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May 26, 2021

ABSTRACT. – In this article, we consider a class of strictly hyperbolic triangular
systems involving a transport equation. Such systems are known to create measure solu-
tions for the initial value problem. Adding a stronger transversality assumption on the
fields, we are able to obtain solutions in L∞ under optimal fractional BV regularity of
the initial data. Our results show that the critical fractional regularity is s = 1/3. We
also construct an initial data that is not in BV 1/3 but for which a blow-up in L∞ occurs,
proving the optimality of our results.
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�School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar

752050, India, and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai
400094, India, anupampcmath@gmail.com
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1 Introduction

We consider triangular systems of the form, t > 0, x ∈ R,

∂tu+ ∂xf(u) = 0, (1.1)

∂tv + ∂x (a(u)v) = 0. (1.2)

Here f is the scalar flux function (which we shall henceforth refer to as the flux) for the
equation (1.1) and the function a denotes the velocity of the linear equation with respect
to v (1.2). The system has a decoupled nonlinear conservation law and a coupled “linear”
transport equation with a discontinuous velocity. The above system is complemented by
a set of initial data, x ∈ R,

u(x, 0) = u0(x), (1.3)

v(x, 0) = v0(x). (1.4)

The Pressure Swing Adsorption process (PSA) in chemistry [9] has such a triangular
structure after a change of variables from Euler to Lagrange [12, 42]. Such systems are
already of mathematical interest due to the coupling of the theory of scalar conservation
laws with the theory of transport equations. This system was studied in [34] in a non
hyperbolic setting, f ′ = a, with measure solutions for v. That even a strictly hyperbolic
setting is not enough to avoid measure solutions was shown in [24]. Here, strengthening the
hyperbolicity of the system by a stronger transversality condition, global weak bounded
entropy solutions are provided with an optimal fractional BV regularity for the initial
data u0.

At the first sight, such a system seems easy to solve in the “triangular” manner, that is
solving the first equation (1.1) to get u and then solving the linear equation (1.2) keeping u
fixed. This method works well for smooth solutions [22], but, when a shock wave appears
in u the velocity a(u) becomes discontinuous. The theory of linear transport equations
with discontinuous velocity is a delicate topic yielding measure solutions and a loss of
uniqueness [5, 6, 43].

2



In this paper, we propose a different approach to obtain global weak solutions in L∞.
A main idea is to consider the system (1.1), (1.2) not as a triangular system, but, as a
2 × 2 hyperbolic system as in [3]. If f is nonlinear, one field is nonlinear and the other
one is linearly degenerate. When f is uniformly convex it is a particular case of 2 × 2
systems with one genuinely nonlinear field and a linearly degenerate one [25]. An example
of such a system when the flux f is piecewise convex or concave arises from gas-liquid
chromatography [12], The presence of linearly degenerate fields can simplify the study of
solutions [41, 42]. but can also produce blow-up behaviours [12, 39].

We show that the behaviour of the proposed entropy solutions is linked to the fractional
BV regularity of u, indeed, u0 ∈ BV s, 0 < s ≤ 1. The BV s framework is optimal to study
the regularity of entropy solutions of scalar conservation laws [16, 36]. This framework is
recalled in Section 1.3. For the scalar case, the theory works well for all s > 0. For the
triangular system (1.1), (1.2), we prove that the regularity s = 1/3 of u0 is critical for the
existence of L∞ entropy solutions. The exponent s = 1/3 is directly linked to the cubic
estimate on the Lax curves [32]. For nonconvex fields, it is known that the Lax curves
are less regular [4, 2, 35]. However, for the triangular system (1.1), (1.2) with the flux
f ∈ C4, the velocity a ∈ C3, and satisfying a uniformly strict hyperbolicity assumption,
we prove that the exponent s = 1/3 is optimal for the existence theory of bounded entropy
solutions. Our proof is based on a new cubic estimate that holds even when the flux f
is non-convex. Our estimate generalizes the well knonwn cubic estimates for genuinely
nonliner (convex) systems by Lax [32].

The paper is organized as follows. The hyperbolicity of the triangular system and the
key assumptions are given in Section 1.1. The definitions of weak and entropy solutions
are stated in Section 1.2. The BV s framework is recalled in Section 1.3. In Section 2, the
two main results are stated: existence for s > 1/3 and blow-up for s < 1/3. In Section 3,
the Riemann invariants and the Riemann problem are studied. The Lax curves and the
key cubic estimates are studied in Section 4. The proof of existence is discussed in Section
5 and the blow-up is studied in Section 6. In the appendices A and B, we discuss on the
uniqueness of the Riemann problem in the class of bounded weak entropy solutions.

1.1 The hyperbolic triangular system

The system (1.1), (1.2) of conservation laws is hyperbolic when f ′ 6= a and can be rewrit-
ten, using the vectorial flux F, as ∂tU + ∂xF(U) = 0, U = (u, v)>. The matrix of the
linearized system has a triangular structure,

DF(U) =

(
f ′(u) 0
a′(u)v a(u)

)
.

This sytem has the unbounded invariant region [−M,M ]u × Rv, where M = ‖u0‖∞.
In this paper, the system is assumed to be strictly hyperbolic through the condition

∀u ∈ [−M,M ], f ′(u) > a(u). (1.5)

Of course, the symmetric asumption: ∀u ∈ [−M,M ], f ′(u) < a(u), yields a similar study.
For large data, the strict hyperbolicity condition (1.5) has to be strengthened on the set

3



[−M,M ], by the following uniformly strict hyperbolicity (USH) condition:

inf
|u|≤M

f ′(u) > sup
|u|≤M

a(u). (1.6)

An interesting case is already when f is convex, f ′′ > 0 everywhere, or concave f ′′ <
0. This case occurs for a chromatography system with a convex isotherm written in
appropriate Lagrangian coordinates [12].
In this paper, the flux f(·) belongs to C4 and the velocity a(·) belongs to C3. Moreover, the
flux is locally piecewise convex or concave as a consequence of the following assumption,

Z = {u, f ′′(u) = 0, |u| ≤M} is finite. (1.7)

1.2 Weak and entropy solutions

A weak solution of the system (1.1)-(1.2) satisfying the initial conditions (1.3)-(1.4) is
defined as follows.

Definition 1.1 (weak solution). The pair (u, v) is a weak solution of the system (1.1)-
(1.2) with initial data (1.3)-(1.4) if for all compactly supported test functions ϕ, ψ ∈
C1
c (R× [0,+∞[,R), the following integral identities hold:∫ +∞

0

∫
R

(u ∂tϕ+ f(u) ∂xϕ) dx dt+

∫
R
u0(x)ϕ(x, 0)dx = 0, (1.8)∫ +∞

0

∫
R

(v ∂tψ + a(u) v ∂xψ) dx dt+

∫
R
v0(x)ψ(x, 0)dx = 0. (1.9)

The following regularity is usually required for (u, v): u ∈ L∞loc, v ∈ L1
loc or v is a

measure. In the case when v is a measure, there are some issues in defining the product
a(u)× v [5]. But our main focus in this paper is on bounded weak solutions u, v ∈ L∞.

We propose below a notion of entropy solutions for the system (1.1)-(1.2). As in
[8, 29] the entropy condition is only tested on the nonlinear component u. Contact
discontinuity waves linked to a linearly degenerate field are well known not to affect the
entropy inequality which, therefore, remains an equality [20].

Definition 1.2 (entropy solution). The pair (u, v) is an entropy solution of the system
(1.1)-(1.2) with initial data (1.3)-(1.4) if it is a weak solution and for all convex function
η and all non-negative test functions ϕ ∈ C1

c (R×]0,+∞[,R), with q′ = η′f ′, u satisfies
the following inequality:∫ +∞

0

∫
R

(η(u) ∂tϕ+ q(u) ∂xϕ) dx dt+

∫
R
η(u0(x))ϕ(x, 0)dx ≥ 0. (1.10)

Thus, it suffices only to have a weak solution of the system and the entropy solution
of (1.1).

Uniqueness of entropy solutions with a fixed initial data (u0, v0) is a delicate matter
[14]. It is due to the lack of uniqueness of weak solutions for the linear transport equation
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with a discontinuous velocity ([5, 6]).

For triangular systems as discussed in this paper, one can have measure solutions. A
prototypical example of such triangular systems [24] is given by

∂tu+ ∂x

[
u2

2

]
= 0,

∂tv + ∂x [(u− 1)v] = 0,

(1.11)

with f(u) =
u2

2
and a(u) = u− 1. Clearly this satisfies the strict hyperbolicity condition

(1.5) but not the more restrictive uniform strict hyperbolicity condition (1.6) for too large
data. Similar phenomenon is well known for transport equations [5] and is also widely
observed in the case of non-strictly hyperbolic systems [6].

The main approach in solving the system (1.11) in [24] was to observe that the first
equation in u can be solved independently. The second equation can then be considered as
a transport equation in v with a discontinuous coefficient u (see also [5]), but this idea of
looking at the two equations separately might not be a good one. Our aim in this article
is to prove the existence of solutions to systems of type (1.11) in the class of fractional
BV functions and hence one need not appeal to δ-shock wave type solutions. Moreover,
to obtain L∞ solution with a wave front algorithm, we suppose that the system (1.1),
(1.2) is uniformly strictly hyperbolic (1.6). Note that we already need the uniform strict
hyperbolicity condition (1.6) to solve the Riemann problem appropriately.

1.3 BV s functions

For one dimensional scalar conservation laws, the spaces BV s are known to give optimal
results for weak entropy solutions [11, 16, 36, 37], first on the fractional Sobolev regularity,
and second on the structure of such solutions. Such results on the maximal regularity
have been extended for some systems and the multidimensional case [17, 22].
In this section, basic facts on BV s functions are recalled.

Definition 1.3. [38] A function u is said to be in BV s(R) with 0 < s ≤ 1 if TV su < +∞,
where

TV su := sup
n∈N, x1<···<xn

n∑
i=1

|u(xi+1)− u(xi)|1/s.

The BV s semi-norm is defined by

|u|BV s := (TV su)s,

and a norm on this space is defined by

‖u‖BV s := ‖u‖L∞ + |u|BV s .

Fractional BV functions have traces like BV functions. This is a fundamental property
to define the Rankine-Hugoniot condition for shock waves. Morerover, this property is
not true for the Sobolev functions in W s,1/s, the Sobolev space nearest to BV s [11].
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Theorem 1.1. [38] For all s ∈]0, 1[, BV s functions are regulated functions.

The fractional total variation only depends on the local extrema of the function and
the order of this extrema.

Lemma 1.1. [11, 25] If u is a piecewise monotonous function and if its local extrema
are located in the increasing sequence (xi)i∈I , then TV su only depends on the sequence
(u(xi))i∈I . Moreover, there exists an ordered subset J of I such that

TV su =
∑

j∈J,j 6=max J

|u(xsuc(j))− u(xj)|1/s,

where suc(j) denotes the successor of j in J , suc(j) = min{k ∈ J, k > j}.

Moreorever, it can be dangerous to refine the mesh to compute the fractional total
variation [11, example 2.1], [15]. Consider u(x) ≡ x on [0, R], p = 1/s > 1. Then
TV su[0, R] = Rp but, when n→ +∞,

n∑
i=1

|u(iR/n)− u((i− 1)R/n)|p = n(R/n)p = Rp/np−1 → 0.

This property, which is not true in BV , is used later to prove the existence of weak
solutions in BV 1/3 for the triangular system (1.1), (1.2) when the flux f is convex.

2 Main results

The main results are stated in the BV s framework. The basic facts on this setting were
recalled in Section 1.3. The critical space for the existence theory is BV 1/3 when the flux
f is convex. For the nonconvex case, the existence is proved in the slightly smaller space

BV 1/3+0 :=
⋃
s>1/3

BV s ( BV 1/3.

Theorem 2.1 (Existence in L∞ with (u0, v0) ∈ BV 1/3+0 × L∞). Suppose that the flux
f(·) and the transport velocity a(·) satisfy the following assumptions on [−M,M ] where
M = ‖u0‖∞:

1. f ′(·) and a(·) belong to C3([−M,M ],R),

2. f ′(u) > a(u) and satisfy the uniform strict hyperbolicity assumption (USH) (1.6),

3. f(·) has at most a finite number of inflection points (1.7).

Then, if (u0, v0) belongs to BV s×L∞ and s > 1/3, there exists an entropy solution (u, v)
of the system (1.1), (1.2), u ∈ L∞([0,+∞)t, BV

s(Rx,R)), v ∈ L∞((0,+∞)t × Rx,R).
Moreover, if the flux f is convex then the existence result remains true for s = 1/3. In

addition, the positivity of the initial data is preserved, that is, if inf v0 > 0 then inf v > 0.
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Two mandatory conditions are required to avoid singular phenomena at t = 0+. The
strong transversality condition (USH ) (1.6) is the key assumption to avoid instantaneous
δ-shock. The BV s regularity of u0 is the other key condition to avoid instantaneous
blow-up in L∞.

The positivity of v is the key tool to get the uniform strict hyperbolicity of the (PSA)
system [8]. The complete proof of the positivity of v for the (PSA) system is obtained in
[13] without using the triangular structure of the (PSA) system [12].

Notice that the sign of v is preserved a.e. by Theorem 2.1. Of course, by linearity of
the equation (1.2) with respect to v, the negativity of the initial data is also preserved,
that is, if sup v0 < 0 then sup v < 0.

The triangular approach, that means solving first (1.1) with the unique Krushkov en-
tropy solutions [31] and then (1.2), usually yields non-unique measure solutions v [5, 43].
It is the reason why the uniqueness of entropy solutions for the whole triangular system
is an open problem. Of course, we have uniqueness for u but the problem of uniqueness
remains for v. For a weakly coupled system with some linearly degenerate fields, the
entropy condition only on the nonlinear fields is enough to ensure uniqueness in [29]. For
the triangular system, the coupling by the transport velocity is too nonlinear to achieve
uniqueness in the same way.

For the existence result, a Wave Front Tracking algorithm (WFT) is proposed as in
[3] for the whole system. As a matter of fact the approximate solution u of the scalar
equation satisfies the BV s uniform bounds as in [11, 28]. The difficult point is to bound
v in L∞. Since the system is linear with respect to v, an L∞ bound for v is enough to get
an existence theorem as in [12].

Theorem (2.1) is optimal and, in general, we cannot reduce the BV 1/3 regularity of
u0, else a blow-up can occur. For this purpose, we build a sharp example in a space very
near to BV 1/3, namely, BV 1/3−0

BV 1/3 ( BV 1/3−0 :=
⋂
s<1/3

BV s.

The simple example (1.11) from [24] with a Burgers’ flux f and a linear velocity a is
enough to provide a blow-up.

Theorem 2.2 (Blow-up in L∞ at t = 0+ for u0 ∈ BV 1/3−0). For the system (1.11) with
the Burgers’ flux f(u) = u2/2 and the velocity a(u) = u − 1, there exists u0 ∈ BV 1/3−0,
v0 ∈ L∞ such that

� the system (1.1), (1.2) is uniformly strictly hyperbolic (USH) (1.6), and

� there doesn’t exist any bounded entropy solution of the system (1.1), (1.2) with the
initial data u0, v0.

Of course u0 /∈ BV 1/3, otherwise the existence theorem 2.1 gives a bounded entropy
solution. There is no blow-up for u since the entropy solution u of the scalar conservation
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law satisfies the maximum principle. Indeed, only the function v has a blow-up at time
t = 0+. Notice also that the blow-up depends only on the regularity of u0 and not of v0.

The example presented below follows the construction of particular explicit solutions
[1] which provide optimal example in BV s for convex scalar conservation laws [22]. On
any compact set avoiding the blow-up point, the entropy solution u is locally Lipschitz
except on a finite number of lines. For initial data u0 leading to such an entropy solution
u, we show that a uniqueness result for the entropy solution (u, v) holds at least upto the
time of first interaction of waves in u. Thus there is no way to avoid the blow-up. In
general, a possible dense jump set in plane (t, x) is possible for the entropy solution u of
a scalar conservation law [23].

Another consequence of this blow-up example is that for general nonlinear 2×2 strictly
hyperbolic systems with a genuinely nonlinear eigenvalue and a linearly degenerate one,
the existence result proven in [25] is optimal.

3 The uniformly strictly hyperbolic system

In this section, we study the Riemann invariants and the solution of the Riemann problem
for the triangular system (1.1)-(1.2).

3.1 Riemann invariants

A 2 × 2 strictly hyperbolic system admits, at least locally, a set of coordinates which
diagonalizes the hyperbolic system for smooth solutions [45]. The knowledge of this
coordinate system, given by the Riemann invariants, is often useful in understanding the
structure of the system. Next we study the Riemann invariants for the system (1.1)-(1.2).

The eigenvalues of the system (1.1)-(1.2) are

λ1 = f ′(u) > a(u) = λ2. (3.1)

Notice that the eigenvalues are functions of u only. Let r1 and r2 denote the corresponding
right eigenvectors.

Clearly, u is a 2-Riemann invariant associated to the right eigenvector r2 = (0, 1)>

and satisfies
∂tu+ f ′(u)∂xu = 0.

A 1-Riemann invariant, which we denote as z(u,v), corresponding to the right eigenvector
r1, can be computed in the following manner. We note that a right eigenvector of the
matrix DF(u) corresponding to the eigenvalue f ′(u) is given by

r1 =

 1
a′(u)v

f ′(u)− a(u)

 .

Then z satisfies
1

v
∂uz =

a′(u)

a(u)− f ′(u)
∂vz.
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This can be solved using a separation of variables.

∂uz =
a′(u)

a(u)− f ′(u)
, ∂vz =

1

v
.

For instance, a Riemann invariant is given by

z(u, v) = A(u) + ln(|v|), A′(u) =
a′(u)

a(u)− f ′(u)
.

To avoid the singularity at v = 0, it suffices to take the exponential

Z = exp(z) = v exp(A(u)), (3.2)

which satisfies the equation
∂tZ + a(u)∂xZ = 0.

3.2 The Riemann problem

We study the Riemann problem for the system (1.1)-(1.2) with initial data:

u0(x) = u±,± x > 0, (3.3)

v0(x) = v±,± x > 0. (3.4)

A direct and somewhat naive approach is to solve the conservation law (1.1) first and
then the second equation (1.2) using the solution u. In such an approach, one faces the
difficulty of solving the linear transport equation with a discontinuous coefficient.

Instead, we consider the two equations together as a system. This is a key point
as in [3]. The solution of the Riemann problem consists of two waves separated by an
intermediary state (um, vm) where um = u− and vm is unknown. In accordance with the
labeling of the eigenvalues (3.1), a wave associated to u is called a 1-wave and a wave
associated to Z is called a 2-wave.

1. A wave associated to the eigenvalue λ1 = f ′ is a shock wave or a rarefaction wave
if f is convex or concave. For a non-convex flux f , this wave is a composite wave.

2. A linearly degenerate wave associated to the eigenvalue λ2 = a is called a contact
discontinuity. The speed of this 2-wave is a(u−).

The intermediate value vm has to be computed through the 1-wave. Now, the various
1-waves that can occur are detailed. For this purpose, we consider Riemann problems
yielding only a 1-wave.

Shock waves

Let us denote U = (u, v) and Ũ = (u, Z).
The Rankine-Hugoniot condition gives

s[u] = [f(u)], s[v] = [a(u) v], (3.5)
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where s denotes the speed of the discontinuity (or the slope of the jump).
Thus, the slope of the jump is determined by u± and the flux f ,

s =
[f(u)]

[u]
. (3.6)

Since entropy solutions are considered, the Oleinik-entropy condition [14] for (1.1) enforces
the Lax-entropy conditions,

f ′(u−) ≥ s ≥ f ′(u+), (3.7)

whence

s ≥ f ′(u+) > a(u+). (3.8)

Using the second equation of (3.5) yields

(s− a(u+))v+ = (s− a(u−))v−, (3.9)

v+ = v−
s− a(u−)

s− a(u+)
:= S−(u+;U−). (3.10)

The equation (3.10) can be interpreted in terms of the Lax shock curve. For a fixed
U− = (u−, v−), the right hand side of (3.10) is only a function of u+ as s is given by (3.6)
as a function of u+. In the plane U = (u, v), (3.10) describes the set of U+ such that
the Riemann problem with initial data U± is solved by a shock. On this curve, only U+

satisfying the Oleinik condition (3.7) are considered to allow an entropic shock.
Conversely, if U+ is fixed, the Lax shock curve is parametrized by u− and reads

v− = v+
s− a(u+)

s− a(u−)
:= S+(u−;U+). (3.11)

Proceeding similarly with Z = v exp(A(u)), Ũ− = (u−, Z−) and keeping the notation
S in coordinates (u, Z) yields,

Z+ = Z−
s− a(u−)

s− a(u+)
exp [A(u+)− A(u−)] := S−(u+; Ũ−),

and

Z− = Z+
s− a(u+)

s− a(u−)
exp [A(u−)− A(u+)] := S+(u−; Ũ+).

1-Contact discontinuity

This is a limiting case of the preceding one, when f ′ is constant on the interval [u−, u+].
The same formula for the shock wave follows.

s = f ′(u±) = f ′(u) > a(u±), u ∈ [u−, u+], (3.12)

v+ = v−
f ′(u−)− a(u−)

f ′(u+)− a(u+)
= S−(u+;U−), (3.13)

Z+ = Z−
f ′(u−)− a(u−)

f ′(u+)− a(u+)
exp [A(u+)− A(u−)] := S−(u+; Ũ−). (3.14)
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Such waves arise in the wave-front tracking (WFT) method when the flux is approxi-
mated by piecewise linear functions.

Rarefaction waves

Since Z is a 1-Riemann invariant, the Lax rarefaction curve R−(Ũ−) is simply,

Z+ = Z−. (3.15)

Using the defiinition of Z, this implies v+ exp(A(u+)) = v− exp(A(u−)) and thus the Lax
rarefaction curve can be written explicitly,

v+ = R−(u+;U−) = v− exp(A(u−)− A(u+)), (3.16)

v− = R+(u−;U+) = v+ exp(A(u+)− A(u−)). (3.17)

Notice that v+ and v− have the same signs. In particular, if v− = 0, v = 0 is constant
through the rarefaction wave.

1-Composite waves

The composite waves only occur for the waves associated to the first eigenvalue f ′(u). In
general, the entropy solution u is a composite wave [26]. If f has a finite number N of
inflection points, then there are at most N contact-shock waves [20, 35]. The Lax curves
associated to such waves are studied below in Section 4.

2-Contact discontinuity

u is a 2-Riemann invariant and hence is constant along the 2-contact discontinuity. Thus
the Lax curve is simply a vertical line in the plane U = (u, v) or the plane Ũ = (u, Z),

u− = u+. (3.18)

4 The Lax curves

A fundamental theorem due to Lax [32] states that the shock curve and the rarefaction
curve emanating from a constant state U− in the plane (u, Z) or (u, v) have a contact of
the second order for a genuinely nonlinear eigenvalue. This means that the shock curve
can be replaced by the rarefaction curve up to an error of order [u]3 where [u] = u+ − u−
[14, 20, 44]. For the triangular system, a genuinely nonlinear eigenvalue means f ′′ > 0
(or f ′′ < 0) everywhere. For nonconvex cases, typically f ′′ locally has a finite number of
roots where f ′′ changes its sign and the Lax curves are less regular due to the occurrence
of contact-shocks. Under a concave-convex assymption, which means here that f ′′′ does
not vanish, the regularity of the Lax curves is only piecewise C2 [35], see also [2].As a
consequence, the error becomes of order [u]2 for the variation of Z through a contact-shock
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[35]. The situation is worse in general, the Lax curves are only Lipschitz [4].However, we
prove that cubic estimates are still valid for the triangular system (1.1), (1.2). It is mainly
due to the existence of Riemann invariant coordinates.

In this section, cubic estimates on the Lax curves for the triangular system in the
plane (u, Z) are proved.

Let (u−, v−), (u+, v+) be two constant states connected by a rarefaction or a shock
wave. It is more convenient to use the Riemann invariant coordinates (u, Z).
The rarefaction curves in the plane (u, Z) are simply,

Z− = Z+, (4.1)

which means that in the (u, v) plane

v− exp(A(u−)) = v+ exp(A(u+)). (4.2)

For the shock curve, the Rankine-Hugoniot condition is written in the conservative vari-
ables (u, v),

s =
[f(u)]

[u]
=
f(u+)− f(u−)

u+−u−
, (4.3)

v−(s− a(u−)) = v+(s− a(u+)). (4.4)

Since f ∈ C4, s is a C3 function of its arguments. Moreover, fixing (u+, v+) and consid-
ering u− as a variable, the Lax shock curve is C3 with respect to u−,

v− = v+
s− a(u+)

s− a(u−)
. (4.5)

Indeed, the denominator never vanishes due to the uniformly strict hyperbolicity assump-
tion (USH) (1.6). The same regularity of the shock curve holds in the variables (u, Z)

Z− = Z+
s− a(u+)

s− a(u−)
exp(A(u−)− A(u+)). (4.6)

Of course, the Lax rarefaction curve and the Lax shock curve has to be restricted on the
subset satisfying entropy conditions. Nevertheless, we use these curves for all range of
u− in R (at least for −M ≤ u− ≤ M) to obtain a generalized Lax cubic estimate for the
nonconvex case.

4.1 The Lax cubic estimate on the Rankine-Hugoniot curve

The Lax cubic estimate [32] can be written as follows for a shock wave connecting (u−, Z−)
to (u+, Z+) for the triangular system (1.1),(1.2), as soon as Z is bounded,

[Z] = O([u])3, [Z] = Z+ − Z−, [u] = u+ − u−. (4.7)

The Riemann invariant Z is constant along the rarefaction curves. The Lax cubic estimate
means that the shock curve and the rarefaction curve have a contact of order 2. The Lax
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cubic estimate was written in a genuinely nonlinear framework [32]. This means that
f ′′ does not vanish. Indeed, the Lax computations are still valid without this convex
assumption and without only considering the entropic part of the Rankine-Hugoniot curve.
Here, we also use the non-entropic part of the Rankine-Hugoniot curve. It is a useful tool
used many times in this paper, first in the next section 4.2 to get a cubic estimate for
the entropy solution of the Riemann problem for the triangular system with a non-convex
flux f .

For the triangular system, the Rankine-Hugoniot curve is global, explicit and well
defined thanks to the uniformly strict hyperbolicity assumption (1.6). For 2× 2 systems,
such a global curve does not always exist [30].

Now, to prove cubic estimates, we have to write the Rankine-Hugoniot curve. Here, we
choose to write Z− as a function of u− when (u+, Z+) are fixed for the following reasons.

1. To solve the Riemann problem and compute the intermediary state vm which cor-
responds to Zm and here Z−.

2. To obtain the cubic estimate on the global Rankine-Hugoniot curve below.

3. To obtain the existence result, bounding Z along the 2-characteristics.

4. To build a blow-up, again computing Z from the right to the left on the 2-characteristics.

The Rankine-Hugoniot curve RH+ when Ũ+ = (u+, Z+) is fixed and Z− is a function of
u−, is given by

Z− = Z+
s− a(u+)

s− a(u−)
exp [A(u−)− A(u+)] = Z+r(u−, u+) := RH+(u−;u+, Z+). (4.8)

The classic Lax cubic estimate on the shock curve is generalized on the global Rankine-
Hugoniot curve.

Lemma 4.1 (Cubic flatness of the global Rankine-Hugoniot curve). If f ′ and a belong to
C3(R,R) and satisfy the uniform strict hyperbolicity condition (1.6), then

s = s(u−, u+) =
[f ]

[u]
=
f(u+)− f(u+)

u+ − u−
∈ C3([−M,M ]2,R),

r = r(u−, u+) =
s− a(u+)

s− a(u−)
exp [A(u−)− A(u+)] ∈ C3([−M,M ]2,R),

r = 1 +O(1) [u]3 > 0, ∀(u−, u+) ∈ [−M,M ]2, (4.9)

Z− = Z+(1 +O(1)[u]3), ∀(u−, u+, Z+) ∈ [−M,M ]2 × R, (4.10)

where the constant O(1) depends only on the derivatives of f ′ and a on [−M,M ]. More-
over, Z− has the same sign as Z+, more precisely,

Z+ = 0⇒ Z− = 0,

Z+ 6= 0⇒ Z−Z+ > 0.
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The cubic flatness of the Rankine-Hugoniot curve RH+ is expressed in (4.10). It does
not depend on the convexity of the fields, although in the classical textbooks [14, 20, 26,
35, 44, 45] some nonlinearity assumptions on the fields are given. The reason of these
nonlinear assumptions is usually to introduce the rarefaction curve and the shock curve.
Here, the global Rankine-Hugoniot curve defined for all u− ∈ [−M,M ] is the main subject
without looking at the entropic parts of this curve. A careful reading of the classical proof
of the cubic estimate in textbooks shows that it is a geometric property of the Rankine-
Hugoniot curve itself, without refering at the entropic or nonlinearity assumptions. This
geometric property is a consequence of the symmetry of the Rankine-Hugoniot condition
with respect to U− and U+ as explained in [44]. It is very important in this paper to
prove the cubic estimate for the non-entropic part of the Rankine-Hugoniot curve for two
reasons.

1. The cubic estimates on the Lax curve (which is not piecewise C3 for nonconvex f
[35]) uses the global Rankine-Hugoniot curve, as discussed in the next section 4.2.

2. Rarefaction wave fans are replaced by weak non-entropic jumps in the wave front
tracking algorithm [14]. The error in the weak formulation is controlled by the cubic
estimate to pass to the limit and get a weak solution of (1.1), (1.2).

The proof appears as a direct consequence of (4.9). An elementary and self-contained
proof using only Taylor’s expansions is proposed. A more tedious computation can give
the more precise result

r(u−, u+) = 1 + E[u]3 +O([u]3), (4.11)

where E depends in a quite complicated way on the derivatives of f ′ and a at u = u+.
The computation of E is quite intricate and not useful here, except in the last section 6
on the blow-up where a direct computation of E at u+ = 0 is given when f is quadratic
and a is linear.

Now, Lemma 4.1 is proven.

Proof. The positivity on r is a consequence of the assumption (1.6). This positivity
implies that Z− has the same sign as Z+.

To obtain (4.9), we use Taylor expansion. Here u+ is fixed and u− is the variable near
u+. The notations a− = a(u−), a+ = a(u+) and so on are used to shorten the expressions.

a− = a+ − a′+[u] + (a′′+/2)[u]2 +O([u]3),

s =
[f ]

[u]
=
f− − f+

−[u]
= f ′+ − (f ′′+/2)[u] + (f ′′′+ /6)[u]2 +O([u]3).

The hyperbolic quantity h is used,

h := f ′ − a > 0. (4.12)
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The sign of h is the consequence of the strict hyperbolicity assumption (1.6). We start
with the fraction part of r and h+ = f ′+ − a+ 6= 0.

s− a+

s− a−
=

(f ′+ − a+)− (f ′′+/2)[u] + (f ′′′+ /6)[u]2

(f ′+ − a+)− (f ′′+/2− a′+)[u] + (f ′′′+ /6− a′′+/2)[u]2
+O([u]3) (4.13)

= 1− a′+
h+

[u] +
h+a

′′
+ − a′+f ′′+ + 2a′2+

2h2
+

[u]2 +O([u]3). (4.14)

For the term exp(−[A]) in r, the Taylor expansion of A′− is used at the first order.

−A′− =
a′−
h−

=
a′+ − a′′+[u]

h+ − h′+[u]
+O([u]2)

=
a′+
h+

+
a′+h

′
+ − a′′+h+

h2
+

[u] +O([u]2).

Integrating with respect to u− yields,

A− − A+ =
a′+
h+

[u] +
a′+h

′
+ − a′′+h+

2h2
+

[u]2 +O([u]3).

Since exp(x) = 1 + x+ x2/2 +O(x)3, it yields

exp [A− − A+] = 1 +
a′+
h+

[u] +
a′+h

′
+ − a′′+h+ + a′2+

2h2
+

[u]2 +O([u]3). (4.15)

Now, multiplying (4.14) and (4.15) yields r = 1 +O([u]3).

4.2 Cubic estimates for the Riemann problem

Now, the intermediary state Zm of a Riemann problem has to be estimated. For this
purpose, the variation of Z along a composite wave is studied. When the flux is convex,
Lax proved that the variation of Z is a cubic order of the variation of u [32]. For a non-
convex flux, it is well known that the Lax curve is less regular, piecewise C2 [35] or only
Lipschitz [4]. However, we prove that for our triangular system we are able to keep a cubic
order. This is mainly due to the existence of Riemann coordinates for 2× 2 systems and
the cubic estimate for the global Rankine-Hugoniot locus, Lemma 4.1. As a consequence,
we can prove a similar estimate for the variation of Z over a composite 1-wave. This
improves the well known square root estimate for concave-convex eigenvalues [35], which
correspond to cubic degeneracies for f . That means that for the triangular system (1.1),
(1.2), the estimate is as precise as for the convex case [32].

Theorem 4.1 (Variation of Z through a composite wave).
Let the states Ũi = (ui, Zi), i = 1, . . . ,m, where u0 < u1 < · · · < um (m ≤ Ninfl + 1)
comprise a composite 1-wave, and Z− = Z0 and Z+ = Zm. Then the total variation of Z
through a 1-wave is,

‖Z‖∞ ≤ |Z+| exp
(
O(|u+ − u−|3)

)
, (4.16)

TV Z ≤ O(1)|Z+||u+ − u−|3. (4.17)
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Proof. We note that Z is a 1-Riemann invariant and therefore it remains constant over
a rarefaction wave. Moreover, if the states Ũi and Ũi+1 are joined by a jump, by Lemma
4.1 and the classical inequality 1 + x ≤ exp(x), we have the estimate

|Zi| = |Zi+1r(ui, ui+1)| = |Zi+1|
(
1 +O(|ui − ui+1|3)

)
≤ |Zi+1| exp

(
O(|ui − ui+1|3)

)
.

Summing up and noting that u0, u1, . . . , um are ordered, the estimate (4.16) follows,

max
i
|Zi| ≤ |Z+| exp

(
O(|u+ − u−|3)

)
.

Now, the BV bound for Z through the composite wave is computed.

Zi − Zi+1 = Zi+1(r(ui, ui+1)− 1) = Zi+1O(|ui − ui+1|3),

TV Z ≤ max
i
|Zi|

∑
i

O(|ui − ui+1|3) ≤ |Z+|O(|u+ − u−|3) exp
(
O(|u+ − u−|3)

)
.

Since u satisfies the maximum principle, we further have exp
(
O(|u+ − u−|3)

)
= O(1)

which only depends on the L∞ bound of the initial data u0. Hence the inequality (4.17)
follows.

5 Existence in BV s

In this section, Theorem 2.1 is proved using a simplified Wave Front Tracking (WFT)
[14, 26] algorithm for such a triangular system (1.1), (1.2). The BV s estimates for u are
a consequence of such estimates for scalar conservation laws [11, 27, 28]. The L∞ bound
for v and the proof of existence of a weak solution for the triangular system are based on
an approach using the BV 1/3 regularity for u.

5.1 The Wave Front Tracking algorithm

The WFT depends on an integer parameter ν > 0. The approximate solutions will be
denoted by uν , vν , Zν . We shall mostly use the Riemann invariant coordinates (uν , Zν)
except when passing to the limit in the weak formulation.

This algorithm is explained in many books [14, 20, 26] on hyperbolic systems. Taking
advantage of the structure of the triangular system (1.1), (1.2), we will mix the WFT for
the scalar case [19] and for systems [14, 26]. The main principle is to work with piecewise
constant approximations.

As in the scalar case [14, 26, 27, 28], the values of uν are taken on a uniform grid
parametrized by the integer ν, that is,

uν ∈ ν−1Z. (5.1)

On the other hand, vν , or equivalently Zν , is not required to stay on the uniform grid,
that is,

vν , Zν ∈ R, (5.2)
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as we solve the Riemann problem with the exact flux f to compute vν , or equivalently
Zν . In this way, we can use the cubic estimate on the global Rankine-Hugoniot curves of
Lemma 4.1. A similar approach for a convex case was used in [25].

The initial data are approximated as follows. Let N0 + 1 be the number of constant
states for the approximate initial data u0,ν , v0,ν and the corresponding Z0,ν . Here u0,ν

takes values on the grid and N0 is a function of ν.
To ensure that (u0,ν , v0,ν) converges towards the initial data (u0, v0), we need the condition
that N0 goes to infinity as ν tends to infinity. We shall later see that for suitably chosen
N0 satisfying the above condition, we can prove that the approximate solutions (uν , vν)
converge to a weak solution of the triangular system.
The approximate initial data can be chosen to satisfy the following uniform estimates
with respect to ν [27, 28]:

‖u0,ν‖∞ ≤ ‖u0‖∞, (5.3)

TV su0,ν ≤ TV su0, (5.4)

‖v0,ν‖∞ ≤ ‖v0‖∞. (5.5)

Moreover, (u0,ν , v0,ν) converges pointwise almost everywhere to (u0, v0) when ν → +∞
and therefore, the previous inequalities become equalities at the limit ν → +∞.

The flux f is replaced by a piecewise linear continuous flux fν [19] that coincides with
f on the uniform grid [14, Ch. 6], [26, p. 70],

fν(k/ν) = f(k/ν), ∀k ∈ Z. (5.6)

At t = 0+, N0 Riemann problem are solved. The approximate solution uν is the weak
entropy solution of

∂tuν + ∂xfν(uν) = 0, uν(x, 0) = u0,ν(x). (5.7)

With strong compactness on uν , the Kruzkov entropy solution is recovered [14, 26].

For vν the situation is less simple than for uν as the exact vectorial flux F is used. As
discussed in Section 5.3 below, there is a consistency error in the weak formulation. The
Wave Front tracking used here mixes the initial idea of Dafermos [19] using an approximate
flux, and the idea of Bressan using the exact flux but with approximated rarefaction waves
by many contact discontinuities. Here the exact vectorial flux is F (u) = (f(u), a(u)) and
the approximate flux is Fν(u) = (fν(u), a(u)). The approximate flux Fν is used to get uν
and the exact Flux F is used to compute Zν . The reason for this choice is twofold. First,
to have a simpler wave front tracking for the scalar equation for u with a non-convex flux.
Secondly, to use the new generalized cubic estimates for Zν which holds for the exact
solution (u, v) of the system with the exact flux F .

After some time, some of the Riemann problems interact and hence, new Riemann
problems have to be solved. The non-linear interactions for the triangular system are
described in detail below. The process continues until the second time of interactions and
so on.
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This process can be continued for all time because there is only a finite number of
interactions for all time. For uν this follows from the existing results for the scalar case.
An explicit bound on the number of interactions is given in [26, p. 71-72]. The 2-waves,
associated to the linearly degenerate eigenvalue a(uν), never interact together since they
are contact discontinuities. Due to the transversality assumption (USH), a 2-wave can
interact only once with a 1-wave and creates a new 2-wave (and does not modify the
1-wave). Thus, the number of such interactions and of 2-waves is finite. This proves that
the WFT is well defined for all time.

Now, the approximate Riemann solver and the nonlinear interactions of the waves are
detailed.

Approximate Riemann solver

In this short section, the approximate Riemann solver is detailed. Let (u−, Z−), (u+, Z+)
denote the left and right states in the initial data. For uν the solution is a series of entropic
jumps u− = u0 < u1 < . . . < um = u+ for the piecewise linear flux fν . For Zν , there are
many possibilities. We want to approximate the exact solution of the Riemann problem
and keep the cubic estimates (Proposition 4.1) which generalize the Lax cubic estimates
for genuinely nonlinear waves. So, we use the exact solution of the Riemann problem and
the exact Lax curve to determine Zm−1, . . . , Z1. The states Zi, i = m,m − 1, . . . , 2 are
built as follows:

� If the jump between ui−1 and ui corresponds to a shock for fν (and hence for the
exact flux f), then Zi−1 is given by the Rankine-Hugoniot curve (4.8),

Zi−1 = RH+(ui−1;ui, Zi). (5.8)

Thus, the jump between (ui−1, Zi−1) and (ui, Zi) satisfies the Rankine-Hugoniot
condition and there is no error in the weak formulation of the exact triangular
system (1.1), (1.2).

� If the jump between ui−1 and ui corresponds to a contact discontinuity for fν then,
necessarily, |ui − ui−1| = ν−1 and we keep Z constant as for the exact solution,

Zi = Zi−1. (5.9)

The chosen approximate solution of the Riemann problem is a jump which does not
satisfy the Rankine-Hugoniot condition and leads to a consistency error in the weak
formulation of the exact system. This is controlled in a cubic way thanks to Lemma
4.1. This case correponds to a rarefaction wave for the exact flux F .

Nonlinear wave interactions

We briefly describe the different possible nonlinear wave interactions and the details of
the interactions are given in the (u, Z) plane.

In all the cases, we consider three states Ũ−, Ũ0, Ũ+ before the interaction. Here Ũ0

denotes the intermediary state which disappears after the interaction. The states Ũ−, Ũ0
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are connected by an elementary wave and similarly the states Ũ0, Ũ+ are connected by
an elementary wave. An elementary wave is either a 1-wave: shock or a small jump, or a
2-wave: a contact discontinuity. At a time of interaction tinteract, the Riemann problem
is solved with a new intermediary state Ũm (see Figure 1).

x

t

Ũ+

Ũ0

Ũ−

Ũm

1

Figure 1: Nonlinear interaction of two waves. The 1-wave on the left crosses the interaction
point with the same speed and the same value u− on the left of the 1-wave (um = u−)
and u+ on the right. On the other hand, the second wave is affected by the interaction:
the speed of the 2-wave and a new value Zm appears.

We shall use the following notations.

� S or S1 stands for a shock wave which is always a 1-wave.

� C1 or C2 stands for a contact discontinuity associated to λ1 or λ2, a 1-wave or a
2-wave. C1 is considered as a degenerate shock S1.

The key point here is to understand the effect of the L∞ norm of Zν after the interaction.
First of all, we note that there is no self interaction for the second family since there are
only C2 waves. Also the case of interactions between the 1- waves of the first family have
already been well-studied [14], [20],[26] for the component uν and are not presented here.
The new feature is the effect of this interaction on the second component Zν .We have
seen in Lemma 4.1 and Proposition 4.1 that the change in L∞ norm of Zν is of the order
of the cube of the change in u (or uν).

Finally, we consider the interaction of a 1-wave with a 2-wave.

1. In the case of an interaction of the form S1 − C2 (which means that a 1-shock in-
teracts with a 2-contact discontinuity), the outgoing wave is of the form C2 − S1.
The shock continues with the same slope and the same value u−, u+ and still sat-
isfies the entropy condition (3.7). Thus, for u there is no change before and after
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z

u

Figure 2: Interaction of a shock with a 2-contact discontinuity. The interacting waves are
represented by dotted lines, a 1-wave in black followed by a 2-wave in red. The full lines
represent the resulting waves.

the interaction. Roughly speaking, the interaction of a 1-shock with a 2-contact
discontinuity is transparent for u. On the contrary, there is a change for Zν and
following [25], it can be shown that the change in L∞ norm of Zν is of the order of
cube of the change in uν .

2. The interaction C1 − C2 (that is, when a 1-contact discontinuity interacts with a
2-contact discontinuity) generates outgoing waves of the form C2 − C1.
This case can be dealt in a similar manner as in the case of S1 − C2 and it follows
that the change in L∞ norm of Zν is of the order of cube of the change in uν .

The reader interested by all the cases S1 −C1, C1 − S1, S1 −C2, C1 −C2 can consult
[25] (and different notations where the 1 and 2 waves have to be exchanged) in the plane
of Riemann invariant, a technique used in [45] for the isentropic Euler system. Here we
present the last two cases for the triangular system, the case S1 − C2 in figure 2 and the
case C1 − C2 in figure 3.

5.2 Uniform estimates

The BV s estimates for uν are already known since u is the entropy solution of the scalar
conservation law (1.1). These estimates are recalled briefly in the first paragraph. The
only difficulty in this section is to obtain the L∞ estimates for v. For this purpose, we
generalize the approach first used in [12] and recently in [25]. The approach consists of
bounding vν , indeed Zν , along the 2-characteristics. For the chromatography system [12],
the 2-characteristics are simply straight lines. In general, here, the 2-characteristics are
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Figure 3: Interaction between a 1-contact discontinuity and a 2-contact discontinuity.
The interacting waves are represented by dotted lines, a 1-wave in black (horizontal line)
followed by a 2-wave in red (vertical line). The full lines represent the resulting waves.

piecewise linear. They are uniquely defined since the second eigenvalue a(u) is linearly
degenerate and its integral curves are transverse to the discontinuity lines of the first field
(assumption (USH)). The precise definition of such characteristics is given in the second
paragraph. Then the estimate on Zν along 2-characteristics, as in [12, 25], is given in the
last paragraph using our generalized estimates on the Lax curves.

BV s estimates for u

The TV s decay is known for the Glimm scheme, the Godunov scheme and the Wave
Front Tracking algorithm [11, 12]. Another argument is that uν is also the exact entropy
solution of the scalar conservation law (5.7) with the piecewise-constant initial data u0,ν ,
and the decay of TV su gives the uniform estimates with respect to ν,

TV suν(·, t) ≤ TV su0,ν ≤ TV su0. (5.10)

The approximate 2-characteristics

Essentially, for the WFT, an approximate i-characteristic is a continuous curve which is
piecewise linear following the velocity λi, i = 1, 2. Since the eigenvalues depend only on u,
there is a problem to define an i-characteristic where u is not defined. For i = 2, there is
no problem of uniqueness, since a 2-characteristic is always transverse to the discontinuity
lines of u. Thus, the 2-characteristic crosses the u discontinuity with a kink.
Let γν(x0, t) be the forward generalized 2-characteristic starting at the point x0, that is
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Figure 4: Wave front tracking algorithm. For the picture, f ′(u) > 0 > a(u). Thus the
1-waves in blue go to the right and the 2-waves in black to the left. Notice that these
1-waves are not affected by the interaction with the 2-waves, but the 2-waves are affected
by the interaction.

γν(x0, t) is a solution of the differential inclusion

d

dt
γν(x0, t) ∈ [a (uν(γν(x0, t)− 0, t)) , a (uν(γν(x0, t) + 0, t))] , γν(x0, 0) = x0.

For the wave front tracking, these 2-characteristics are uniquely determined and are piece-
wise linear continuous curves (thanks to the transversality assumption (USH)) and satisfy
the differential equation

d

dt
γν(x0, t) = a (uν (γν(x0, t), t)) , γν(x0, 0) = x0, (5.11)

except for a finite number of times which correspond to a jump of the piecewise constant
function uν .

L∞ estimates for v

The L∞ estimate on vν is first obtained on the approximate Riemann invariant Zν . Zν is
easy to bound through a rarefaction wave as it is constant through it. However, Zν is not
constant through a shock wave. But, we know that the variation of Zν is of order of the
cube of the variation of uν , by Proposition 4.1. When there is no shock, the simple curve
to bound Zν is the 2-characteristic. In this “smooth” case, Zν(γν(x0), t) = Zν(x0, 0).

Note that the 2-characteristics starting at time t = 0 span the whole (t, x) half-plane
but Zν is only defined outside a finite number of 2-characteristics.
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For example, Zν is not well-defined on a 2-characteristic that contains a 2-wave (con-
tact discontinuity for the second family). But these are only finite in number as the
number of 2-wave fronts is finite.

Also Zν is not well-defined on 2-characteristics passing through the points of intersec-
tions of waves corresponding to the first family. Again there are only finite number of
such curves.

Zν is also not well-defined on a finite number of 2-characteristics originating from the
points on t = 0 where the Riemann problems are solved initially.

But since there are only finite number of such 2-characteristics, this is enough to
estimate ‖Zν‖∞.

Now, due to the transversality conditions, a 2-characteristic meets many 1-waves. A
1-wave is usually a composite wave and thanks to Theorem 4.1, we have a cubic estimate
for the L∞ norm and the total variation of Z through a 1-wave. More precisely, if t1 is
a time just before the 2-characteristic meets a 1-wave and t2 is the time just after the
2-characteristic crosses the 1-wave, we have the following estimate,

‖Zν‖∞,(γν(x0,·),·)[t1,t2] ≤ |Zν(t1)| exp
(
O
(
TV 1/3uν(γν(x0, t2), t2)

))
,

TV Zν(γν(x0, ·), ·)[t1, t2] ≤ ‖Zν‖∞,(γν(x0,·),·)[t1,t2]

(
O(TV 1/3uν(γν(x0, ·), ·)[t1, t2])

)
.

That means that the L∞ norm and the total variation of Zν along the piece of curve
{(γν(x0, t), t), t ∈ [t1, t2]} is controlled by TV 1/3uν along the same piece of curve. Notice
also that the sign of Zν is constant along a 2-characteristic by Lemma 4.1.

First, the L∞ norm of Z is bounded on the 2-characteristic and, second, the estimate
on TV Zν follows. The total variation is additive and the fractional total variation is
sub-additive [15]. So adding all these estimates, on the whole 2-characteristic Γ(x0) =
{(γν(x0, t), t), t > 0} starting at x = x0, we have the estimates

‖Z‖∞,Γ(x0) ≤ |Z0,ν(x0)| exp
(
O
(
TV 1/3uν [Γ(x0)]

))
,

≤ ‖Z0‖∞ exp
(
O
(
TV 1/3uν [Γ(x0)]

))
,

TV Zν [Γ(x0)] ≤ ‖Z0‖∞Ψ
(
O
(
TV 1/3uν [Γ(x0)]

))
,

Ψ(x) = x exp(x).

Now note that Γ(x0) is a space like curve for the 1-characteristics of (5.7) ([20]). Hence

TV 1/3uν [Γ(x0)] ≤ TV 1/3u0,ν ≤ TV 1/3u0.

This follows from the fact the wave-fans corresponding to uν are monotone with respect
to the left and right end states. Therefore no extremal values are added when we measure
the fractional variation along Γ(x0).
Together these yield L∞ and BV bounds for Zν (uniform with respect to ν) along the
2-characteristics,

‖Zν‖∞ ≤ ‖Z0‖∞ exp
(
O(1)TV 1/3u0

)
, (5.12)

TV Zν [Γ(x0)] ≤ ‖Z0‖∞Ψ
(
O
(
TV 1/3u0

))
. (5.13)

23



Notice also that the positivity is preserved. If inf v0 > 0, then inf Z0 > 0 and by similar
arguments presented above, we have inf Zν > inf Z0 exp

(
O(1)TV 1/3u0

)
> 0, where the

constant O(1) is negative. Finally, a L∞ bound (respectively a positivity) for Zν yields a
L∞ bound (respectively a positivity) for vν .

For the triangular system, the L∞ bound of Zν and hence of vν is enough to pass to
the weak limit in (5.15) since the left hand side is linear with respect to vν . The uniform
BV bound on Zν along the 2-characteristics can be used to recover a strong trace at t = 0,
like in [8] (at x = 0).

5.3 Passage to the limit in the weak formulation

Passing to the strong-weak limit in the equation (1.2) which is linear with respect to
v allows us to get a weak solution. But to do so, we need to understand the error of
consistency of the scheme. There is no error of consistency in the independent scalar
equation for uν (5.14) [19]. As already noted earlier, the error of consistency arises only
for the transport equation. Note that the error of consistency is uniquely determined by
the WFT.

Lemma 5.1. The error of consistency Eν of the scheme satisfies

∂tuν + ∂xfν(uν) = 0, (5.14)

∂tvν + ∂x (a(uν)vν) = divx,tEν . (5.15)

Moreover, the estimate Eν = O
(
TV 1/3u0

)
holds.

This error Eν converges towards 0 if u0 belongs to BV s with s > 1/3 or, if the flux f
is strictly convex and s ≥ 1/3.

The convergence towards 0 of the error of consistency for systems is usually done in
BV , [14, p. 126], [26, p. 305]. With less regularity in BV s, s < 1, new features in the
estimate of the error of consistency appear.

Proof. That Eν satisfies the equations (5.14)-(5.15) immediately follows from the WFT.
Now the approximate solution is piecewise constant, presenting only contact discontinu-
ities or shock waves for uν . Since fν = f on the grid ν−1Z, a weak jump solution of (5.14)
is also a weak solution of the scalar conservation law with the exact flux f . Moreover,
the approximate speed sν equals the exact speed. If the jump is entropic for the exact
flux f , as in the case of a shock wave, then Eν = 0 because vν is chosen on the exact
Lax curve. The problem of consistency occurs only in the case of a contact discontinuity
corresponding to uν .

In this case, let u0 be the left state, um the right one and ui the intermediary states,
i = 1, . . . ,m − 1. Localising the error at a contact discontinuity front i between ui and
ui+1, we see that Eν = O

(
|ui+1 − ui|3

)
= O

(
ν−3
)
, due to Lemma 4.1. Adding these local

errors near the 1-contact discontinuities yield the estimate Eν = O
(
TV 1/3u0

)
.

Now if u0 ∈ BV s with s > 1/3, then we can split the local error term as

|ui+1 − ui|3 = |ui+1 − ui|p |ui+1 − ui|η = |ui+1 − ui|p ν−η, (5.16)
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where p = 1/s = 3− η, η > 0. Therefore∫
R
|Eν | dx = O(1) ·

∑
1-contact discontinuities

|ui+1 − ui|p ν−η ≤ O(1)ν−ηTV su0. (5.17)

The sum is taken over all 1-contact discontinuities. Thus the error of consistency converges
towards zero in L1 when ν → +∞.

Now, consider the case s = 1/3 when the exact flux f is strictly convex. In this
case, we have blocks of consecutive contact discontinuities (with monotonic values) for
the approximate flux corresponding to a rarefaction for the exact flux.
Let m̄ denote the number of consecutive contact discontinuities in a maximal such block.
Then m̄ ≤ 2 (νM + 1) , where M = ‖u0‖∞ and for any such block, we have∑

|ui+1 − ui|3 ≤ m̄ν−3 ≤ 2 (νM + 1) ν−3 = O(ν−2). (5.18)

The number of such blocks is not increasing with time and is bounded by the number N0

of initial Riemann problems at t = 0 in the WFT. Therefore∫
R
|Eν |dx ≤ O(1)

∑
blocks

2 (νM + 1) ν−3 ≤ 2N0 (νM + 1) ν−3 · O(1) . (5.19)

Therefore if we choose N0 = Nν
0 = ν to begin with, we see that the error of consistency

vanishes as ν tends to ∞.

6 Blow-up of an entropy solution with u0 /∈ BV 1/3

In this section, we provide a proof of Theorem 2.2. For this purpose, we construct initial
data u0, Z0 that satisfy {

u0 ∈ BV 1/3−0(R),

Z0 ∈ L∞(R),

and exhibit blow-up in L∞ norm of Z at t = 0+ for the system (1.1)-(1.2).
Recall that the notation u0 ∈ BV 1/3−0(R) means that u0 is in BV s for all s ∈ [0, 1/3).
Our idea of construction is motivated by similar examples studied in [1, 17, 21, 22].

Notice that when v0 ≡ 0, i.e. Z0 ≡ 0, no blow-up occurs since (u, v) ≡ (u, 0) gives a
global entropy solution where u the entropy solution associated to the L∞ initial data u0.
Thus, in the following construction, we have to avoid the value 0 for Z.

Let us consider the system (1.1)-(1.2) with flux f(u) =
u2

2
, a(u) = u − 1 and initial

data u0 as described below and Z0 ≡ 1.

Let x0 = 0 and xn = 1− 1

2n
, n ≥ 1. Let Bn be chosen such that

xn = xn−1 + 2Bn,
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Figure 5: A typical building-block

that is, Bn =
1

2n+1
. Let bn =

1

(n+ 26)
1
3

and we define

U0(x, b, B) = b1[0,B)(x)− b1[B,2B)(x).

Using this we define the initial data u0 as

u0(x) =
∑
n≥1

U0(x− xn−1, bn, Bn).

Note that ‖u0‖∞ ≤
1

3
and therefore, the condition of uniform strict hyperbolicity is

satisfied.
The first interaction times Tn for the Riemann problems for the equation

∂tu+ ∂xf(u) = 0

with initial data u0 is given by

Tn =
Bn

bn
=

(n+ 26)
1
3

2n+1
.

Note that the first interaction time Tn satisfies the relation

Tn > 1− xn. (6.1)

The initial data u0, described above, clearly does not belong to BV
1
3 (R), but, as in [12, 17]

we can conclude that u0 ∈ BV 1/3−0(R).
We use the forward generalized characteristic for Z. Since a(u) = u − 1 and the first
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interaction times of the Riemann problems for u satisfy (6.1), it follows that the forward
generalized characteristic for Z starting at the point x∞ := 1 crosses infinitely many
shocks before the first interaction of the waves in u.
As we have already seen from the nonlinear wave interactions, the L∞ norm of Z does
not change when it interacts with a 1−rarefaction wave.

Now, let us consider a left state u− and a right state u+ connected by a 1-shock wave.
In our example, we have u− = b > 0 and u+ = −b < 0. Hence, the speed of the shock

s = 0. Also by construction 0 < bn <
1

2
< 1 and hence we assume that the prototype b

satisfies the same.
Now

Z−
Z+

=
s− a(u+)

s− a(u−)
exp [A(u−)− A(u+)]

=
a(u+)

a(u−)
exp [A(u−)− A(u+)]

=
u+ − 1

u− − 1
exp [A(u−)− A(u+)]

=
1 + b

1− b exp [A(u−)− A(u+)] .

(6.2)

Also

A′(u) =
a′(u)

a(u)− f ′(u)
=

1

(u− 1)− u = −1 < 0,

and hence

A(u−)− A(u+) =

∫ u−

u+

A′(u) du = −(u− − u+) = −2b.

Therefore from (6.2), we have
Z−
Z+

=
1 + b

1− b e
−2b. (6.3)

We show that for b positive and small enough,

1 + b

1− b e
−2b > 1, (6.4)

and therefore Z− > Z+. Thus, Z increases in strength as the forward 2-generalized char-
acteristic crosses a shock (from right to left).

Notice that we simply need that Z increases when b ∼ 0. It is for very small oscillations
that Z blows-up. Inequality (6.4) follows from a Taylor expansion up to the third order:

(1 + b) exp(−2b) = (1 + b)(1− 2b+ 1/2 · (2b)2 − 1/6 · (2b)3 +O(b)4)

= 1 + (1− 2)b+ (−2 + 2)b2 + (2− 4/3)b3 +O(b)4

= 1− b+ 2/3b3 +O(b)4

> 1− b,

for b sufficiently small and hence Z− > Z+ > 0.
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Thus, due to an interaction with a 1−shock wave, there is a change of order [u]3 in
the L∞ norm of Z. Since

∑
|[u]3| =

∑
n≥1

(
2

(n+ 26)
1
3

)3

= 8
∑
n≥1

1

(n+ 26)
= +∞,

we find that the L∞ norm for Z blows up.

Remark 6.1. Let Γ(x0) = {(γ(x0, t), t), t ≥ 0} be the 2-characteristic issued from x = x0

at t = 0. The solution is well defined under Γ(1) that is on the set {(x, t), x < γ(1, t), t ≥
0}. But, over Γ(1), {(x, t), 1 > x > γ(1, t), t > 0}, Z and v blow up, v = +∞.

Remark 6.2. This example does not contradict the Lax-Oleinik smoothing effect ([32])
as the blow-up for Z occurs only at t = 0, that is, there is an immediate blow-up. Such a
blow-up is not possible for a time t0 > 0 due to the BV smoothing of u.

Now suppose that there exists a bounded weak solution for the system (1.1)-(1.2)
with the above initial data. Then since the solution of the Riemann problem in the class
of bounded weak solutions is unique upto the time of first interaction of the waves (see
appendix B), any bounded weak solution will satisfy the construction discussed above.
This, in turn, implies that the bounded weak solution exhibits a blow-up in L∞ norm,
which contradicts its definition.
Thus, there cannot exist a bounded weak solution for the system (1.1)-(1.2) with the above
initial data, which proves Theorem 2.2 . This also shows that the existence Theorem 2.1
is optimal in the class of bounded weak solutions.
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A On Lipschitz test functions

Here we briefly discuss the use of Lipschitz test functions instead of C1 test functions
for bounded weak entropy solutions for triangular systems (1.1)-(1.2). We show that if
u, v ∈ L∞ is a weak bounded solution (and therefore the solution constructed in Section
5) for the triangular system, then the C1 test functions can be enlargerd to Lipschitz
functions. This can be proved using the following observations.Note that (u, v) is a weak
solution and hence satisfies the integral identities (1.8)-(1.9) for compactly supported
smooth test functions. Now if we consider a compactly supported Lipschitz continuous
test function ψ, we can construct (using a standard mollifier) a sequence of compactly
supported smooth test functions {φn} that converges pointwise almost everywhere to ψ.
An application of dominated convergence theorem shows that ∂tφn and ∂xφn converge to
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∂tψ and ∂xψ respectively at points of continuity (and therefore almost everywhere) of ψ.
Since the integral identities (1.8)-(1.9) are satisfied for each φn, we can use the above
facts to pass to the limit in the identities to prove the integral identities for the Lipschitz
continuous test function ψ.

B Uniqueness of Riemann problem in L∞

We next show that in the case of strictly convex fluxes f , the solution of the Riemann
problem is unique in the class of bounded entropy solutions at least upto the time of first
interaction of waves. In this direction, we first note the following result.

Lemma B.1. If (u, v) is a bounded entropy solution to the system (1.1)-(1.2) with initial
data (u0, v0) ∈ L∞(R)× L∞(R), then Z := v exp(A(u)) satisfies

∂tZ + a(u)∂xZ
E
= 0, (B.1)

in open sets where u is Lipschitz continuous.
Here E := Lip′c(R × [0,+∞[,R) denotes the dual of the space of compactly supported
Lipschitz continuous functions.

Proof. Since u is Lipschitz continuous and A ∈ C1(R), we can write any ψ ∈ Lipc in the
form ψ = φ exp(−A(u)) for a suitable φ ∈ Lipc.Therefore, for ψ ∈ Lipc(R× [0,+∞[,R),
we can write,

−
∫ ∞

0

∫
R

[Z∂tψ + Z∂x(a(u)ψ)] dxdt+

∫
R
Z0(x)ψ(x, 0) dx

= −
∫ ∞

0

∫
R

[Z ∂t (φ exp(−A(u))) + Z ∂x (a(u)φ exp(−A(u)))] dxdt

+

∫
R
Z0(x)φ(x, 0) exp(−A(u0)) dx

= −
∫ ∞

0

∫
R

[Z exp(−A(u)) ∂tφ+ Z a(u) exp(−A(u)) ∂xφ] dxdt

+

∫
R
Z0(x)φ(x, 0) exp(−A(u0)) dx

+

∫ ∞
0

∫
R

[ZA′(u)∂tu exp(−A(u))φ+ ZA′(u)∂xu φa(u)exp(−A(u))] dxdt

−
∫ ∞

0

∫
R
Z exp(−A(u))φa′(u)∂xu dxdt

=

∫ ∞
0

∫
R
Zφ exp(−A(u)) (A′(u)∂tu+ A′(u)a(u)∂xu− a′(u)∂xu) dxdt,

(B.2)

where we use the fact that v satisfies the integral identity (1.9) for any φ ∈ Lipc(R ×
[0,+∞[,R).
Now ∂tu and ∂xf(u) belong to L∞ and hence in L1

loc, and also satisfy the integral identity
(1.8) for all compactly supported smooth functions. Therefore ∂tu = −∂xf(u) almost
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everywhere. Also using the fact that f ∈ C1 and u is continuous, using Volpert’s formula
[46], it follows that −∂xf(u) = f ′(u)∂xu almost everywhere.
Using these facts and the definition of A in (B.2), it follows that

−
∫ ∞

0

∫
R

[Z∂tψ + Z∂x(a(u)ψ)] dxdt+

∫
R
Z0(x)ψ(x, 0) dx = 0,

for ψ ∈ Lipc(R× [0,+∞[,R).

Now suppose that f is strictly convex and consider the Riemann problem with left
and right states given by (u−, v−) and (u+, v+) respectively. Let the corresponding states
in (u, Z) coordinates be given by (u−, Z−) and (u+, Z+) respectively. Without loss of
generality, we assume that the Riemann problem is based at the point (0, 0).

First we consider the case when there is a rarefaction wave in u. Note that in this case
u is a Lipschitz continuous function away from a ball B(0, r) of radius r around (0, 0), for
any r > 0.
From the previous lemma, we conclude that away from the ball B(0, r), Z (corresponding
to any bounded weak solution (u, v)) satisfies the identity (B.1) and by unicity of u and
the unicity of weak solutions of a transport equation with Lipschitz continuous velocity
field, Z is uniquely determined.
Since this is true for any r > 0, it follows that in the class of bounded weak solutions,
(u, Z) (and therefore (u, v)) is unique away from the set {x = a(u−)t} of measure zero.

Next let us consider the case when there is a shock wave in u. In this case, using
the previous lemma, we see that Z (corresponding to any bounded weak solution (u, v))
satisfies the transport equation (B.1) with velocity a(u−) in the region{

(x, t) : −∞ <
x

t
< s :=

[f(u)]

[u]

}
,

and therefore is uniquely determined in this region and has a trace on the line x = st.
Similarly, Z satisfies the transport equation (B.1) with velocity a(u+) in the region{

(x, t) : s <
x

t
< +∞

}
,

and therefore is uniquely determined in this region as well.
But any bounded weak solution (u, v) satisfies the same Rankine-Hugoniot condition
across the shock curve, and therefore, the left trace of Z on the line x = st is uniquely
determined by the states u−, u+, v+, which implies the unicity of Z as well.
Therefore, for a strictly convex flux f , at least upto the time of first interaction of waves,
the solution of the Riemann problem is unique in the class of bounded entropy solutions.

Note that the above proof holds for initial data u0 which gives rise to entropy solutions
u that are locally Lipschitz except for a finite number of lines, and hence applies to the
initial data that we construct in Section 6. Uniqueness for the slightly smaller class of
picewise C1 entropy solutions are well known [33] and has been already obtained for the
(PSA) system [7].

Notice also that for the Kruzkov solution u a continuity in time with respect to L1
loc

is space is required [31], but for a nonlinear flux this property is automatically fullfilled
[18].
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