s

r2
L

 · (3)

We used this value for the light-cylinder radius in general rela-
tivity. Polar cap shapes and separatrix locations were computed
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according to this expression. The difference between rRG
L and rL

is prominent only for millisecond pulsars for which Rs
rL
& 0.1.

2.2. Emission sites

2.2.1. Polar cap

We studied two different types of emission that can originate
from the polar caps of the pulsar. An isotropic thermal emis-
sion that does not depend on the electromagnetic field topology,
such as for the black-body X-ray emission from hot spots on
the stellar surface, and a non-thermal radio emission tangent to
the particle motion along the magnetic field lines. The latter cor-
responds to the traditionally accepted view about coherent radio
emission from pulsars, although it is assumed this emission takes
place several stellar radii above the polar cap, up to about 10%
of rL for slowly rotating pulsars (Mitra & Li 2004; Mitra et al.
2016), while the origin of radio emission in millisecond pul-
sars is still an open question. Our simulations are most appropri-
ate for millisecond pulsars for which general-relativistic effects
must be taken into account.

2.2.2. Slot gap

In this second picture, high-energy emission takes place along
the last open field line surface, or separatrix, in what is called
a slot gap (Arons 1983). This region of emission far from the
star is needed to avoid strong magnetic photon absorption pro-
cesses in a too strong magnetic field (Erber 1966). It is admit-
ted that the emission is highest on the separatrix and decreases
monotonically beyond this surface. Our model assumes either
that emission takes places only on an infinitely thin layer along
the separatrix or in a layer of thickness prescribed by the user.

2.3. Radiation properties and aberration

Particles produce photons in several ways. However, to compute
a light curve,a generic emission process is enough. We do not
treat broadband spectra and polarisation here; a generic emission
process is sufficient for our main focus: the shape of the light
curves.

The distribution of the pitch angle for particles in the comov-
ing frame was assumed to be isotropic, resulting in an emissivity
that follows the same pattern. Emissivity in the inertial frame
was obtained by performing a Lorentz boost from the rest frame
to the observer frame, the rest frame that not necessarily is the
corotating frame.

The line of sight of the distant observer makes an angle ζ
with respect to the z axis such that its direction points towards
the unit vector

nobs = sin ζ ex + cos ζ ez. (4)

In several models, particles are assumed to follow magnetic
field lines in the corotating frame with an isotropic distribution
function in the rest frame of the fluid. The aberration formula
was originally used by Dyks & Rudak (2003) to switch from the
corotating frame to the observer frame. It is given by the usual
textbook expression between two observers moving with con-
stant relative velocity u with respect to each other.

To construct light curves from the pulsar magnetospheric
emission, we accounted for the fact that when we consider the
photon trajectory, we leave the rotating pulsar frame of refer-
ence for a static frame of reference attached to the observer. This
results in the aberration phenomenon described above. To simu-

late aberration effects properly, we replaced n′ the unit vector of
the propagation direction at the emission position of the photon
in the pulsar rotating frame by its counterpart n in the observer
frame.

Starting with the Minkowskian metric, the components of the
two unit vectors directed along the photon trajectory are affili-
ated by the Lorentz transformation, given by

n′‖ = γ η (n‖ − β) =
n‖ − β

1 − β n‖
(5a)

n′⊥ = η n⊥, (5b)

where n′
‖

and n‖ are the components of n′ and n that are parallel
to the relative velocity β = u/c, β being the normalised velocity
vector of the rotating frame, which in the case of the pulsar, is

equal to β =
r Ω

c
sin θ eϕ. n′⊥ and n⊥ are the components perpen-

dicular to β, and γ =
1√

1 − β2
is the Lorentz factor. With the

Doppler factor η defined by

η =
1

γ (1 − β · n)
= γ (1 + β · n′), (6)

we obtain the usual flat space-time aberration formula such that

n =
1
η

[
n′ + γ

(
γ

γ + 1
(β · n′) + 1

)
β

]
. (7)

These quantities are not equal to the Lorentz factor and veloc-
ity measured by a local observer when gravity is included; they
are coordinate quantities, not physical quantities. In a general-
relativistic case, we can still use the aberration formula Eq. (7)
to find n from n′, but we need to substitute β by βRG and γ by
γRG such that

βRG =
β√

1 − Rs
r

(8a)

γRG =
1√

1 − β2
RG

· (8b)

These are indeed the velocity and Lorentz factor as measured by
a local observer for whom the flat space-time aberration formula
is locally valid.

2.4. Ray-tracing in Schwarzschild metric

The radiating electromagnetic field we used was extracted from
semi-analytical general-relativistic expressions. To be consis-
tent, we have to include the relativistic effects in our investiga-
tion that will affect photons in the vicinity of the neutron star:
light bending, Shapiro time delay, and gravitational redshift. As
we haven’t included spectral properties of pulsar emission in our
work, this study will focus on light-bending and time-delay only.

There are different approaches for ray-tracing around com-
pact objects such as black holes or neutron stars (Vincent et al.
2011; Psaltis & Johannsen 2012; Chan et al. 2013). The method
we used consists of analytically integrating the photon trajectory
to obtain an integral that can be computed using any quadra-
ture method. Although this method is not applicable to a gen-
eral metric because its equation integrals are not amenable to
closed formulas, it as been proven to be effective for both Schar-
wszchild (Pétri 2018) and Kerr (Rauch & Blandford 1994) met-
rics because of its speed and accuracy for large distances. This
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makes it particularly helpful in this work, where we had to com-
pute millions of photon paths.

Frame-dragging effects around neutron stars are not rel-
evant for the electrodynamics, especially for the electromag-
netic field induced by a rotating magnet in vacuum, as shown
by Pétri (2018). Rotation of space-time can even be reason-
ably neglected for millisecond pulsars. We therefore assumed
that Schwarzschild space-time faithfully depicts the gravitational
field around pulsars, independently of their rotation rate. We
therefore do not discuss the frame-dragging phenomenon in this
article. We focus on the Schwarzschild metric to describe the
space-time geometry around a massive object, such as a neu-
tron star. In spherical Boyer-Lindquist coordinates (r, θ, φ), the
massive object is represented by only one free parameter, the
Schwarzschild radius Rs,

ds2 =

(
1 −

Rs

r

)
c2dt2 −

(
1 −

Rs

r

)−1

dr2 − r2 (sin2 θdφ2 + dθ2). (9)

In this metric, the trajectory of a photon is always contained
within a plane defined by the location of the mass M and the
initial propagation direction of that photon n. Therefore we can
use a two-dimensional projection of the Schwarzschild metric
that identifies the plane of the trajectory to the equatorial plane
θ = π/2, leading to

ds2 =

(
1 −

Rs

r

)
c2dt2 −

(
1 −

Rs

r

)−1

dr2 − r2dφ. (10)

r and φ are the polar coordinates of the photon in the plane of the
trajectory. Within this induced metric, the two coordinates, dis-
tance to the origin r and angle φ, as used by Gonthier & Harding
(1994), are related by the equation for the trajectory as

φ(r) = φ0 ±

∫ r

r0

b dr

r2
√

1 − b2

r2 (1 − Rs
r )
, (11)

with φ0 and r0 the coordinates of the emission point, b the impact
parameter defined as

b =
r0√

1 − Rs
r0

sinψ, (12)

and ψ the angle between the radial direction and the photon-
emission direction n. The plus and minus sign in front of the
integral apply to receding dr/dt > 0 and approaching dr/dt < 0
photons, respectively. To be able to determine the position of
the photon at infinity, we replaced r in Eq. (11) by the Binet
transformation u = 1

r , so that when r → ∞, we have u = 0, and
the integral (11) becomes

φ(u) = φ0 ∓

∫ u

u0

b du√
1 − b2 u2(1 − Rs u)

, (13)

with u0 = 1
r0

. We note the reversal of sign in front of the integral
with respect to Eq. (11). More precisely, Eq. (13) has a positive
sign when the photon falls on the origin of the gravitational field
and a minus sign when it leaves towards infinity (and inversely
for Eq. (11)).

When the impact parameter is lower than a certain critical
value given by bc = 3

√
3/2 Rs (Kraus 1998), the photon falls on

the origin where the star is located. In certain cases, for b > bc,
the photon approaches the star in a first stage, reaches a reversal
point, and then recedes towards infinity. At this turning point, the

radial coordinate of the photon trajectory reaches its minimum,
which is equal to rmin. Formally, this is the root of the third-order
polynomial in u defined by

p(u) = 1 − b2 u2 (1 − Rs u). (14)

These equations only give the position of the photon in the plane
adapted to the trajectory. For a general orientation of this plane
in a full three-dimensional space, we applied three rotations to
bring the photon trajectory into this adapted frame by using the
Euler angles. These rotations are recalled in Appendix A.

The time coordinate of the photon was computed in the same
way as for the trajectory. It is found with another integral given
by Pechenick et al. (1983) and reads

t = t0 +

∫ r

r0

dr(
1 − Rs

r

) √
1 −

b2

r2

(
1 − Rs

r

) , (15)

with t0 the time coordinate of the date when the photon is emit-
ted. We again used the Binet substitution u = 1

r to rewrite
it as

t = t0 −
∫ u

u0

du

u2(1 − Rs u)
√

1 − b2 u2 (1 − Rs u)
· (16)

We integrate the Eqs. (13) and (16) throughout using the
Clenshaw-Curtis quadrature that has been explained in depth
in Press (2007). It uses fast Fourier-transform techniques that
employ cosine transforms to perform Chebyshev interpolation
and integration.

3. Test of the photon-trajectory integrations

Before we applied the code to realistic pulsar magnetospheres,
we tested our integration scheme against simple cases such as
photon trajectories in the equatorial plane and the image of
a neutron star as perceived by a distant observer. The study
of those two cases already provides a interesting insight of
the effect that the gravitational field can have on the pulsar’s
emission.

3.1. Single-photon motion in the equatorial plane

Because of the spherical symmetry of the Schwarzschild met-
ric, it is always possible to reduce the particle motion to a plane
such that θ = π/2. Photon trajectories around neutron stars are
then of four kinds, depending on their receding or approaching
motion and depending on whether they are captured by the hori-
zon (in order to explore all the possibilities, we included the
Schwarzschild black hole case). We distinguish

(i) photons produced at the surface that leave the star, going
to infinity,

(ii) photons produced at the surface that leave the star, but
return to it,

(iii) photons coming from infinity that approach the star to
hit its surface, and

(iv) photons coming from infinity that approach the star, are
deflected, and then return to infinity.

Typical examples of cases (i), (ii), and (iv) are shown in
Fig. 1. Case (iii) is similar to case (i), except that the photon
travels in the opposite direction. The Schwarzschild radius is
normalised to Rs = 2 and depicted by the black circle. Case (i)
in Fig. 1 shows a photon leaving the star from its surface. This
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Fig. 1. Some possible trajectories for a photon travelling around a
Schwarzschild radius. Case (i) is shown in green, case (ii) in red, and
case (iv) in blue.

type of trajectories is easily computed because the radius mono-
tonically increases with the polar angle φ. This is seen by inspec-
tion of Fig. 2, which shows a mono-valued function φ(r). Deflec-
tion of light in the vicinity of a compact object must be handled
more carefully because the photon first approaches the star with
decreasing radius r, but at the turning point, it recedes to infinity
by again increasing its radial coordinate r (case (iv)). Such a tra-
jectory is shown in Fig. 1. The approaching part is coloured in
light blue and the receding part in dark blue. Therefore the func-
tion φ(r) is multi-valued and must be treated appropriately by
cutting it into two parts that are separated by the shortest distance
to the centre of the star rmin, as shown in Fig. 2. The integration
constants in the integral formulation of the trajectory are chosen
to smoothly join both parts of the motion at the reversal point.
The shortest distance rmin is found by analytically solving for the
root of the third-order polynomial Eq. (14). A last check was per-
formed for trajectories that are not expected in neutron stars but
are useful for black holes. In Fig. 1, a photon emerging from the
horizon is strongly deflected and then returns inside the horizon,
shown as the red curve. It has an impact parameter b < bc and
is therefore always captured by the horizon (case (ii)). Here the
trajectory also shows a turning point associated not with a short-
est distance, but with a largest distance rmax, which is also found
by finding the root of Eq. (14). The polar angle function φ(r) is
again multi-valued and must be separated in receding and return-
ing parts, as shown in Fig. 2 with in red line. Care must be taken
to smoothly join both parts of the trajectory at the turning point,
which corresponds to rmax.

3.2. Image distortion of a neutron star

To show how the gravitational field of a neutron star affects
the trajectory of photons, we simulated the image seen by a
distant observer of the neutron star surface. To do this, we
spread emission points all around its surface, located at twice
the Schwarzschild radius R = 2 Rs, which means a compact-
ness of the neutron star of typically K = Rs/R = 0.5. Each
point was separated from its neighbour by a difference of sev-
eral degrees in colatitude ∆θ and longitude ∆φ. The image of
this surface was obtained for flat space-time associated with
the Minkowski metric by tracing a line towards a hypothetical

Fig. 2. Evolution of the polar angular coordinate φ with respect to the
radial coordinate r corresponding to the paths shown in Fig. 1. The func-
tion φ(r) is double-valued for trajectories showing turning points.

screen, a plane perpendicular to the line of sight of a distant
observer.

In the general-relativistic case, we searched with a root-
finding function for the emission angle θ in the interval [− π2 ,

π
2 ],

for which the angle φ(r) given by Eq. (13) is the same as the
position of the observer at infinity (here we took φobs = 0 as the
position of the observer), then we computed the impact param-
eter b. This impact parameter b is also the distance between the
photon trajectory and a parallel line that comes from the origin
when general-relativistic effects are negligible (Kraus 1998). At
large distance r � Rs, the impact point of the photon on the
screen therefore is at a distance b from the projection of the cen-
tre of the star on the line that is the intersection of the screen and
the plane containing the trajectory of the photon.

We compared Minkowskian to general-relativistic images
for several line-of-sight inclination angles ζ and report the case
ζ = 30◦ in Fig. 3. General-relativistic effects enlarge the image
seen by a distant observer. The important point is that a larger
portion of the stellar surface is visible because of light-bending
by the gravitational field of the star. This allows photons emit-
ted from regions behind the star that are normally hidden in the
Minkowskian metric to reach the observer. These effects disap-
pear progressively when the compactness decreases, as shown in
Fig. 4, where the same image is found, but for a compactness
K = 0.25 (i.e. a radius of the star that is equal to eight times
its gravitational radius). The apparent radius of the neutron star,
noted R∞, is deduced from the impact parameter. Photons can
only leave the star if |ψ| < π/2, therefore the apparent radius
measured at spatial infinity immediately follows as

R∞ =
R√

1 − Rs
R

· (17)

R is the radial coordinate labelling the boundary of the neutron
star. High compactnesses imply large apparent radii R∞, which
have strong implications for the measured flux, temperature, and
hot-spot area. This is beyond the scope of this work, however.

4. Magnetospheric emission

We will know apply the Schwarzschild metric and the
corresponding ray-tracing techniques to simulations of the
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Fig. 3. Surface of the neutron star for a flat space-time (in red) and with
general-relativistic effects (in green) for a compactness of K = 0.5 and
an observer located in a direction of ζ = 30◦. The black circle of radius
R∞ is also shown for reference.
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Fig. 4. Surface of the neutron star for a flat space-time (in red) and with
general-relativistic effects (in green) for a compactness of K = 0.25 and
an observer located in a direction of ζ = 30◦. The black circle of radius
R∞ is also shown for reference.

magnetospheric emission of the pulsar. This section describes
the generalisation of the work presented in Pétri (2018) by
including the Shapiro time-delay in addition to the light-bending
and general-relativistic electromagnetic field.

4.1. Geometry of the magnetic field and Shapiro time-delay

To simulate the magnetospheric emission of a pulsar, we con-
sidered a model with gaps in the co-rotating plasma located
along the last closed magnetic field lines and above the polar cap
(Ruderman & Sutherland 1975; Harding et al. 2008). We traced
the magnetic field lines of the neutron star using the generalisa-
tion of the Hankel function as presented in Pétri (2018). As parti-
cles are accelerated inside the gaps, we can simulate the emission
of photons by curvature radiation, assuming that they are emitted
tangentially to the last closed magnetic field lines as viewed from
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Fig. 5. Magnetic field lines of the pulsar in the Minkowskian case (in
red) and in the relativistic case (in green) in the equatorial plane when
the magnetic axis is perpendicular to the rotation axis and with (in
black) the light cylinder.

the corotating frame. To have an idea of what a distant observer
will perceive from this emission, we computed the coordinates
of the photon when it impacts on a celestial sphere centred on
the neutron star with a radius large enough (for concreteness, set
to 1000 times the light cylinder radius) to moderate the influence
of the gravitational field so that photons move on straight lines
to good accuracy when hitting this sphere.

We compared the sky maps in two limiting cases of space-
time metrics In the Minkowskian case, we traced the tangent
lines to the last closed field lines, and then added a phase shift to
take the photon time of flight into account, the phase being the
longitudinal coordinate on the celestial sphere while in the rela-
tivistic case, these maps were obtained by integrating Eqs. (13)
and (16). The reported differences between the flat space-time
and the Schwarzchild metric are due to differences in the geom-
etry of the magnetic field lines between the two cases, as shown
in Fig. 5 for the perpendicular rotator, the curvature of the photon
trajectory according to general relativity, and the time delay gen-
erated by the curvature of space-time that is called the Shapiro
time-delay. In Figs. 6–9 we show the effect of these different fac-
tors on the photon impact on the celestial sphere for the special
case χ = 60◦. For each of these figures, the null phase φ = 0 is
defined as the date when the observer receives a photon from the
magnetic north pole, that is, around the line of sight ζ = 60◦. We
now detail the merit of aberration, retardation, and light-bending
in the construction of light curves and sky maps. In Fig. 6 we
show the change in the photon direction angle when aberration
and retardation are added in Minkowskian geometry. Aberra-
tion remains weak as long as photons are produced well within
the light-cylinder. This is shown by the colour scale, where the
deviation at the polar caps the deviation. However, when the
light-cylinder is approached, the corotation drastically shifts
the propagation direction, and retardation effects become strong.

Figure 7 shows the change in the photon direction from
its emission site to infinity when all GR effects are included.
The change in angle remains very similar to the Minkowskian
case. The reason is that photons are emitted almost radially out-
wards with small angles ψ defined by the impact parameter b in
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Fig. 6. Projection of the Minkowskian magnetic field lines without
photon-bending but with the time of flight and aberration effects in
Minkowskian geometry. The colour scale depicts the angle in degrees
between the emission direction of the photon at production site and its
final direction projected onto the celestial sphere due to aberration and
retardation.
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Fig. 7. Projection of the GR magnetic field lines with light-bending,
aberration, and Shapiro delay included. The colour scale depicts the
angle in degrees between the emission direction of the photon at pro-
duction site and its final direction projected onto the celestial sphere.

Eq. (12). When ψ � 1, the light-bending induced by space-time
curvature is weak, which explains the good agreement between
GR and Minkowskian cases. However, the shape of the polar
cap is slightly modified by GR and becomes larger as a result
of the combined effect of light-bending and magnetic field dis-
tortion. For an off-centred dipole or more generally non-dipolar
fields showing a large angle between field lines and radial direc-
tion close to the surface, we expect larger discrepancies between
Minkowskian and GR radiative properties.

Figure 8 shows the time-of-flight difference between a ref-
erence photon taken to be at the magnetic axis and an arbitrary
photon emitted locally tangentially to magnetic field lines, nor-
malised to a full period. The advance in time of photons coming
from the neighbourhood of the light cylinder is almost 16%. This
number comes from the delay of an almost straight-line propa-
gation of photons from the surface to the light-cylinder, which is
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Fig. 8. Projection of the GR magnetic field lines with photon-bending
and Shapiro delay. The colour scale depicts the time delay between the
photon and a reference time (that of the photon emitted at the magnetic
axis) expressed as a fraction of the phase.
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Fig. 9. Projection of the GR magnetic field lines with photon-bending,
Shapiro delay, and aberration. The colour scale depicts the differ-
ence between the Shapiro time delay and the Minkowskian time delay
expressed as a fraction of the phase.

given by Pétri (2011) and expressed as

∆t
P

=
1

2 π

(
1 −

R
rL

)
≈

1
2 π
≈ 0.16. (18)

The approximation is valid for slow rotators with R � rL.
Finally, Fig. 9 shows the error in the photon arrival time

when the Shapiro delay is replaced by the Minkowskian time-
of-flight approximation. There is a minimum additional time of
about 5% of the period in the vicinity of the light-cylinder up to
8% of the period near the surface. We conclude that the Shapiro
delay amounts to 3% difference in the arrival time of radio pulses
with respect to high-energy gamma-ray pulses. The difference is
most prominent at the surface where gravity has a strong influ-
ence on photon motion. Concretely, when the Shapiro delay is
taken into account, we can expect an additional time lag between
low-altitude radio photons and high-altitude gamma-rays of 3%
of the period compared to flat space-time.
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Fig. 10. Emission maps for different obliquities χ (from top to bottom: 90◦, 60◦, and 30◦) for the Minkowskian case with light curves for some
several values of the inclination angle ζ (from left to right: 90◦, 60◦, and 30◦). Maximum intensity in black and minimum intensity in white.

4.2. High-energy sky maps

Sky maps are a good mean to synthesise the effect of the view-
ing angle ζ on the pulse profile. Figures 10 and 11 show typi-
cal examples comparing flat to curved space-time, respectively,
with obliquities χ ∈ {30◦, 60◦, 90◦}, with a relevant sample
of light curves assuming an inclination of the line of sight of
ζ ∈ {30◦, 60◦, 90◦}. These maps are drawn following the same
procedure as for the maps of photon impacts on the celestial
sphere in Sect. 4.1, but the colour code describes the intensity
(more precisely, the number of photons) of the perceived radi-
ation and the aberration effect describe in Sect. 2.3 is added.
The sky maps are synchronised with the reception of the radio-
pulse profile at the magnetic axis (taking to be phase zero in
the plot). Comparing plots from Figs. 10 and 11, we conclude
that GR tends to smear the light curves and to decrease the peak
intensity levels. As summarised in Table 1, the decrease is sig-
nificant for the perpendicular rotator, but it almost disappears
for almost aligned rotators. This is partly due to light-bending,
which spreads the photons across a broader solid angle, and addi-
tional delays induced by the Shapiro delay contribute as well.
The individual pulses are very sharp because we assumed emis-
sion only from the last closed magnetic surface. More realisti-
cally, we expect a widening of the pulse profiles associated with
the thickness of this surface, similar to Dyks et al. (2004) and
Bai & Spitkovsky (2010), for instance. We show this effect in
the following figures. However, no physical constraint is known

so far to estimate the size of this layer, except maybe by fitting to
gamma-ray light curves of a sample of Fermi pulsars (Abdo et al.
2013). In all cases, the pulses become narrower and extremely
sharp for perpendicular rotators.

The sky maps were realised assuming an infinitely thin emis-
sion layer along the last closed magnetic field lines. For a more
realistic approach to the emission, we also considered a thick
layer with intensity-weighted emission according to a Gaussian
centred on the polar cap rim θpc with a typical spread of δ = 1

5 ∆θ
such that the weight function was set to

w(θ) = e−
(θ−θpc)2

δ2 . (19)

This layer encompasses magnetic field lines that cross the sur-
face of the neutron star at a point where the difference in colat-
itude with the polar cap is at maximum ∆θ, where ∆θ was set
to π

100 . For each photon emitted along these lines, we attributed
a value to its intensity proportional to the Gaussian function w
in Eq. (19). The resulting sky maps are presented in Fig. 12 for
Minkowskian space-time and in Fig. 13 for general-relativistic
space-time. Table 2 summarises the highest intensity in several
configurations.

Some of the fine double-peaked profiles of a thin layer are
now smeared out into a broader single peak as a result of the
finite thickness. This is clearly visible for cases (χ = 90◦, ζ =
90◦) and (χ = 30◦, ζ = 60◦), regardless of whether it is for flat or
curved space-time.
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Fig. 11. Emission maps for different obliquities χ (from top to bottom: 90◦, 60◦, and 30◦) for the relativistic case with light curves for some several
values of the inclination angle ζ (from left to right: 90◦, 60◦, and 30◦). Maximum intensity in black and minimum intensity in white.

4.3. Radio sky maps

Pulsar radio emission originates from above the polar caps, well
within the light cylinder, where the magnetic field lines are still
almost dipolar. To simulate this low-frequency radiation, we
spread emission points across the entire polar cap surface, in an
area delimited by the last closed field lines. These points were
placed between the magnetic north and south poles and at each
intersection between the stellar surface and one of the last closed
field lines. The spacing between these points was chosen to have
a homogeneous density on the polar caps. Expressed in the frame
oriented along the magnetic moment, fixing a value for the lon-
gitude, the latitude θ of each of these points indexed by an inte-
ger i ∈ [0...N] is determined by the formula

θi − θmp = arccos
[
1 −

(
1 − cos θpc

) i
N

]
≈ θpc

√
i
N
· (20)

This approximation is valid for θpc � 1. θmp is the latitude of
the magnetic pole (0◦ and 180◦ for each pole in the frame ori-
ented along the magnetic moment), θpc is the latitude of the point
where the last closed field line crosses the stellar surface, and N
is the number of points we desire between the pole and the rim of
the polar cap. The square-root dependence is introduced to main-
tain a constant surface density of sampling points and avoid an
artificial concentration around the magnetic poles. The sampling
has to maintain the elementary solid angle dΩ = d(cos θ) dφ

Table 1. Highest intensity in high energy for various angles between the
magnetic axis and the rotation axis.

Obliquity χ 90◦ 60◦ 45◦ 30◦

Minkowskian 195 154 64 60
Relativistic 87 75 65 58

constant. We then shot single photons from each of these points
and computed their impact on the celestial sphere, taking all
propagation effects into account. Figure 14 shows an example
of this sampling for N = 50 points between the centre and the
rim of one polar cap for an orthogonal rotator.

To have realistic radio pulse profiles that are similar to
the observed profiles, we attributed to every received photon a
weight depending on its initial position to simulate sky maps
with Gaussian radio intensity profiles, such that the weight is
given by

w(θ) = e
−

(
θ

θpc σpc

)2

, (21)

with the width of the Gaussian controlled by σpc chosen equal
to 1
√

10
. With these parameters, we obtained the emission maps

shown in Fig. 15 for Minkowski space-time and in Fig. 16 for
Schwarzschild space-time. Here again, GR smears the pulse
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Fig. 12. Emission maps for different obliquities χ (from top to bottom: 90◦, 60◦, and 30◦) for the Minkowskian case with light curves for some
values of the inclination angle ζ (from left to right: 90◦, 60◦, and 30◦) with a thick emission layer. Maximum intensity in black and minimum
intensity in white.

profile and moderates the maximum intensity, as reported quan-
titatively in Table 3.

4.4. Multi-wavelength light curves

Finally, in order to better compare the full effect of GR on pul-
sar emission, we plot several representative multi-wavelength
light curves extracted from the sky maps presented in Sects. 4.2
and 4.3, which are the light curves of the pulsar for different angles
between the line of sight and the rotation axis. In Figs. 17–20, we
plot these light curves for one value of the line-of-sight inclination
angle for both radio and high-energy emission (in arbitrary units
normalising the peak intensity for a better visibility of the pulses).
We chose appropriate angles to show the plethora of differences
expected between Minkowski and GR, although we do not claim
to be exhaustive. In Fig. 17, we used (χ = 90◦, ζ = 90◦). Pulse
profile shapes in radio as well as in gamma-rays are well pre-
served, however, because the additional Shapiro time-delay of
the radio pulse profile slightly reduces the time lag between
gamma-ray and radio in the relativistic case by a few percent
of the period, as seen by comparing the blue and orange curves.
In Fig. 18, we used (χ = 60◦, ζ = 60◦). The gamma-ray peak
in the relativistic, although very narrow, there shows a differ-
ent profile than in the Minkowski case. The radio profile does
not vary much. In Fig. 19, we used (χ = 45◦, ζ = 50◦). The

gamma-ray peak shows a complex profile; the separation of
the two most prominent peaks increases in the relativistic case.
Again, the radio profile is not changed. This shows a differ-
ence in the pulse shape in radio and high-energy emission that
depends on the viewing geometry. In the last example of Fig. 20,
where (χ = 30◦, ζ = 60◦), when the line of sight grazes the
rim of the polar cap, the radio profiles are very different because
the Schwarzschild metric broadens the pulses, as the figure
shows.

Figure 21–24 show the multi-wavelength light curves when
the separatrix has a given thickness as expressed by Eq. (19). The
sharp gamma-ray peaks are now smeared by the finite transver-
sal size of the emitting layer. The time lag between radio and
gamma-ray is not affected, but the gamma-ray pulse profiles and
intensities can change drastically. This study therefore shows
the sensitivity of the geometry of the emission sites when light
curves are computed for the purpose of comparing them with
those of gamma-ray pulsars. Some of the fine double gamma-
ray peak pulses have disappeared, as in Fig. 21, and only a sin-
gle pulse is left that is located at the same phase. Some weak
gamma-ray pulses are now far more intense, for instance, around
phase 0.2 in Fig. 22, which is to be compared with Fig. 18. They
become as bright as the other peak. Some other sharp peaks
merged into a single peak, for example, around phase 0.4 in
Fig. 23. The same merging is observed in Fig. 24.
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Fig. 13. Emission maps for different obliquities χ (from top to bottom: 90◦, 60◦, and 30◦) for the relativistic case with light curves for some values
of the inclination angle ζ (from left to right: 90◦, 60◦, and 30◦) with a thick emission layer. Maximum intensity in black and minimum intensity in
white.

Table 2. Highest intensity in high energy for various angles between the
magnetic axis and the rotation axis for a thick emission layer.

Obliquity χ 90◦ 60◦ 45◦ 30◦

Minkowskian 1973 1179 946 873
Relativistic 2141 1484 1058 920

The additional time lag between radio and gamma-ray pulses
can be estimated by the following simple argument. We consider
photons produced at two emission heights, labelled r1 and r2.
For photons propagating in the radial direction, integration in the
Schwarzschild metric leads to a time lag ∆t21 between pulse 2
and pulse 1 normalised to the period P such that

∆t21

P
=

r1 − r2

2 π rL
+

Rs

2 π rL
ln

(
r1 − Rs

r2 − Rs

)
· (22)

This lag is independent of the distance to the observer. The
first term on the right-hand side corresponds to the time of
flight in flat space-time, whereas the second term on the right-
hand side is due to the space-time curvature and is identified
as the Shapiro delay. This delay is shown in Fig. 25 for sev-
eral spin parameters defined by a = R/rL and a compactness
K = 0.5. We assumed that photon 2 was emitted from the
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Fig. 14. Example of a point distribution (blue) inside the polar cap
(black). The magnetic axis, located at the origin, is perpendicular to
the rotation axis.

surface r2 = R and varied the location of the first photon r1.
As expected, the time lag is highest for fast-spinning and com-
pact neutron stars; it reaches an additional delay of several per-
cent with respect to flat space-time. Interestingly, the Shapiro
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Fig. 15. Radio emission for different angles χ of the magnetic axis (from top to bottom: 90◦, 60◦, and 30◦) for the Minkowskian case with light
curves for some several values of the inclination angle ζ. Maximum intensity in black and minimum intensity in white.

time-delay in principle increases logarithmically with distance
without bounds. If the high-energy photons are emitted well out-
side the light-cylinder, as is claimed for the striped wind model,
this delay can be increased by about a factor two at 10 rL.

To conclude our work, we briefly discuss the possible effect
of a rotating metric on the light-curve profiles and time lag
between radio and gamma-ray pulses. We give some estimates
of the corrections that this additional frame-dragging causes.

5. Discussion

The stationary gravitational field of a relativistically rotating star
mainly produces two additional effects compared to Newtonian
gravity: curvature of physical three-dimensional space, and drag-
ging of inertial frames. They are related to the mass M and angu-
lar momentum J of the star, respectively. This translates into
two parameters without dimension, the compactness K and the
spin a/Rg, which are defined by

K =
2 Rg

R
≈ 0.35

(
M

1.4 M�

) ( R
12 km

)−1

(23a)

a
Rg

=
J

M c Rg
=

2
5

R
Rg

R
rL

≈ 0.56
(

M
1.4 M�

)−1 ( P
1 ms

)−1 ( R
12 km

)2

. (23b)

We assumed a homogeneous and uniform density inside the star
with a moment of inertia I = 2/5 M R2. For normal pulsars with
period above 100 ms, the spin can safely be ignored because
a . 10−2. Even for millisecond pulsars, Pétri (2017) showed that
frame-dragging does not affect the electromagnetic field geom-
etry. The effect of a stationary axisymmetric metric induced by
stellar rotation is irrelevant for pulsar magnetospheric emission.
By investigating semi-analytically general-relativistic rotating
multipolar electromagnetic fields, Pétri (2017) found no notice-
able discrepancies in the magnetic field geometry between a
Schwarzschild and a slowly rotating neutron star metric for
R/rL . 0.1. Consequently, the difference in light curves between
the Schwarzschild metric and a rotating metric will be smaller
than between flat and Schwarzschild space-times. Moreover,
frame-dragging decreases with radius r as 1/r3, therefore it
can only be felt by photons that are emitted close to the stel-
lar surface by the fastest-rotating millisecond pulsars with peri-
ods P . 5 ms, thus with a & 0.1. Furthermore, to complicate the
study even more, multipolar magnetic fields are certainly present
for millisecond pulsars and are required to understand their com-
plex pulse profile structure. Consequently, rotating metrics are
surely important, but so are the non-dipolar surface fields for
these particular millisecond pulsars.

In order to better assess the corrections required by the rotat-
ing space-time, we solved the photon trajectories in the equato-
rial plane of a Kerr black hole (Kerr 1963). Quantitative results
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Fig. 16. Radio emission for different angles χ of the magnetic axis (from top to bottom: 90◦, 60◦, and 30◦) for the relativistic case with light curves
for some several values of the inclination angle ζ. Maximum intensity in black and minimum intensity in white.

Table 3. Highest intensity in the radio band for different angles between
the magnetic axis and the rotation axis.

Obliquity χ 90◦ 60◦ 45◦ 30◦

Minkowskian 4108 4376 4007 2510
Relativistic 3194 3381 3138 1986

are shown for the light-bending in Fig. 26 and for the Shapiro
time-delay in Fig. 27 in the equatorial plane of the Kerr metric
for a neutron star with a compactness K = Rs/R = 0.5 and an
observer at a distance D = 103 Rg. Some photon orbits remain
in the equatorial plane with θ = π/2. Their equations of motion
depend on an affine parameter σ such that d/dσ = r2 d/ds and

c
dt
dσ

= a (b − a) +
r2 + a2

∆
P (24a)

dϕ
dσ

= b − a +
a
∆

P (24b)(
dr
dσ

)2

= P2 − (a − b)2 ∆ (24c)

∆ = r2 − Rs r + a2 (24d)

P = r2 + a (a − b), (24e)

see for instance Misner et al. (1973). We can then determine the
trajectory by integration of dφ/dr and the time delay by inte-
gration of dt/dr, as in the Schwarzschild case, see Eqs. (13)
and (16). The normalised spin parameter varies between −1
and 1, and the impact parameter b is in the range b ∈

[0, 4 Rg]. For slow rotation, as expected, the differences between
Schwarzschild and Kerr are very small.

All the sky maps and light curves we presented here show
a north-south symmetry, which means that a pulsar with obliq-
uity χ produces the same emission pattern as another pulsar
with an obliquity π − χ, the only difference is a shift of 180◦ in
phase φ. This shift is irrelevant to observations, however, because
an absolute phase cannot be defined. This symmetric behaviour
has been found in the flat Deutsch solution, and it remains for
its extension to the Schwarzschild metric, which is by defi-
nition spherically symmetric. This property is preserved when
we consider an axisymmetrically rotating star as described for
instance approximately by the rotating black hole metric or by
the slowly rotating neutron star metric (Hartle & Thorne 1968).
These metrics are also axially symmetric and preserve the north-
south symmetry. Therefore they will not affect the sky maps
and the emission properties remain indistinguishable between
a pulsar with obliquity χ and its complementary with obliq-
uity π−χ. This situation is reminiscent of the computation of the
pulsed emission when we switch from a static dipole to a rotating
dipole (Deutsch) in flat space-time. The symmetry in the former

A75, page 13 of 20

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037979&pdf_id=16


A&A 639, A75 (2020)

Fig. 17. Radio and high-energy light curves for χ = 90◦ and ζ = 90◦.
The radio emission is plotted in red for a flat space-time and in green
for the relativistic case, and the high-energy emission is shown in orange
for a flat space-time and in blue for the relativistic case.

Fig. 18. Radio and high-energy light curves for χ = 60◦ and ζ = 60◦.
The radio emission is plotted in red for a flat space-time and in green
for the relativistic case, and the high-energy emission is shown in orange
for a flat space-time and in blue for the relativistic case.

Fig. 19. Radio and high-energy light curves for χ = 45◦ and ζ = 50◦.
The radio emission is plotted in red for a flat space-time and in green
for the relativistic case, and the high-energy emission is shown in orange
for a flat space-time and in blue for the relativistic case.

Fig. 20. Radio and high-energy light curves for χ = 30◦ and ζ = 60◦.
The radio emission is plotted in red for a flat space-time and in green
for the relativistic case, and the high-energy emission is shown in orange
for a flat space-time and in blue for the relativistic case.

Fig. 21. Radio and high-energy light curves for χ = 90◦ and ζ = 90◦.
The radio emission is plotted in red for a flat space-time and in green
for the relativistic case, and the high-energy emission from a thick layer
is shown in orange for a flat space-time and in blue for the relativistic
case.

Fig. 22. Radio and high-energy light curves for χ = 60◦ and ζ = 60◦.
The radio emission is plotted in red for a flat space-time and in green
for the relativistic case, and the high-energy emission from a thick layer
is shown in orange for a flat space-time and in blue for the relativistic
case.
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Fig. 23. Radio and high-energy light curves for χ = 45◦ and ζ = 0◦.
The radio emission is plotted in red for a flat space-time and in green
for the relativistic case, and the high-energy emission from a thick layer
is shown in orange for a flat space-time and in blue for the relativistic
case.

Fig. 24. Radio and high-energy light curves for χ = 30◦ and ζ = 60◦.
The radio emission is plotted in red for a flat space-time and in green
for the relativistic case, and the high-energy emission from a thick layer
is shown in orange for a flat space-time and in blue for the relativistic
case.
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Fig. 25. Shapiro time-delay ∆t21/P for several spin parameters a =
R/rL = {10−3, 10−2, 10−1} in red, green, and blue for a compactness
K = 0.5 and assuming that one photon is emitted from a height R and
10 R, shown as the solid and dashed line, respectively.
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Fig. 26. Photon light-bending for a Kerr metric with spin parameter a
and a compactness K = 0.5, assuming photons emitted from close to
the surface at r = 4 Rg. The impact parameter b is normalised to Rg.
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Fig. 27. Shapiro time-delay for a Kerr metric with spin parameter a and
a compactness K = 0.5, assuming photons emitted from close to the
surface at r = 4 Rg. The impact parameter b is normalised to Rg. The
observer is located at D = 103 Rg.

magnetic field geometry is preserved in the latter field structure.
Only a structure like an off-centred dipole can break the north-
south symmetry (Kundu & Pétri 2017), which leads to different
asymmetrical polar cap shapes and light curves.

6. Conclusion

We numerically investigated the effects of the gravitational field
of a neutron star on its image and its magnetospheric emission by
curvature radiation. We demonstrated that the gravitational field
affects its emission as observed by a distant observer, according
to general relativity. We noted a slight shift in phase between
Minkowskian and GR space-time when multi-wavelength pulse
profiles were considered. The effects arebarely perceptible, how-
ever, except for millisecond pulsars.

In future developments of our model, we plan to simulate
phase-resolved spectra focusing on the gravitational redshift and
polarisation of emitted photons. Frame-dragging can be added
by replacing the Schwarzschild metric by the Kerr metric. Other
radiation mechanisms such as synchrotron and inverse Comp-
ton emission will be considered for a more complete approach
of relativistic effects on the properties of pulsar radiation. When
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the model is fully complete and self-consistently includes all GR
effects, we will apply it to some pulsars that are simultaneously
detected in radio and in the high-energy MeV/GeV band, as
reported by the second Fermi catalogue, see Abdo et al. (2013).
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Appendix A: Trajectory of a photon in three
dimensions

As the trajectory of a photon in the Schwarzschild metric is
always contained in a plane, we can trace its path in space by first
tracing it into a two-dimensional plane chosen to be the equato-
rial plane and then use the Euler rotation matrix to switch back
to the full three-dimension space.

Introducing the usual three Euler angles as the precession α,
the nutation β, the proper rotation γ, and the corresponding rota-
tion matrices along the z-axis

Rz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 , (A.1)

then along the new x′-axis

Rx′ (β) =

1 0 0
0 cos β − sin β
0 sin β cos β

 , (A.2)

and finally, along the new z′′-axis

Rz′′ (γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 , (A.3)

the Euler rotation matrix is given by

R(α, β, γ) = Rz(α) Rx′ (β) Rz′′ (γ). (A.4)

First we assume a new frame where a point is located by its coor-
dinates x′, y′, and z′ and where the emission point of a photon
and its initial direction of propagation are contained in the plane
z′ = 0. To obtain the coordinate of a point, such as the emis-
sion point, in the new frame from the points in the initial frame
(x, y and z), we use the relation deduced from the Euler rotation
matrix (A.4) such thatx′
y′

z′

 =

 cos A sin A 0
− sin A cos B cos A cos B sin B
sin B sin A − sin A cos A cos B


x
y
z

 . (A.5)

By calling p the intersection point of the plane z = 0 and the
initial direction of propagation of the photon, A is the angle
between the x-axis and a line passing through the origin and p,
and B is the angle between the plane z = 0 and the initial direc-
tion of propagation of the photon. After tracing the trajectory of
the photon in the plane z′ = 0, we deduce the coordinates in
space, in the initial frame, of any point of the trajectory by using
the reciprocal transformation given byx
y
z

 =

cos A − sin A cos B sin A sin B
sin A cos A cos B − cos A sin B

0 sin B cos B


x′
y′

z′

 . (A.6)

This unfortunately only works for spherically symmetric space-
times. For rotating metrics, we would have to directly perform
full three-dimensional integrations.

Appendix B: Thermal flux from the polar caps

A first interesting application of ray-tracing around neutron stars
concerns its thermal X-ray emission from rotating hot spots
located around the magnetic poles on the stellar surface. This
emission is mostly seen in X-rays and is useful to constrain the

stellar mass-radius ratio M/R and therefore its compactness. In
this section, we compute sky maps of X-ray light curves sim-
ilar to the sky maps employed for pulsed high-energy mag-
netospheric emission. We take general-relativistic effects in a
Schwarzschild space-time fully into account: light bending, red-
shift, and Shapiro delay.

The polar caps, that is, the regions delimited by the last
closed field lines when they cross the neutron star surface, are
thought to be hot spots that emit like a black body with a tem-
perature of about 100 eV, which therefore is mainly observed in
X-rays. The flux received by a distant observer from these
two hots pots, assuming a pure dipole, is affected by general-
relativistic effects induced by the mass of the neutron star. We
simulated the flux emitted by the polar caps. We compared the
results for a distant observer when the observer is located in a
flat space-time and in the Schwarzchild metric.

Following the notations of Bogdanov et al. (2007), we intro-
duce several angles such as the angle α between the rotation axis
and the magnetic axis, the angle ξ between the hot-spot velocity
vector and the direction of the line of sight, expressed by

cos ξ =
sin θ
sinψ

sin i sinϕ, (B.1)

and the angle i between the rotation axis and the direction of the
line of sight. Lastly, ϕ is the pulsar phase. The expression of the
observed flux per unit frequency ν emitted by each polar cap then
reads

F(ν) =

(
1 −

Rs

R

)1/2

η4 I(θ) cos θ
∂ cos θ
∂ cosψ

dS
D2 , (B.2)

where I(θ) is the intensity of the emission from one polar cap
of surface area dS . For the remainder of this section, we admit
an isotropic emission pattern with a constant intensity I(θ) that
does not depend on θ. η is the Doppler factor measured by a local
observer and is expressed as

η =
1

γ (1 − υ
c cos ξ)

, (B.3)

with its local three-velocity along the eϕ axis

υ =
2 πR

P
√

1 − Rs
R

sinα, (B.4)

where P is the pulsar rotation period. The Lorentz factor is sim-
ply related to this three-velocity by

γ =
1√

1 − υ2

c2

· (B.5)

Considering ψ as the polar cap position, that is, the angle betw-
een the magnetic axis and the line of sight (Viironen & Poutanen
2004; Poutanen & Gierliński 2003), we found

cosψ = ± (cos i cosα + sin i sinα cosϕ). (B.6)

The plus sign corresponds to the primary polar cap, and the
minus sign to the antipodal polar cap (or secondary pole). ψ is
equal to φ(u) in Eq. (13) when φ0 = 0 and r → ∞ (i.e. when
u is null), so that we can find θ from Eqs. (13) and (B.6). We
compute the received flux using Eq. (B.2). Thus

F(ν) =

√
1 −

Rs

R
η4 I cos θ

sin θ
sinψ

∂θ

∂ψ

dS
D2 · (B.7)
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With Eq. (11), we compute ∂ψ
∂θ

and obtain

∂ψ

∂θ
=

∫ ∞

R

b′(θ) dr

r2

[
1 −

b(θ)2

r2

(
1 − Rs

r

)]3/2 , (B.8)

or by the usual change of variable with u = 1/r,

∂ψ

∂θ
=

∫ u

0

b′(θ) du[
1 − b(θ)2 u2 (1 − u Rs)

]3/2 , (B.9)

with the impact parameter derivative given by

b′(θ) =
∂b
∂θ

=
R√

1 − Rs
R

cos θ. (B.10)

When ψ → 0, we use the asymptotic limit sin θ
sinψ =

√
1 − Rs

R such
that the flux simplifies to

F(ν) =

(
1 −

Rs

R

)
η4 I cos θ

∂θ

∂ψ

dS
D2 · (B.11)

In the Minkowskian flat space-time, there is no light-bending
effect, that is, cosψ = cos θ, and the received flux reduces to

F(ν) = η4 I cos θ
dS
D2 · (B.12)

In all cases, the received flux must be considered as null if θ is
not in the interval [− π2 ; π2 ] because photons cannot travel through
the star (the other cases when θ < [− π2 ; π2 ] correspond to photons
pointing towards the centre of the star through the crust and must
be discarded).

The neutron star flux as measured on Earth is the sum of the
flux emitted from the two polar caps. However, we need to add a
delay to the actual phase in order to take the time of flight of the
photon in the Schwarzschild metric into account. In Minkowski
space-time, this is simply the time delay produced by the dis-
tance between the centre of the star and the observer, divided by
the speed of light c plus the retarded time given by Roemer delay
that is due to the finite propagation speed of light,

tret = −
nobs · r

c
, (B.13)

with nobs the unit vector directed towards the observer, starting
from the emission point. However, in general relativity, the time
of flight must be modified in order to include the Shapiro delay
following Eq. (16).

Fully self-consistent and general-relativistic light curve
computations require light-bending, gravitational redshift, and
Shapiro delay. All these effects are now presented in several
sky maps. In all situations, the observer is placed at large dis-
tances where gravitational effects can be neglected. Typically, we
set its distance to D = 104 R, where general-relativistic effects
caused by the gravitational field of the neutron star are expected
to remain lower than 10−3. The neutron star obliquity is set to
χ = 45◦.

Figure B.1 shows the flux received for the Minkowskian
metric, where all the relativistic effects have been removed. A
full period is normalised to phase equal to one, and the highest
flux is also normalised. An S-shaped black stripe with vanish-
ing flux clearly separates the two hot spots in the diagram. The
two emission regions are well separated in the phase-inclination
of the line-of-sight plane. In general relativity, the situation is

  

 relative  flu
x

Fig. B.1. Flux received from the two polar caps by a distant observer
with an angle of χ = 45◦ between the magnetic axis and the rotation
axis in the Minkowskian case.

  

 relative  flu
x

Fig. B.2. Flux received from the two polar caps by a distant observer
with an angle of χ = 45◦ between the magnetic axis and the rotation
axis in the relativistic case.

much less clear, as we show in the sky maps of Fig. B.2, which
represent the flux received from a neutron star of compactness
Rs/R = 0.5. Both hot spots are visible for a much longer period,
with significant overlapping emission.

Compared to flat space-time, general-relativistic effects pro-
duce a more homogeneous distribution of the flux with respect to
the phase, essentially because of light-bending, which we have
discussed in Sect. 3.2. The pulse profiles are smeared out. We
also note a shift in the phase of the minimum flux received in the
Minkowskian case compared to the relativistic case, see Fig. B.7.
In the GR case, the second pole becomes apparent, which is not
the case in the Minkowskian case. We kept the information about
the absolute intensity in order to show the decrease in flux that
is induced by GR with respect to flat space-time. This shift is
independent of a time delay induced by the curvature of the light
ray, as we show in Figs. B.3–B.4, where we did not add the shift
in phase due to the photon time of flight.

This shift between the minima of flux received is due to
the addition of the two fluxes from each polar cap because in
the Schwarzschild metric, the hot spots are visible for a longer
time for one phase because of the light-bending, as explained in
Sect. 3.2.

The time of flight affects the pulse profiles because several
photons can pile up at a time or be smeared in time. Compared to
the profile shown in Fig. B.4, where the highest intensity exceeds
2.5× 10−6, the maximum of intensity is slightly lower than 2.5×
10−6 when Shapiro delay is removed.
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Fig. B.3. Flux received in the Minkowskian case for a line of sight and
a magnetic axis that form an angle of 45◦ with the rotation axis. The
emission from each of the polar caps is shown as the dotted line, the
sum of the two is shown in red, and the sum without the flight time is
plotted in purple.

Fig. B.4. Flux received in the relativistic case for a line of sight and
a magnetic axis that form an angle of 45◦ with the rotation axis. The
emission from each of the polar cap is shown as the dotted line, the sum
of the two is shown in red, and the sum without the flight time is plotted
in purple.

A last comparison is performed in Fig. B.5, where we show
sky maps without time-of-flight effects in the Minkowskian case.
In Fig. B.6, we show this for general relativity. In GR, we note
a change in the phase region where the flux is lowest, around
phase φ = 0.2 and phase φ = 0.6. Accurate pulse profile
modelling therefore requires a careful analysis of the Shapiro
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Fig. B.5. Flux received from the two polar gap by a distant observer
with an angle of 45◦ between the magnetic axis and the rotation axis in
the minkowskian case without flight time.
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Fig. B.6. Flux received from the two polar gaps by a distant observer
with an angle of 45◦ between the magnetic axis and the rotation axis in
the relativistic case without flight time.

delay for a realistic investigation of the neutron star surface
emission.

In order to increase computational speed or to perform
analytical work, an approximate expression is used for light-
bending, as reported by Beloborodov (2002). It replaces the inte-
gral Eq. (13) by the simpler expression

1 − cos θ = (1 − cosψ)
(
1 −

Rs

R

)
· (B.14)

This expression, although simple, is precise enough for realistic
neutron star compactnesses. In Fig. B.7, we compute the flux
expected from the Beloborodov approximation.

The difference between Minkowskian and GR is substantial,
as is seen for instance for the orthogonal rotator in the equato-
rial plane, Fig. B.8. It shows the very good agreement between
Beloborodov (2002) and GR computations.
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Fig. B.7. Flux received in the relativistic case, with approxima-
tion (B.14), for a line of sight and a magnetic axis that form an angle of
45◦ with the rotation axis. The emission from each of the polar caps is
shown as the dotted line, the sum of the two is shown in red, the rela-
tivistic case is plotted in purle, and the Minkowskian case is presented
in blue.

Fig. B.8. Flux received from the two polar caps for a line of sight and
a magnetic axis perpendicular to the rotation axis in a flat space-time
(red), in the relativistic case (green), and with the Beloborodov approx-
imation (blue).
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