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EQUIVALENCE OF NEIGHBORHOODS OF EMBEDDED COMPACT

COMPLEX MANIFOLDS AND HIGHER CODIMENSION FOLIATIONS

XIANGHONG GONG† AND LAURENT STOLOVITCH††

Abstract. We consider an embedded n-dimensional compact complex manifold in n+ d

dimensional complex manifolds. We are interested in the holomorphic classification of
neighborhoods as part of Grauert’s formal principle program. We will give conditions
ensuring that a neighborhood of Cn in Mn+d is biholomorphic to a neighborhood of the
zero section of its normal bundle. This extends Arnold’s result about neighborhoods of
a complex torus in a surface. We also prove the existence of a holomorphic foliation in
Mn+d having Cn as a compact leaf, extending Ueda’s theory to the high codimension case.
Both problems appear as a kind linearization problem involving small divisors condition

arising from solutions to their cohomological equations.
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1. Introduction

We are interested in the classification of the germs of neighborhood of an embedded
compact complex manifold C in a complex manifold M . Here two germs (M,C) and

(M̃, C) are holomorphically equivalent if there is a biholomorphic mapping F fixing C
pointwise and sending a neighborhood V of C in M into a neighborhood Ṽ of C in M̃ .
These considerations can be useful to extend holomorphic objects such as cohomology
classes of holomorphic sections of bundles over C or functions on C to a neighborhood
of C in M . Indeed, it might be that such an extension problem is much easy to solve
on an equivalent neighborhood. We are also interested in the existence of a non-singular
holomorphic foliation of the germ of neighborhood of C in a complex manifold having C
as a compact leaf. We refer to it as a “horizontal foliation”.

A neighborhood V of an embedded complex manifold Cn in Mn+d has local holomor-
phic charts (hj , vj) = Φj mapping Vj onto V̂j in Cn+d with n = dimC. Here ∪Vj is a
neighborhood of C and Uj := Vj ∩ C is defined by vj = 0. The above-mentioned classifi-
cation of the germs of neighborhoods of C is then the classification of transition functions
Φkj := ΦkΦ

−1
j under holomorphic conjugacy F−1

k ΦkjFj . To such an embedding, one can
associate the normal bundle NC(M) of C in M , which has the transition matrices gkj(p),
p ∈ Uk ∩ Uj . To this embedding one can associate another natural embedding, namely
the embedding of C as the zero section of NC(M). Under a mild assumption, this last
embedding (NC(M), C) naturally serves as a first order approximation of (M,C). Let
ϕj = Φj |Uj

and let ϕkj = ϕkϕ
−1
j be the transition functions of C. To have a neighborhood

of C in M equivalent to a neighborhood of the zero section in NC(M) is equivalent to

seeking Fj such that Φ̂kj = F−1
k ΦkjFj are of the form Nkj(hj , vj) = (ϕkj(hj), tkj(hj)vj)

with tkj(hj) = gkj, the latter being regarded as the transition functions of a neighborhood
of the zero section of NC(M). We call this process a “full linearization” of the neigh-
borhood. The above-mentioned “horizontal foliation” will be obtained as a consequence
of a “vertical linearization” of the neighborhood which amounts to seeking Fj such that

Φ̂kj = (ϕkj(hj) + φ̂h
kj(hj , vj), tkj(hj)vj).

Without even considering holomorphic equivalence problem, it is known that there are
formal obstructions to linearizing [15,32] or to linearizing vertically [40] a neighborhood; see
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section 2. Part of the Grauert formal principle [5,12,17,27] is to seek geometry conditions
that ensure a holomorphic linearization when the formal obstructions are absent. In this
paper, we will obtain linearizations of a neighborhood of an embedded compact complex
manifold Cn at the absence of formal obstructions under small divisor conditions in the
form of bounds of solutions of cohomology equations involving all symmetric powers of N∗

C ,
the dual of the normal bundle NC of Cn in Mn+d. Because of the very nonlinear nature
of the problem, we need to work with a family of nested domains on which we solve and
eventually bound the solutions of 1-cohomological equations. Indeed, we are naturally led
to consider shrinking of the domains as we need to get estimates of derivatives of sections
(by Cauchy estimates for instance). To be more precise, assume that a 1-cocycle f with
value in the sheaf of sections of holomorphic bundle (involving symmetric power SmN∗

C

for some m ≥ 2) on C vanishes in the 1st cohomology group over a covering W. Then
there is a 0-cochain w over W such that δw = f . Nevertheless, we need to prove the
existence of a (possibly different) solution u satisfying the linear equation δu = f and a
“linear” estimate of the form ‖u‖W ≤ K‖f‖W (the norm is either L2 or the sup-norm).
Because of the nonlinear nature of our problem, we need to solve the linear equation
iteratively and estimate solutions of the form δum = Fm(f2, . . . , fm, u2, . . . , um−1), m ≥ 2.
Here Fm(f2, . . . , fm, u2, . . . , um−1) is a nonlinear function and vanishes in a first cohomology
group. Therefore the bound K, depending on m, will compound, which leads to a problem
on non-linear estimates. Here come some of the main issues : we need that, at the limit,
the sequence of nested domains, over which the solutions are estimated iteratively, remains
to cover the manifold. And we need to control the growth of the bound K with respect
to m, that gives rise to the so-called small divisors condition. Therefore, the existence of
any bound K for linear solutions u without shrinking the covering W is a basic question.
The latter was solved affirmatively by Kodaira-Spencer [25, eq. (9), p. 499] for the case of
line bundles for a general covering. For higher rank vector bundles, we provide a positive
solution in the following result :

Proposition 1.1. Let C be a compact complex manifold. There exists a family of coverings
U r = {U r

j }, r∗ ≤ r < r∗, of C such that for any holomorphic vector bundle E over C,

and each f ∈ C1(U r′ , E), the space of 1-cochains on U r′ of holomorphic sections with
values in E, satisfying f = δu0 for some u0 ∈ C0(U r′, E), there exist u ∈ C0(U r′ , E) and
v ∈ C0(U r′′ , E) such that δu = f and δv = f , and

|u|r′ ≤ K(E)|f |r′,(1.1)

|v|r′′ ≤
D(E)

(r′ − r′′)τ
|f |r′.(1.2)

Here r′, r′′ are any numbers satisfying r∗ < r′′ < r′ ≤ r̃ < r∗ and r′ − r′′ ≤ r∗ − r̃, and
τ,K(E), D(E) are independent of r′, r′′.

Here, we have used the sup-norm (or L2-norm) of cochains of holomorphic sections of
bundles (see section A.2 for specific notations). We do not know if K(E) and D(E) are
comparable when they are applied to the symmetric powers of N∗

C except when NC is
unitary. Hörmander [19, 33] obtained solutions with bounds for cohomology groups with
respect to the ∂̄ operator acting on the sheaf of (p, q)-forms with L2 coefficients on Cn.
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The estimate (1.2) was proved by Donin [8] for a special family of coverings by the L2

theory. He also raised the question if estimate (1.1) exists, i.e. the basic question mentioned
above. Proposition 1.1 gives us a more flexible kind of results and ultimately an estimate
that holds without any shrinking for higher rank vector bundles via the above mentioned
nested coverings. We also use the L2-theory. We first obtain (1.2) by Theorem A.9. Then
(1.1) is obtained by Lemma A.2. The constant K(E) is defined for the kind of bundles
we need in Definition A.5. This is summarized in Theorem A.12. The main results of this
paper are based on the existence of nested finite coverings proved in subsection A.5.

Proposition 1.1 will be a useful tool in this paper. We now formulate our main results.
We say that TCM = TM |C splits if TCM = TC ⊕NC holomorphically. For instance, TCE
splits for any holomorphic vector bundle E over C. Here and in the sequel, we identify
C with the zero section of E. We say that NC is flat if the transition matrices of NC are
locally constant. We say that NC is unitary if its transition matrices are unitary. Note that
the maximum principle implies that a unitary NC is flat. We have the following “vertical
linearization” result:

Theorem 1.2. Let Cn be a compact submanifold of Mn+d with splitting TCM and unitary
NC. Let η0 = 1 and

ηm := K(NC ⊗ Sm(N∗
C)) max

m1+···+mp+s=m
ηm1 · · · ηmp ,

where the maximum is taken in 1 ≤ mi < m for all i and s ∈ N. Assume that there are
positive constants L, L0 such that

ηm ≤ L0L
m, m = 1, 2 . . . .

Assume that H0(C,NC ⊗ Sℓ(N∗
C)) = 0 for all ℓ > 1 . Assume that either H1(U , NC ⊗

Sℓ(N∗
C)) = 0 for all ℓ > 1 or a neighborhood of C is formally vertically linearizable by a

formal holomorphic mapping that is tangent to the identity and preserves the splitting of
TCM . Then the embedding is actually holomorphically vertically linearizable.

When C is a compact holomorphic curve embedded in a complex surface M with a uni-
tary normal bundle NC , the above vertical linearization is one of main results in Ueda [40]
where H0(C,NC ⊗ Sℓ(N∗

C)) = 0 for all ℓ > 1 follows from his small-divisor condition. This
has been generalized by T. Koike in higher codimension case under a strong assumption
that NC is a direct sum of unitary line bundles [26]. The Ueda theory for codimension-one
foliations has also been extended by Claudon-Loray-Pereira-Touzet [6] and Loray-Thom-
Touzet [29]. We remark that Theorem 1.2 via the flatness of NC ensures the existence of a
“horizontal” foliation :

Corollary 1.3. Under assumptions of Theorem 1.2, there exists a neighborhood of Cn in
Mn+d that admits an n-dimensional smooth holomorphic foliation having Cn as a leaf.

The following results can been understood in the context of the Grauert formal princi-
ple for rigidity: If (M,C) is formal equivalent to (NC , C), then they are holomorphically
equivalent under suitable assumptions. We first consider the unitary case.

Theorem 1.4. Let Cn be a compact submanifold of Mn+dNC is unitary. Let η0 = 1 and

ηm := max (K(NC ⊗ Sm(N∗
C)), K(TC ⊗ Sm(N∗

C))) max
m1+···+mp+s=m

ηm1 · · · ηmp ,
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where the maximum is taken in 1 ≤ mi < m for all i and s ∈ N. Assume that there are
positive constants L, L0 such that

(1.3) ηm ≤ L0L
m, m = 1, 2 . . . .

If TCM splits and H1(U , TCM ⊗Sℓ(N∗
C)) = 0 for all ℓ > 1 or more generally if a neighbor-

hood of C in M is linearizable by a formal holomorphic mapping which is tangent to the
identity and preserves the splitting of TCM , then there exists a neighborhood of C in M
which is holomorphically equivalent to a neighborhood of C (i.e the 0th section) in NC In
that case, we say that the embedding C →֒ M is holomorphically linearizable.

More generally, the following result treats two more general cases.

Theorem 1.5. Let Cn be a compact submanifold of Mn+d. Suppose that

(1.4)
∑

k≥1

logD∗(2
k+1)

2k
< +∞,

where D∗(2
k+1) is defined by (5.27). Suppose that either H0(C, TC ⊗ Sℓ(N∗

C)) = 0 for all
ℓ > 1, or NC is flat. Assume further that either TCM splits and H1(U , TCM⊗Sℓ(N∗

C)) = 0
for all ℓ > 1 or (M,C) and (NC , C) are equivalent by a formal holomorphic mapping which
is tangent to the identity and preserves the splitting of TCM . Then (M,C) and (NC , C)
are actually holomorphically equivalent.

The previous results can be seen as a “full linearization” results. Theorem 1.4 is proved
by using a majorant method while Theorem 1.5 is based on a Newton scheme. It is not
clear how to compare the two ”small divisors conditions” (1.3) and (1.4) althought the
counterparts in theory of dynamical systems are equivalent [4]. The formal principle holds
in the following cases: (a) negative NC in the sense of Grauert, by results of Grauert [12]
and Hironaka-Rossi [17]. In Grauert’s case, Cn has a system of strictly pseudoconvex neigh-
borhoods and consequently Cn is the only compact n-submanifold near Cn. In the same
spirit, Savelev proved that all neighborhoods of embeddings of P1 in complex surfaces with
a unitary flat normal bundle are holomorphically equivalent [36]. (b) sufficiently positive
NC and dimC > 2, by a result of Griffiths [15, Thm II (i)] showing that a neighborhood is
determined by a finite-order neighborhood. In other words, under this condition the holo-
morphic classification of neighborhoods is “finitely determined”. (c) H1(C,NC) = 0 and
the case that for each x ∈ C there is x′ ∈ C such that the fiber of NC at x is generated by
global sections of NC vanishing at x′, by a result of Hirschowitz (see [18] for more general
results)1. (d) 1-positive NC , by a result of Commichau-Grauert [7].

We should remark that the above “full linearization” result was obtained by Arnol’d when
C is an elliptic curve andM is a surface, where the vanishing of H0(X, TCM⊗SℓM) follows
from the non vanishing of “small divisors” [2, 3]. Ilyashenko and Pyartli [22] proved an
analogous result for special embeddings of the product flat tori under a strong assumption
that NC is a direct sum of flat line bundles. We emphasize that in our linearization
Theorem 1.5, for general compact manifolds Cn, we impose the vanishing of H0(X, TCM ⊗

1Recently, Jun-Muk Hwang proved instances of Hirschowitz’s conjecture on the Formal Principle [21].
The authors thank Takeo Ohsawa for acknowledging this work.
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SℓM) for all integers ℓ ≥ 2 whereas there is no restriction on H0 when C is affine and NC

is flat.
As a simple consequence, we have the following

Corollary 1.6. Under assumptions of Theorem 1.5 on C and M , any holomorphic section
of a holomorphic vector bundle E over C extends to a holomorphic section of a holomorphic-
vector-bundle extension of E over a neighborhood of C in M .

Corollary 1.7. Let C be a compact complex manifold. Let (M,C) be equivalent to (C ×
Cd, C) by a formal holomorphic mapping which is tangent to the identity and preserves
the splitting of TCM . Suppose that the small-divisor condition in Theorem 1.5 is satisfied.
Then (M,C) is holomorphically equivalent to (C ×Cd, C).

We now give an outline of the paper.
In section 2 we study the formal obstructions to the full linearization and vertical lin-

earization problems. The formal obstructions are known from work of Nirenberg-Spencer [32],
Griffiths [15], Morrow-Rossi [30], for the the full linearization problem and by Ueda [40]
(see also Neeman [31] and among others) for the vertical linearization problem. The ob-
structions are described in H1(C,E ⊗ SℓN∗

C) for a natural vector bundle E that is either
TCM or NC . In this paper we emphasize the role of H0(C, TCM ⊗ SℓN∗

C). In local dy-
namical systems, the elements in the analogous group appear as finite symmetries in the
Ecalle-Voronin theory [1] and centralizers for the linearizations [11]. The small divisors in
local dynamics emerge in the form of the bounds K(NC ⊗ SℓN∗

C) and D(TCM ⊗ SℓN∗
C)

in Proposition 1.1. In work of Arnol’d [2] and Ueda [40], the vanishing condition of the
corresponding zero-th cohomology groups is not explicit; however it follows from their
small-divisor conditions.

In section 3, we prove Theorem 1.2 by using Ueda’s majorization method [40]. In our
case the majorization relies on an important tool of the (modified) Fischer norm which
is invariant under a unitary change of coordinates. The invariance allows us to overcome
the main difficulty in our majorization proof to deal with the transition functions of N∗

C

when they are unitary, but not necessarily diagonal. The (modified) Fischer norms have
also been useful in other convergence proofs [23, 28, 38]. In section 4, we also extend the
majorant method to the full linearization problem for the special case where NC is unitary.
In section 5, we obtain the full linearization in the general case by introducing a Newton
scheme, i.e. a rapid convergence scheme as in Brjuno’s work [4]; see also [35,39]. However,
we must cope with the domains of transition functions which are not so regular. These
domains, when carefully chosen, have nevertheless a disc structure. This allows us to obtain
a proof by using sup-norm estimates.

Finally, the paper contains an appendix which has interests in its own right. It has two
results, namely the existence of the two bounds stated in Proposition 1.1 and the existence
of nested coverings (see Definition A.1). The existence of bound K(E) was employed by
Ueda [40] through the complete system of Kodaira-Spencer [25] when dimC = 1 and
codimM C = 1. We will prove Proposition 1.1 by using some techniques developed by
Donin [8]. Our proof also relies on a ”quantified” version of Grauert-Remmert finiteness
theorem [14]. The existence of bound D(E ′ ⊗ SℓE ′′) was proved by Donin [8] for the so-
called “normal” coverings. We have used nested coverings in the proof of Proposition 1.1
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as well as the convergence proof in Theorem 1.5. We believe that the methods and tools
developed in this article will be useful for other kinds of problems.

2. Full linearizations, horizontal foliations, and vertical linearizations

In this section, we describe the problem of equivalence of a neighborhood of a complex
compact submanifold C ofM with a neighborhood of the zero section in the normal bundle
of C inM as a “full” linearization problem of the transition functions of this neighborhood.
We also describe the existence of a holomorphic foliation of a neighborhood of C having C
as a leave as a consequence of a vertical linearization problem of the transition functions
of this neighborhood.

We will first describe the formal coordinate changes in terms of cohomological groups of
holomorphic sections of a suitable sequence of holomorphic vector bundles.

2.1. Transition functions. We recall basic facts on vector bundles, which we refer to
[16, Chap. 0, Sect. 5].

We first set up notation. If a vector space E has a basis e = {e1, . . . , ed}, then a vector
v in E can be expressed as

v = ξµeµ, ξ = (ξ1, . . . , ξd)t.

Here, we use the summation notation: ξµeµ stands for
∑d

µ=1 ξ
µeµ. The ξµ’s are the coor-

dinates or components of v in the basis e.
We recall that a holomorphic vector bundle E over a complex manifold X is defined by

a projection π : E → X and holomorphic trivializations Ψj : π
−1(Dj) → Dj ×Cr such that

each Ψj : π
−1(Dj) → Dj×Cr is a biholomorphism, and Ψj(Ep) = {p}×Cr for Ep := π−1(p).

Furthermore {Dj} is an open covering of X and the maps Ψkj = ΨkΨ
−1
j : Dk ∩Dj ×Cr →

Dk ∩Dj ×Cr satisfy

(2.1) Ψkj(p, ξj) = (p, gkj(p)ξj)

where gkj are transition matrices which are holomorphic and invertible. Thus for ξµk ek,µ =
ξµj ej,µ, we have

ξµk = gµkj,νξ
ν
j , ej,µ = gνkj,µek,ν ,(2.2)

ξk = gkjξj, ek = (g−1
kj )

tej.(2.3)

They satisfy the cocycle conditions,

(2.4) gkjgjk = I, on Dk ∩Dj ; gkigij = gkj, on Dk ∩Dj ∩Di.

We also need to consider the dual bundle E∗. Let e∗j be the basis dual to ej so that
(e∗j,µ(ej,ν)) is the identity matrix. Suppose ζµj e

∗
j,µ = ζµk e

∗
k,µ ∈ E∗. Corresponding to (2.3),

we have

(2.5) e∗k = gkje
∗
j , ζk = (g−1

kj )
tζj.

Let us also express transition functions for various vector bundles in coordinate charts as
above. Let Cn be a compact complex manifold embedded in complex manifold Mn+d. We



8

cover a neighborhood of C in M by open sets Vj so that we can choose coordinate charts
(zj , wj) on Vj for M such that

Uj := C ∩ Vj : wj = 0.

Then U = {Ui} is a finite covering of C by open sets on which the coordinate charts
zi = (z1i , . . . , z

n
i ) are defined. Let

(2.6) zk = ϕkj(zj) = ϕkϕ
−1
j (zj)

be the transition function of C on Ukj := Uk ∩ Uj . It is a biholomorphic mapping from
ϕj(Ukj) onto ϕk(Ukj) in Cn. Then TC has a basis

ej,α :=
∂

∂zαj
, 1 ≤ α ≤ n

over Uj and its transition matrices skj have the form

(2.7) sαkj,β(zj) :=
∂zαk
∂zβj

∣∣∣∣
Uj∩Uk

.

Thus for ηαk
∂

∂zα
k

= ηαj
∂

∂zαj
on Uj ∩ Uk, we have ηk = skj(zj)ηj . As to the normal bundle NC ,

its transition matrices tµkj,ν(zj) :=
∂w

µ
k

∂wν
j
|Uj∩Uk

on Uj ∩ Uk are for the basis

fj,µ :=
∂

∂wµ
j

mod TC, 1 ≤ µ ≤ d.

Thus for ξµkfj,µ = ξµj fk,µ, we have ξk = tkj(zj)ξj. With notation (2.1), the transition
matrices of TM |C are then of the form

gkj :=

(
skj lkj
0 tkj

)
(zj) on Uj ∩ Uk

for some n× d matrices ljk. Note that
∂wj

∂zk
|C = 0.

Throughout the paper, τkj(zj) are the transition matrices of N∗
C for the base dwj. Note

that
τkj = (t−1

kj )
t.

More specifically, if w∗
j,µ := dwµ

j |Uj
and ζµj w

∗
j,µ = ζµkw

∗
k,µ, then (2.5) becomes

(2.8) ζ∗k = (t−1
kj (zj))

tζ∗j , w∗
k = tkj(zj)w

∗
j .

We remark that the cocycle conditions (2.4) for NC now takes the form

(2.9) tkj(zj)tjk(zk) = Id on Uj ∩ Uk, tkj(zj)tjℓ(zℓ) = tkℓ(zℓ) on Uj ∩ Uk ∩ Uℓ.

We say that TM splits on C, if there is a (non-canonical) decomposition

(2.10) TM |C = TC ⊕ ÑC , ÑC
∼= NC .

Equivalently, there exists a system of coordinate charts such that on C, the transitions
matrices of TM |C are of the form

gkj =

(
skj 0
0 tkj

)
(zj) on Uj ∩ Uk.
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In other words,
∂zj
∂wk

∣∣∣
C
= 0.

Throughout the paper, we assume that TM splits on C and we fix a splitting (2.10).
Then the change of bases of the normal bundle NC has a simple form

zk = ϕkj(zj),
∂

∂wν
k

= tµjk,ν(zk)
∂

∂wµ
j

, on Uj ∩ Uk.

In summary, for a neighborhood of the embedded manifold C in M with splitting TCM ,
we can find a covering V = {Vi}, with Φj(Vj) = Ũi×W̃i, by open sets onM and coordinates
(zi, wi) defined on Vi. We assume that Uj := C∩Vi is defined by {wi = 0}. A neighborhood
of C will then be described by transition functions on Vkj of the form

(2.11) Φkj :
zk = Φh

kj(zj , wj) := ϕkj(zj) + φh
kj(zj , wj),

wk = Φv
kj(zj , wj) := tkj(zj)wj + φv

kj(zj, wj).

Here, φh
kj (resp. φ

v
kj) are holomorphic functions of vanishing order ≥ 2 along wj = 0:

(2.12) φh
kj(zj , wj) = O(|wj|2), φv

kj(zj , wj) = O(|wj|2).
That φh

kj vanishes at order ≥ 2 follows from the fact that TM |C splits as TC ⊕ NC (see
above and [30, proposition 2.9]). Define

Nkj(hj, vj) := (ϕkj(zj), tkj(hj)vj).

Our goals are to apply changes of coordinates to simplify φh
kj, φ

v
kj, or one of them, ac-

cording to the problem we study.

2.2. The equivalence of transition functions. The germ of neighborhood of an em-
bedded manifold is well-defined. For the formal normalization, we need to introduce (semi)
formal charts and formal neighborhoods of an embedded manifold in a (semi) formal man-
ifold.

Definition 2.1. We call M̂ an (admissible and splitting) formal neighborhood of C if there
are holomorphic coordinate charts ϕj on Uj where {Uj} is a covering of C and there are
formal power series

(zj, wj) = Φ̂j(p, w) := (ϕj(p), tj(p)w) +
∑

|Q|≥2

Φj,Q(p)w
Q,

where Φj,Q are holomorphic functions in Uj and each tj is an invertible holomorphic d× d

matrix on Uj . Note that the formal transition functions Φ̂kj = Φ̂kΦ̂
−1
j have the form

Φ̂kj(zj , wj) = (ϕkj(zj), tkj(zj)wj) +
∑

|Q|>1

Φ̂kj,Q(zj)w
Q
j , zj ∈ ϕj(Uj ∩ Uk).

(a) When all Φj are holomorphic, the formal neighborhood M̂ is called the germ of a
(holomorphic) neighborhood of C.

(b) M̂ is called a linear neighborhood of C if additionally

(2.13) Φ̂kj(zj, vj) = (ϕkj(zj), tkj(zj)vj)
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and each tkj is an invertible holomorphic matrix in Uk ∩ Uj . The terminology is

meaningful since the Φ̂kj can be realized as the transition functions of a holomorphic
vector bundle over C, namely the normal bundle of C in M .

We are mainly interested in the classification of a neighborhood of C for a given C.
Therefore, it is reasonable to assume that the local trivialization of C are fixed. In other
words, ϕkj are fixed and we will only consider mappings sending a neighborhood of C into
another neighborhood of C that fix C pointwise.

Definition 2.2. We shall say that NC is a flat (resp. unitary flat), if we can find constant
(resp. with values in group of unitary matrices Ud) transition functions in a possibly refined
covering. If TCM := (TM)|C is holomorphically flat, or flat, i.e. in some coordinates both
transition functions NC and TC are constant matrices, then by (2.7)

ϕkj(zj) = skjzj + ckj

where skj are constant matrices and ckj are constant vectors. Then, the transition functions

of a neighborhood of the zero section of the normal bundle, Φ̂kj as defined in (2.13) read

Akj(zj, wj) := (skjzj + ckj, tkjwj).

We will use the following notation: When NC is flat, we write its transition matrices
tkj(zj) as tkj , indicating that they are independent of zj .

Definition 2.3. We shall say that a change of coordinates {Fj} preserves the germ of a
neighborhood of the zero section of NC with transition maps {Nkj} if each Fj is biholo-
morphic and fixes vj = 0 pointwise and FkNkj = NkjFj, in which case we say that {Fj}
preserves {Nkj} for simplicity.

We further observe the following.

Lemma 2.4. LetM , M̂ be two (admissible) neighborhoods of C, of which coordinate charts

are {Φj}, {Φ̂j}, respectively. Let Φkj = ΦkΦ
−1
j and Φ̂kj = Φ̂kΦ̂

−1
j .

(a) There is a biholomorphic mapping F : M → M̂ , defined near C and fixing C, if
and only if there are biholomorphic mappings Fj satisfying

FkΦ̂kj(zj , wj) = ΦkjFj(zj , wj), Fj(zj, 0) = (zj , 0).(2.14)

(b) If Fj satisfies (2.14), then

Fj(zj, wj) = LFj(zj , wj) +O(|wj|2), LFj = (zj + sj(zj)wj, uj(zj)wj),

sk(ϕkj(zj))tkj(zj) = Dϕkj(zj)sj(zj),

uk(ϕkj(zj))tkj(zj) = tkj(zj)uj(zj).

Assume further that F preserves the splitting. Then sj = 0.
(c) Let TC and NC be flat and let Fj be (semi) formal biholomorphism fixing C point-

wise. Suppose that F−1
k ΦkjFj = Nkj + O(|v|2j). Then {LFj} preserves {Nkj}, i.e.

LFkNkj(LFj)
−1 = Nkj, where

Fj(hj , vj) = LFj(hj , vj) +O(|vj|2), LFj(hj , vj) = (hj + sj(hj)vj , uj(hj)vj).



11

Proof. The points (a), (b) can be verified easily. For (c), let us expand FkΦkj(hj , vj) =
Nkj ◦ Fj(hj , vj) +O(|vj|2) and compare the constant and linear terms in vj. We obtain

ϕkj(hj) + sj(ϕkj(hj))tkjvj = ϕkj(hj + sj(hj)vj) +O(|vj|2),
uk(ϕkj(hj))tkjvj = tkjuj(hj)vj +O(|vj|2).

Here we have used the assumption that tkj are constant. Since ϕkj are affine, the two
identities still hold if we drop O(|vj|2) from them. This shows that LFkNkj = NkjLFj ,
again using the fact that tkj are constant and ϕkj are affine. �

Finally, we mention that we will choose the atlas of C so that each ϕj is a biholomorphism

from Uj onto the unit polydisc ∆n in Cn and from a neighborhood Ũj of Uj onto another
larger polydisc. When C is embedded in a complex manifold M , we can extend ϕj to Vj to
get a coordinate chart Φj on Vj such that Φj maps Vj onto Uj ×∆d

δ . This can be achieved

since any holomorphic vector bundle over Ũj is holomorphically trivial. Thus NC |Uj
splits.

Consequently, we can use a flow box of holomorphic normal vector fields to construct the
required Φj . Therefore, if C is embedded into another complex manifold M̃ , we will choose

the atlas of a neighborhood of C in M̃ such that the restriction of the chart on Uj agrees
with ϕj .

Therefore, we introduce the following.

Definition 2.5. We say that a formal neighborhood {Φkj} of C is equivalent to a neighbor-

hood {Φ̂kj} of C inM by a formal mapping F that is tangent to the identity and preserves

the splitting of TCM , if there are formal maps Fj(zj) = (zj , wj) +
∑

|Q|>1 Fj,Q(zj)w
Q
j such

that Fj,Q(zj) are holomorphic functions in Uj and as power series in wj

FkΦ̂kj(zj , wj) = ΦkjFj(zj , wj).

We take F = Φ̂−1
j FjΦj , which is well-defined, when Φkj = ΦkΦ

−1
j and Φ̂kj = Φ̂kΦ̂

−1
j .

2.3. The full Linearization of a neighborhood. In this case, our goal is to seek new
coordinates (hk, vk) so that all φh

kj, φ
v
kj are 0.

Let us consider a change of coordinates in a neighborhood of C by modifying the old
coordinate charts (zk, wk) via Fk. We write it as

Fk :
zk = F h

k (hk, vk) := hk + fh
k (hk, vk),

wk = F v
k (hk, vk) := vk + f v

k (hk, vk).

Here, fh
k (hk, vk) and f

v
k (hk, vk) are holomorphic functions vanishing at order ≥ 2 at vk = 0.

In particular, C is pointwise fixed by the change as zk = hk on C (i.e. for vk = 0). We

require that the inverse of Fk is defined in a possibly smaller open sets V̂k ⊂ ϕk(Uk) such

that the union of Φ−1
k (V̂k) remains a neighborhood of C in M .

We recall that the cocyle condition (2.9) on the transition matrices tkj has the form

tkj(zj)tjk(ϕkj(zj)) = Id,

tkj(ϕjℓ(zℓ))tjℓ(zℓ) = tkℓ(zℓ).(2.15)

Let us assume that the (a priori formal) change of coordinates (2.15), maps a neighbor-
hood C to a neighborhood of the zero section in the normal bundle. This means that, in
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these new coordinates, we have

Nkj := F−1
k ΦkjFj :

hk = ϕkj(hj),
vk = tkj(zj)vj .

Let us write down the above “conjugacy equations”. We first consider the horizontal
equation of

FkNkj = ΦkjFj .

On the left side of the equation, we have

zk = hk + fh
k (hk, vk) = ϕkj(hj) + fh

k (ϕkj(hj), tkj(hj)vj).

On the other side, we have

zk = ϕkj(hj + fh
j (hj, vj)) + φh

kj(hj + fh
j , vj + f v

j ).

Let us define the horizontal cohomological operator to be

(2.16) Lh
kj(f

h
j ) := fh

k (ϕkj(hj), tkj(hj)vj)− skj(hj)f
h
j (hj , vj).

Recall that skj(hj) = Dϕkj(hj) is the Jacobian matrix of ϕkj. Hence, we can write the
previous horizontal equation as

Lh
kj(f

h
j ) = φh

kj(hj + fh
j , vj + f v

j )(2.17)

+ϕkj(hj + fh
j (hj , vj))− ϕkj(hj)−Dϕkj(hj)f

h
j (hj, vj).

Let us consider the vertical equation. We have, on one side of the equation,

wk = vk + f v
k (hk, vk) = tkj(hj)vj + f v

k (ϕkj(hj), tkj(hj)vj).

On the other side, we have

wk = tkj(hj + fh
j )(vj + f v

j ) + φv
kj(hj + fh

j , vj + f v
j ).

Let us define the vertical cohomological operator to be

(2.18) Lv
kj(f

v
j ) := f v

k (ϕkj(hj), tkj(hj)vj)− tkj(hj)f
v
j .

Hence, we can write the previous vertical equation as

Lv
kj(f

v
j ) = φv

kj(hj + fh
j , vj + f v

j )(2.19)

+
(
tkj(hj + fh

j (hj , vj))− tkj(hj)
)
f v
j

+
(
tkj(hj + fh

j (hj , vj))− tkj(hj)
)
vj .

2.4. Horizontal foliations and vertical trivializations. Let us assume that there exists
a non singular holomorphic foliation having C as a leaf. We seek holomorphic functions
fj = (fj,1, . . . , fj,d) defined in a neighborhood Vj of Uj such that fj = 0 on Uj and dfj,1∧· · ·∧
dfj,d 6= 0. Then, we may use (hj, vj) = (zj , fj(zj , wj)) as a coordinate mapping on Vj, which
changes variables in vertical components. We then prove that in these new coordinates,
the transition functions of a neighborhood of C are of the form Φ̂kj = (Φ̂h

kj, Φ̂
v
kj) such that

Φv
kj are independent of hj . We remark that NC must be flat if a horizontal foliation exists.
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Proposition 2.6. Assume that there is smooth holomorphic horizontal foliation defined in
a neighborhood V of C in M . By a refinement of Uj, then there exists a change of variables
of the form

zk = hk wk = s(hj)vj +O(|vj|2)
so that in the new variables, we have

hk = ϕkj(hj) + φh
kj(hj, vj),

vk = t̃kjvj +
∑

|Q|>1

ckj,Qv
Q
j ,

where t̃kj , ckj,Q are constants.

Proof. By a refinement, we may assume that the foliation on Vj is given Wj(hj , vj) = cst
by holomorphic functions Wj = (Wj,1, . . . ,Wj,d) such that Wj = 0 on Uj and dWj,1 ∧
· · · ∧ dWj,d 6= 0. We have Wk = Φ̃v

kjWj, where Φ̃v
kj is a biholomorphism of (Cd, 0) with

Φ̃v
kj(0) = 0. Then W̃j = (zj,Wj) is a biholomorphism defined on Vj and fixing C ∩ Vj

pointwise, by shrinking Vj if necessary in the vertical direction. Since W̃j is invertible, we

can define Φ̃h
kj = zkW̃

−1
j Then we have Φ̃h

kjW̃j = zk. Therefore,

W̃kW̃
−1
j (hj , vj) = (Φ̃h

kj(hj, vj), Φ̃
v
kj(vj)).

Set Fj = ΦjW̃
−1
j . We have F h

j (hj, vj) = hj . We now get

F−1
k ΦkΦ

−1
j Fj = W̃kW̃

−1
j = Φ̃kj . �

In this paper, we will approach the horizontal foliation problem via the following vertical
linearization when NC is unitary.

2.5. The vertical linearization. Here we seek new coordinates (hj, vj) from (zj, wj) such
that the vertical component of the new Φkj agrees with the vertical component of Nkj. In
Lemma 2.17 we will show that if such formal coordinates exist, then the vertical lineariza-
tion can be achieved by changing vertical coordinates only, i.e. a coordinate change of the
form

wk = F v
k (hk, vk) := vk + f v

k (hk, vk), zk = hk.

For the vertical linearization, we only need to consider the vertical part of transition func-
tions so that in the new variables, we have

hk = Φ̂h
kj(hj, vj) := ϕkj(hj) + φ̂h

kj(hj , vj)

vk = tkj(hj)vj .

Here, φ̂h
kj(hj , vj) vanishes up to order 2 at vj = 0. The vertical equation reads

tkj(hj)(vj + f v
j ) + φv

kj(hj, vj + f v
j ) = wk = tkj(hj)vj + f v

k (Φ̂
h
kj(hj , vj), tkj(hj)vj).

Using the previous notation, we finally obtain the following “conjugacy equations”

(2.20) Lv
kj(f

v
j ) = φv

kj(hj , vj + f v
j )−

(
f v
k (Φ̂

h
kj(hj , vj), tkj(hj)vj)− f v

k (ϕkj(hj), tkj(hj)vj)
)
.



14

Having determined the coordinate change, let us find the horizontal component φ̂h
kj from

the horizontal equation

ϕkj(hj) + φh
kj(hj , vj + f v

j ) = zk = Φ̂h
kj(hj, vj) = ϕkj(hj) + φ̂h

kj(hj , vj).

We get

(2.21) φ̂h
kj(hj , vj) = φh

kj(hj , vj + f v
j ).

2.6. Coboundary operators in symmetric powers and coordinates. In this subsec-
tion, we establish the connections between coordinate changes and formal obstructions to
the full linearization and vertical linearization via cohomological groups. In local dynam-
ics, the resonant terms play an important role in the construction of normal forms at least
at the formal level, while non-resonant terms play another important role in coordinate
changes. In all problems, obstructions are described via the first cohomological groups,
while the coordinate changes are described via solutions to the cohomological equations of
first order approximation.

Let E ′ be a vector bundle of rank τ over C. Let U = {Ui} be a covering of C as above.
Let ej := {ej,1, . . . , ej,τ} be a basis over Uj and let ξj := (ξ1j , . . . , ξ

τ
j )

t be coordinates in ej .
Let skj(zj) be the transition matrices of E ′ over Uk ∩ Uj . Using notation in (2.3), we have

ξαk = sαkj,β(zj)ξ
β
j , ek;α = sβjk,α(zk)ej,β,(2.22)

zk = ϕkj(zj), ξk = skj(zj)ξj, ek = (s−1
kj (zj))

tej ,(2.23)

where ϕkj are the transition functions of C. For N∗
C , by (2.8) we have

ζk = (t−1
kj )

t(zj)ζj, w∗
k = tkj(zj)w

∗
j , zk = ϕkj(zj).

The following fact is well-known. We provide a proof for the reader’s convenience. Let us
first introduce

(2.24) f̃λ
i0···iq(ziq , ζiq) :=

∑

|Q|=L

fλ
i0···iq ;Q(ziq)ζ

Q
iq
,

for a cochain {fI} ∈ Cq({Uj},O(E ⊗ SL(N∗
C))) given by

fi0···iq(p) =

τ∑

λ=1

∑

|Q|=L

fλ
i0···iq;Q(ziq(p))ei0,λ(p)⊗ (w∗

iq
(p))Q,(2.25)

where each fλ
i0...iq;Q

is a holomorphic function on ϕiq(Ui0···iq), and Ui0···iq denotes as usual
Ui0 ∩ · · · ∩ Uiq . Here we have chosen a representation of cochains in bases that arise from
the linearized equations for the problems described above.
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Let fi0···̂iℓ···iq+1
denote fi0···iℓ−1iℓ+1···iq+1 . Then (δf)i0···iq+1 =

∑
(−1)ℓfi0···̂iℓ···iq+1

becomes

(δf)i0···iq+1 =

q∑

ℓ=1

(−1)ℓ
τ∑

λ=1

∑

|Q|=L

fλ
i0···̂iℓ···iq+1;Q

(ziq+1(p))ei0,λ(p)⊗ (w∗
iq+1

(p))Q

+
τ∑

λ=1

∑

|Q|=L

fλ
i1···iq+1;Q

(ziq+1(p))ei1,λ(p)⊗ (w∗
iq+1

(p))Q

− (−1)q
τ∑

λ=1

∑

|Q|=L

fλ
i0···iq;Q(ziq(p))ei0,λ(p)⊗ (w∗

iq
(p))Q

=:

τ∑

λ=1

∑

|Q|=L

gλi0···iq+1
(zq+1)ei0,λ(p)⊗ (w∗

iq+1
(p))Q.

By (2.22), we have ei1,λ = sµi0i1,λei0,µ. In notation (2.24), we can express

g̃λi0···iq+1
(ziq+1 , ζiq+1) =

q∑

ℓ=1

(−1)ℓf̃λ

i0···̂iℓ···iq+1
(ziq+1 , ζiq+1)

+ sλi0i1,µ(ϕi1iq+1(zq+1))f̃
µ
i1···iq+1

(ziq+1 , ζiq+1)

− (−1)qfλ
i0···iq(ϕiqiq+1(ziq+1), tiqiq+1(ziq+1)ζiq+1)).

The above computation especially gives us the following formulae for 0 and 1-cochains.

Lemma 2.7. Let {Uj} be an open covering of C. Let tkj be the transition matrices for NC

with respect to basis wj and let skj be the transitions functions of E with respect to base ej.
Let

fij(p) =
d∑

λ=1

∑

|Q|=L

fλ
ij;Q(zj(p))ei,λ(p)⊗ (w∗

j (p))
Q, f̃λ

ij(zj, ζj) :=
∑

|Q|=L

fλ
ij;Q(zj)ζ

Q
j ,

uj(p) =

d∑

λ=1

∑

|Q|=L

uλj,Q(zj(p))ej,λ(p)⊗ (w∗
j (p))

Q, ũλj (zj, ζj) :=
∑

|Q|=L

uλj;Q(zj)ζ
Q
j .

The following hold :

(a) f := {fij} ∈ Z1(U ,O(E ⊗ SL(N∗
C))) if and only if

f̃λ
ij(ϕjk(zk), tjk(zk)ζk)− f̃λ

ik(zk, ζk) + sλij,ℓ(zj)f̃
λ
jk(zk, ζk) = 0.

(b) u := {uj} solves the first order cohomological equation δu = f if and only if

sλij,ℓ(zj)ũ
ℓ
j(zj , ζj)− ũλi (ϕij(zj), tij(zj)ζj) = f̃λ

ij(zj , ζj).

We notice that according to (2.16) and (2.18), we have

−L(f) = −(Lh(fh),Lv(f v)) = δ(f) := (δh(fh), δv(f v)).
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2.7. Formal obstructions in cohomology groups. Recall that

(2.26) Nkj(hj, vj) := (ϕkj(zj), tkj(hj)vj).

Let us denote the properties depending on an order m ≥ 1 :

(Lm(U)) : the neighborhood of C matches the neighborhood of zero section of the normal
bundle up to order m.
(Vm(U)) : the vertical components of the transition functions of neighborhoods of C in M
and in NC match up to order m.

That embedding of C has property (Lm) (resp. (Vm)) means that the order along vj = 0
of (φh

kj(hj , vj), φ
v
kj(hj , vj)) (resp. φ

v
kj(hj , vj)) as defined in (2.11) is ≥ m+ 1.

Definition 2.8. We shall say that NC is a flat (resp. unitary flat), if we can find constant
(resp. with values in group of unitary matrices Ud) transition functions in a possibly refined
covering.

We will use the following notation: When NC is flat, we write its transition matrices
tkj(zj) as tkj , indicating that they are independent of zj .

Definition 2.9. We shall say that a change of coordinates {Fj} preserves the germ of a
neighborhood of the zero section of NC with transition maps {Nkj} if FkNkj = NkjFj , in
which case we says that {Fj} preserves {Nkj} for simplicity.

Lemma 2.10. Let the transition functions Φkj of a neighborhood of C be given by (2.11)-
(2.12).

(a) Assume that C satisfies Lm. Then the horizontal and vertical components satisfy

[φh
kj]

ℓ ∈ Z1(U , TC ⊗ Sℓ(N∗
C)), if m < ℓ ≤ 2m;

[φv
kj]

ℓ ∈ Z1(U , NC ⊗ Sℓ(N∗
C)), if ℓ = m+ 1.

If NC is flat, then the vertical component of Φkj further satisfies

[φv
kj]

ℓ ∈ Z1(U , NC ⊗ Sℓ(N∗
C)), m+ 1 < ℓ ≤ 2m.

(b) Let C satisfy Vm. Assume that NC is flat. Then

(2.27) [φv
kj]

ℓ ∈ Z1(U , NC ⊗ Sℓ(N∗
C)), ℓ = m+ 1.

Proof. When ℓ = m + 1, (a) is in Griffiths [15], Morrow-Rossi [30] and (b) is proved in
Ueda [40] for flat line bundle N∗

C over a compact curve C.
(a) The general case can be verified by using Lemma 2.7 to compare coefficients of wα

j

on both sides of Φij(zj , wj) = Φik ◦ Φkj(zj , wj) for |α| ≤ 2m. Indeed, we have Φik =
Nik + (φh

ik, φ
v
ik) and (φh

ik, φ
v
ik)(zk, wk) = O(|wk|m+1) with m ≥ 1. Thus

Nik ◦ Φkj(zj, wj) =
{
Nik ◦Nkj +DNik ◦Nkj · (φh

kj, φ
v
kj)
}
(zj , wj) +O(|wj|2m+1)

= Nik ◦Nkj(zj , wj) + (sik(ϕkj(zj))φ
h
kj, tik(ϕkj(zj))φ

v
kj)

+ (0, Dtik(ϕkj(zj))φ
h
kj(zj)tkj(zj)wj) +O(|wj|2m+1).



17

Here skj are the transition matrices of TC given by (2.7). Therefore,

Φik ◦ Φkj(zj , wj) = Nik ◦ Φkj(zj , wj) + (φh
ik, φ

v
ik) ◦ Φkj(zj , wj)

=
{
Nik ◦Nkj + (φh

ik, φ
v
ik) ◦Nkj

}
(zj, wj)

+
(
sik(ϕkj(zj))φ

h
kj(zj , wj), tik(ϕkj(zj))φ

v
kj(zj, wj)

)

+ (0, Dtik(ϕkj(zj))φ
h
kj(zj)tkj(zj)wj) +O(|wj|2m+1).

Comparing both sides of Φij(zj , wj) = Φik ◦ Φkj(zj , wj) for the coefficients in wj of order
ℓ = m+ 1, we obtain the desired conclusion by Lemma 2.7.

(b) We have Φkj(zj , wj) = (ϕkj(zj) + φh
kj(zj, wj), tkjwj + φv

kj(zj , wj)) with φ
v
kj(zj , wj) =

O(|wj|m+1). Here tkj are constant. We get from the vertical components of Φkj = ΦkiΦij

that

φv
kj(zj , wj) = tkiφ

v
ij(zj , wj) + φv

ki(Φij(zj , wj))

= tkiφ
v
ij(zj , wj) + ϕki(Nij(zj , wj)) +O(|wj|m+2),

since (Φij − Nij)(zj , wj) = O(|wj|2). This shows that {[φv
kj]

ℓ} ∈ Z1(U , NC ⊗ N∗ℓ
C ) for

ℓ = m+ 1 by Lemma 2.7 (a). This gives us (2.27). �

2.8. Automorphisms of neighborhood of the zero section of flat vector bundles.

Let φkj defined on Uk ∩Uj be the transition functions of C. Let Φkj , defined on Vk ∩Vj, be
the transition functions of M , and let Nkj, defined on Ṽk ∩ Ṽj be the transition functions

of NC , with Ṽk = π−1Uk. We identify (C,Uj) as subsets of Ṽj via the zero-section. Recall
Φkj , Nkj, and φkj are the same on Uk ∩ Uj . By Cartan-Serre theorem, for any integer m,
the space of global sections, H0(C, TCM ⊗ SmN∗

C), is finite dimensional.
We say that a vector bundle is flat if its transition matrices are locally constant.

Definition 2.11. (1) A formal tangent vector field Yj on Ṽj vanishing at Uj is identified
with Yj =

∑
ℓ≥1 Y

ℓ
j with Y ℓ

j ∈ Γ(Uj , TCM ⊗ SℓN∗
C) via

∑

|Q|=ℓ

aαQ(hj)v
Q
j

∂

∂hαj
+ bλQ(hj)v

Q
j

∂

∂vλj
7→
∑

|Q|=ℓ

aαQ(zj)(w
∗
j )

Q ∂

∂zαj
+ bλQ(zj)(w

∗
j )

Q ∂

∂wλ
j

.

Here (hj , vj) is the coordinate map for vλj
∂

∂wλ
j

∈ (NC)p and we identity hj with

zj |Uj
and ∂

∂vj
with ∂

∂wj
|Uj

.

(2) A formal automorphism of Ṽj at Uj that is tangent to the identity is an automor-

phism of a formal neighborhood of the 0-section of Ṽj, fixing Uj pointwise.

Lemma 2.12. Let {Fj}j be a collection of formal automorphisms of Ṽj fixing Uj pointwise.

Let {Yj}j be a collection of formal tangent vector fields of Ṽj vanishing at Uj. We have

(1) {Fj}j defines an automorphism F of a formal neighborhood of the 0-section in NC

if and only Fk ◦Nkj = Nkj ◦ Fj for all k, j
(2) Suppose that NC is flat. {Yj}j defines a vector field Y on a formal neighborhood of

the 0-section in NC if and only if {Y ℓ
j } ∈ H0(C, TCM ⊗ SℓN∗

C) for all ℓ.
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(3) Suppose that NC is not flat. {Yj}j defines a vector field on a formal neighborhood of
the 0-section in NC if and only if {Yj} ∈ H0

twisted(C, TCM ⊗⊕ℓ≥2S
ℓN∗

C) with respect

to the linear operator δnf({(Y h
j , Y

v
j )}) = {(Ỹ h

kj, Ỹ
v
kj)} with

Ỹ h
kj = Y h

k (Nkj(hj , vj))−Dφkj(hj)Y
h
j (hj, vj),

Ỹ v
kj = Y v

k (Nkj(hj , vj))− tkj(hj)Y
v
j (hj, vj)−Dtkj(hj)vj .Y

h
j (hj, vj).

Proof. Let (hj , vj) be the coordinates in NC over Uj . Note that {Yj} defines a global
tangent vector filed of NC if and only if DNkj(Yj) = Yk. A homogeneous vector field of

degree ℓ on Ṽj is an element Y ℓ
j ∈ C0(Uj , TCM ⊗ SℓN∗

C) defined by

Y ℓ
j (hj, vj) =

n∑

m=1

Y ℓ,h
j,m(hj , vj)

∂

∂hj,m
+

d∑

r=1

Y ℓ,v
j,r (hj , vj)

∂

∂vj,r
=: Y ℓ,h

j + Y ℓ,v
j .

Recall that Nkj(hj, vj) = (φkj(hj), tkj(hj)vj). Thus

DNkj

(
Y ℓ,h
j + Y ℓ,v

j

)
= Dφkj(hj)Y

ℓ,h
j (hj , vj) + tkj(hj)Y

ℓ,v
j (hj , vj)

+

n∑

j=1

d∑

r,s=1

∂tkj,rs(hj)

∂hj,m
Y ℓ,h
j,m(hj, vj)vj,s

∂

∂vk,r
,

where the last term is in C0(Uk∩Uj , NC⊗Sℓ+1N∗
C). When NC is flat, we see that DNkjYj =

Yk if and only if DNkjY
ℓ
j = Y ℓ

k for each ℓ and that the latter holds if and only if

(2.28) Y ℓ,h
k (φkj(hj), tkjvj) = Dφkj(hj)Y

ℓ,h
j (hj, vj), Y ℓ,v

k (φkj(hj), tkjvj) = tkjY
ℓ,v
j (hj, vj).

In other words, {Y ℓ
j }j defines a global section of TCM ⊗ SℓN∗

C . �

Lemma 2.13. Let Fj be a formal automorphism of Ṽj in NC, which is tangent to identity
and preserves the splitting of TC(NC) along Uj. Then, Fj is the time-1 map of a unique

formal vector field Yj in Ṽj, vanishing on Uj up to order ≥ 2.

Proof. Let Fj be given by

h̃j = hj +
∑

|α|≥2

Aj,α(hj)v
α
j , ṽj = vj +

∑

|β|≥2

Bj,β(hj)v
β
j .

Drop the index j. We want to express it as the time-1 map of a tangent vector field

Y =
∑

ℓ≥2

{
n∑

m=1

Y ℓ,h
m (h, v)

∂

∂hm
+

d∑

r=1

Y ℓ,v
r (h, v)

∂

∂vr

}
,

where Y ℓ,h
m (h, v), Y ℓ,v

r (h, v) are homogeneous polynomials in v of degree ℓ. The flow of Y
with time θ is given by

hθm = hm +
∑

|α|≥2

Aθ
m,α(h)v

α, vθr = vr +
∑

|α|≥2

Bθ
r,α(h)v

α,
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where Aθ, Bθ satisfy A0 = B0 = 0 and

∑

|α|≥2

vαj
dAθ

m,α(hj)

dθ
=
∑

ℓ≥2

Y ℓ,h
m (hθ, vθ),

∑

|α|≥2

vαj
dBθ

r,α(h)

dθ
= Y ℓ,v

r (hθ, vθ).

Inductively, we can verify thatA1
m,α−Y h

m,α, B
1
m,α−Y v

r,α are uniquely determined by Y ℓ,h
m′,β, Y

ℓ,v
r′,β

with ℓ < |α|. �

Note that the formal time-1 mapping of DNkj(Yj) on Ṽk ∩ Ṽj can also be defined and it
equals NkjFjN

−1
kj where Fj is the time-1 map of Yj. Thus the uniqueness assertion in the

lemma implies the following.

Proposition 2.14. Any automorphism F of a formal neighborhood of C in NC, which is
tangent to identity and preserves the splitting of TC(NC), is the time-1 map of a unique
vector field defined on a formal neighborhood of C in NC and vanishing on C. Assume
further that NC is flat. Then any tangent vector field Y of NC that vanishes on C to order
two admits a decomposition

Y =
∑

ℓ≥2

Y ℓ, Y ℓ ∈ H0(C, TCM ⊗ SℓN∗
C).

We write δm = (δhm, δ
v
m) corresponding to the splitting TCM = TC ⊕ NC . Let us set

Gm := Range(δm). We have a decomposition

(2.29) Z1(U , TCM ⊗ SmN∗
C) = Gm ⊕Nm

where Nm ≃ H1(U , TMC ⊗ SmN∗
C). Let C0(U , TMC ⊗ SmN∗

C) = Rm ⊕ ker δm with
δm(Rm) = Gm. We emphasize that the decomposition (2.29) is not unique. For our
convergence result, a natural decomposition will be given via a possibly non-unique min-
imizing solution. Consequently, ⊕ is interpreted as merely a decomposition suitable for
convergence proof.

Lemma 2.15. Suppose that NC is flat. Any formal transformation Fj of Ṽj which is
tangent to identity and preserves the splitting of TC(NC) can be uniquely factorized as

Fj = G−1
j ◦Hj

where Hj−I ∈∑m≥2Rm, Gj is an automorphism of Ṽj, and terms of order m in Gj , Hj are
uniquely determined by the terms of order at most m in Fj. Furthermore, GiNik = NikGk

for all i, k.

Proof. We know that Fj = exp
∑

mC
m
j is the time-1 map of

∑
m≥2C

m
j .

We want to decompose

exp
∑

m

Cm
j = (exp

∑

m

Am
j )(I +

∑

m

Hm
j ).

By Campbell-Hausdorff formula, we are led to the equation

Hm
j = Cm

j − Am
j + Em

j

where Em
j depends only on Cℓ

j , A
ℓ
j for ℓ < m. We determine Am

j , B
m
j by decomposing Cm

j

and Em
j as follow : Let π be the (non-canonical) projection from C0(U , TMC ⊗ SmN∗

C)
onto ker δm. Let {Am

j }j := π({Cm
j + Em

j }). Then {Hm
j } ∈ Rm. �
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Next, we study the dependence of cohomology classes of [φh
kj]

ℓ, [φv
kj]

ℓ in coordinates. We
first consider the full set of linear cohomological equations.

2.9. Formal coordinates in the absence of formal obstructions. For a power series
u(zj, wj), let u

≤m(zj , wj) be the Taylor polynomial of u about wj = 0 with degree m. Thus
we can define

u = u≤m + u>m, u>m(zj , wj) = O(|wj|m+1), [u]m = u≤m − u<m, [u]mℓ = u≤m − u<ℓ.

In order to describe the coboundary operator in next lemma, we define the linear operator

D̃ by

((D̃u)f)(hj, vj) :=
∂u

∂hj
(hj , 0)f

h(hj, vj) +
∂u

∂vj
(hj , 0)f

v(hj , vj),

for a function u(hj, vj). The standard differential D is given by

((Du)f)(hj, vj) =
∂u

∂hj
(hj, vj)f

h(hj , vj) +
∂u

∂vj
(hj , vj)f

v(hj , vj).

Thus

(2.30) (Du− D̃u)f(hj, vj) = (Du(hj, vj)−Du(hj, 0))f(hj, vj).

For a multiindex α = (αh, αv), define

(D̃αu)(hj) =

{
∂|α|u

∂hαh

j ∂vαv

j

}
(hj, 0).

Lemma 2.16. Let Φkj = Nkj + φkj satisfy condition Lm with m ≥ 1. Suppose that
Fj(hj, vj) = (hj, vj) + fj(hj, vj) with fj(hj, vj) = O(|vj|2) are formal mappings such that
{F−1

k ΦkjFj} ∈ Lm. Then, on Uj ∩ Uk, l = 2, . . . , m,

(δ{[fj ]≤l})kj(hj, vj) = −
[
Nkj((I + [fj ]

≤l−2)(hj , vj))−Nkj(hj, vj)(2.31)

−DNkj(hj , vj)[fj ]
≤l−2(hj , vj)

]≤l

−
(
0, (Dtkj(hj)[f

h
j ]

≤l−1(hj, vj))vj

)
.

(a) If fj(hj , vj) = O(|vj|m+1) for all j, then Nkj + φ̃kj = F−1
k ΦkjFj +O(|vj|2m+1) hold

if and only if on Uj ∩ Uk

(2.32) (δ{[fi]≤2m})kj = [φ̃kj − φkj]
≤2m −

(
0, (Dtkj(hj)[f

h
j ]

≤2m−1)vj
)
.

(b) If {Fj} defines a germ of biholomorphism of order m at the zero section of the
normal bundle, i.e.

F−1
k NkjFj(hj , vj) = Nkj(hj, vj) +O(|vj|m+1)

and if fh
j (hj, vj) = O(|vj|m), then V≤m

j (hj , vj) := (hj , vj + [f v
j ]

≤m) preserves {Nkj}.
(c) Suppose F−1

k ΦkjFj ∈ L2m. Assume further that either NC is flat or

(2.33) H0(C, TC ⊗ SpN∗
C) = 0, 2 ≤ p ≤ 2m.
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Then there exist F̂j = I + O(|vj|m+1) where [F̂ h
j ]

2m
m+1 are uniquely determined by

[Φkj]
2m
m+1 such that F̂−1

k ΦkjF̂j ∈ L2m. There exists a unique decomposition {F̂j =

Hj ◦ Vj ◦ F̃j} in the form

Hj(hj, vj) = (hj +Hj(hj, vj), vj),(2.34)

Vj(hj , vj) = (hj , vj + Vj(hj, vj)),(2.35)

[F̃j]
i = 0, ∀2 ≤ i ≤ 2m, [Hj]

ℓ = [Vj]
ℓ = 0, ∀ℓ > 2m.(2.36)

Furthermore, [Hj]
ℓ = [Vj ]

ℓ = 0 for ℓ ≤ m, and Hj are uniquely determined by

(2.37) (δh{Hi})kj = −[φh
kj]

≤2m.

Moreover, φ̃kj = H−1
k ΦkjHj−Nkj satisfy φ̃

h
kj(hj , vj) = O(|vj|2m+1) and φ̃v

kj(hj , vj) =

O(|vj|m+1), and Vi satisfy

(2.38) (δv{Vi})kj = −[φ̃v
kj ]

≤2m.

Proof. Let Φkj = Nkj + φkj and Φ̃kj = Nkj + φ̃kj. Suppose that both φkj and φ̃kj are of

order ≥ m + 1 (i.e. O(|vj|m+1)) and FkΦkj = Φ̃kjFj . Recall that Fk = I + fk. To use the
coboundary operator, we write

fk(Nkj)− D̃Nkjfj + φkj − φ̃kj =
(
fk(Nkj − fk(Nkj + φkj))

)
︸ ︷︷ ︸

A

(2.39)

+
(
φ̃kj(I + fj)− φ̃kj

)

︸ ︷︷ ︸
B

+
(
Nkj(I + fj)−Nkj − D̃Nkjfj

)

︸ ︷︷ ︸
C

.

Since fj has order ≥ 2 at vj = 0, by the Taylor expansion at Nkj and at I respectively,
both A and B are of order ≥ m + 2 (w.r.t vj) at the origin. For the same reason, the
C is of order ≥ 4. We recall that, for each ℓ ∈ N∗, the coboundary operator δ sends
C0(U , TCM ⊗ Sℓ(N∗

C)) into C
1(U , TCM ⊗ Sℓ(N∗

C)) as sections. It is defined in coordinates
by

(δf)kj = D̃Nkjfj(hj , vj)− fk(Nkj(hj , vj))

on Uj ∩ Uk when f = {fj} ∈ C0(U , TCM ⊗ Sℓ(N∗
C)). As δ preserves the degree ℓ of fj in

vj , we shall omit its dependence in ℓ. Truncating the Taylor expansion of (2.39) at vj = 0
up to degree m will lead to the first point.

Since fj(hj , vj) = O(|vj|2), then A,B are of order ≥ m+ 1. Using (2.30), we obtain

C = Nkj(I + fj(hj, vj))−Nkj(hj , vj)−DNkj(hj, vj)fj(hj , vj)

+ (DNkj(hj , vj)−DNkj(hj, 0))fj(hj , vj).

We have (DNkj(hj, vj)−DNkj(hj , 0))fj(hj , vj) = (0, Dtkj(hj)f
h
j (hj, vj)vj). Thus,

C = (0, (Dtkj(hj)f
h
j (hj , vj)vj) + a(1)− a(0)− a′(0)
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with a(λ) = Nkj(hj + λfh
j , vj + λf v

j ). Note that

a(1)−a(0)− a′(0) =

∫ 1

0

(1− λ)a′′(λ) dλ

=
∑

|α|=2

|α|!
α!

∫ 1

0

(1− λ)DαNkj(I + λfj)f
α
j dλ

=
∑

|α|=2

|α|!
α!

∫ 1

0

(1− λ)DαNkj(I + λ[fj ]
≤m−2)([fj]

≤m−2)α dλ+O(|vj|m+1)

= b(1)− b(0)− b′(0) +O(|vj|m+1)

for b(λ) = Nkj(I + λ[fj]
≤m−2). This proves (2.31).

For point (a), we use (2.39) again. This time, we have A(hj, vj) = O(|vj|2m+1) and
B(hj , vj) = O(|vj|2m+1), while C = (0, DNkj(hj)[f

h
j ]

≤2m−1vj) + O(|vj|2m+1). We have
derived (2.32).

For point (b), note that F−1
k NkjFj = Nkj +O(|vj|m+1) is equivalent to FkNkj = NkjFj +

O(|vj|m+1). From the vertical components, we obtain

tkj(hj)vj + f v
k (ϕkj(hj), tkj(hj)vj) = tkj(hj + fh

j )(vj + f v
j (hj , vj)) +O(|vj|m+1).

Since fh
j = O(|vj|m) and f v

j = O(|vj|2), the m-jet (w.r.t. vj) above reads

tkj(hj)vj + [f v
k ]

≤m(ϕkj(hj), tkj(hj)vj) = tkj(hj)(vj + [f v
j ]

≤m(hj, vj)).

That is that V≤m
k Nkj = NkjV≤m

j , as V≤m
j (hj, vj) = (hj, vj + [fj ]

≤m(hj , vj)).
The point (c) follows from Proposition 2.14 when NC is flat. For the remaining case, it

follows from points (a) and (b) as follows.
By (2.32) and H0(C, TC⊗SℓN∗

C) = 0, we obtain [fh
j ]

m
2 = 0. By (b), we know that [Fj]

≤m

preserve Nkj. Then F̂j = Fj([Fj ]
≤m)−1 meet the requirement. The uniqueness of [F̂ h

j ]
ℓ for

m < ℓ ≤ 2m follows from the assumption on H0 too.
We are seeking a unique decomposition Fj = Hj ◦ Vj ◦ F̃j . Let us write F−1

k ΦkjFj =

Nkj + φ̃kj with φ̃kj = O(|vj|2m+1). From the horizontal component of (2.32) in which

[φ̃h
kj]

≤2m = 0 and condition (2.33), we uniquely determine {[fh
j ]

≤2m}. Take Hj(hj, vj) =

(hj + [fj ]
≤2m(hj, vj), vj). Then

(2.40) H−1
k ΦkjHj(hj , vj) = (ϕkj(hj), tkj(hj)vj + φ̃v

kj(hj, vj)) +O(|vj|2m+1).

We still have (H−1
k Fk)

−1(H−1
k ΦkjHj)(H−1

j Fj) ∈ L2m. We have

H−1
j Fj(hj , vj) = Vj(hj , vj) +O(|vj|2m+1), Vj(hj , vj) = (hj , vj + Vj(hj , vj)),(2.41)

where φ̃v
kj, Vj contain only terms of orders ℓ in vj for m+ 1 ≤ ℓ ≤ 2m.

Since Fj = HjVj +O(|vj|2m+1), we have

V−1
k (H−1

k ΦkjHj)Vj ∈ L2m.

From the vertical components of (2.40)-(2.41), and (2.32) in which we take Dtkj[f
h
j ]

≤2m−1 =

0, we see that (2.32) becomes (2.38), i.e. (δv[V ]ℓ)kj = −[φ̃v
kj]

ℓ for ℓ = m + 1, . . . , 2m. To
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show the uniqueness of [Fj]
≤2m, we may assume that Φkj = Nkj + O(|vj|2m+1). Then the

uniqueness follows from the above arguments. �

The following is in Ueda [40], when both the dimension and codimension of C are one.

Lemma 2.17. Let Φkj satisfy condition Vm with m ≥ 1. Suppose that NC is flat and
H0(C,NC ⊗ Sℓ(N∗

C)) = 0 for 1 < ℓ ≤ m. Then [φv
kj]

m+1 ∈ H1(U , NC ⊗ Sm+1(N∗
C))

is independent of coordinates of the neighborhoods of C. Furthermore, there are formal
biholomorphic mappings Fj = I + (fh

j , f
v
j ) with fj(hj , vj) = O(|vj|2) satisfy

(2.42) {F−1
k ΦkjFj} ∈ Vm+1

if and only if [φv
kj]

m+1 = 0 in H1(U , NC ⊗ Sm+1(N∗
C)). When (2.42) holds, {F̃−1

k ΦkjF̃j} is
still in Vm+1, for

F̃j(hj , vj) = (hj, vj + [f v
j ]

m+1(hj , vj)).

Proof. Let Φ̃kj := F−1
k ΦkjFj . We want to show that

[φ̃v
kj]

m+1 = [φv
kj]

m+1 in H1(U , NC ⊗ Sm+1(N∗
C)),

provided that Φ̃kj(hj , vj) = Nkj(hj , vj) + (φ̃h
kj, φ̃

v
kj), Φkj(hj , vj) = Nkj(hj, vj) + (φh

kj, φ
v
kj),

and

(2.43) φ̃v
kj(hj, vj) = O(|vj|m+1), φv

kj(hj, vj) = O(|vj|m+1).

First, we have Fj(hj , vj) = (hj , vj) +O(|vj|2). Suppose that [f v
j ]

≤m∗−1 = 0 for 2 ≤ m∗ ≤
m. Comparing vertical components of Φkj ◦ Fj = Fk ◦ Φ̃kj , we obtain

[
tkj ·

(
vj + f v

j (hj, vj)
)]≤m∗

= (Φv
kj ◦ Fj)

≤m∗(hj , vj)

= (F v
k ◦ Φ̃kj)

≤m∗(hj , vj) = (F v
k )

≤m∗ ◦Nkj(hj, vj).

Here the last identity is obtained from Φ̃kj(hj , vj)−Nkj(hj, vj) = O(|vj|2), [F v
j ]

≤m∗(hj , vj) =

vj + [f v
j ]

m∗ , and (2.43). Looking at terms of order m∗ in wj, we see that {[f v
j ]

ℓ} is a global

section of NC ⊗Sℓ(N∗
C) for ℓ = m∗. This shows that [f

v
j ]

≤m∗ = 0 and we can take m∗ = m,

i.e. [f v
j ]

≤m = 0.

We also have [Φv
kjFj ]

m+1 = tkj[f
v
j ]

m+1 + [φv
kj]

m+1 and [F v
k Φ̃kj]

m+1 = [f v
k ]

m+1 ◦ Nkj +

[φ̃v
kj]

m+1. This shows that

(2.44) [φ̃v
kj]

m+1 − [φv
kj]

m+1 = tkj [f
v
j ]

m+1 − [f v
k ]

m+1 ◦Nkj.

The latter is equivalent to [φ̃v
kj]

m+1 = [φv
kj]

m+1 in H1(U , NC ⊗ Sm+1(N∗
C)), which follows

from Lemma 2.7 (b). The last assertion is equivalent to (2.44) with [φ̃v
kj]

m+1 = 0. �

3. A majorant method for the vertical linearization

Let C be an n-dimensional complex compact manifold embedded in an (n+d)-dimensional
complex manifold. We assume that the normal bundle NC is flat and unitary. Let {tkj}
be its transition (constant) matrices in a suitable covering U = {Uj} of C, we have
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tkjt
∗
kj = Id. Let K(NC ⊗ Sm(N∗

C)) be the “norm” of the cohomological operator act-

ing on C0(U , NC ⊗ Sm(N∗
C)) as defined in Theorem A.12. Let us consider the sequence of

numbers {ηm}m≥1 with η1 = 1 and

(3.1) ηm = K(NC ⊗ Sm(N∗
C)) max

m1+···+mp+s=m
ηm1 · · ·ηmp , m > 1,

where 1 ≤ mi < m for all i and s ∈ N.
In this section, we shall prove the following

Theorem 3.1. Let C be a compact complex submanifold in M with TCM = TC ⊕ NC.
Assume that the embedding is vertically linearizable by a formal holomorphic mapping which
is tangent to the identity and preserves the splitting of TCM or that H1(C,NC⊗Sℓ(N∗

C)) = 0
for all ℓ ≥ 2. We also assume that NC is unitary flat and that H0(C,NC ⊗ Sℓ(N∗

C)) = 0
for all ℓ ≥ 2. Assume that for the ηm defined above, there are positive constants L0, L
such that ηm ≤ L0L

m for all m. Then the embedding is actually holomorphically vertically
linearizable.

Remark 3.2. In the previous Theorem 3.1, if a neighborhood of C is formally vertically
linearizable by a minimizing vertical mapping which is tangent to the identity and preserves
the splitting of TCM , then the assumption ”H0(C,NC ⊗ Sℓ(N∗

C)) = 0, ℓ > 1” is not
necessary. Here by a formal minimizing vertical mapping it means a map of the form
(hj , vj + f v

j (hj, vj)) with {f v
j } ∈ C0(C,

⊕
ℓ≥2NC ⊗ Sℓ(N∗

C)) such that each {[f v
j ]

ℓ}j is a
possibly non-unique Donin (minimizing) solution of a suitable cohomology equation.

Corollary 3.3. Under assumptions of Theorem 3.1, there exists, in a neighborhood of C
in M , a smooth holomorphic d-dimensional foliation having C as a leaf.

Proof. According to Theorem 3.1, there is a neighborhood of the C in M with suitable
holomorphic coordinates patches (Vj, (hj , vj)) with (hj, vj) ∈ Cn×Cd and C∩Vj = {vj = 0},
such that, on Vj ∩ Vk, we have

vk = tkjvj , hk = ϕ̃kj(hj , vj).

We then define the foliation in chart Vj by dvj = 0. �

The rest of the section is devoted to the proof of Theorem 3.1. We follow the method of
majorant developed by T. Ueda [40] for 1-dimensional unitary normal bundle over compact
complex curve.

3.1. Conjugacy equations and cohomological equations. Let us first recall (2.21)
and (2.20) :

(3.2) Lv
kj(f

v
j ) = φv

kj(hj , vj + f v
j )−

(
f v
k (Φ̂

h
kj(hj , vj), tkjvj)− f v

k (ϕkj(hj), tkjvj)
)

where

Φ̂h
kj(hj , vj) = ϕkj(hj) + φh

kj(hj , vj + f v
j ),

Lv
kj(f

v
j ) = f v

k (ϕkj(hj), tkjvj)− tkjf
v
j .
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Let us expand φh
kj(hj, vj + f v

j ) in power of vj by using

φh
kj(hj, wj) =:

∑

Q∈Nd
2

φh
kj,Q(hj)w

Q
j

φh
kj(hj, vj + f v

j (hj , vj)) =:
∑

Q∈Nd
2

h′kj,Q(hj)v
Q
j =: h′kj(hj , vj).

We have

(3.3)
∑

Q∈Nd
2

h′kj,Q(hj)v
Q
j =

∑

Q∈Nd
2

φh
kj,Q(hj)(vj + f v

j (hj , vj))
Q.

Let us also set ∑

Q∈Nd
2

h′′kj,Q(hj)v
Q
j := f v

k (Φ̂
h
kj(hj, vj), tkjvj)− f v

k (ϕkj(hj), tkjvj).

As we shall see below, the functions [h′]m and [h′′]m are defined by induction on m ≥ 2 as
they depend on [f ]l, l = 2, . . . , m− 1.

Therefore, the homogeneous polynomial of degree m ≥ 2 of the Taylor expansion of
solution of the conjugacy equation satisfies

(3.4) Lv
kj([f

v
j ]

m) = [h′kj]
m + [h′′kj]

m.

According to Lemma 2.17, there is a solution to the above equation either by the formal
assumption or by the assumption that the cohomology class of [h′kj]

m + [h′′kj ]
m is 0, i.e. it

is a coboundary. Indeed, since the normal bundle is flat, this class is independent of the
coordinates system and the neighborhood is formally vertically linearizable.

3.2. A modified Fischer norm for symmetric powers. We define a scaler product on
the space of polynomials C[x1, . . . , xd] as follows. First, we set

(3.5)
〈
xR, xQ

〉
mf

:=

{
(r1!)···(rd!)

|R|! if R = Q

0 otherwise
,

∣∣∣∣∣
∑

Q

CQx
Q

∣∣∣∣∣

2

mf

:=
∑

Q

|CQ|2
Q!

|Q|! ,

where R = (r1, . . . , rd) and |R| = r1 + · · · + rd, and CQ are constants. The subscript mf
stands for “modified Fischer”. The associated norm will be denoted by |.|k. The Fischer
(resp. modified Fischer) scalar product has been used in [9, 23, 38] (resp. [28]). Let ω be
an open set on Cn. For a vector of polynomials g = (g1, . . . , gk) ∈ Ok(ω) ⊗ C[x1, . . . , xd],
we set

(3.6) |g|2mf,ω := sup
z∈ω

|g(z, ·)|2mf := sup
z∈ω

k∑

j=1

∑

Q∈Nd

Q!

|Q|! |gj,Q(z)|
2.

We now apply the Fischer norm (resp. modified Fischer norm) to f ∈ Cq(U , E ⊗ SLN∗
C).

Returning to notation in (2.25), we write

fi0...iq(p) =
rankE∑

λ=1

∑

|Q|=L

fλ
i0...iq;Q

(ziq(p))ei0,λ(p)⊗ (w∗
iq
(p))Q,



26

where ei0 is the base of E over Ui0 and w∗
iq
is the base of N∗

C on Uiq . Define

|f |2mf,U := max
(i0,...,iq)∈Iq+1

sup
ziq∈ϕiq (Ui0...iq

)

rankE∑

λ=1

∑

Q

Q!

|Q|!
∣∣∣fλ

i0···iq;Q(ziq)
∣∣∣
2

.(3.7)

When there is no confusion, we shall in the sequel write “f” instead of “mf”. The following
two propositions are a “version with parameters” of [28, propositions 3.6-3.7] (see also [23]).
We only give the proof of the last two points of next proposition.

Proposition 3.4. Let On(ω) ⊗ C[x1, . . . , xd] be the set of polynomials f(x, z) in x with
coefficients holomorphic in z ∈ ω ⊂ Cn.

(a) Let f, g ∈ On(ω)⊗C[x1, . . . , xd] be homogeneous polynomials of degree k, k′ respec-
tively. Then

|fg|f,ω ≤ |f |f,ω|g|f,ω.
(b) Let f ∈ On(ω)⊗ C[x1, . . . , xd] and let f̃P (z, x) =

1
P !
∂Pz f(z, x). Then

|f̃P |f,ω′ ≤ |f |f,ω
(dist∗(ω′, ∂ω))|P | , ∀ω′ ⊂ ω, dist∗(ω

′, ∂ω) := dist(ω′, ∂ω)/
√
n.

(c) Let T be a d× d unitary matrix. Let f ∈ Od
n(ω)⊗ C[x1, . . . , xd]. Then,

|Tf |f,ω = |f |f,ω.
(d) Let T be a d × d unitary matrix. Let f ∈ On(ω) ⊗ C[x1, . . . , xd] and f

T (z, x) :=
f(z, Tx). Then,

|fT |f,ω = |f |f,ω.
Proof. We only prove the last two points. Fix z ∈ ω′. The polydisc center at z with radius
δ := dist(ω′, ∂ω)/

√
n is contained in ω.

By the Cauchy formula, we have

f̃P (z, x) =
1

δ|P |

∫

[0,2π]n
f(z + δ(eiθ1 , . . . , eiθn), x)(eiθ1 , . . . , eiθn)−P dθ1

2π
· · · dθn

2π

=
1

δ|P |

∑

Q∈Nd

xQ
∫

[0,2π]n
fQ(z + δ(eiθ1 , . . . , eiθn))(eiθ1 , . . . , eiθn)−P dθ1

2π
· · · dθn

2π
.

We emphasize that the sum is finite. By the Cauchy-Schwarz inequality applied to the
integral, we have

|f̃P (z, ·)|2mf =
1

δ2|P |

∑

Q∈Nd

|xQ|2mf

∣∣∣∣
∫

[0,2π]n
fQ(z + δ(eiθ1, . . . , eiθn))(eiθ1, . . . , eiθn)−P dθ1

2π
· · · dθn

2π

∣∣∣∣
2

≤ 1

δ2|P |

∑

Q∈Nd

|xQ|2mf

∫

[0,2π]n
|fQ(z + δ(eiθ1 , . . . , eiθn))|2 dθ1

2π
· · · dθn

2π

=
1

δ2|P |

∫

[0,2π]n

∑

Q∈Nd

|xQ|2mf|fQ(z + δ(eiθ1, . . . , eiθn))|2 dθ1
2π

· · · dθn
2π

≤ 1

δ2|P |

∫

[0,2π]n
|f |2ω

dθ1
2π

· · · dθn
2π

=
1

δ2|P | |f |
2
ω.
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For the last point, we have, for a homogeneous polynomial f in x of degree m with holo-
morphic coefficients in ω the identity:

|fm|2ω =
1

πdm!
sup
z∈ω

∫

Cd

|f(z, x)|2e−|x|2dV (x).

In particular, the integral is invariant under the transformation x→ Tx when T is unitary
(and constant). �

Proposition 3.5. For a formal power series f(h, v) =
∑

k fk(z, v) with fk(z, v) being a
homogeneous polynomial in v of degree k of which the coefficients are functions holomorphic
in z ∈ U, the following properties are equivalent:

(a) f is uniformly convergent for v in a neighborhood of the origin, uniformly in U.
(b) There exist M,R > 0 such that for every k, |fk|mf,U ≤ M

Rk .

For convenience, we will use the following orthonormal Fischer base of SLN∗
C :

e∗j,Q =

√
|Q|!
Q!

(w∗
j )

Q, |Q| = L, Q ∈ Nd.

The transition matrices tLkj of SLN∗
C is then determined in the following way : Let Fk =∑

|P |=L Fk,Pe
∗
k,P . We have

(Fk,P )|P |=L = tLkj(Fj,P )|P |=L.

This can be computed from the transition matrices ofN∗
C by expressing the basis w∗

k,1, . . . , w
∗
k,d

in terms of w∗
j,1, . . . , w

∗
j,d. Since tLkj maps orthonormal basis into orthonormal basis, by

Proposition 3.4 we know that tLkj are unitary matrices, i.e. in operator norm defined in
(A.4),

(3.8) |tLkj| = 1, L = 1, 2, . . . .

We will apply results in the appendix to the transition matrices tLkj.

3.3. A majorization in the modified Fischer norm for the vertical linearization.

Let {f v
j } be the formal solution of (3.2). We use notation (3.7). Let ϕj(Uj) = ∆n and

Ukj := Uk ∩ Uj . Define Ûkj = ϕj(Ukj). Then, ϕkj(Ûkj) = Ûjk. Let us first assume that
H0(C,NC ⊗ Sℓ(N∗

C)) = 0 for all ℓ ≥ 2. We shall see later on how to get rid of this
assumption to prove the general result.

Let us assume that there exists a vertical formal transformation F := {Fj} fixing C, being
tangent to identity on it, and preserving the splitting of TCM that linearizes vertically a
neighborhood of C in M . Let us write

Fj(hj, vj) := (hj, vj + fj), fj =
∑

k≥2

[fj ]
k, {[fj ]k} ∈ C0(C,NC ⊗ Sk(N∗

C)).

Assume that there is a sequence {Ak}k≥2 of positive numbers such that

(3.9) ∀k < m |[fj]k|Ûj
≤ ηkAk.

Let us set
A(t) =

∑

k≥2

Akt
k
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with t ∈ C. Let us first estimate both |[h′kj]m|Ûkj
and |[h′′kj]m|Ûkj

in term of Jm−1A(t) :=

A2t
2 + · · ·+ Am−1t

m−1.
Since φh

kj is holomorphic in hj ∈ Ûkj and vj in a neighborhood of the origin. We can
assume that there is a positive R such that

sup
hj∈Ûkj

|φh
kj,Q(hj)| ≤ R|Q|

for all Q ∈ Nd
2, where φ

h
kj,Q is defined by (3.3) and Nd

k := {Q ∈ Nd : |Q| ≥ k}.
For Q ∈ Nd

2, we have

[
(vj + f v

j (hj , vj))
Q
]m

=
∑

(m1,1,...,m1,q1 ,...,md,1,...,md,qd
)

∑d
i=1 mi,1+···+mi,qi

=m

d∏

i=1

[fj,i]
mi,1 · · · [fj,i]mi,qi

where we have set f v
j = (fj,1, . . . , fj,d), [fj,i]

1 = vj,i and [fj,i]
0 = 0. In the following, all mi,j

are positive integers. Hence, by the first point of Proposition 3.4, we have
(3.10)

∣∣[(vj + f v
j (hj , vj))

Q
]m∣∣

Ûkj
≤

∑

(m1,1,...,m1,q1 ,...,md,1,...,md,qd
)

∑d
i=1 mi,1+···+mi,qi

=m

d∏

i=1

|[fj,i]mi,1 |Ûj
· · · |[fj,i]mi,qi |Ûj

.

Let m ≥ 2, for Q ∈ Nd
2, |Q| ≤ m, let us set

EQ,m =

{
(m1,1, . . . , m1,q1, . . . , md,1, . . . , md,qd) ∈ N

|Q|
1 :

d∑

i=1

mi,1 + · · ·+mi,qi = m

}
.

Let Mi = (m
(i)
1,1, . . . , m

(i)

1,q
(i)
1

, . . . , m
(i)
d,1, . . . , m

(i)

d,q
(i)
d

) ∈ N
|Q(i)|
1 with |Q(i)| ≤ mi and mi =

∑d

j=1m
(i)
j,1 + · · · + m

(i)

j,q
(i)
j

, i = 1, 2. Define the concatenation M1 ⊔ M2 to be (M1,M2).

We also have
∑2

j=1

∑d

i=1m
(j)
i,1 + · · · + m

(j)

i,q
(j)
i

= m1 + m2. Hence, we emphasize that the

concatenation

(3.11)


 ⋃

2≤|Q1|≤m1

EQ1,m1


 ⊔


 ⋃

2≤|Q2|≤m2

EQ2,m2


 ⊂

⋃

2≤|Q|≤m1+m2

EQ,m1+m2 .
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As a consequence, according to (3.3) and (4.4), we have

∣∣∣∣∣∣


 ∑

Q∈Nd,|Q|=m

h′kj,Q(hj)v
Q
j



m∣∣∣∣∣∣

Ûkj

≤
m∑

|Q|=2

R|Q|
∑

M∈EQ,m

d∏

i=1

|[fj,i]mi,1 |Ûj
· · · |[fj,i]mi,qi |Ûj

≤
m∑

|Q|=2

R|Q|
∑

M∈EQ,m

d∏

i=1

ηmi,1
Ami,1

· · ·ηmi,qi
Ami,qi

≤




m∑

|Q|=2

ηQ,mR
|Q|(t+ Jm−1(A(t))|Q|




m

≤ Em[gm(t)]
m,(3.12)

where we have set

ηQ,m := max
M∈EQ,m

(
d∏

i=1

ηmi,1
· · · ηmi,qi

)
, Em := max

Q∈Nd

2≤|Q|≤m

ηQ,m,

gm(t) :=

m∑

|Q|=2

R|Q|(t+ Jm−1(A(t))|Q|, g(t) :=
∑

|Q|≥2

R|Q|(t+ A(t))|Q|.

Hence, as formal power series, we have

(3.13) g(t) =

(
1

1− R(t+ A(t))

)d

− dR(t+ A(t))− 1.

Let U∗ = {U∗
i } be an open covering of C such that U∗

i is relatively compact in Ui. We shall

write Û∗
k := ϕk(U

∗
k ). Let us consider the index j as fixed and let us estimate the Fischer

norm of h′′kj on Û
∗
kj := ϕj(Uj ∩ U∗

k ). We have


 ∑

Q∈Nd,|Q|=m

h′′kj,Q(hj)v
Q
j



m

=
∑

P∈Nn
1

m1+m2=m

1

P !

[
∂Ph fk(ϕkj(hj), tkjvj)

]m1
[(
φh
kj(hj , vj + f v

j )
)P]m2

=
∑

P∈Nn
1

m1+m2=m

1

P !

[
∂Ph fk(ϕkj(hj), tkjvj)

]m1
[(
h′kj(hj, vj)

)P ]m2

.

Here, both indices m1 and m2 are ≥ 2. Since the Fischer norm is submultiplicative, we
have

∣∣∣
[(
h′kj(hj, vj)

)P ]m2
∣∣∣
Û∗

kj

≤ Em2







m
2∑

|Q|=2

R|Q|(t+ Jm−1(A(t))|Q|




|P |



m2

.
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Indeed,

[(
h′kj(hj , vj)

)P]m2

=

[
n∏

i=1

(h′kj,i)
pi

]m2

=
∑

∑
i(mi,1+···+mi,pi

)=m2

n∏

i=1

[h′kj,i]
mi,1 · · · [h′kj,i]mi,pi .

According to (3.11) and by (3.12), we have
∣∣∣∣∣

n∏

i=1

[h′kj,i]
mi,1 · · · [h′kj,i]mi,pi

∣∣∣∣∣
Û∗

kj

≤
n∏

i=1

Emi,1

[
gmi,1

(t)
]mi,1 · · ·Emi,pi

[
gmi,pi

(t)
]mi,pi

≤ max
2≤|Q|≤m2

ηQ,m2

n∏

i=1

[
gmi,1

(t)
]mi,1 · · ·

[
gmi,pi

(t)
]mi,pi .

Hence, we have

∑
∑

i(mi,1+···+mi,pi
)=m2

∣∣∣∣∣

n∏

i=1

[h′kj,i]
mi,1 · · · [h′kj,i]mi,pi

∣∣∣∣∣
Û∗

kj

≤ Em2 [g(t)
|P |]m2 .

We have, by definition
[
∂Ph fk(ϕkj(hj), tkjvj)

]m1
= ∂Ph [fk]

m1(ϕkj(hj), tkjvj).
Recall that the Fischer norm is unitary invariant and by Proposition 3.4, we have

∣∣∂Ph [fk]m1(ϕkj(hj), tkjvj)
∣∣2
Û∗

kj

=
∣∣∂Ph [fk]m1(ϕkj(hj), vj)

∣∣2
Û∗

kj

≤
(

P !

dist∗(Û
∗
k , ∂Ûk)|P |

)2

|[fk]m1 |2
Ûk
.

Let us set M := infk dist(Û
∗
k , ∂Ûk). As a consequence, we have

∣∣∣∣∣∣


 ∑

Q∈Nd,|Q|=m

h′′kj,Q(hj)v
Q
j



m∣∣∣∣∣∣

Û∗

kj

≤
∑

m1+m2=m

∑

P∈Nn

|P |≥1

1

M |P | |[fk]
m1 |Ûk

Em2 [g(t)
|P |]m2

≤
∑

m1+m2=m

|[fk]m1 |Ûk


Em2

∑

P∈Nn

|P |≥1

(
g(t)

M

)|P |




m2

≤
(

max
m1+m2=m

ηm1Em2

)[
A(t)

((
M

M − g(t)

)n

− 1

)]m
.(3.14)

Collecting estimates (3.12) and (3.14), we obtain

∣∣Lv
kj([f

v
j ]

m)
∣∣
Û∗

kj

≤
[
Emg(t) +

(
max

m1+m2=m
ηm1Em2

)
A(t)

((
M

M − g(t)

)n

− 1

)]m
.

Let us extend this to an estimate on Ûkj = ϕj(Uj ∩ Uk). Following again Ueda’s argu-
ment [40] let us express the fact that [h]m := [h′]m + [h′′]m is a 1-cocycle with values in
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NC ⊗Sm(N∗
C). Let p ∈ Uk ∩Uj . Then p ∈ Uk ∩Uj ∩U∗

i for some i. According to (3.4) and
Lemma 2.7, at p ∈ Uk ∩ Uj ∩ U∗

i we have
(3.15)

tki
∑

|Q|=m

hik,Q(zk(p))(tkjvj)
Q − tki

∑

|Q|=m

hij,Q(zj(p))(vj)
Q +

∑

|Q|=m

hkj,Q(zj(p))(vj)
Q = 0.

Here by (3.7) the Fischer norms of hkj on all subdomains must be computed in the base
evk of NC on Uk and the base w∗

j of N∗
C on Uj . We can apply the previous estimates (3.12)

and (3.14) to the first two sums respectively on Û∗
ik and Û∗

ij . To estimate the first sum, we
need to change coordinates. From section 2, tkj (resp. skj) are transition matrices of NC

(resp. TC). Recall that {[hkj]m} ∈ Z1(U r∗ , NC ⊗ SmN∗
C) and

hik(p) =

d∑

λ=1

∑

|Q|=m

hλik;Q(zk(p))e
v
i,λ(p)⊗ (w∗

k(p))
Q

=

d∑

λ′=1

d∑

λ=1

∑

|Q|=m

hλik;Q(zk(p))t
λ′

ki,λ(zk(p))e
v
k,λ′(p)⊗ (tkjw

∗
j (p))

Q =: h̃kj(zk(p), w
∗
j ).

Thus,
∑

|Q|=m hik,Q(zk(p))(tkjvj)
Q = h̃kj(zk(p), vj). By the unitary invariance by multi-

plication and composition of the Fischer norm and by definition (3.7), we have for fixed

zk(p) ∈ Û∗
ik,

|h̃kj(zk(p), vj)|2mf =

d∑

λ′=1

∣∣∣∣∣∣

∑

|Q|=m

(
d∑

λ=1

tλ
′

ki,λ(zk)h
λ
ik;Q(zk)

)
(tkjvj)

Q

∣∣∣∣∣∣

2

mf

=

d∑

λ′=1

∣∣∣∣∣∣

∑

|Q|=m

(
d∑

λ=1

tλ
′

ki,λ(zk)h
λ
ik;Q(zk)

)
vQj

∣∣∣∣∣∣

2

mf

=

d∑

λ′=1

∑

|Q|=m

Q!

|Q|!

∣∣∣∣∣

d∑

λ=1

tλ
′

ki,λ(zk)h
λ
ik;Q(zk)

∣∣∣∣∣

2

≤
∑

λ′

∑

|Q|=m

Q!

|Q|!
d∑

λ=1

∣∣hλik;Q(zk)
∣∣2 ≤ d|hik|2Û∗

ik

,

where the second last inequality is obtained by the Cauchy-Schwarz inequality. In a similar
way, we have a similar estimate for the second sum in (3.15) on ϕj(Uk ∩ Uj ∩ U∗

i ). For
the third sum in (3.15), we note that the entries of the unitary matrix tki have modulus at
most one. Thus, there exist constants M ′, M̃ such that the third sum in (3.15) satisfies

|hkj|Ûkj
≤ M ′ max

i
(|hik|Û∗

ik
+ |hij |Û∗

ij
)

≤ M̃ max


Em, max

m1+m2=m
m1,m2≥2

ηm1Em2



[
g(t) + A(t)

((
M

M − g(t)

)n

− 1

)]m
.
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We now adapt the estimate in Lemma A.2 (see also Theorem A.12). Recall that [hkj]
≤m

depends only on [f ]≤m−1 and the hypothesis (3.9). By the formal assumption, we have a
solution to (3.4):

Lkj([f
v
j ]

m) = [hkj]
m.

By assumptions, H0(C,NC⊗Sℓ(N∗
C)) = 0, for all ℓ ≥ 2. Hence, the solution of the previous

equation is unique. By Lemma A.2, (A.5) and (3.8), the solution satisfies the estimate:

|{[f v
j ]

m}|U ≤ C(1 +K∗(NC ⊗ SmN∗
C)|){[hkj]m}|U .

Here, C depends neither on NC nor on SmN∗
C . Therefore, we have

|[f v
j ]

m|Ûj
≤ K(NC ⊗ Sm(N∗

C))max
k

∣∣Lv
kj([f

v
j ]

m)
∣∣
Û∗

kj

.

By definition (3.1), we have

K(NC ⊗ Sm(N∗
C))max


Em, max

m1+m2=m
m1,m2≥2

ηm1Em2


 ≤ ηm.

Hence, we have

(3.16) |[{f v}]m|Û ≤ M̃ηm

[
g(t) + A(t)

((
M

M − g(t)

)n

− 1

)]m
.

Let us consider the functional equation

A(t) = F(t, A(t)) := M̃

(
g(t) + A(t)

((
M

M − g(t)

)n

− 1

))
,

where g(t) is a function of A by (3.13). This equation has a unique analytic solution
vanishing at the origin at order 2.

We now can prove the theorem. Indeed by assumption, there are positive constantsM,L
such that ηm ≤MLm for all m ≥ 2. Since A(t) converges at the origin, then Am ≤ Dm for
some positive D. According to (3.16), we have also proved

|[{f v}]m|Û ≤ ηmAm,

so that, finally, |[{f v}]m|Û ≤M(DL)m for all m ≥ 2. Hence, f v =
∑

m≥2[{f v}]m converges
at the origin and this proves the theorem.

Let us see how we can prove Remark 3.2. The issue is that, when considering a solution
[f v

j ]
m of the cohomological equation Lkj([f

v
j ]

m) = Rm, the estimate given by Lemma A.2
and Proposition A.4 might be obtained by another solution. Hence, the formal solution
might not be the good one for the estimate. Furthermore, we cannot replace a solution at
degree m as we wish to ensure that higher order terms in the vertical component can be
eliminated formally. We now explain the general result as formulated in the theorem. We
will assume that there are formal mappings

F̃j(hj , vj) = (hj, vj) +

(
0,
∑

ℓ>2

f̃ v
j,ℓ(hj, vj)

)

satisfying the following
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(1) {F̃−1
k ΦkjF̃j − Nkj}v = 0 for all k, j. In other words, {F̃j} formally linearizes Φkj

vertically. In particular,

{(F̃m
k )−1ΦkjF̃

m
j −Nkj}v = [φv

kj]
m +Rm

kj({[φkj]
ℓ, [f̃ v

k ]
ℓ}2≤ℓ<m) +O(|vj|m+1)

for

F̃m
j = (hj , vj) +

(
0,
∑

2≤ℓ≤m

f̃ v
j,ℓ(hj, vj)

)
.

(The last assertion can be check easily since (F̃m
j )−1F̃j(hj , vj) = (hj , vj)+O(|vj|m+1)).

(2) Each {f̃ v
j,m}j is a “minimizer” in the sense that it satisfies the equation

{δvf̃ v
m}kj = [φv

kj]
m + [Rm({[φkj]

ℓ, [f̃ v
k ]

ℓ}2≤ℓ<m)]
m

and the estimate

|f̃ v
m| ≤ K(NC ⊗ Sm(N∗

C))|[φv]m + [Rm
kj({[φkj]

ℓ, [f̃ v
k ]

ℓ}2≤ℓ<m)]
m|.

As a consequence, the scheme of convergence applies to that formal solution {F̃j} and
we are done.

4. A majorant method for the full linearization with a unitary normal

bundle

In this section, we shall devise a proof of Theorem 1.4, that is of the linearization of the
neighborhood problem in the case NC is unitary (and flat) following a majorant method
scheme.

Let us recall the horizontal cohomological operator

Lh
kj(f

h
j ) := fh

k (ϕkj(hj), tkjvj)− skj(hj)f
h
j (hj , vj),

where skj(hj) = Dϕkj(hj). We then have the horizontal equation (2.17)

Lh
kj(f

h
j ) = φh

kj(hj + fh
j , vj + f v

j )(4.1)

+ ϕkj(hj + fh
j (hj , vj))− ϕkj(hj)−Dϕkj(hj)f

h
j (hj , vj).

Let us recall the vertical cohomological operator

Lv
kj(f

v
j ) := f v

k (ϕkj(hj), tkjvj)− tkjf
v
j ,

and vertical equation (2.19) (recall that NC is flat)

(4.2) Lv
kj(f

v
j ) = ϕv

kj(hj + fh
j , vj + f v

j ).

By assumption, there exists a formal solution fj = (fh
j , f

v
j ) =

∑
k≥2[fj ]

k with {[fj]k} ∈
C0(C, TCM ⊗ Sk(N∗

C)). In case we assume H1(C, TCM ⊗ Sk(N∗
C)) = 0, for all k ≥ 2, this

follows from Lemma 2.10. We now use the “norm” of the cohomological operator acting
on C0(U , TCM ⊗ Sm(N∗

C)) as defined by Theorem A.12. We have, for m ≥ 2

K̃m := max (K(NC ⊗ Sm(N∗
C)), K(TC ⊗ Sm(N∗

C))) .

As in the foliation problem, we consider the sequence of numbers {ηm}m≥1 with η1 = 1
and, if m ≥ 2

(4.3) ηm := K̃m max
m1+···+mp+s=m

ηm1 · · · ηmp ,
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where, in the maximum, 1 ≤ mi < m for all i and s ∈ N. In what follows, f •
j (resp. φ•

kj)

stands for either fh
j or f v

j (resp. φh
kj or φv

kj). As in the previous section, let us expand

φ•
kj(hj + fh

j , vj + f v
j ) appeared in (4.1) and (4.2) in power series of vj and let us define

φ•
kj(zj , wj) =:

∑

Q∈Nd
2

φ•
kj,Q(zj)w

Q
j

φ•
kj(hj + fh

j (hj , vj), vj + f v
j (hj , vj)) =:

∑

Q∈Nd
2

h•kj,Q(hj)v
Q
j =: h•kj(hj , vj).

Then we obtain∑

Q∈Nd
2

h•kj,Q(hj)v
Q
j =

∑

Q∈Nd
2

φ•
kj,Q(hj + fh

j (hj , vj))(vj + f v
j (hj , vj))

Q.

We further expand the first expression on the right-hand side as

h̃•kj,Q := φ•
kj,Q(hj + fh

j (hj , vj)) =
∑

P∈Nn

1

P !
∂Ph φ

•
kj,Q(hj)(f

h
j (hj , vj))

P .

Hence, for any m ≥ 2,

[h•kj]
m =

∑

m1+m2=m

∑

Q∈Nd
2

∑

P∈Nn

1

P !
∂Ph φ

•
kj,Q(hj)

[
(fh

j (hj , vj))
P
]m1

[
(vj + f v

j (hj , vj))
Q
]m2

.

Let {f •
j } be the formal solution of (4.1) and (4.2). Let us first assume that H0(C, TCM⊗

Sℓ(N∗
C)) = 0 for all ℓ ≥ 2. We shall see later on how to get rid of the assumptions. Assume

that there is a sequence {Ak}k≥2 of positive numbers such that

∀k < m |[fj]k|Ûj
≤ ηkAk.

Let us set
A(t) =

∑

k≥2

Akt
k

with t ∈ C.
Since φ•

kj is holomorphic in hj ∈ Ûkj and vj in a neighborhood of the origin, we can
assume that there is a positive R such that

(4.4) sup
hj∈Ûkj

|φ•
kj,Q(hj)| ≤ R|Q|.

According to (3.10) and the proof of (3.12), we obtain

∣∣[(vj + f v
j (hj, vj))

Q
]m2
∣∣
Ûkj

≤
∑

(m1,1,...,m1,q1 ,...,md,1,...,md,qd
)

∑d
i=1 mi,1+···+mi,qi

=m2

d∏

i=1

|[fj,i]mi,1 |Ûj
· · · |[fj,i]mi,qi |Ûj

≤
∑

M∈EQ,m2

d∏

i=1

ηmi,1
Ami,1

· · · ηmi,qi
Ami,qi

≤ ηQ,m2

[(
t+ Jm2−1A(t)

)|Q|
]m2

.
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On the other hand, let U∗ = {U∗
i } be an open covering of C such that U∗

i is relatively

compact in Ui. We shall write Û∗
k := ϕk(U

∗
k ). Let us set

M := min
k

dist(Û∗
k , ∂Ûk).

Let us consider the index j as fixed and let us estimate the Fischer norm of [h̃•kj]
m1 on

Û∗
kj := ϕj(Uj ∩ U∗

k ). We get

∣∣∣[h̃•kj ]m1

∣∣∣
Û∗

kj

=
∑

P∈Nn

1

P !

∣∣∂Ph φ•
kj,Q(hj)

[
(fh

j (hj, vj))
P
]m1
∣∣
Û∗

kj

≤
∑

P∈Nn

(
1

dist(Û∗
k , ∂Ûk)

)|P | ∣∣φ•
kj,Q

∣∣
Ûkj

∣∣[(fh
j (hj, vj))

P
]m1
∣∣
Û∗

kj

≤
∑

P∈Nn

(
1

M

)|P |
R|Q| ∣∣[(fh

j (hj , vj))
P
]m1
∣∣
Û∗

kj

.

Since fj is of order ≥ 2 at vj = 0, we have |P | ≤ m1

2
in the above sum. According to

estimate (3.10) and following the proof of (3.12), we obtain

∣∣∣[h̃•kj,Q]m1

∣∣∣
Û∗

kj

≤
m1
2∑

P∈Nn,|P |=0

(
1

dist(Û∗
k , ∂Ûk)

)|P |

R|Q|ηP,m1

[
A(t)|P |]m1

.(4.5)

Combining inequalities (4.5) and (4.5), we obtain

∣∣[h•kj ]m
∣∣
Û∗

kj

≤
∑

m1+m2=m

∑

Q∈Nd
2

∑

P∈Nn

1

P !

∣∣∂Ph φ•
kj,Q(hj)

[
(fh

j (hj , vj))
P
]m1

[
(vj + f v

j (hj , vj))
Q
]m2
∣∣
Û∗

kj

≤
∑

m1+m2=m

m2∑

Q∈Nd

|Q|=2

m1
2∑

P∈Nn

|P |=0

(
1

M

)|P |
R|Q|ηP,m1

[
A(t)|P |]m1

ηQ,m2

[(
t+ Jm2−1A(t)

)|Q|
]m2

≤
∑

m1+m2=m

m2∑

Q∈Nd

|Q|=2

m1
2∑

P∈Nn

|P |=0

[(
A(t)

M

)|P |
]m1

ηP,m1ηQ,m2

[(
Rt +RJm2−1A(t)

)|Q|
]m2

≤ Ẽm

[(
1

1− A(t)
M

)n((
1

1− (Rt+RA(t))

)d

− 1− d(Rt+RA(t))

)]m
.

Here, we have set

Ẽm = max
m1+m2=m

max
P∈Nn,Q∈Nd

|P |≤m1
2

,2≤|Q|≤m2,

ηP,m1ηQ,m2.
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It remains to estimate the rest of terms in (4.1). We define

Bm : =
[
ϕkj(hj + fh

j (hj , vj))− ϕkj(hj)−Dϕkj(hj)f
h
j (hj, vj)

]m

=

m
2∑

l=2

∑

|P |=l

1

P !
∂Ph ϕkj(hj)

[
(fh

j )
P
]m
.

Hence, as above, we have

|Bm|Û∗

kj
≤ |ϕkj|Ûkj

m
2∑

l=2

∑

|P |=l

(
1

M

)|P | [
(A(t))|P |]m

≤ |ϕkj|Ûkj

[(
1

1− A(t)
M

)n

− 1− n
A(t)

M

]m
.

By the same reasoning as in the foliation section, the previous estimates on Û∗
kj extend

to estimates on Ûkj, by multiplication by a constant M̃ .
Let us define constant C0 := maxkj |ϕkj|Ûkj

Since we have

|[f •
j ]

m|Ûj
≤ K̃mmax

k

∣∣Lkj([f
•
j ]

m)
∣∣
Ûkj

,

then

|[f •
j ]

m|Ûj
≤ M̃K̃m

(
C0

[(
1

1− A(t)
M

)n

− 1− n
A(t)

M

]m

+ Ẽm

[(
1

1− A(t)
M

)n((
1

1− (Rt+RA(t))

)d

− 1− d(Rt+RA(t))

)]m)
.

We emphasize that due to the vanishing assumption of the spaces H0(U , TCM ⊗Sm(N∗
C)),

m ≥ 2, the solution of cohomological equation Lkj([f
•
j ]

m) = Rm is unique and is equal
to the minimizing solution obtained in Lemma A.2 and Proposition A.4. Consider the
following analytic functional equation :

A(t) = M̃

(
C0

[(
1

1− A(t)
M

)n

− 1− n
A(t)

M

]

+

(
1

1− A(t)
M

)n((
1

1− (Rt +RA(t))

)d

− 1− d(Rt+RA(t))

))
.

It has a unique analytic solution A of order ≥ 2 at the origin. Since we have

K̃mmax(1, Ẽm) ≤ ηm, |[f •
j ]

m|Ûj
≤ Amηm, m ≥ 2

then
∑

m≥2[f
•
j ]

m converges in a neighborhood of the origin.

Let us see how the general case reduces to the previous one. The issue is that, when
considering a solution [f •

j ]
m of the cohomological equation Lkj([f

•
j ]

m) = Rm, the estimate
given by Lemma A.2 and Proposition A.4 might be obtained by another solution. Hence,
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the formal solution might not be the good one for the estimates. So we will need to correct
it. As we already emphasized, equations (4.1) and (4.2) read

Lkj({[f ]ℓi}) = Rkj,ℓ([f ]
ℓ′, ℓ′ < ℓ; [Φ]l, l ≤ ℓ)

where Rkj,ℓ is an analytic function of its arguments. Let us start at ℓ = 2.

(1) Rkj,2 is just a function of the [Φkj]
2’s and and we have Lkj([f ]

2) = Rkj,2. Let

{[f̃j,2]2} be the minimizer solution of this equation obtained by Lemma A.2 and

Proposition A.4 and let [kj]
2 := [fj ]

2 − [f̃j,2]
2. We have {[kj]2} ∈ H0(U , TCM ⊗

S2(N∗
C)).

(2) According to lemma Lemma 2.14, Fj,2 := Fj exp(−[kj ]
2) linearizes Φkj since

F−1
j,2 ΦkjFj,2 = exp(−[kj ]

2)−1Nkj exp(−[kj]
2) = Nkj.

Fj,2 is tangent to identity and its 2nd order term is the minimizer [f̃j ]
2.

(3) Assume that Fj,ℓ linearizes Φkj, is tangent to identity at the origin and has the
minimizers solution up to degree ℓ as Taylor expansion at 0. This means that
Fj,ℓ = Id +

∑ℓ
l=2[f̃j,l]

l +
∑

l≥ℓ+1[fj,ℓ]
l. Let us write the conjugacy equation. By

induction we have, for all 2 ≤ l ≤ ℓ,

Lkj({[f̃i,l]l}) = Rkj,l({[f̃i,l′]l
′}i, l′ < l; [Φ]m, m ≤ l).

Furthermore, it satisfies at degree ℓ+ 1

Lkj({[fi,ℓ+1]
ℓ+1}) = Rkj,ℓ+1({[f̃i,ℓ′]ℓ

′}i, ℓ′ ≤ ℓ; [Φ]m, m ≤ ℓ+ 1).

Let [f̃i,ℓ+1]
ℓ+1 be the minimizer solution of the above cohomological equation. Let

[ki,ℓ+1]
ℓ+1 = [fi,ℓ+1]

ℓ+1− [f̃i,ℓ+1]
ℓ+1. As above, it defines an element of H0(U , TCM ⊗

Sℓ+1(N∗
C)). Let us set Fj,ℓ+1 = Fj,ℓ exp([kj,ℓ+1]

ℓ+1)−1. Then it linearizes Φkj and
has the minimizers solution up to degree ℓ + 1 as Taylor expansion at 0: Fj,ℓ+1 =

Id+
∑ℓ+1

l=2 [f̃j,l]
l +
∑

l≥ℓ+2[fj,ℓ+1]
l.

(4) Since Fj,ℓ+1F
−1
j,ℓ = I+O(ℓ+1), the sequence {Fj,ℓ}ℓ converges in the space of formal

power series to F̃j . Furthermore, {F̃j} linearizes {Φkj} as each {Fj,ℓ}j does. The

Taylor expansion of F̃j at the origin is

F̃j = Id+
∑

l≥2

[f̃j,l]
l.

(5) We can estimate the [f̃j,l]
l as we did above in the case of vanishing cohomology since

the Taylor coefficient are minimizer solutions of the same equations.

Hence, we are done.
In summary, we have proved the following theorem.

Theorem 4.1. Let C be an embedded compact manifold in M . Assume that the embed-
ding is linearizable by a formal holomorphic mapping which is tangent to the identity and
preserves the splitting of TCM , and NC is unitary. Suppose that {ηm}m≥1 defined by (4.3)
satisfy ηm ≤ L0L

m, for some positive numbers L0, L and for all m. Then the embedding is
actually holomorphically linearizable.
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We remark that in general there is a rigid theory on deformations in an analytic family
of complex complex manifolds due to Kodaira [24]. Strengthening Corollary 3.3, we finish
the section with the following corollary. This may be regarded as a rigidity for a simplify
connected manifold.

Corollary 4.2. Keep the assumptions in Theorem 4.1. Assume further that C is simply
connected. Then a neighborhood of C in M is biholomorphic to C × Bd where Bd is the
unit ball in Cd.

Proof. We already know that M admits a horizontal foliation by Corollary 3.3. To show
that each leaf is biholomorphic to C, we may assume that M = NC and we will use the
projection π : NC → C. We fix x0 ∈ C. We take a point p ∈ π−1(x0) close to C. Let L
be the (connected) leaf of the foliation containing p. Then L intersects each fiber of NC

at a unique point. To verify this, we connect a point in x ∈ C to x0 by a continuous path
γ in C with γ(0) = x0 and γ(1) = x. By continuation along leaves, we can find a lifted
continuous path γ̃ and the germ L∗

γ(t) at γ̃(t) of a leaf Lγ(t) such that π(γ̃(t)) = γ(t).
Note that L∗

γ(t
′), L∗

γ(t) are contained in the same leaf on which π is injective, when t′ is

sufficiently close to t. The lifting γ̃(1) is independent of γ. Indeed if γθ(a ≤ θ ≤ b) is a
continuous family of paths connecting x0 to x. Let Lγθ be the leaf associated to γθ. Then

γ̃θ(t) ∈ Lγθ0 (t) when θ is sufficiently close to θ0, as Lγθ(0) = Lγa(0) as a leaf near p.
Obviously, x 7→ γ̃(1) gives a biholomorphism from C onto the leaf through p. And

(x, v) → γ̃(1) defines a biholomorphisms from C × B into NC , where B is a small neigh-
borhood of 0 ∈ π−1(x0). �

5. The full linearization

The main purpose of this section is to solve the linearization problem in the general
setting (i.e. NC not necessarily being flat) under a general hypotheses on the existence of
bounds to the cohomology equations. At the end of the section we will illustrate the results
with Arnold’s examples [2], following computations by Arnol’d [3].

We shall devise a Newton scheme to solve the linearization of the neighborhood problem.
Let us recall the condition.

(Lm) : The neighborhood of C agrees with the neighborhood of the zero section of the
normal bundle up to order m.

That embedding of C has property (Lm) means that the order of (φh
kj(hj, vj), φ

v
kj(hj , vj))

along vj = 0 as defined in (5.16) is ≥ m+ 1.
Assuming that (Lm) holds. We shall assume either that H0(C, TC⊗SpN∗

C) = 0, 2 ≤ p ≤
2m or that NC is flat. According to Lemma 2.16 (c) and (d), the following linearization
step in the Newton method is fulfilled :

(Nm) : If {Φkj} ∈ Lm, then {F−1
k ΦkjFj} ∈ L2m for some {Fj = I + fj} with fj(hj , vj) =

O(|vj|m+1).
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5.1. Domains for iteration and the Donin condition. Following Lemma A.6 and
Proposition A.19, we shall consider a family of nested coverings U r = {U r

i }i∈I of C with
r∗ ≤ r ≤ r∗. Let us fix a trivialization of N∗

C (resp. TC) over U r∗

i by fixing a holomorphic
basis ei = (ei,1, . . . , ei,n+d) of TCM on U r∗

i .

We first define various domains. Let Û r
j := ϕj(U

r
j ) = ∆r

n and U r
kj := U r

k ∩ U r
j . We have

U r
kj = U r

jk. Define Û r
kj = ϕj(U

r
kj). Then

ϕkj(U
r
kj) = Û r

jk.

Donin Condition. Let U r be a family of nested covering of C for r∗ < r < r∗. Let
E ′ = TC orNC . Suppose that there are constants D(E ′⊗SmN∗

C) form = 2, 3, . . . such that
for all r′, r′′ with r∗ < r′′ < r′ < r < r∗ and r′−r′′ ≤ r∗−r, and all f ∈ Z1(U r′ , E ′⊗SmN∗

C)
with f = 0 in H1(U r′, E ′ ⊗ SmN∗

C), there is a solution u ∈ C0(U r′′, E ′ ⊗ SmN∗
C) to δu = f

such that

(5.1) max
j

sup |uj|L∞(Ûr′′

j ) ≤
D(E ′ ⊗ SmN∗

C)

(r′ − r′′)τ
max
k,j

|fkj|L∞(Ûr′

kj
),

where D(E ′ ⊗ SmN∗
C) is independent of r

′, r′′ and f and τ = τ(N∗
C) is independent of m.

In what follow, we shall express sections of bundles in coordinates. It is more convenient
to express domains by using the trivialization of the vector bundle NC . Recall that the NC

has trivializations Nj and transition functions Nkj. Let Br
d be the ball of radius r in Cd

centered at the origin. Thus, we define

V̂ r
j = Nj(V

r
j ) = Û r

j × Br
d, V r

i0···iq := V r
i0
∩ · · · ∩ V r

iq
,(5.2)

V̂ r
i0···iq := Niq(V

r
i0···iq) ⊂ ϕiq(U

r
i0···iq)×Cd,

V̂ r
jk = Nkj(V̂

r
kj), Nkj = N−1

jk on V̂ r
kj,(5.3)

NkiNij = Nkj on V̂ r
kij.(5.4)

Denote the corresponding domains by Ṽ r
j , Ṽ

r
kj when Nj are replaced by Φj . Then we still

have the above relations when Nj, Nkj are replaced by Φj ,Φkj . We know that Φkj are
perturbations of the transition functions Nkj of the normal bundle of C in M , which are

defined on different domains but in the same space. We will however work on domains V̂ r
kj

for Φkj , instead of Ṽ r
kj.

With notation of section 2.6, for L ≥ 1 and for r∗ ≤ r ≤ r∗, we consider a cochain
{fI} ∈ Cq+1(U r,O(TCM ⊗ SL(N∗

C))), given by

fI := fi0···iq(p) =
n+d∑

λ=1

∑

|Q|=L

fλ
i0···iq ;Q(ziq(p))ei0,λ(p)⊗ (w∗

iq
(p))Q

where I = (i0, . . . , iq) ∈ Iq+1. Recall that V̂ r
I = Niq(V

r
i0
∩ · · · ∩ V r

iq
). Define

|fI |r = sup
(hiq ,viq )∈V̂ r

I

|
∑

Q

fI,Q(hiq)v
Q
iq
|.

We also set |{fI}|r = maxI |fI |r.
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Note that V̂ r
j = Ûj ×Br

d are product domains. Also,

Û r
kj × Bc∗r

d ⊂ V̂ r
kj ⊂ Û r

kj × Bc∗r
d , c∗ ≤ 1 ≤ c∗.

Define Br
kj(hj) to be {vj ∈ Br

d : tkj(hj)vj ∈ Br
d}. The skewed domain V̂ r

kj can be described
as follows:

(hj, vj) ∈ V̂ r
kj if and only if hj ∈ Û r

kj, vj ∈ Br
kj(hj).

Next, we note that the d-torus action (hj , vj) → (hj , (ζ1v1, . . . , ζdvd)) with ζ ∈ (S1)d does

not preserve V̂ r
kj when tkj(hj) is not diagonal. Nevertheless, the V̂

r
kj has a disc structure :

(hj, ζvj) ∈ V̂ r
kj, ∀(hj , vj) ∈ V̂ r

kj, ∀ζ ∈ ∆.

Indeed, suppose that (hj, vj) ∈ V̂ r
kj. Then hj ∈ Û r

kj and (hj , vj) = Nj(p) with p ∈ V r
k ∩ V r

j

and Nk(p) = (hk, vk) ∈ V̂ r
k . By definition, V̂ r

j = Ûj ×Br
d. Take p̃ = N−1

j (hj, ζvj). We have

p̃ ∈ V r
j and Nk(p̃) = (hk, tkj(ζvj)) = (hk, ζtkj(vj)) ∈ Û r

kj ×Br
d.

Throughout this section, we use

|uj|ρ = sup
(hj ,vj)∈V̂ ρ

j

|uj(hj, vj)|, |ukj|ρ = sup
(hj ,vj)∈V̂ ρ

kj

|ukj(hj , vj)|

where uj, ukj are functions on V̂
r
j and V̂ r

kj, respectively. We also define |{uI}|ρ = maxI |uI |ρ.
We now prove the following.

Lemma 5.1. Let ukj be a holomorphic function on V̂ r
kj with r∗ < r < r̃ < r∗. Suppose that

(5.5) V̂ r∗
kj 6= ∅.

For 0 < θ < 1 with θr > r∗, we have

|ukj|θr ≤ θm|ukj|r, if ukj(hj , vj) = O(|vj|m); |[ukj]ℓ|r ≤ |ukj|r;
∞∑

ℓ=i

|[ukj]ℓ|θr ≤
θi

1− θ
|ukj|r.

Proof. Let u = ukj. The first inequality follows from the Schwarz lemma applied to the

holomorphic function ζ → u(hj, ζvj) on the unit disk for fixed (hj , vj) ∈ V̂ r
kj. Note that

[u]i(hj , ζvj) = ζ i[u]i(hj, vj). Thus the second inequality follows directly by averaging,

[u]ℓ(hj , vj) =
1

2πi

∫

ζ∈∂∆
u(hj, ζvj)

dζ

ζℓ+1
, (hj , vj) ∈ V̂ r

kj.

The last inequality follows from the first two inequalities. �

For the rest of this section, we rename r in the Donin Condition by r̃ which is fixed now.
We will let r vary in (r∗, r̃).

Lemma 5.2. Let r∗ < θr < r < r̃ < r∗ < 1. Fix k, j ∈ I. Suppose that (1− θ4)r < r∗ − r̃
and (5.5) holds.
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(a) We have

dist(V̂ θr
j , ∂V̂ r

j ) ≥ r(1− θ)/C0, dist(V̂ θr
kj , ∂V̂

r
kj) ≥ r(1− θ)/C0,(5.6)

for some constant C0.
(b) Assume further that θ4r > r∗. There exists a constant C∗

0 such that if Fj = I + fj
satisfy

(5.7) |fj|θ2r ≤ (1− θ)r/C∗
0 ,

then we have

Fj(V̂
θ2r
j ) ⊂ V̂ θr

j , Fj(V̂
θ2r
kj ) ⊂ V̂ θr

kj ,(5.8)

F−1
j (V̂ θ4r

j ) ⊂ V̂ θ3r
j , FjF

−1
j = I on V̂ θ4r

j .(5.9)

Proof. (a) The V̂ r
j is the product domain Û r

j ×Br
d. Thus the first inequality in (5.6) holds

trivially since Û r
j is a polydisc. Note that V̂ r

kj are open sets. Then δ := dist((h, v), (h̃, ṽ)) =

dist(V̂ θr
kj , ∂V̂

r
kj) is attained by

(5.10) (h, v) ∈ ∂V̂ θr
kj , (h̃, ṽ) ∈ ∂V̂ r

kj .

If h̃ ∈ ∂Û r
kj , we immediately get δ ≥ dist(Ûθr

kj , ∂Û
r
kj) ≥ (1− θ)r/C by Lemma A.6. Assume

that h̃ ∈ Û r
kj. Then by the continuity of the function tkj, ṽ must be in ∂Br

kj(h̃). Otherwise,

both h̃ ∈ Û r
kj and ṽ ∈ Br

kj(h̃) are interior points of the two sets, then any small perturbation

of (h̃, ṽ) still satisfies the second condition in (5.10). The last assertion implies that (h̃, ṽ)
cannot be a boundary point and we get a contradiction. Therefore, we have

ṽ ∈ ∂Br
d or tkj(h̃)ṽ ∈ ∂Br

d.

The first case yields |ṽ − v| ≥ dist(Bθr
d , ∂B

r
d) = (1 − θ)r. We now consider the second

case. By assumption tkj is holomorphic in ω for a neighborhood ω of Ûkj. Thus there

is δ∗ > 0 depending only on Ûkj such that if h ∈ Ûkj and |h̃ − h| < δ∗, then the line

segment γ connecting h, h̃ is contained in ω. Suppose that |h̃− h| < (1− θ)r/C1 for C1 to
be determined so that (1 − θ)r/C1 < δ∗. Applying the mean-value-theorem to tkj(γ) and
using tkj(h)v ∈ Bθr

d , we get

C4|ṽ − v| ≥ |tkj(h̃)(ṽ − v)| ≥
∣∣∣|tkj(h̃)ṽ − tkj(h)v)| − |(tkj(h̃)− tkj(h))v|

∣∣∣

≥ (1− θ)r − C5|h̃− h||v| ≥ (1− θ)r/2,

when C1 is sufficiently large. Thus we get dist(Ûθr
kj , ∂Û

r
kj) ≥ (1− θ)r/C as in the first case.

If |h̃− h| ≥ (1− θ)r/C1, the required estimate is immediate.
(b) Note that θ > r∗. By choosing a larger C∗

0 , (5.8) follows from (5.6) immediately. We
want to find F−1. By (5.7) and the Cauchy estimate, we know that

(5.11) |∂hj
fj(hj , vj)|+ |∂vjfj(hj, vj)| ≤ C6/C

∗
0 , ∀(hj , vj) ∈ V̂ θ3r

j .

Note that V r
j = Û r

j × Br
d is convex. By (5.11) and the fundamental theorem of calculus,

we have
|fj(p1)− fj(p0)| ≤ C7|p1 − p0|/C∗

0 , ∀p0, p1 ∈ V̂ θ3r
j .
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Suppose that C∗
0 > 2C7. Then Fj : V̂

θ3r
j → V̂ θ2r

j is injective, and T (hj , vj) = (h̃j , ṽj) −
fj(hj, vj) defines a contraction mapping on V̂ θ3r

j , if (h̃j, ṽj) ∈ V̂ θ4r
j and C∗

0 is sufficiently
large. This gives us (5.9). �

In this section, we change notation and let

f •
j = (fh

j , f
v
j ), φ•

kj = (φh
kj, φ

v
kj).

Lemma 5.3. Let r∗ < θr < r < r̃ < r∗ < 1. Suppose that V̂kj satisfies (5.5). There exists
a constant C∗

1 such that if

|φ•
kj|r ≤ (1− θ)r/C∗

1(5.12)

then we have

Φkj(V̂
θr
kj ) ⊂ V̂ r

jk.

Proof. Note that θ > r∗. Since Φkj −Nkj = φ•
kj and Nkj(V̂

θr
kj ) = V̂ θr

jk , the assertion follows
from (5.6) and (5.12) for sufficiently large C∗

1 . �

Proposition 5.4. Let r∗ < θ7r < r < r̃ < r∗ < 1. Assume that V̂kj satisfies (5.5). Suppose
that Φkj = Nkj + φ•

kj satisfy (5.12). Let Fj = I + fj satisfy fj(hj , vj) = O(|vj|2).
Suppose Φ̃kj = F−1

k ΦkjFj = Nkj + φ̃•
kj. There exists a constant C∗

2 such that if

(5.13) |{fj}|θ2r ≤ (1− θ)r/C∗
2 ,

and φ̃•
kj(hj , vj) = O(|vj|m̃), then

|{φ̃•
kj}|θ7r ≤ C2θ

m̃(|{fj}|θ2r + |{φ•
kj}|r,(5.14)

|{φ̃•
kj}|θ7r ≤ C2θ

m̃(1− θ)r.(5.15)

Proof. Let us write Φ̃kj = Nkj + φ̃•
kj and F

−1
k = I + gk. Thus

φ̃h
kj = ghk ◦ Φkj ◦ Fj + φh

kj ◦ Fj + (ϕkj(I + fh
j )− ϕkj),

φ̃v
kj = gvk ◦ Φkj ◦ Fj + φv

kj ◦ Fj

+ (tkj(hj + fh
j )− tkj(hj))× (vj + f v

j ) + tkj(hj)× f v
j (hj , vj).

According to (5.9), we have Fk(I + gk) = I on V̂ θ4r
k . Thus gk = −fk ◦ F−1

k implies that

|gk|θ4r ≤ |fk|θ3r.
For (hj , vj) ∈ V̂ θ6r

kj , using dist(Ûθ6r
kj , ∂Û

θ5r
kj ) ≥ (1 − θ)θ5r/C0, we can obtain |tkj(hj +

fh
j (hj, vj))−tkj(hj)| ≤ C3|fh(hj , vj)| and | ϕkj(hj+f

h
j (hj , vj))−ϕkj(hj , vj)| ≤ C3|fj(hj , vj)|.

Nesting domains and using (5.12), (5.13) and hence (5.7), we obtain by Lemma 5.2 in which
r is replaced by θ5r :

|{φ̃•
kj}|θ6r ≤ C4(|{fj}|θr + |{φ•

kj}|r,
|{φ̃•

kj}|θ6r ≤ C4(1− θ)r.

Applying Schwarz inequality, we get (5.14)-(5.15). �
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When we apply the above to iteration, the new Φkj in the sequence of iteration is defined
by

(F
(m)
k )−1(· · · ((F (1)

k )−1ΦkjF
(1)
j ) · · · )F (m)

j

on V̂
rm+1

kj with F
(m)
j (V̂

rm+1

kj ) ⊂ V̂ rm
kj .

Let us find [fj ]
2m
m+1(hj, vj), a polynomial of order ≥ m + 1 and of degree ≤ 2m in vj

(holomorphic in hj), such that {F−1
k ΦkjFj} ∈ L2m holds for some {Fj = I + [fj ]

2m
m+1}.

Let us consider the neighborhood written in the new coordinates {Fj}. We obtain for

(hk, vk) = Φ̂kj(hj , vj):

hk = Φ̂h
kj(hj, vj) := ϕkj(hj) + φ̂h

kj(hj , vj),

vk = Φ̂v
kj(hj, vj) := tkj(hj)vj + φ̂v

kj(hj , vj).(5.16)

We assume that φ̂•
kj := (φ̂h

kj, φ̂
v
kj) has order ≥ 2m+ 1 at vj = 0.

Let us write down the horizontal and vertical equations for the linearization problem:
FkΦ̂kj = ΦkjFj . We obtain the horizontal equation

ϕkj(hj) + φ̂h
kj(hj, vj) + fh

k (ϕkj + φ̂h
kj, tkj(hj)vj + φ̂v

kj)

= ϕkj(hj + fh
j (hj , vj)) + φh

kj(hj + fh
j , vj + f v

j ).

The vertical equation reads

tkj(hj)vj + φ̂v
kj(hj , vj) + f v

k (ϕkj + φ̂h
kj, tkj(hj)vj + φ̂v

kj)

= tkj(hj + fh
j )(vj + f v

j ) + φv
kj(hj + fh

j , vj + f v
j ).

We will interpret the above identity as power series in vj with coefficients being holomorphic
in ϕj(Uk ∩ Uj). In what follows, degrees or orders of sections are considered w.r.t. vj at
vj = 0.

5.2. A Newton method for the full linearization. For this problem, the two previous
equations can be written as

(5.17) Lkj(fj) =
(
0, Dtkj(hj)f

h
j vj
)
+ Fkj(fj),

where Lkj(fj) stands for (Lh
kj(f

h
j ),Lv

kj(f
v
j )) as defined by (2.16),(2.18):

Lh
kj(f

h
j ) := fh

k (ϕkj(hj), tkj(hj)vj)− skj(hj)f
h
j (hj , vj),(5.18)

Lv
kj(f

v
j ) := f v

k (ϕkj(hj), tkj(hj)vj)− tkj(hj)f
v
j (hj, vj).(5.19)

Recall that skj(hj) = Dϕkj(hj) is the Jacobian matrix of ϕkj. Furthermore, we have the
horizontal error term

Fh
kj(fj) := φh

kj(hj + fh
j , vj + f v

j )− φ̂h
kj(5.20)

+
(
fh
k (ϕkj, tkj(hj)vj)− fh

k (ϕkj + φ̂h
kj, tkj(hj)vj + φ̂v

kj)
)

+ ϕkj(hj + fh
j (hj , vj))− ϕkj(hj)−Dϕkj(hj)f

h
j (hj, vj),
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as well as the vertical error term

F v
kj(fj) := φv

kj(hj + fh
j , vj + f v

j )− φ̂v
kj +Dtkj(hj)f

h
j f

v
j(5.21)

+
(
f v
k (ϕkj, tkj(hj)vj)− f v

k (ϕkj + φ̂h
kj, tkj(hj)vj + φ̂v

kj)
)

+
(
tkj(hj + fh

j (hj , vj))− tkj(hj)−Dtkj(hj)f
h
j

)
(vj + f v

j ).

We collect 2m jets from (5.17), (5.20), (5.21). Since fj = O(m+1) and φ̂•
kj = O(2m+1),

this gives us

[(δhfh)kj]
≤2m = −[φh

kj]
≤2m,(5.22)

[(δvf v)kj]
≤2m = −Dtkj(hj)[fh

j ]
≤2m−1vj − [φv

kj]
≤2m.(5.23)

Under formal assumptions, according to Lemma 2.16 (c), equations (5.22)-(5.23) have a
solution ([fh

j ]
2m
m+1, [f

v
j ]

2m
m+1).

We first consider the case that H0(C,⊕2m
k=2TC ⊗ Sk(N∗

C)) = 0. Then, for any r∗ < r′′ <
r′ < r̃ < r∗ with

r′′ = θr′ = θ2r, r′ − r′′ < r∗ − r̃,

the solution to (5.22) is unique and by Theorem A.12 that unique solution satisfies the
estimate

(5.24) |{[fh
k ]

l}|r′ ≤
D(TC ⊗ Sl(N∗

C))

(r − r′)τ
|{[φh

kj]
l}|r, l = m+ 1, . . . , 2m.

In particular, {[fh
k ]

2m
m+1} has been determined. The solvability of (5.23) and Theorem A.12

imply that we can find a solution {[f v
k ]

2m
m+1} such that for l = m+ 1, . . . , 2m,

(5.25) |{[f v
k ]

l}|r′′ ≤
D(NC ⊗ Sl(N∗

C))

(r′ − r′′)τ

{
c
D(TC ⊗ Sl−1(N∗

C))

(r − r′)τ
|{[φh

kj]
l−1}|r + |{[φv

kj]
l}|r
}
.

Here c depends only on the Dtkj over the initial covering.
If H0(C,⊕2m

k=m+1TC ⊗ Sk(N∗
C)) 6= 0, we are in the flat case, that is Dtkj = 0. Thus, we

can find a solution {[f v
k ]

2m
m+1} such that for l = m+ 1, . . . , 2m,

(5.26) |{[f v
k ]

l}|r′′ ≤
D(NC ⊗ Sl(N∗

C))

(r′ − r′′)τ
|{[φv

kj]
l}|r.

Let us set

D∗(2m) := 1 + max
2≤l≤2m

{
(1 + cK(TC ⊗ Sl−1(N∗

C)))D(NC ⊗ Sl(N∗
C)
}
.(5.27)

Hence, in any case, estimates (5.24)-(5.26) lead to

|{[f •
k ]

l}|θ2r ≤
C1D∗(2m)

(r − θ2r)2τ
|{[φ•

kj]
l}|r

for all θ and r satisfying r∗ ≤ θ2r < r < r̃ < r∗ and all m + 1 ≤ l ≤ 2m. Assume further
that θ6r > r∗ and (1− θ7)r < r∗ − r̃. We obtain, by Proposition 5.4 with m̃ = 2m+ 1

|φ̂•
kj|θ7r ≤

C1D∗(2m)θ2m+1

(r − θ2r)2τ
|φ•

kj|r ≤ θ2m+1(1− θ)r/C0,
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provided

|{φ•
kj}|r ≤ (1− θ)r/C0,(5.28)

D∗(2m)

(r − θ2r)2τ
|{φ•

kj}|r ≤ (1− θ)r/C0.(5.29)

Note that condition (5.28) follows from (5.29) as D∗(ℓ) ≥ 1.

Rename Φkj , φ
•
kj, Fj , f

•
j , Φ̂kj , φ̂

•
kj respectively as Φ

(0)
kj , φ

(0)
kj , F

(0)
j , f

(0)
j ,Φ

(1)
kj , φ

(1)
kj . Thus Φ

(1)
kj =

(F
(0)
k )−1Φ

(0)
kj F

(0)
j . Repeating this formally, we obtain

Φ
(ℓ+1)
kj = (F

(ℓ)
k )−1Φ

(ℓ)
kj F

(ℓ)
j , F

(ℓ)
j = I + f

(ℓ)
j , Φ

(ℓ+1)
kj = Nkj + φ

(ℓ+1)
kj .

Set rℓ+1 = θ7ℓrℓ and mℓ = 2ℓ. We also have

F
(ℓ)
j (V̂

rℓ+1

j ) ⊂ V̂ rℓ
j ,(5.30)

|φ(ℓ+1)
kj |rℓ+1

≤ θ2mℓ+1
ℓ (1− θℓ)rℓ/C0(5.31)

provided

r∗ ≤ θ7ℓrk < 1, 0 < θk < 1;(5.32)

C1D∗(2mℓ)

(rℓ − θ2ℓrℓ)
2τ
|{φ(ℓ)

kj }|rℓ ≤ (1− θℓ)rℓ/C0.(5.33)

To set parameters, we follow Russmann [35]; see [4,39] for different choices of parameters.
As in [35], we now use an addition assumption that

(5.34) D∗
ℓ ≥ ℓ, ℓ ≥ 1.

Indeed, when D̃∗(k) = max(D∗(k), k) replaces with D∗(k), the sequence D∗(k) still in-
creases and

∑
2−k logD∗(2

k) converges. For a constant C∗ ≥ 1 to be determined later,
define

mℓ = 2ℓ0+ℓ, rℓ+1 = θ7ℓ rℓ, r0 = 1,

1− θℓ = δℓ, δℓ = C∗
logD∗(mℓ+2)

mℓ+2
.

Note that in [35, Lemma 6.2] and [4,39], ω(mℓ+1) is used to define δℓ. Shifting the index by
1, we use D∗(mℓ+2) to simplify the argument. We can find ℓ0 = ℓ0(C∗) such that 0 < θℓ < 1
for all ℓ and furthermore

∞∏

ℓ=0

θ7ℓ =
∞∏

ℓ=0

(1− δℓ)
7 ≥ exp

{
−

∞∑

ℓ=0

7C∗
2

logD∗(mℓ+2)

mℓ+2

}
.

Since
∑

2−k logD∗(2
k) <∞, the latter is larger than r∗, provided ℓ0 > ℓ0(C∗). Inductively,

we want to show that if (5.33)ℓ holds, then (5.33)ℓ+1 also holds. Indeed, with (5.33)ℓ, we
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can use (5.31)ℓ+1 to obtain

C1D∗(mℓ+2)

(rℓ+1 − θ2ℓ+1rℓ+1)2τ
|{φℓ+1

kj }|rℓ+1
× C0

(1− θℓ+1)rℓ+1

≤ D∗(mℓ+2)θ
2mℓ−6
ℓ

(rℓ+1 − θ2ℓ+1rℓ+1)2τ
× 1− θℓ

1− θℓ+1

(by (5.31))

≤ C2D∗(mℓ+2)θ
2mℓ−6
ℓ

(1− θℓ+1)2τ+1
=
C2D∗(mℓ+2)(1− δℓ)

2mℓ−6

δ2τ+1
ℓ+1

.

We need to check that the last expression is less than one by using logarithm. Note that

log(1− δ) < −δ, ∀δ ∈ (0, 1).

Therefore,

log
C2D∗(mℓ+2)(1− δℓ)

2mℓ−6

δ2τ+1
ℓ+1

< logC2 − (2mℓ − 6)δℓ + logD∗(mℓ+2)− (2τ + 1) log δℓ+3

= logC2 − (2mℓ − 6)C∗
logD∗(mℓ+2)

mℓ+2

+ logD∗(mℓ+2)− (2τ + 1) log

(
C∗

logD∗(mℓ+3)

mℓ+3

)

=

{
logC2 −

(2mℓ − 6)C∗
3

logD∗(mℓ+2)

mℓ+2

}
+

{
logD∗(mℓ+2)−

(2mℓ − 6)C∗
3

logD∗(mℓ+2)

mℓ+2

}

+

{
−(2mℓ − 6)C∗

3

logD∗(mℓ+2)

mℓ+2

− (2τ + 1) log

(
C∗

logD∗(mℓ+3

mℓ+3

)}
.

When ℓ0 is sufficiently large, then mℓ+2 > 24. This implies that if C∗ > 12, the sum in
each of first two braces is negative. Since log increases, we have by (5.34)

− logD∗(mℓ+3) ≤ log
1

mℓ+3

,

− log

(
C∗

logD∗(mℓ+3)

mℓ+3

)
≤ − log

(
−C∗

log 1
mℓ+3

mℓ+3

)
.

With mℓ > 6, the difference in the last brace is bounded above by

(2mℓ − 6)C∗
3

log 1
mℓ+2

mℓ+2
− (2τ + 1) log

(
C∗

logmℓ+3

mℓ+3

)
≤
(
− 1

12
C∗ + 2τ + 1

)
logmℓ+2,

which is negative when C∗ > 24τ + 12. We have determined C∗. This allows us to
determine ℓ0(C∗) so that 0 < θℓ < 1 and

∏∞
ℓ=0 θ

7
ℓ > r∗. Therefore, (5.33)ℓ holds if it holds

for initial value ℓ = 0. Using a dilation vj → ǫvj for ǫ > 0, we may replace Φkj(hj , vj) by
(ϕkj(hj) +φh

kj(hj , ǫvj), tkj(hj)vj + ǫ−1φv
kj(hj , ǫvj)). This yields (5.33)0 when ǫ is sufficiently

small, as φ•
kj(hj , vj) = O(|vj|2).

To finish the proof, we set Ψ
(ℓ)
j := F

(0)
j ◦ · · · ◦ F (ℓ)

j . We have

Ψ
(ℓ)
j (V̂

rℓ+1

j ) ⊂ V̂ rℓ
j , Ψ

(ℓ+1)
j (hj , vj)−Ψ

(ℓ)
j (hj, vj) = O(|vj|ℓ).
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Consequently, the sequence Ψ
(ℓ)
j is bounded in V̂ r∞

j . Fix 0 < θ < 1. By the Schwarz lemma,
we get

sup
Û

r∞
j ×B

θr∞
d

|Ψ(ℓ+1)
j −Ψ

(ℓ)
j | ≤ Cθℓ.

Therefore, of Ψ
(ℓ)
j converges uniformly on Û r∞

j × Bθr∞
d to a holomorphic mapping Ψ∞

j .

Then F := N−1
j Ψ∞

j Φj is well defined. Indeed, N−1
k Ψ∞

k Φk = N−1
j Ψ∞

j Φj is equivalent to

Ψ∞
k (ΦkΦ

−1
j ) = (NkN

−1
j )Ψ∞

j . Since Ψ∞
j are tangent to the identity, they are germs of

biholomorphisms. Therefore, F linearizes a small neighborhood of C in M .
Therefore, we have proved the following full linearization result.

Theorem 5.5. Let a neighborhood of the compact manifold C in M be equivalent to a
neighborhood of the zero section of normal bundle NC of C in M by a formal holomorphic
mapping which is tangent to the identity and preserves the splitting of TCM . Assume that
H0(C, TC ⊗ Sℓ(N∗

C)) = 0 for all ℓ > 1 or that the normal bundle NC is flat. If {D∗(2
k)}

defined by (5.1) and (5.27) satisfies

(5.35)
∑

k≥1

logD∗(2
k+1)

2k
< +∞,

there is a neighborhood of the compact manifold C in M that is biholomorphic to a neigh-
borhood of the zero section of normal bundle of C in M .

When C is affine and NC is flat, the formal equivalence assumption can be relaxed by
assuming that the neighborhoods are equivalent under a formal biholomorphisms fixing C
pointwise. This follows from Lemma 2.4 (c).

We now present two examples to illustrate the results in this paper.

5.3. An example of Arnol’d. This is originally studied by Arnold [2], [3, §27] for lin-
earization of a neighborhood. See also Ilyashenko-Pyartli [22] for linearization for flat tori
in higher dimensions.

Example 5.6. [3, §27]. Let C be defined by identifying points in C via

h = 0 mod (2π, 2ω), h ∈ C,

where ω = a+ ib with b > 0 and a ≥ 0. Consider domains in C defined by parallelograms

U1 = P (−rπ − rω, (1 + r)π − rω, (1 + r)π + (1 + r)ω,−rπ + (1 + r)ω)

U4 = U1 + π, U3 = U4 + ω, U2 = U3 − π.

Suppose that r > 0 is sufficiently small. Then Ui ∩Uj has two connected components Uij,0

and Uij,1 with

U14,1 = U14,0 − π, U34,1 = U34,0 − ω, U23,1 = U23,0 − π, U12,1 = U12,0 − ω.

Let Ûj = Uj and V̂j = Ûj ×∆δ. Define M = ∪V̂j/ ∼, Vj = {[x] : x ∈ V̂j}, Φj : Vj → V̂j and
the transition functions Φkj on Vkj = Vk ∩ Vj of M as follows. Let

f(h, v) = (h+ 2ω + vb(h, v), λv(1 + va(h, v))), | Imh| < δ
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where a, b are 2π periodic holomorphic function in h. Define

Φ12,0 = I, Φ43,0 = I, Φ12,1 = f |V̂12
, Φ43,1 = f |V̂43

,(5.36)

Φ14 = I, Φ23 = I,(5.37)

Φ13,0 = I, Φ13,1 = f |V̂13,1
, Φ42,0 = I, Φ42,1 = f |V̂42,1

.(5.38)

The linearization of a neighborhood of C in M is equivalent to G−1
k ΦkjGj = Φ̂kj where Φ̂kj

are constructed as above by replacing f with f̂ defined by

f̂(h, v) = (h + 2ω, λv).

Thus TM has transition functions:

Φ̂14 = I, Φ̂23 = I, Φ̂12,0 = I, Φ̂43,0 = I, Φ̂12,1 = f̂ |V̂12
, Φ̂43,1 = f̂ |V̂43

.

Then we have g := G1 = G4 on V̂1 ∩ V̂4, g := G2 = G3 on V̂2 ∩ V̂3, g := G1 = G2

on V̂12,0 and g := G3 = G4 on V̂34,0. In other words, g is 2π periodic and defined on

−δ Imω < Imh < 2(1 + δ) Imω. The cohomology equation is reduced to G−1
1 Φ12G2 = Φ̂12

and G−1
4 Φ43G3 = Φ̂43. Equivalently, we need to solve

(5.39) g−1fg = f̂ .

Assume that f has been normalized so that

va(h, v) = vnan(h) +O(n+ 1), vb(h, v) = vnbn(h) +O(n+ 1), n = 1, 2, . . . .

For the purpose of illustration, we will only restrict to a special unitary line bundle case
where |λ| = 1. Then by the non-resonance condition that λ is not a root of unity, we may
assume that as in [3, p. 211]

g(h, v) = (h+ vnBn(h), v(1 + vnAn(h)) +O(n+ 1).

This leads to decoupled equations of the form

λnAn(h + 2ω)−An(h) = −an(h),
λnBn(h + 2ω)−Bn(h) = −bn(h).(5.40)

Note that an, bn are holomorphic in | Imh| < δ and we are seeking a solution on a large
strip

−δ′ < Imh < Imω + δ′.

In Fourier coefficients an,ℓ and a non-resonant condition, the Fourier coefficients of An are
given by

An,j =
an,j

λne2ωj
√
−1 − 1

.

Assume that an are holomorphic and 2π periodic in h for Sδ : | Imh| < δ. Suppose that

|λne2jω
√
−1 − 1| ≥ c|λn − 1|.
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Then

|An,j| ≤
C

|λn − 1| |an|L2(Sδ)e
−|j|δ,

|An,je
jh| ≤ C

|λn − 1| |an|L2(Sδ)e
−|j|(δ−δ′), −δ′ < Imh < Imω + δ′.

Furthermore, we can verify that

|An|L2(Sδ′)
≤ C

(δ − δ′)|λn − 1| |an|L2(Sδ).

Note that tkj are locally constant with values 1, λ, λ−1.
Therefore, we have verified

D((TC ⊕NC)⊗ SnN∗
C) ≤

C

|λn − 1| .

By Lemma A.2, we get an estimate with equivalent bounds (up to a scalar) but in the
original domain, i.e. without shrinking domains.

Strictly speaking, the above covering {U r
j } has non smooth boundary. The intersection is

non-transversal either. However, this covering can be easily modified to get a generic cov-
ering defined early, replacing Ûj by smooth strictly convex domains Ûj and then replacing

Ûj by Ûj + cj for suitable small constants.

5.4. Counter-examples. We now show that a certain small-condition is necessary to en-
sure the vertical and full linearizations. We will achieve this by establishing a connection
between the classical linearization problem for germs of one-dimensional holomorphic map-
pings and the vertical linearization of foliated neighborhood of an elliptic curve.

We keep the notation in subsecton 5.3. Let us start with a power series

(5.41) a(h, v) =
∑

n≥2

anv
n := a(v).

Set b(h, v) = 0. Then we have a neighborhood of C associated to

(5.42) f(h, v) = (h + 2ω, λv + a(v)).

Since the vertical part of the transition functions depends only on v, then M is already
admits a horizontal foliation with center C being compact.

Proposition 5.7. LetMλ,ω,a be neighborhood of C defined by transition functions Φkj given
by (5.36)-(5.38) where f is given by (5.41)-(5.42). Suppose that λ, ω satisfy the nonresonant
condition

(5.43) λne2jω
√
−1 − 1 6= 0, n = 2, 3, . . . , j ∈ Z.

Then Mλ,ω,a is vertically (resp. formally) linearizable by a mapping tangent to the identity
if and only if the germ of holomorphic mapping ϕ(v) = λv+ a(v) is holomorphically (resp.
formally) linearizable.

Proof. Suppose that M is vertically linearizable by a holomorphic mapping that is tangent
to the identity. By Proposition 2.6, it is vertically linearization by a mapping Gj such that

Gj(hj, vj) = (hj , vj +O(|vj|2)).
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By the non-resonant condition (5.43), we can verify that (5.39) is equivalent to that the g
in (5.39) has the form g(h, v) = (h, ψ(v)) and ϕ is linearized by ψ. �

The existence of non-holomorphically linearizable ϕ is well-known. By theorems of
Bruno [4] and Yoccoz [41], Proposition 5.7 shows that Mλ,ω,â with â(v) = v2 is vertically
linearizable and hence linearizable if and only if λ is a Bruno number, that is

∑

k≥1

logmax2≤j≤2k |λj − 1|−1

2k
< +∞.

5.5. A foliation example. Here we specialize Ueda’s theory for elliptic curves. Let us
first discuss the Fischer norms and Bergman norm when the NC is unitary. Let us recall
two formulae from Zhu [42, p. 22]:

∫

∂Bd
r

|zQ|2 dσd =
(d− 1)!Q!

(|Q|+ d− 1)!
r2d−1+2|Q|,

∫

Bd
r

|zQ|2 dVd =
d!Q!

(|Q|+ d)!
r2|Q|+d.

Therefore, there is a precise asymptotic behavior of Fischer norm and the Bergman norm:

cd‖g‖2L2(Bd
r )
≤ |g|2f,r ≤ Cd‖g‖2L2(Bd

r )
, 1/4 < r < 4.(5.44)

We also have Bergman’s inequality for L2 holomorphic functions [14, p. 189]:

|f |∞,V̂
(1−θ)r
j

≤ Cd

(θr)d
sup
hj

|f(hj, ·)|L2(Bd
r )
,(5.45)

sup
hj

|f(hj, ·)|L2(Bd
r )
≤ Cd|f |∞,Bd

r
, 1/4 < r < 4.(5.46)

In general, we get

|φ•
kj|L∞(V̂kj,(1−θ)r)

≤ Cd

(θr)d
sup
hj

|φ•
kj(hj, ·)|L2(Bd

kj,r
(hj)),(5.47)

sup
hj

|φ•
kj|L2(Bd

kj,r
(hj)) ≤ Cd|φ•

kj|L∞(V̂ r
kj)
, 1/4 < r < 4.(5.48)

Note that when tkj are unitary, the skewed domain V̂ r
kj defined in (5.2) are actually product

domains

V̂ r
kj = Û r

kj × Br
d.

Therefore, the Fischer norm and Bergman norm bound each other with constants depending
only on θ and d. We can fix θ too by applying Lemma A.2 as we did in sections 3 and 4.
Therefore, any estimate of cohomology equations in Fischer norms has a counter part in
super norm on the unit ball in Cd and vice versa.

Note that the small divisors condition

(5.49) |λn − 1| ≥ Cn−τ , n = 1, 2, . . .

for some constants C, τ is equivalent to Ueda’s condition in terms of dist(Nn
C , 1) for the

foliation problem when C is an elliptic curve of type zero. In this case the linearized
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equation corresponds to equation (5.40) we can take the small divisor 1/K∗(NC ⊗ SnN∗
C)

to be |λn − 1|.
Finally, we should mention that the assumption ηm ≤ L0L

m is satisfied under Siegel’s
small divisor condition |λn−1| ≥ Cn−τ by a method of Siegel; see Ueda [40] for the vertical
linearization problem. It is also satisfied under the Bruno condition [4] which is a condition
weaker than (5.49). For the details, we refer to [4, 34].

Appendix A. L2 bounds of cohomology solutions and small divisors

A.1. A question of Donin. Let E be a holomorphic vector bundle on a compact complex
manifold C. The main purpose of this section is to obtain L2 and sup-norm bounds for the
cohomology equation

(A.1) δu = f

where f ∈ Z1(U ,O(E)) and U is a suitable covering of C. Our goal is to show that if f = 0
in H1(C,O(E)), then there is a solution u such that

(A.2) ‖u‖U ≤ K(E)‖f‖U .
Here ‖ · ‖U is the L2-norm for cochains of the covering U . The main assertion is that the
solution u admits estimate on the original covering U without any refinement, which is
important to the application in this paper. For this purpose, we will choose the covering
U which consists of biholomorphic images of the unit polydisc, which are in the general
position. The question on the existence of such an estimate and solutions was raised by
Donin who asked the general question if O(E) is replaced by a coherent analytic sheaf F
on C and f is any p-cocycle, with p > 0, of a covering U [8]. The result in this appendix
provides an affirmative answer to Donin’s question for p = 1 and the sheaf of holomorphic
sections of a holomorphic vector bundle. Furthermore, we will introduce the small divisor
for (A.1) in (A.2). Although some of results in this appendix can be further developed for
a general setting, we limit to the case of H1(C,O(E ′ ⊗ E ′′)); this suffices applications in
this paper. One may take E ′′ to be the trivial bundle to deal with a general vector bundle
E. In the applications we have in mind, C is embedded into a complex manifold M and
we will take E ′′ to be symmetric powers SymℓN∗

C of N∗
C , the dual of the normal bundle of

C in M . In this paper, SℓE denotes the symmetric power SymℓE of a vector bundle E
over C. We are mainly concerned with how various bounds depend on ℓ as ℓ → ∞ when
we employ the important Fisher metric on SℓN∗

C for unitary the normal bundle NC . This
will be crucial in our applications.

To prove (A.2), we will first use the original estimate of Donin [8], without solving the
cohomology equation. This serves as a smoothing decomposition in the sense of Grauert [14]
by expressing

(A.3) f = g + δu

where g is defined on a larger covering while u is defined on a shrinking covering. We will
then combine with the proof of finiteness theorem of cohomology groups from Grauert-
Remmert [14] to refine the decomposition (A.3) by expressing g in a base of cocycles.
Finally, we will obtain (A.2) by avoiding shrinking of covering. This last step is motivated
by a method of Kodaira-Spencer and Ueda [40]. We take a different approach by an
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essential use of the uniqueness theorem. This allows us to introduce the small divisors in
(A.2) to the cohomology equation (A.1).

A.2. Bounds of solutions of cohomology equations. We now start to introduce nested
coverings of C. This will be an essential ingredient of the small divisors for the cohomology
equation. We cover C by finitely many open sets Ui, i ∈ I such that there are open sets
Vi in M with Vi ∩ C = Ui. We also assume that there are biholomorphic mappings Φi

from Vi onto the polydisc ∆r∗

n+d of radius r∗, where n is the dimension of C and n + d is
the dimension of M . Assume further that Φi(U

r∗

i ) = ∆r∗

n × {0} for ϕi × {0} = Φi|Ui
. Set

U r = {U r
i : i ∈ I} with U r

i = ϕ−1
i (∆r

n). We assume that r∗ < 1 and U r∗ with r∗ < r∗,
remains a covering of C. When U r

I := U r
i0
∩· · ·U r

iq
is non-empty, it is still Stein [14, p. 127].

Definition A.1. Let {U r
j } be an open covering of C for each r ∈ [r∗, r

∗]. We say that
the family of coverings {U r

j } is nested, if each connected component of Uρ
k ∩ U r∗

j intersects
U r∗
k ∩ U r∗

j when r∗ ≤ ρ ≤ r∗. In particular, U r∗
k ∩ U r∗

j is non-empty if and only if Uρ
k ∩ U r∗

j

is non-empty.

Let N(U r∗

i ) be the union of all U r∗

k that intersect U r∗

i ; as in [8] we will call the union
the star of U r∗

i . Refining U r∗ if necessary, we may assume that there is a biholomorphism
ϕi from a neighborhood of the star onto an open set in Cn. If E ′, E ′′ are holomorphic
vector bundles over C, we will fix a trivialization of E ′ over Ui by fixing a holomorphic
basis e′k = {e′k,1, . . . , e′k,m} in U r∗

k . We also fix a holomorphic base e′′j = {e′′j,1, . . . , e′′j,d} of

E ′′ in U r∗

j . On U r∗

I = U r∗

i0
∩ · · · ∩ U r∗

iq
, it will be convenient to use the base

ei0...iq := e′i0 ⊗ e′′iq := {e′i0,k ⊗ e′′iq ,j : 1 ≤ k ≤ m, 1 ≤ j ≤ d}.
Throughout the paper ‖ · ‖D and | · |D denote respectively the L2 and sup norms of a

function in D, when D is a domain in Cn. If f = (f1, . . . , fd) is a vector of functions, we
define the L2 norm, metric, and sup norms as follows:

‖f‖2D := ‖f‖2L2(D) := ‖f1‖2D + · · ·+ ‖fd‖2D,
|f |2D := sup

z∈D
|f1(z)|2 + · · ·+ |fd(z)|2,

|f |∞,D := sup
z∈D

max{|f1(z)|, . . . , |fd(z)|}.

For a d×d matrix t of functions on D, denote by |t|D, ‖t‖D, |t|∞,D respectively the operator
norms defined by

|t|D = sup
|f |D=1

|tf |D, ‖t‖D = sup
‖f‖D=1

‖tf‖D, |t|∞,D = sup
|f |∞,D=1

|tf |∞,D.

Therefore, ‖t‖D ≤ |t|D as ‖tf‖D ≤ (supz∈D |t(z)|)‖f‖D = |t|D‖f‖D.
Then we define the L2 norm for f ∈ Cq(U r,O(E ′ ⊗E ′′)) by

aIeI :=

md∑

µ=1

aµI eI,µ,

‖f‖Ur := max
I=(i0,...,iq)∈Iq+1

{
‖aI ◦ ϕ−1

iq
‖ϕiq (UI ) : fi = aIeI in UI

}
.
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Sometimes we denote ‖f‖Ur∗ by ‖f‖ for abbreviation. We define similarly the metric norm
|f |Ur∗ , or |f |, and the sup-norm |f |∞,Ur∗ or sup |f |. It is obvious that

||f || ≤ C|f |, sup |f | ≤ ‖f‖ ≤ C
√

rank(E ′ ⊗E ′′) sup |f |,
|t|∞ ≤ |t| ≤ C rank(E ′ ⊗ E ′′)|t|∞,

where C does not depend on E ′, E ′′.
The first result of this appendix is to find a way to obtain solutions with bounds to (A.1)

on the original covering, if a solution with a bound exists on a shrinking covering. This
relies on the nested coverings defined above. We first study the L2 norms case.

Lemma A.2. Let U r = {U r
i : i ∈ I} with r∗ ≤ r ≤ r∗ be a family of nested finite coverings

of C. Suppose that f ∈ C1(U r∗ , E ′ ⊗ E ′′) and f = 0 in H1(U r∗ , E ′ ⊗ E ′′). Assume that
there is a solution v ∈ C0(U r∗) such that

(A.4) δv = f, ‖v‖Ur∗ ≤ K‖f‖Ur∗ .

Then there exists a solution u ∈ C0(U r∗) such that δu = f on U r∗ and

(A.5) ‖u‖Ur∗ ≤ C(|{t′kj}|Ur∗ +K|{t′kj}|Ur∗ |{t′′kj}|Ur∗)‖f‖Ur∗ ,

where t′kj, t
′′
kj are the transition matrices of E ′, E ′′, respectively, and C depends only on the

number |I| of open sets in U r∗ and transition functions of C. In particular, C does not
depend on E ′, E ′′.

Proof. By assumptions, we have

fjk = (δv)jk, U r∗
j ∩ U r∗

k ,(A.6)

‖v‖Ur∗ ≤ K‖f‖Ur∗ .(A.7)

Take any v∗ ∈ C0(U r∗ , E ′ ⊗ E ′′) such that δv∗ = f . Then (δv∗ − δv)jk = 0 in U r∗
j ∩ U r∗

k ,

because (δv∗)jk = fjk on the larger set U r∗

j ∩ U r∗

k . Since {U r∗
j } is a covering of C then

w := vj − v∗j is a global section of E ′ ⊗ E ′′. This shows that vj , via v∗j , extends to a

holomorphic section in U r∗

j . In fact, vj is the restriction of uj = v∗j + w defined on U r∗
j .

We now derive the bound for uj. Suppose that U r∗

j ∩U r∗
k is non-empty. By the assump-

tions, each component of U r∗

j ∩U r∗
k intersects U r∗

j ∩U r∗
k . We have uj = uk+fjk on U

r∗
j ∩U r∗

k

and hence the uniqueness theorem implies that it holds on U r∗

j ∩U r∗
k too. And on U r∗

j ∩U r∗
k ,

we have uk = vk and uj = vk − fkj. We express the identity in coordinates

uj = ũjej , vk = ṽkek = v̂kjej , fkj = f̃kjekj = f̂kjejj.

Let t′kj, t
′′
kj respectively be the transition matrices of e′j, e

′′
j for E ′, E ′′. Then t̃kj = t′kj ⊗ t′′kj

are the transition matrices of ekj for E
′ ⊗E ′′. Then we have

v̂kj = t′jk ⊗ t′′jkṽk, f̂kj = t′jk ⊗ Idf̃kj.

Thus, ũj = v̂kj − f̂kj = t′jk ⊗ t′′jkṽk − t′jk ⊗ Idf̃kj. We have

‖ũj‖L2(Ur∗

j ∩Ur∗
k

) = ‖ũj ◦ ϕ−1
j ‖L2(ϕj(Ur∗

j ∩Ur∗
k

))

≤ ‖(t′jk ⊗ t′′jkṽk) ◦ ϕ−1
j ‖L2(ϕj(Ur∗

j ∩Ur∗
k

)) + ‖(t′jk ⊗ Idf̃kj) ◦ ϕ−1
j ‖L2(ϕj(Ur∗

j ∩Ur∗

k
)).
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Here tjk ◦ ϕ−1
j = tjk ◦ ϕ−1

k ◦ ϕkj. By the properties of operator norm and ‖t′kj ⊗ t′′kj‖D ≤
|t′kj ⊗ t′′kj|D ≤ |t′kj|D|t′′kj|D for D = ϕj(U

r∗

j ∩ U r∗
k ), we have

‖(t′jk ⊗ t′′jkṽk) ◦ ϕ−1
j ‖2D ≤ C∗|t′jk|2D × |t′′jk|2D × ‖ṽk‖2ϕk(U

r∗

j ∩Ur∗
k

)
,

where the constant C∗ comes from the Jacobian of zk = ϕkj(zj). By (A.7), we have

‖ṽk ◦ ϕ−1
k ‖2L2 ≤ K2‖f‖2L2.

We also have

‖(t′jk ⊗ Idf̃kj) ◦ ϕ−1
j ‖ϕj(Ur∗

j ∩Ur∗
k ) ≤ |t′jk ◦ ϕ−1

j |ϕj(Ur∗

j ∩Ur∗
k ) × ‖f‖ϕj(Ur∗

j ∩Ur∗
k ).

Since U r∗

j is covered by {U r∗

j ∩ U r∗
k }, we get the desired bound from

‖ũj‖L2(Ur∗

j ) ≤
∑

k

‖ũj‖L2(Ur∗

j ∩Ur∗
k

). �

The argument for the norm | · | is verbatim and we can take the above constant C∗ to
be one.

Corollary A.3. With notations and assumptions in Lemma A.2, the solution u also sat-
isfies

|u|∞,Ur∗ ≤ C(|{t′kj}|Ur∗ +K|{t′kj}|Ur∗ |{t′′kj}|Ur∗)
√

rank(E ′ ⊗E ′′)|f |∞,Ur∗ ,

where C does not depend on E ′, E ′′.

The above lemma leads us to the following proposition and definition.

Proposition A.4. Let U r = {U r
i : i ∈ I} with r∗ ≤ r ≤ r∗ be a family of nested coverings

of a compact complex manifold C. Let E ′ (resp. E ′′) be a holomorphic vector bundle over C
with bases {e′j} (resp. {e′′j}) and transition matrices t′kj (resp. {t′′kj}). Suppose that there is

a finite number K such that for any f ∈ C1(U r∗ , E ′ ⊗E ′′) with f = 0 in H1(U r∗ , E ′ ⊗E ′′),
there is a solution v ∈ C0(U r∗ , E ′ ⊗E ′′) satisfying (A.4). Then there is a possible different
solution v ∈ C0(U r∗ , E ′ ⊗ E ′′) satisfying (A.4) in which K is replaced by

K∗(E
′ ⊗ E ′′) = sup

u1

inf
u0

{
‖u0‖Ur∗ : δu0 = δu1 on U r∗ ,(A.8)

‖δu1‖Ur∗ = 1, ui ∈ C0(U ri, E ′ ⊗E ′′)
}
.

Proof. By the assumption, K∗ = K∗(E
′ ⊗ E ′′) is well-defined and K∗ ≤ K. Fix u1 ∈

C0(U ri, E ′ ⊗ E ′′). Suppose that δu1 = f and ‖f‖Ur∗ = 1. By the definition (A.8), there
exists uj0 such that δum0 = f on U r∗ and ‖um0 ‖Ur∗ ≤ K∗ + 1/m. By the Cauchy formula on
polydiscs, (um0 )j ◦ ϕ−1

j is locally bounded in ϕj(Uj) in sup-norm. We may assume that as
m → ∞, (um0 )j converges uniformly to u∞0 on each compact subset of Uj for all j. This
shows that ‖(u∞0 )j ◦ ϕ−1

j ‖L2(E) ≤ K∗ for any compact subset E of ϕj(Uj). Since E is
arbitrary, we obtain ‖u∞0 ‖Ur∗ ≤ K∗. By the uniform convergence, we also have δu∞0 = f
on U r∗ . �
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Definition A.5. Let E ′, E ′′, e′j , e
′′
j , t

′
kj, t

′′
kj be as in Proposition A.4. Let t′′kj(S

mE ′′) be the
transition matrices of the symmetric power SmE ′′ induced by t′′kj. For m = 2, 3, . . . , we
shall call

K(E ′ ⊗ SmE ′′) = |{t′kj(E ′)}|Ur∗

+K∗(E
′ ⊗ SmE ′′)|{t′kj(E ′)}|Ur∗ |{t′′kj(SmE ′′)}|Ur∗

the generalized small divisors of E ′ ⊗E ′′ with respect to e′′j , t
′′
kj.

A.3. Donin’s smoothing decomposition. Grauert’s smoothing decomposition for cochains
of analytic sheaves is an important tool. Here we will follow an approach of Donin [8], by
specializing for vector bundles.

We first need to introduce coverings by analytic polydiscs.

Lemma A.6. Let C be a compact complex manifold. Let {U r∗
i : i ∈ I} be a finite open

covering of C, and let ϕj map U r
j biholomorphically onto ∆n

r for r∗ < r < r∗ < 1. Assume

further that ϕi is a biholomorphism defined in a neighborhood of the star N(U r∗

i ) onto a
domain in Cn. Suppose that r∗ < r′i < ri < r∗, and

U r′

I := U
r′0
i0

∩ · · · ∩ U r′q
iq

6= ∅.
Then for constant cn ∈ (0, 1) depending only on n,

dist
(
∂(ϕiq(U

r
I )), ∂(ϕiq(U

r′

I ))
)
≥ cnκmin

j
(rj − r′j),(A.9)

κ := inf

{
1,

|ϕiq ◦ ϕ−1
iℓ
(z′)− ϕiq ◦ ϕ−1

iℓ
(z)|

|z′ − z| : z, z′ ∈ ∆n
r∗ , ∀U r∗

i0...iq
6= ∅
}
.(A.10)

Proof. Note that for sets in Cn, if A ⊂ A′, B ⊂ B′, and A, B are non-empty, then

dist(A,B) ≥ dist(A′, B′).

Recall that ϕiq is a diffeomorphism from a neighborhood V of the star N(Uiq) onto a subset

V̂ of Cn. We have ∂ϕiq(U
r
I ) ⊂ ∪j∂ϕiq (U

r
ij
). Thus

dist(∂ϕiq (U
r
I ), ϕiq(U

r′

I )) ≥ min
j

dist(∂ ϕiq(U
r
ij
), ϕiq(U

r′

I )) ≥ min
j

dist(∂ϕiq(U
r
ij
), ϕiq(U

r′

ij
)).

We have dist(∂(ϕiq (U
r
ij
), ϕiq(U

r′

ij
)) = dist(∂(ϕiq ◦ ϕ−1

ij
(∆n

r )), ϕiq ◦ ϕ−1
ij
(∆n

r′)). Recall that ϕiq

is defined on N(Uiq) ⊃ U r∗
ij
. Then the distance is attained for some z′ ∈ ∂∆n

r′ and z ∈ ∂∆n
r .

By the definition of κ, we get the desired estimate. �

We will recall the following smoothing decomposition of Donin [8]. Here we restrict to
the case of H1 and the holomorphic vector bundle to indicate the specific bounds in the
estimates.

Theorem A.7 (Donin [8]). Let C be a compact complex manifold and let U r (r∗ < r <
r∗ < 1) be a family of open coverings of C as in Lemma A.6. Let E ′⊗E ′′ be a holomorphic
vector bundle of rank m over C and fix a holomorphic base e′j (resp. e′′j ) for E

′ (resp. E ′′)
over Uj. Let r∗ < r′′ < r′ < r < r∗, and

r′ − r′′ ≤ r∗ − r.
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Assume that

(A.11) U r∗
kj 6= ∅, whenever U r∗

kj 6= ∅.

Let {fjk} ∈ Z1(U r′ ,O(E ′ ⊗ E ′′)). Then there exist g ∈ Z1(U r,O(E ′ ⊗ E ′′)) and u ∈
C0(U r′′,O(E ′ ⊗E ′′)) such that

f = g + δu, in C1(U r′′,O(E ′ ⊗ E ′′)),(A.12)

‖u‖Ur′′ + ‖g‖Ur ≤
Cn|{t′kj}||{t′′kj}|

(r′ − r′′)κ
‖f‖Ur′ ,(A.13)

where κ is defined (A.10). The constant Cn is independent of E ′, E ′′. Furthermore, f 7→
g = Lf and f 7→ u = Sf are C-linear.

Proof. With f r′

ij = fij we are given a cocycle {f r′

ij } of holomorphic sections of E ′ ⊗E ′′ over

the covering U r′ . Recall that r∗ < r′′ < r′ < r < r∗ and U r′′ is an open covering of C.
As in [8], we will apply L2-theory for (0, 1)-forms on a bounded pseudoconvex do-

main in Cn. In our case the domain is actually a polydisc. Fix a holomorphic base
e′k = (e′k,1, . . . , e

′
k,m) for the vector bundle E

′ in U r∗

k with transition functions t′kj(zj). Anal-

ogously, let t′′kj(zj) be the transition matrices for basis e′′k of E ′′ for U r∗ . For brevity, we
write tkj for tkj(zj).

We can write

(A.14) f r′

ij = f̃ r′

ij eij = t′ki ⊗ t′′kj f̃
r′

ij ekk := f̂ r′;r∗

ij;k ekk, on U r′

i ∩ U r′

j ∩ U r∗

k .

The U r∗

k is covered by U r′;r∗

k := {U r′

i ∩ U r∗

k }i, while {f̂ r′;r∗

ij;k } ∈ Z1(U r′;r∗

k ,Omd). Now

{f̂ r′;r∗

ij;k ◦ ϕ−1
k } ∈ Z1(ϕk(U r′;r∗

k ),Omd), where ϕk(U r′;r∗

k ) is a covering of the polydisc ∆n
r∗ .

By Lemma A.6, we have

(A.15) ci;k := dist(∂(ϕk(U
r′

i ∩ U r∗

k )), ϕk(U
r′′

i ∩ U r
k)) ≥ cnκ(r

′ − r′′).

Let di;k(z) be the distance to ϕk(U
r′′

i ∩ U r
k) from z ∈ Cn. Let χ be a non-negative smooth

function in R so that χ(t) = 1 for t < 3/4 and χ(t) = 0 for t > 7/8. By smoothing the

Lipschitz function χ( 1
ci;k
di;k(z)), we obtain a non-negative smooth function z → φ̃r′′;r′

i;k (z)

that equals 1 when di;k(z) ≤ 1
2
ci;k and by (A.15) it has compact support in ϕk(U

r′

i ∩ U r∗

k ).
Note that we can achieve

(A.16) |∇φ̃r′′;r′

i;k | < Cnc
−1
i;k ≤ cnCnκ

−1/(r′ − r′′).

Then φ̃r′′;r′

i;k ◦ϕk is a non negative function with compact support in U r′

i ∩U r∗

k such that for

φ̃r′′;r′

k :=
∑
φ̃r′′;r′

i;k , we have φ̃r′′;r′

k ◦ ϕk > 1/2 in U r
k =

⋃
i(U

r′′

i ∩ U r
k ) since χ(

1
ci;k
di;k) = 1 on

ϕk(U
r′′

i ∩ U r
k). Then by the mean-value theorem and the first inequality of (A.16), we get

(A.17) φ̃r′′;r′

k (ϕk(x)) > 1/4, if dist(ϕk(x), ϕk(U
r
k)) < min

i
ci,k/C∗,

for some suitable C∗. Recall that cn ≤ 1 and κn ≤ 1. Since dist(ϕk(U
r
k ), ϕk(∂U

r∗

k )) =

r∗ − r′ ≥ cnκ(r
′ − r′′), there is a smooth function φ̂r;r∗

k : ϕk(U
r∗

k ) → [0, 1] with compact
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support such that φ̂r;r∗

k = 1 in ϕk(U
r
k ), and

(A.18) φ̂r;r∗

k (x) < 3/4, if dist(ϕk(x), ϕk(U
r
k )) > min

i
ci,k/C∗.

Note that the latter can be achieved with

|∇φ̂r;r∗

k | < C̃1/min
i
ci,k ≤ C2κ

−1/(r′ − r′′).

In U r∗

k , define a non-negative smooth function

φr′′;r′

i;k =

{
φ̃r′′;r′

i;k

1− φ̂r;r∗

k + φ̃r′′;r′

k

}
◦ ϕk,

where the smoothness follows from the denominator being bigger than 1/4 by (A.17) and

(A.18). Thus, φr′′;r′

i;k has compact support in U r′

i ∩ U r∗

k and
∑

i φ
r′′;r′

i;k = 1 in U r
k =

⋃
i(U

r′′

i ∩
U r
k ), as φ̂

r;r∗

k = 1 on U r
k . We can verify that

(A.19) |∇(φr′′;r′

i;k ◦ ϕ−1
k )| < C ′κ−1/(r′ − r′′).

Consider the expression

(A.20) wj;k =
∑

ℓ

φr′′;r′

ℓ;k f̂ r′;r∗

ℓj;k .

Recall that φr′′;r′

ℓ;k has compact support in U r′

ℓ ∩U r∗

k . Thus it is smooth on ω := U r′

j ∩U r∗

k ∩U r′

ℓ

and vanishes on an open set D containing U r′

j ∩ U r∗

k \ ω. On the other hand, f̂ r′;r∗

ℓj;k is

holomorphic in ω. Hence the product φr′′;r′

ℓ;k f̂ r′;r∗

ℓj;k is smooth in U r′

j ∩U r∗

k . Then vj;k = ∂wj;k

is a smooth (0, 1) form in U r′

j ∩ U r∗

k .
Let A denote the sheaf of smooth functions on C. We now pull back the forms from

the polydisc ∆n via ϕk. For each fixed k, we have {wj;k}j ∈ C0(U r′;r∗

k ,Am). Let us denote
t′kj ⊗ I by t′kj. By fij = fik − fjk and (A.14), we have

t′ki ⊗ t′′kj f̃
r′

ij = t′kif̃
r′

ik − t′kj f̃
r′

jk.

Since
∑

i φ
r′′;r′

i;k = 1 = φ̂r;r∗

k ◦ϕk on U r
k , then by δf = 0 and (A.14), we get on U r′

i ∩U r
k ∩U r′

j

wi;k − wj;k =
∑

ℓ

φr′′;r′

ℓ;k (f̂ r′;r∗

ℓi;k − f̂ r′;r∗

ℓj;k ) =
∑

ℓ

φr′′;r′

ℓ;k (t′kℓ ⊗ t′′kif̃
r′

ℓi − t′kℓ ⊗ t′′kj f̃
r′

ℓj )

=
∑

ℓ

φr′′;r′

ℓ;k (t′kj f̃
r′

jk − t′kif̃
r′

ik) = t′kj f̃
r′

jk − t′kif̃
r′

ik .

The latter is holomorphic. Thus (δv)ij;k = ∂(δw)ij;k = 0 on U r′

i ∩ U r∗

k ∩ U r′

j . This shows
that

vk := vj;k

is actually a ∂-closed (0, 1) form in U r∗

k . Thus (ϕ−1
k )∗vk is a ∂-closed (0, 1)-form on the

polydisk ∆n
r∗ . By the L2 theory [20, Thm. 4.4.3] applied to each component of vk =
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∑m

ℓ=1 ṽ
ℓ
kekk,ℓ, we have a bounded linear operator S : vk → uk such that ∂((ϕ−1

k )∗uk) =
(ϕ−1

k )∗vk. Returning to the complex manifold via ϕk, we have

‖uk‖Ur∗

k
= ‖uk ◦ ϕ−1

k ‖L2(∆n
r∗

) ≤ C‖vk ◦ ϕ−1
k ‖L2(∆n

r∗
)

≤ C̃κ−1|{t′kj}||{t′′kj}|
r′ − r′′

‖f‖L2(Ur∗).

Here we have used (A.20), estimate (A.19) and the definition of norm (A.4). Note that the

C̃ is independent of the rank since we applied the L2 componentwise. Set ĝr
′;r

j;k = wj;k − uk
on U r′

j ∩ U r
k . We obtain

ĝr
′,r

i;k − ĝr
′,r

j;k = f̂ r′;r∗

ij;k , U r′

i ∩ U r
k ∩ U r′

j ,(A.21)

max
j

‖ĝr′;rj;k ‖Ur′

j ∩Ur
k
≤
Cκ−1|{t′kj}||{t′′kj}|

r′ − r′′
‖f‖Ur′ .(A.22)

We have obtained (A.13).
To verify (A.12), we will use the same base ek and take the product of (A.21) with ek in

order to obtain on U r′′

i ∩ U r′′

j ∩ U r
k ∩ U r

ℓ

gr
′;r

i;k − gr
′;r

j;k = f̂ r′;r∗

ij;k ek = f r′

ij = f̂ r′;r∗

ij;ℓ eℓ = gr
′;r

i;ℓ − gr
′;r

j;ℓ

and thus

(A.23) gr
′;r

j;ℓ − gr
′;r

j;k = gr
′;r

i;ℓ − gr
′;r

i;k , on U r′′

i ∩ U r′′

j ∩ U r
k ∩ U r

ℓ .

Then we have a (well-defined) holomorphic section

grkℓ := gr
′;r

i;ℓ − gr
′;r

i;k , U r
k ∩ U r

ℓ .

We verify that {grkℓ} ∈ Z1(U r,Om). Set ur
′′

i := gr
′′;r

i;i . Since r′ ≤ r we actually have

{ur′′i } ∈ C0(U r′ , E ′ ⊗E ′′). However, only on U r′′

i ∩ U r′′

j , we can verify via (A.23) that

grij − f r′

ij = (gr
′′;r

i;j − gr
′′;r

j;j )− (gr
′′;r

i;j − gr
′′;r

i;i ) = ur
′′

i − ur
′′

j . �

The above result is a type of Grauert’s smoothing decomposition, which can also be
obtained by open mapping theorem. See for instance [14, p. 200]. However, this yields an
unknown bound in the estimates.

A.4. Finiteness theorem with bounds. The above smoothing decomposition does not
provide a solution to the cohomology equations, i.e. if f = 0 in H1(U r′ ,O(E ′ ⊗E ′′)), then
there exists u ∈ C0(U r′′,O(E ′ ⊗ E ′′)) such that δu = f on U r′′ , for some r′′ ≤ r′. We
will follow [14] to derive the finiteness theorem with explicit bounds. In particular, this
provides solutions of first cohomology equations with bounds on shrinking domains.

We first recall the resolution atlases from [14, p. 194], specializing them for the vector
bundles. Assume that we have coordinate charts

ϕk : U
r∗

k → Pk := ϕk(U
r∗

k ) = ∆r∗

n .
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Define U r∗

I = U r∗

i0
∩ · · · ∩ U r∗

iq
for I ∈ Iq+1. Then ϕI = (ϕi0 , . . . , ϕiq) is defined on U r∗

I with

range Û r∗

I . Unless otherwise stated, we omit the superscript r∗ in U r∗

I . We can define a
proper embedding

ϕI : UI → ÛI →֒ PI := ∆r∗

nq
, nq = n(q + 1).

Then the push-forward of the vector bundle E ′ ⊗ E ′′|UI
defines a coherent analytic sheaf

(ϕI)∗(E
′ ⊗ E ′′) over PI by trivial zero extension; see [14, p. 5, p. 195] and [13, p. 239]. A

section f ∈ Γ(UI , E
′ ⊗E ′′) yields a section f̂I of (ϕI)∗(E

′ ⊗E ′′) over PI by

f̂I ◦ ϕI(x) = (fI(x), . . . , fI(x)), f̂I |PI\ÛI
= 0.

Note that U r∗ has a Stein neighborhood. Then following notation in [14, p. 196] we have
an epimorphism by Cartan’s Theorem A:

ǫI : Oℓ|∆r∗
nq

→ (ϕI)∗(E
′ ⊗ E ′′)|UI

, ℓ ≥ rank(E ′ ⊗E ′′),

where ǫI is defined by finitely many global sections defined in a neighborhood of PI . When
E ′ ⊗ E ′′ is a vector bundle, we take ℓ to be the minimal value, the rank of E ′ ⊗ E ′′, and
specify the above ǫI by taking

ǫI : gI → g̃I := (ϕI)∗{gI ◦ ϕIeI}.
Here we want to obtain a more general description without restricting to a vector bundle.
Define

Cq(U) :=
∏

I∈Iq+1

Oℓ(PI).

(Set Oℓ(PI) = 0 when U r∗

I is empty.) We recall that PI = ∆r∗

nq
is independent of the order

of multi-indices. Thus

Cq(U) ∼= (O(∆r∗

nq
))L := OL(∆r∗

nq
).

Here L ≤ |Iq+1|ℓ. Let Oh(∆
r
nq
) be the space of holomorphic functions on ∆r

nq
with finite

L2 norm on ∆r
nq
. Set P r

I = ∆r
nq

for I ∈ Iq+1. We define a Hilbert space

Cq
h(U r) :=

∏

I∈Iq+1

Oℓ
h(P

r
I ) := OL

h (∆
r
nq
),

which is a subspace of Cq(U r).
Using the collection ǫ = {ǫI : I ∈ Iq+1}, we define

Cq
h(U r, E ′ ⊗ E ′′) := ǫ(Cq

h(U r)) ∼= Cq
h(U r)/(ker ǫ ∩ Cq

h(U r)),

which is the vector space of q-cochains, equipped with the standard coboundary operator
δ.

Remark A.8. Our cochains are not necessary alternating. As in [14, p. 35], we let
Cq
a(U , E ′ ⊗ E ′′) denotes alternating cochains. For the isomorphism of the two kinds of

Cečh cohomology groups; see [14, p. 35] and Serre [37]. Since we are interested in the
cohomological solutions with bounds, we fix our nation without requiring that the cochains
be alternating.
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Let ‖ · ‖∆r
nq

be the Hilbert space norm on Cq
h(U r) and set

‖ζ‖•Ur = inf{‖v‖∆r
nq
: v ∈ Cq

h(U r), ǫ(v) = ζ}, ζ ∈ Cq
h(U r, E ′ ⊗ E ′′).

The inclusion Cq
h(U r, E ′ ⊗E ′′) →֒ Cq(U r, E ′ ⊗E ′′) is continuous and compact ([14, Thm. 3,

p. 197]). We also define

Zq
h(U r) := ǫ−1(Zq

h(U r, E ′ ⊗ E ′′)),

‖ζ‖Ur := inf{‖v‖∆nq
r
: v ∈ Zq

h(U r), ǫ(v) = ζ}, ∀ζ ∈ Zq
h(U r, E ′ ⊗E ′′),

v := ǫ(v).

Then Zq
h(U r, E ′ ⊗ E ′′) is an isometric subspace of Cq

h(U r, E ′ ⊗ E ′′) via inclusion. Let
{g0, g1, . . . } be a monotone orthogonal base of Z1

h(U r) ([14, p. 141, p. 201]). An important
feature of the monotone base is that the vanishing orders of gj at the origin satisfy

ord0 g0 ≤ ord0 g1 ≤ · · · , lim
i→∞

ord0 gi = ∞.

By [14, Thm. 1, p. 192 and p. 201], for a given ν there is an µ such that

gi(Z) = O(|Z|ν), i > µ, Z ∈ ∆nq
r .(A.24)

In fact, let the index set be I = {1, . . . , L}. Set ω((f1, . . . , fL)) = min{(α,Q) : fα,Q 6= 0}
by using order < on I ×Nm defined by (α, P ) < (β,Q) if |P | < |Q|, or if |P | = |Q| and
there is an ℓ such that pℓ < qℓ and pℓ′ = qℓ′ for all ℓ

′ > ℓ, or if P = Q and α < β. Then the
basis {gj} satisfies

ω(gj) < ω(gj+1).

We now return to the case q = 1 with nq = 2n. In the sequel, {|t′kj|} = {|t′kj|}Ur∗ and
{|t′′kj}| = {|t′′kj|}Ur∗ .

Theorem A.9 (Donin-Grauert-Remmert). Let C be a compact complex manifold and let
U r (r∗ < r < r∗ < 1) be a family of open coverings of C as in Lemma A.6 such that (A.11)
holds for all k, j. Let E = E ′ ⊗ E ′′ be a holomorphic vector bundle of positive rank m
over C and fix a holomorphic base e′j (resp. e′′j ) for E

′ (resp. E ′′) over U r∗

j . Suppose that
r∗ < r′′ < r′ < r < r∗ and r′ − r′′ ≤ r∗ − r. Let θ = r′/r. Let {g0, g1, . . . } be a monotone
orthogonal base of Z1

h(U r) as above. Assume that µ, ν satisfy (A.24) and

t :=
Cnκ

−1

(r′ − r′′)(r − r′)2n
θν < 1/2.(A.25)

There exist gm0 , . . . , gmµ∗
such that their equivalence classes in H1(U r, E) form a C-linear

basis of subspace spanned by g0, · · · , gµ in H1(U r, E). For any f ∈ Z1
h(U r′ , E) there exists

v ∈ C0
h(U r′′ , E) satisfying f = δv +

∑µ∗

0 cigmi
with

|ci| ≤
Cnκ

−1Ar(E)

r − r′
‖f‖Ur′ ,(A.26)

‖v‖Ur′′ ≤
Cnκ

−1Br−(E)

r − r′
‖f‖Ur′ , ∀r− ∈ [r′, r),(A.27)
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gj =

µ∗∑

i=0

cjigmi
+ δη∗j , η∗j ∈ C0(U r, E),(A.28)

Ar(E) = |{t′kj}||{t′′kj}| max
0≤i≤µ∗

µ∑

j=0

|cji|, Br−(E) = |{t′kj}||{t′′kj}|
µ∑

j=0

‖{η∗j}‖Ur
− .(A.29)

Furthermore, all cj = 0 when f = 0 in H1(C,E).

Remark A.10. The solution operator f → v may not be linear. See a proof by Donin [8] to
get a linear solution operator for which the constant C∗ results from a lemma of Schwartz.

Remark A.11. The previous theorem gives a solution v, defined on a smaller domain, to
the equation f = δv (i.e cohomological equations) whenever f is 0 in the first cohomology
group. It also provides a bound of the solution in terms of the data. We emphasize that
this bound depends on the bundle E ′ ⊗ E ′′. In the applications we have in mind, we will
have to consider a sequence of bundles {SmE ′′}m, and we will need to control the growth
of these bounds as m goes to infinite, similarly to the small divisors appearing in local
dynamical systems.

Proof. Recall that q = 1 and n1 = 2n. We may assume that ‖gj‖∆r
2n

= 1. By the definition
of µ, ν and the monotone basis, we have for any v ∈ Z1

h(U r),

‖v −
µ∑

j=0

(v, gj)gj‖∆r′

2n
≤ Cn

(r − r′)2n
(r′/r)ν‖v‖∆r

2n
(A.30)

where Cn(r − r′)−2n is the constant M in [14, Thm. 6, p. 191].
Replacing the smoothing lemma in [14, p. 200] by Theorem A.7, we derive some estimates

following the proof of the finiteness lemma in [14, p. 201]. By assumption, we have

t =
Cnκ

−1

(r′ − r′′)(r − r′)2n
θν < 1/2, θ =

r′

r
< 1.

Let ζ0 := f ∈ Z1
h(U r′, E ′⊗E ′′). By Theorem A.7, we have for some ξ0 ∈ Z1

h(U r, E ′⊗E ′′)

ζ0 = ξ0 + δη0,

‖ξ0‖Ur ≤ t′‖ζ0‖Ur′ , ‖η0‖Ur′′ ≤ t′‖ζ0‖Ur′ ,

with t′ :=
Cn|{t′kj}||{t′′kj}|

κ(r′−r′′)
. Let v denote ǫ(v). Then ξ0 = v0 for some v0 satisfying ‖v0‖∆r

2n
=

‖ξ0‖Ur ; see [14, p. 198]. Consider

w1 = v0 −
µ∑

j=0

(v0, gj)∆r
2n
gj, ζ1 = w1.

According to (A.30), we have

‖ζ1‖Ur′ ≤ ‖w1‖Ur′ ≤ Cn

(r − r′)2n
(r′/r)ν‖v0‖∆r

2n
≤ t‖ζ0‖Ur′ .
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Therefore

ζ0 =

µ∑

j=0

(v0, gj)∆r
2n
gj + δη0 + ζ1.

In general, we have

ζℓ =

µ∑

j=0

(vℓ, gj)∆r
2n
gj + δηℓ + ζℓ+1,

‖vℓ‖∆r
2n

= ‖ξℓ‖Ur ≤ t′tℓ‖ζ0‖Ur′ ,

‖ζℓ+1‖Ur′ ≤ t‖ζℓ‖Ur′ ≤ tℓ+1‖ζ0‖Ur′ ,

‖ηℓ‖Ur′′ ≤ t′tℓ‖ζ0‖Ur′ .

Then we have

f = ζ0 =

µ∑

j=0

∞∑

ℓ=0

(vℓ, gj)∆r
2n
gj + δ

∞∑

ℓ=0

ηℓ,

∞∑

ℓ=0

|(vℓ, gj)| ≤
∞∑

ℓ=0

‖vℓ‖∆r
2n

≤ t′

1− t
‖ζ0‖Ur′ ,

∞∑

ℓ=0

‖ηℓ‖Ur′′ ≤ t′

1− t
‖ζ0‖Ur′ .

So far we have followed the proof of the finiteness lemma in [14, p. 201]. We now finish
the proof of the theorem. Let us first find the linearly independent elements gi0 , . . . , giµ∗ .
Assume first that all gi = 0 in H1 := H1(U r, E ′⊗E ′′). Then δηj = gj with ηj ∈ C0(U r, E).
Assume now that gm0 6= 0 in H1 for some m0. Then we have two cases again: either
gi = ci0gm0 + δηi on U r for all i ∈ {0, . . . , µ} \m0, or it fails for some m1. We repeat this
to exhaust all elements so that

(A.31) gj = δη∗j +

µ∗∑

i=0

cjigmi
, η∗j ∈ C0(U r, E), 0 ≤ j ≤ µ

while gm0 , . . . , gmµ∗
are linearly independent in H1. (Note that the above expression means

the trivial identity gj = gj when j is not in {m0, . . . , mµ∗}.) We have obtained (A.28) with
the decomposition

f =

µ∗∑

j=0

cjgmj
+ δv,

cj =
∞∑

ℓ=0

(vℓ, gj)∆r
2n
+

µ∑

i=0

cij

∞∑

ℓ=0

(vℓ, gi)∆r
2n
,

v =

µ∑

i=0

∞∑

ℓ=0

(vℓ, gi)∆r
2n
η∗i +

∞∑

ℓ=0

ηℓ.



63

The solution η∗j in (A.31) can be bounded in U r− for any r− < r. Of course we need to

estimate η∗j on U r′ . Thus, r− ≥ r′. We have

µ∑

j=0

∞∑

ℓ=0

|(vℓ, gj)∆r
2n
cji| ≤

t′

1− t

µ∑

j=0

|cji|‖ζ0‖Ur′ ,

∥∥∥∥∥

{ ∞∑

ℓ=0

ηℓ +

∞∑

ℓ=0

µ∑

j=1

(vℓ, gj)∆r
2n
η∗j

}∥∥∥∥∥
Ur

−

≤ t′

1− t

{
1 +

µ∑

j=0

‖η∗j‖Ur
−

}
‖ζ0‖Ur′ .

Set Ar(E) = |{t′kj}||{t′′kj}|maxµ
∗

i=0

∑µ

j=0 |cji| and Br−(E) = |{t′kj}||{t′′kj}|(1+
∑µ

j=0 ‖η∗j‖Ur
− ).

We have obtained the required estimates.
Finally, let us assume that f = 0 in H1(C,E) in order to show that all cj = 0 and thus

f = δv. Since each U r′′ is Stein, we also have f = 0 in H1(U r, E). Thus f = δṽ with

ṽ ∈ C0(U r′′ , E). We get δ(ṽ − v) =
∑µ∗

j=0 cjgmj
. By the linear independence, we conclude

that cj = 0. We are done. �

Theorem A.12. Let C be a compact complex manifold and let U r (r∗ ≤ r ≤ r∗ < 1) be
nested coverings of C as in Proposition A.19. Let µ, ν, r, r′, r′′, r∗, r

∗ be given in The-
orem A.9, which satisfy (A.25). Let f ∈ Z1(U r′, E ′ ⊗ E ′′). Suppose that f = 0 in
H1(C,E ′ ⊗ E ′′). Then there exists a solution {uj} ∈ C0(U r′, E ′ ⊗ E ′′) such that δu = f
and

‖u‖Ur′ ≤ K(E ′ ⊗ E ′′)‖f‖Ur′ ,(A.32)

K(E ′ ⊗ E ′′) := C(|{t′kj}|Ur′ +K∗(E
′ ⊗ E ′′)|{t′kj}|Ur′ |{t′′kj}|Ur′ ),(A.33)

where K∗(E
′ ⊗ E ′′), defined by (A.8), satisfies

K∗(E
′ ⊗E ′′) ≤ CnBr−(E

′ ⊗ E ′′)

(r − r′)κ
,(A.34)

where κ and Br− are defined by (A.10) and (A.29). The same conclusion holds if both sides
are in sup norms | · |Ur′ , when (r − r′)κ is replaced by ((r − r′)κ)n.

Remark A.13. The main conclusion is that (A.32) holds without shrinking the covering
{U r′

i } on which f is defined. The solution operator f 7→ u may not be linear. The small
divisor conditions are carried by Br− which is determined by (A.25) and (A.29), while the
bounds in Theorem A.7 as smoothing lemma does not involve small divisors.

Proof. By the Leray theorem, we know that [f ] = 0 in H1(U r′, E). By Theorem A.9, we
have a solution u ∈ C0(U r′′ , E) so that

fjk = (δu)jk, U r′′

j ∩ U r′′

k ,

‖u‖Ur′′ ≤ K‖f‖Ur′ .

Then the conclusion follows from Lemma A.2.
When the super norm is used, we first obtain a solution u = {uk} for U r∗ for r∗ =

(r′′ + r′)/2, while (A.34) takes the form

‖u‖Ur∗ ≤ K‖f‖Ur′ ≤ (
√
πr′)nK|f |Ur′ .
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By dist(ϕk(U
r′′

k ), ∂ϕk(U
r∗

k )) = r∗−r′′ and power series expansion, we have |u|Ur′′ ≤ (
√
π(r∗−

r′′))−n‖u‖Ur∗ . Then the conclusion follows from Lemma A.2 again. �

A.5. Existence of nested coverings. In this subsection, our main goal is to construct
nested coverings by using transversality theorems and analytic polyhedrons. We recall that
Cn is a n-dimensional compact complex manifold. We shall omit to mention its dimension
in what follows.

We first deal with the transversality for a piecewise smooth boundary of an analytic
polyhedron and we then define the general position property of several analytic polyhe-
drons.

Definition A.14. (a) Let Mj be a C1 real hypersurface defined by rj = 0, where rj
is a C1 function in an open set ωj of a complex manifold C and drj 6= 0 on Mj .
We say that M1, . . . ,MN are in the general position, if dri0 ∧ · · · ∧ driq 6= 0 at each
point of Mi0 ∩ · · · ∩Miq for any 1 ≤ i0 < · · · < iq ≤ N .

(b) Let ω be a proper open set of a complex manifold C and let f ∈ ON(ω). We say
that

(A.35) Q := QN(f, ω) := {z ∈ ω, | |f(z)| := max{|f1(z)|, . . . , |fN(z)|} < 1},
is an analytic N -polyhedron in ω if Q is non-empty and relatively compact in ω, and
Q does not contain any compact connected component. We say that Q is generic,
if

(A.36) (d|fi1| ∧ · · · ∧ d|fiℓ|)(x) 6= 0 ∀x ∈ {|fi1| = · · · = |fiℓ| = 1} ∩ ∂Q
for all i1 < · · · < iℓ and 1 ≤ ℓ ≤ N .

We will apply transversality theorems. This requires us to use open submanifolds in
Cn which may not be closed in Cn. Since QN = QN (f, ω) does not contain compact
connected component, the closure of each connected component of QN must intersect some
Qi

N := {|fi| = 1} ∩ ω. We will call Qi
N a face of QN . Removing each Qi

N from ω if it does
not intersect QN , we get a new ω such that QN intersects each Qi

N . Applying the same
procedure to Qi1...ik

N := Qi1
N ∩ · · · ∩Qik

N , we may assume that the non-empty intersection of
any number of Q1

N , . . . Q
N
N intersects QN . By (A.36), the closed set QN does not intersect

the closed subset of ω defined by

(d|fi1| ∧ · · · ∧ d|fiℓ|)(x) = 0 |fi1|(x) = · · · = |fiℓ|(x) = 1.

Removing the above sets from ω, we find a neighborhood ω∗ of QN such that if Qi1...ik
N with

i1 < i2 < · · · < ik intersects ω∗, then it intersects QN and it is a codimension k smooth
submanifold in ω∗. For brevity we will call ω∗ a neat neighborhood of Q. We will take
ω = ω∗ without specifying ω∗.

Definition A.15. Let ωi be open sets in C. For i = 0, . . . , p, assume that φi ∈ ONi(ωi) and
QNi

(φi, ωi) is an analytic polyhedron in ωi. We say that they are in the general position,
if all faces Qj

Ni
for 1 ≤ j ≤ Ni and 0 ≤ i ≤ p are in general position. More precisely,

ω∗
Ni

∩Qj
Ni

are in the general position, where each ω∗
i is a neat neighborhood of QNi

.
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Let us describe some elementary properties of generic analytic polyhedrons. If QN (f, ω)
is defined in ω by (A.35), we denote for ρ = (ρ1, . . . , ρN)

Qρ
N(f, ω) := {z ∈ ω : |fj(z)| < ρj , j = 1, . . . , N}.

Lemma A.16. Let QNi
= QNi

(φi, ωi) be generic polyhedrons in C for 0 ≤ i ≤ p. Suppose
that QN0 , · · · , QNp are in the general position. Then

QN0+···+Np((φ0, . . . , φp), ω0 ∩ · · · ∩ ωp) = QN0 ∩ · · · ∩QNp,

if non-empty, is a generic N0 + · · ·+Np analytic polyhedron in ω0···p := ω0 ∩ · · · ∩ ωp.

Proof. LetN = N0+· · ·+Np. It is clear thatQ := QN0∩· · ·∩QNp = QN ((φ0, . . . , φp), ωi0···ip).

Since Q ⊂ ∩QNi
, then Q is compact in ω0···p. Write (φ0, . . . , φp) = (ψ1, · · · , ψN). Suppose

that x ∈ ∂Q. Since Q is compact in ω, then there exist µ1 < · · · < µm with m ≥ 1 such
that |ψµi

(x)| = 1 and |ψj(x)| < 1 for j 6= µℓ. By the assumption of the general position,
we see that the faces of Q are in the general position. �

Let X, Y be smooth real manifolds without boundary and W a smooth submanifold of
Y . Following [10, p. 50], we say that a smooth mapping h : X → Y is transversal to W at
x ∈ X , denoted by h ⋔

−W at x, if either h(x) 6∈ W or

Th(x)W + dh(TxX) = Th(x)Y.

Denote h ⋔
−W onA if h ⋔

−W at each x ∈ A ⊂ X . When h is the inclusion, we denote h ⋔
−W

on A by X ⋔
− W on A. Finally, extending Definition A.14 (a), we say that smooth real

submanifolds W0, . . . ,Wk in Y are in the general position if for any 0 ≤ i1 < · · · < im ≤ k
we have

(A.37)

k∧

ℓ=1

diℓ∧

j=1

driℓ,j(y) 6= 0, ∀y ∈ Wi1 ∩ · · · ∩Wim,

where Wi ⊂ ωi is defined by ri,1 = · · · = ri,di = 0 with dri,1 ∧ · · · ∧ dri,di 6= 0 at each point
of Wi. Thus di is the codimension of Wi in ωi. It is clear that (A.37) holds if and only if

(A.38) Wij ⋔
− (Wi1 ∩ · · · ∩Wij−1

) at y, ∀y ∈ Wi1 ∩ · · · ∩Wik , 0 < j ≤ m.

For an analytic N -polyhedron QN in ω with faces Q1
N , . . . , Q

N
N , we call Qi1···ik

N = Qi1
N ∩

· · ·∩Qik
N with i1 < · · · < ik and k ≥ 1 an edge of Q. When QN is generic, a nonempty edge

Qi1···ik
N is a codimension k submanifold in ω. Let {Q1

N · · · , NN ′

N } be the set of all edges,
with the first N edges being the faces.

Proposition A.17. Let QNi
= QNi

(φi, ωi) be generic polyhedrons in C for 0 ≤ i ≤ p with
ωi being a neat neighborhood of QNi

. Then QN0 , . . . , QNp are in the general position if and

only if any 0 ≤ i1 < · · · < ik ≤ p and 1 ≤ jℓ ≤ N ′
iℓ
, the edges Qj1

Ni1
, · · · , Qjk

Nik
are in the

general position. Equivalently, each edge Qs
Nℓ

intersects transversally with each edge of the
intersection of any number of QN0 , . . . , QNℓ−1

, for ℓ = 1, . . . , p.

Proof. Since each edge of a polyhedron is the intersection of its faces, it is clear that if
QN0 , . . . , QNp are in the general position, then the edges Qj1

Ni1
, · · · , Qjk

Nik
are in the general

position for 0 ≤ i1 < · · · < ik ≤ p.
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Conversely, let φi = (φi,1, . . . , φi,Ni
) and let ψ1, . . . , ψm be a subset of φ0,1, . . . , φ0,N0, . . . ,

φp,1, . . . , φp,Np. We emphasize that we do not assume that the latter are distinct functions,
although φi,1, . . . , φi,Ni

are distinct by the general position property of the faces of QNi
.

Suppose that ψℓ is in {φiℓ,1, . . . , φiℓ,Niℓ
}. We need to show that

(A.39) d|ψ1| ∧ · · · ∧ d|ψm|(x) 6= 0

if for all ℓ, |ψℓ|(x) = 1 and x ∈ QNiℓ
. Without loss of generality, we may assume that

i1 ≤ i2 ≤ · · · ≤ im. Thus

(ψ1, . . . , ψm) = (ψ̃α0 , . . . , ψ̃αℓ
), α1 < α2 < · · · < αℓ

with ψ̃αβ
being a non-empty subset of components of φαβ

. Without loss of generality, we

may assume that ψ̃αβ
= (φαβ ,1, . . . , φαβ ,γβ) with γβ > 0. Thus |φαβ ,1| = · · · = |φαβ ,γβ | = 1

define an edge Wαβ
of Qαβ

. Then (A.39) is equivalent to
(

γℓ∧

δ=1

d|φαℓ,δ|
)

∧
(

ℓ−1∧

ℓ′=1

γℓ′∧

δ=1

d|φαℓ′ ,δ
|
)
(x) 6= 0.

The equivalence of (A.37) and (A.38) implies that (A.39) follows from the assumption that
Wαℓ ⋔

− (Wα1 ∩ · · · ∩Wαℓ−1
), for α1 < α2 < · · · < αℓ. �

Lemma A.18 (Golubitsky-Guillemin [10, p. 53]). Let X,B, and Y be smooth mani-
folds with W a submanifold of Y . Let ψ : B → C∞(X, Y ) be a mapping (not necessarily
continuous) and define Ψ: X × B → Y by Ψ(x, b) = ψ(b)(x). Assume that Ψ is smooth
and that Ψ ⋔

−W . Then the set {b ∈ B | ψ(b) ⋔−W} is dense in B.

Proposition A.19. Let C be a compact complex manifold of dimension n. Let {Ui : i =
1, . . . , m} be a finite open covering of C. Assume that ϕj is a biholomorphism from a neigh-
borhood ωj of the star N(Uj) of Uj onto ω̂j ⊂ Cn such that Uj = ϕ−1

j (∆n) = Qn(ϕj, ωj).
There exists δ > 0 satisfying the following:

(a) For each j, there are a relatively compact open set ω̃j (resp. Ũj) in ωj (resp.
ω̃j) and a dense open set Aj of ∆δ

n such that if cj ∈ Aj, then ϕ̃j := ϕj − cj
is a biholomorphic mapping from Ũj onto ∆n, and Ũ1 := Qn(ϕ̃1, ω̃1), . . . , Ũm :=

Qn(ϕ̃m, ω̃m) are generic n-polyhedrons in the general position, where {Ũ1, . . . Ũm}
remains an open covering of C and ω̃j is a neighborhood of N(Ũj). In particular
each ϕ̃j, a translation of ϕj, is injective on ω̃j.

(b) There is 0 < r∗ < 1 such that if r∗ ≤ ρi ≤ 1, then Ũρ0
i0
, . . . , Ũ

ρq
iq

are generic

n-polyhedrons in the general position, where Ũρ
i := ϕ̃−1

i (∆ρ
n).

Proof. (a) We will apply the transversality theorem for real submanifolds in Cn. Therefore,
we will use old coordinate charts ϕj to map edges of polyhedrons Qj(ϕj, ωj) into Cn. Set

c1 = 0, ϕ̃1 = ϕ1, Ũ1 = U1. Let Ŵ1, . . . , ŴL0 be all edges of ∆n. Let Ũ
1
1 , . . . , Ũ

N ′

1 be all edges

of Ũ1. Set W̃
ℓ
1 = ϕ2(ω2 ∩ Ũ ℓ

1). Define

Ψ: Cn ×∆δ
n → Y := Cn

with Ψ(x, b) = x + b and ψb(x) = Ψ(x, b). Let ψb|
Ŵℓ′

be the restriction of ψb to Ŵℓ′ .

Applying Lemma A.18, mainly the density assertion in the lemma, finitely many times in
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which W = W̃ ℓ
1 , we can find b2 ∈ ∆δ

n such that

ψb2 |
Ŵℓ′

⋔
− W̃ ℓ

1 on ϕ2(Ũ1 ∩ ω′
2), ∀ℓ, ℓ′

where ω′
2 is a relatively compact open subset of ω2 which is independent of δ, and U2 ⊂ ω′

2.

We also remark that (A.18) can be applied for finitely many times since ϕ2(Ũ1 ∩ ω′
2) is

compact. Since Ũ1 ∩ U2 is compact, then

(A.40) ψc2|
Ŵℓ′

⋔
− W̃ ℓ

1 on ϕ2(Ũ1 ∩ ω′
2), ∀ℓ, ℓ′

when |c2 − b2| is sufficiently small. Applying ϕ−1
2 to (A.40) yields

(A.41) ϕ−1
2 (ψc2|

Ŵℓ′
) ⋔− (ω2 ∩ Ũ ℓ

1) on Ũ1 ∩ ω′
2, ∀ℓ, ℓ′.

With c2 being determined, set

ϕ̃−1
2 = ϕ−1

2 (I+c2).

Thus ϕ̃2 = ϕ2 − c2. When δ and |c2 − b2| are sufficiently small, we have Ũ2 = ϕ̃−1
2 (∆n) ⊂

ω′
2. Therefore, (A.41) implies that every edge of Ũ2 intersects each edge of Ũ1. We have

determined Ũ2 = ϕ̃−1
2 (∆n).

We have verified (a) when m = 2. Let us assume that it also holds for m ≥ j. By
Lemma A.16, each edge of a non-empty intersection of any number of Ũ1, . . . , Ũj is a
smooth submanifold. We remark the above transversality argument mainly uses the fact
that ϕ2 is a biholomorphism, while each edge of Ũ1 is a smooth submanifold.

To repeat the above argument for m = 2 in details, we list all edges of all possible
intersections of Ũ1, . . . , Ũj as W ′

1, . . . ,W
′
L so that each Wj is an edge of some analytic

polyhedron U ′
j , where U

′
j is the intersection of some of Ũ1, . . . , Ũj′ which are in general

position by the induction hypothesis as mentioned above. Therefore, by Lemma A.16, each
U ′
ℓ is generic. Now we are in the situation of m = 2 by considering the sets of two analytic

polyhedrons {U ′
ℓ, Uj+1} one by one for ℓ = 1, . . . , j′. Here Uj+1 = ϕ−1

j+1(∆n) with ϕj+1 being
biholomorphic in a neighborhood of N(Uj+1). Therefore, we can find ϕ̃j+1 = ϕj+1 − cj+1

such that each edge of Ũj+1 intersects each W ′
ℓ transversally on Ũj+1 ∩ U ′

ℓ.
The above argument shows the existence of c1, . . . , cN in ∆δ

n when δ is sufficiently small.
The openness property on Aj is clear, since by shrinking ω̃j slightly the general position
and generic properties are preserved under small perturbation of cj. Then density of Aj

when δ is sufficiently small can also be achieved; indeed when cj is sufficiently small, we
may shrink ωj slightly and apply the above argument by replacing ϕj − cj with ϕj . Finally,

{Ũ1, . . . , ŨN} still covers C when δ is sufficiently small. We have verified (a).
The assertion (b) follows from (a) and Proposition A.17. Indeed, we first note that when

r∗ is less than 1, but it is sufficiently close to 1, the ∂Qρ(ϕ̃j) is in a given neighborhood of
∂Q(ϕ̃j , ω̃j), as Q

ρ(ϕ̃j , ω̃j) does not have any compact connected component. By the relative
compactness of Qn(ϕ̃i, ω̃i), the condition (A.36) with fj being replaced by fj/ρj and the
general position condition remain true when ρj are in [r∗, 1] when r∗ < 1 is sufficiently close
to 1. The proof is complete. �

The following is a basic property of a generic analytic polyhedron.
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Proposition A.20. Let C be a compact complex manifold of dimension n. Let QN (f, ω)
be a generic analytic N-polyhedron C defined by (A.35) and (A.36). There exists r∗ ∈ (0, 1)
satisfying the following.

(a) If ρ = (ρ1, . . . , ρN) and ρ
′ = (ρ′1, . . . , ρ

′
N ) satisfy r∗ ≤ ρ′i ≤ ρi ≤ 1, every connected

component of Qρ
N (f, ω) intersects Q

ρ′

N (f, ω) and the latter is non-empty.
(b) There are finitely many open sets ω′′

j in C and smooth diffeomorphisms φj sending

ω′′
j onto ω̂′′

j in R2n such that {ω′′
j } covers ∂QN (f, ω), and for any p0, p1 ∈ φj(ω

′′
j ∩

Qρ
N(f, ω)) there is a smooth curve γ in φj(ω

′′
j ∩Qρ

N (f, ω)) connecting p0 and p1 with
length |γ| ≤ C|p1 − p0|, where C depends only on φj and ω′′

j .

Proof. (a) Set Q = QN (f, ω) and Q
ρ = Qρ

N(f, ω). For each x ∈ ∂Q, we find µ1 < · · · < µm

with m ≤ N such that

|fµi
(x)| = 1, i ≤ m; |fj(x)| < 1, j 6= µ1, . . . , µm.(A.42)

Note that {µ1, . . . , µm} is uniquely determined by x. By the transversality condition (A.36),
we have m ≤ 2n. Choose an open set ω′ such that x ∈ ω′ ⊂ ω and

|fi(z)| < 1, ∀z ∈ ω′, i 6= µ1, . . . , µm.

In particular, we have

Q ∩ ω′ = {z ∈ ω′ : |fµi
(z)| < 1, i = 1, . . . , m}.

By (A.36), we can take (|fµ1 |, . . . , |fµm |) to be the first m components of a smooth diffeo-
morphism ϕ : ω′ → ω̂, shrinking ω′ if necessary. Taking a smaller open subset ω′′ of ω′ with
x ∈ ω′′, we may assume that

tζ ∈ ω̂, ∀ζ ∈ ω̂′′ := ϕ(ω′′), 1− δ ≤ t ≤ 1,

for some δ ∈ (0, 1].
Since ∂Q is compact, there exists {xj , ω′′

j , ω
′
j : j = 1, . . . , k} satisfying the following:

(a) The k is finite. For each j, we have that xj ∈ ω′′
j ⊂ ω′

j ⊂ ω, xj ∈ ∂Q, and ω′
j is

an open subset of ω. For each j, we have mj and µj,1 < . . . < µj,mj
, which are the

numbers associated to xj , so that (A.42) holds for x = xj . {ω′′
1 , . . . ω

′′
k} is an open

covering of ∂Q.
(b) |fµj,ℓ

(xj)| = 1 for ℓ = 1, . . . , mj and

Mj := sup
z∈ω′

j

{|fi(z)| : i 6= µj,1, . . . , µj,mj
} < 1,

ω′
j ∩Q = {z ∈ ω′

j : |fµj,ℓ
(z)| < 1, ℓ = 1, . . . , mj}.

Here we set Mj = 0 if mj = N .
(c) The (|fµj,1

|, . . . , |fµj,mj
|) are the first mj components of a smooth diffeomorphism

φj from ωj onto a subset ω̂j of Cn. There exists δ∗ > 0 such that ω̂′′
j := φj(ω

′′
j )

satisfies

(A.43) {tζ : ζ ∈ ω̂′′
j } ⊂ ω̂j , ∀j, ∀t ∈ [1− δ∗, 1].



69

Indeed, let φj(xj) = (1, . . . , 1, x̃j) with x̃j ∈ R2n−mj . We can take

(A.44) ω̂′′
j = (1− δ∗, 1 + δ∗)mj ×Bδ′′

2n−mj
(x̃j)

where Bδ′′

2n−mj
(x̃j) is the ball in R2n−mj centered at x̃j with a sufficiently small radius δ′′.

Note that

(A.45) φj(Q
ρ ∩ ω′′

j ) = (1− δ∗, ρ1)× · · · × (1− δ∗, ρmj
)×Bδ′′

2n−mj
(x̃j).

Define
M∗ = sup{|f(z)| : z ∈ Q \ ∪k

j=1ω
′′
j }.

Then M∗ < 1. By the maximum principle, we have |f | ≤ M∗ on Q \ ∪k
j=1ω

′′
j . Fix r∗ so

that

1 > r∗ > max{1− δ∗,M∗,M1, . . . ,Mk}.
Suppose that r∗ ≤ ρ′i ≤ ρi ≤ 1 for i = 1, . . . , N . Let Ω be a connected component of Qρ

N .
Since Ω does not have a compact connected component, there exists z∗ ∈ ∂Ω satisfying
|fi(z∗)| = ρi for some i. Since ρi > M∗, then z∗ ∈ ω′′

j for some j. Let us assume that

z∗ ∈ ω′′
1 , and (µ1,1, . . . , µ1,m1) = (1, . . . , m1). Thus φ1 = (|f1|, . . . , |fm1 |, f̃m1+1, . . . , f̃2n). We

now replace z∗ by some z∗ ∈ Ω ∩ ω′′
1 . We consider a path defined by

t→ γ(t) := φ−1
1 (tφ1(z∗)), 1− δ∗ ≤ t ≤ 1.

Note that by (A.43), γ is well defined and is contained in ω1. We now have

|fℓ(γ(t))| = t|fℓ(z∗)| ≤ tρℓ, ℓ ≤ m1.(A.46)

Since γ(t) ∈ ω1, we also have

|fℓ(γ(t))| ≤M1 < r∗, ℓ > m1.(A.47)

This shows that γ(t) ∈ Qρ
N . Since Ω is a connected component of Qρ

N and γ(1) = z∗ ∈ Ω,
we must have γ(t) ∈ Ω. By the definition of Mj , at t = 1 − δ∗ we have tρℓ ≤ 1 − δ∗ < ρ′ℓ.

Combining with (A.46)-(A.47), we get γ(1− δ∗) ∈ Qρ′

N .
(b) Since p0, p1 are in the same ω̂′′

j , the assertion also follows from the above construction
of ω̂′′

j via (A.44)-(A.45) and the convexity of ω̂′′
j . �

In summary, by Proposition A.19 we cover C by generic analytic n-polyhedrons Ui =
ϕ−1
i (∆n) (i = 1, . . . , m), which are in the general position. By Lemma A.16, each Ui ∩ Uj ,

if non-empty, is a generic analytic polyhedron. Applying Proposition A.20 (a) to all non-
empty Ui ∩ Uj , we know that {U r

i = ϕ−1
i (∆r

n) : i = 1, . . . , m} for r∗ ≤ r ≤ 1 is a family of
nested coverings. Therefore, we can apply Theorem A.9 and Theorem A.12.
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