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We establish dual equivalent forms involving relative entropy, Fisher information and optimal transport costs of inverse Santaló inequalities. We show in particular that the Mahler conjecture is equivalent to some dimensional lower bound on the deficit in the Gaussian logarithmic Sobolev inequality. We also derive from existing results on inverse Santaló inequalities some sharp lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality. Our proofs rely on duality relations between convex functionals (introduced in [16] and [62]) related to the notion of moment measure.

Introduction

The aim of this paper is to highlight some new connections between reverse forms of the Santaló inequality and some improved versions of the Gaussian logarithmic Sobolev inequality. In particular, the celebrated Mahler conjecture is shown to be equivalent to some dimensional lower bound on the deficit in the logarithmic Sobolev inequality for the standard Gaussian measure.

Recall the classical Santaló inequality [START_REF] Santaló | An affine invariant for convex bodies of n-dimensional space[END_REF]: if K Ă R n is a convex body and K ˝,z :" ty P R n : px ´zq ¨py ´zq ď 1, @x P Ku denotes its polar with respect to the point z P R n (simply denoted K ˝if z " 0), then [START_REF] Alexander | Polytopes of maximal volume product[END_REF] P pKq :" inf zPR n VolpKqVolpK ˝,z q ď P pB n 2 q,

where Vol denotes the Lebesgue measure on R n and, for any p ě 1, B n p " tx P R n :

ř n i"1 |x i | p ď 1u denotes the ℓ p unit ball of R n . When K is centrally symmetric, then the infimum in P pKq is attained for z " 0, and in this case, the Santaló inequality reads as follows VolpKqVolpK ˝q ď VolpB n 2 q 2 . The Mahler conjecture [START_REF] Mahler | Ein Übertragungsprinzip für konvexe Körper[END_REF] states reverse bounds for P pKq, which are the following: if K is centrally symmetric, then [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of the Santaló inequality[END_REF] VolpKqVolpK ˝q ě P pB n 1 q " VolpB n 1 qVolpB n 8 q "

4 n n! and for a general convex body K,

P pKq ě P p∆ n q " pn `1q n`1 pn!q 2

where ∆ n is any non-degenerate simplex of R n . Even if these two conjectures are still open, some progresses have been made in the understanding of this problem and some particular cases have been established. In [START_REF] Saint-Raymond | Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis[END_REF], Saint-Raymond (see also [START_REF] Meyer | Une caractérisation volumique de certains espaces normés de dimension finie[END_REF]) showed that (2) holds true for unconditional convex bodies, that is to say convex body K satisfying x " px 1 , . . . , x n q P K ñ pε 1 x 1 , . . . , ε n x n q P K, for all ε " pε 1 , . . . , ε n q P t´1, 1u n . Other particular cases were established in [START_REF] Reisner | Zonoids with minimal volume-product[END_REF][START_REF] Gordon | Zonoids with minimal volume-product-a new proof[END_REF][START_REF] Meyer | Convex bodies with minimal volume product in R 2[END_REF][START_REF] Barthe | The volume product of convex bodies with many hyperplane symmetries[END_REF][START_REF] Alexander | Polytopes of maximal volume product[END_REF]. Recently, Conjecture [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of the Santaló inequality[END_REF] has been established in dimension n " 3 by Iriyeh and Shibata (see [START_REF] Fradelizi | Equipartitions and Mahler volumes of symmetric convex bodies[END_REF] for an alternative proof). Bourgain and Milman [START_REF] Bourgain | New volume ratio properties for convex symmetric bodies in R n[END_REF] (see also [START_REF] Kuperberg | From the Mahler conjecture to Gauss linking integrals[END_REF], [START_REF] Nazarov | The Hörmander proof of the Bourgain-Milman theorem, Geometric aspects of functional analysis[END_REF], [START_REF] Giannopoulos | The isotropic position and the reverse Santaló inequality[END_REF] and [START_REF] Berndtsson | Complex integrals and Kuperberg's proof of the Bourgain-Milman theorem[END_REF] for alternative proofs) showed that Conjecture (3) is asymptotically true: there exists some absolute constant α ą 0 such that for all n ě 1 and all convex body K Ă R n , it holds (4) P pKq ě α n P p∆ n q.

The Mahler conjectures admit functional equivalent versions that were considered in particular by Klartag and Milman [START_REF] Klartag | Geometry of log-concave functions and measures[END_REF] and by Fradelizi and Meyer [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF][START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF], that we shall now recall.

We first need to introduce some notation and definitions that will be useful in all the paper. We will denote by F pR n q the set of lower semi-continuous functions f : R n Ñ R Y t`8u which are convex and such that f pxq ă `8 for at least one value of x. The domain of a convex function f is the convex set dompf q " tx P R n : f pxq ă `8u. We recall, that the Fenchel-Legendre transform of f P F pR n q is the function denoted by f ˚and defined by [START_REF] Barthe | The volume product of convex bodies with many hyperplane symmetries[END_REF] f ˚pyq " sup xPR n tx ¨y ´f pxqu, y P R n .

A function f : R n Ñ R Y t`8u is said unconditional if for any ε " pε 1 , . . . , ε n q P t´1, 1u n it holds f pε 1 x 1 , . . . , ε n x n q " f px 1 , . . . , x n q, @x " px 1 , . . . , x n q P R n .

We will denote by F u pR n q the set of all unconditional elements of F pR n q and by F s pR n q the set of functions f P F pR n q that are symmetric: f p´xq " f pxq, x P R n . Finally, for any convex set C Ă R n , we will denote by χ C the convex characteristic function of C which is the function defined by χ C pxq " 0 if x P C and `8 otherwise.

Definition 1 (Functional Inverse Santaló Inequalities). Let c ą 0 and n ě 1.

' We will say that that the functional inverse Santaló inequality IS n pcq holds with the constant c ą 0 if for all function f P F pR n q such that 0 ă ş e ´f dx and 0 ă ş e ´f ˚dx, it holds

ż e ´f dx ż e ´f ˚dx ě c n .

' We will say that that the symmetric (resp. unconditional) functional inverse Santaló inequality IS n,s pcq (resp. IS n,u pcq) holds with the constant c ą 0 if (6) holds for all function f P F s pR n q (resp. F u pR n q) such that 0 ă ş e ´f dx and 0 ă ş e ´f ˚dx.

Let us briefly recall how the functional and the convex body versions are related. Let K be a centrally symmetric convex body and denote by }x} K " inftr ě 0 : x P rKu, x P R n , its gauge. Then an easy calculation shows that } ¨}K " χ K ˝. Therefore ş e ´} ¨}K pxq dx " VolpK ˝q. On the other hand, ż e ´}x}K dx " ż `8 0 e ´uVolptx P R n : }x} K ď uuq du " ż `8 0 e ´uu n duVolpKq " n!VolpKq.

Therefore, IS n,s p4q implies [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of the Santaló inequality[END_REF]. Conversely, it is shown in [29, Proposition 1] that if [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of the Santaló inequality[END_REF] holds for all n ě 1, then IS n,s p4q holds for all n ě 1. Furthermore, according to [29, Proposition 1] again, IS n peq holds for all n ě 1 if and only if [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF] holds for all n ě 1. Similarly, it follows from (4) that there exists some absolute constant c ą 0 such that IS n pcq holds for all n ě 1 (see [START_REF] Klartag | Geometry of log-concave functions and measures[END_REF][START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF]). In addition, Fradelizi and Meyer gave in [START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF][START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF] a direct functional proof of the fact that IS n,u p4q holds for every n ě 1, which gives back in particular Saint-Raymond's result. They also proved in [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF] that IS 1 peq holds true (see also [START_REF] Fradelizi | Functional inequalities related to Mahler's conjecture[END_REF]). Note that other special classes of functions are considered in [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF][START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF].

The goal of this paper is to study dual forms, expressed on the space of probability measures, of the functional inverse Santaló inequality IS n pcq and its variants. To state our main results, we need to introduce additional notations. We will denote by PpR n q the set of all Borel probability measures on R n , and by P k pR n q, k ě 1, the subset of probability measures having a finite moment of order k. A probability measure ν P PpR n q realized by a random vector X " pX 1 , . . . , X n q will be said symmetric if ´X has the same law as X and unconditional if pε 1 X 1 , . . . , ε n X n q has the same law as X for any ε P t´1, 1u n . Finally, if ν 1 , ν 2 P P k pR n q, let us denote by W k pν 1 , ν 2 q their Kantorovich transport distance of order k (also called Wasserstein distance of order k), defined by

W k k pν 1 , ν 2 q " inf ż |x ´y| k πpdxdyq,
where | ¨| denotes the standard Euclidean norm on R n and where the infimum runs over the set of all transport plans π between ν 1 and ν 2 , that is to say the set of probability measures π on R n ˆRn having ν 1 and ν 2 as marginals.

According to a celebrated result of Gross [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF], the standard Gaussian measure

γ n pdxq " 1 p2πq n{2 e ´|x| 2 2
dx on R n satisfies the logarithmic Sobolev inequality: for all η P PpR n q absolutely continuous with respect to γ n , Hpη|γ n q ď 1 2

Ipη|γ n q, @η P PpR n q, where, for any probability measure of the form dη " h dγ n , the relative entropy Hpη|γ n q of η with respect to γ n is defined by

Hpη|γ n q " ż log h dη.
To define the Fisher information Ip ¨|γ n q, we need to introduce additional material. We will say that a function f : R n Ñ R is absolutely continuous on almost every line parallel to an axis, it for every i P t1, . . . , nu and Lebesgue almost every px 1 , . . . , x i´1 , x i`1 , . . . , x n q P R n´1 , the function

t Þ Ñ f px 1 , . . . , x i´1 , t, x i`1 , . . . , x n q
is absolutely continuous on every segment. When f satisfies this condition, its partial derivatives Bf Bxi , i P t1, . . . , nu, are defined Lebesgue almost everywhere. The Fisher information Ipη|γ n q of a probability measure dη " h dγ n with respect to γ n is then defined by

Ipη|γ n q " 4 ż |∇ph 1{2 q| 2 dγ n ,
whenever h 1{2 is absolutely continuous on almost every line parallel to an axis, and `8 otherwise. It follows from [10, Proposition 1.5.2] and [53, Chapter 1, Theorems 1 and 2], that Ipη|γ n q ă 8 if and only if h 1{2 P W 1,2 pγ n q (the subspace of L 2 pγ n q consisting of functions f whose weak derivative is also in L 2 pγ n q), but we will not make reference to this space W 1,2 pγ n q anymore in the paper.

Remark 1. If h 1{2 admits partial derivatives almost everywhere, the following quantity

(7) Ĩpη|γ n q " 4 ż |∇ph 1{2 q| 2 dγ n
makes sense in r0, 8s and is such that Ĩpη|γ n q ď Ipη|γ n q. Note however that the logarithmic Sobolev inequality is not always true if one replaces Ip ¨|γ n q by Ĩp ¨|γ n q. Indeed, if for instance dη " 1B γnpBq dγ n , where B is (say) the Euclidean unit ball, then 0 " Ĩpη|γ n q ă Ipη|γ n q " `8 whereas, Hpη|γ n q " ´log γ n pBq ą 0.

The deficit in the Gaussian logarithmic Sobolev inequality is the non-negative function δ n defined by

δ n pηq " 1 2
Ipη|γ n q ´Hpη|γ n q, for all dη " h dγ n , such that Hpη|γ n q ă `8. Recently, bounding from below the function δ n attracted a lot of attention. We refer to [START_REF] Figalli | Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation[END_REF][START_REF] Indrei | A quantitative log-Sobolev inequality for a two parameter family of functions[END_REF][START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF][START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF][START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF][START_REF] Ledoux | A Stein deficit for the logarithmic Sobolev inequality[END_REF][START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms, and applications[END_REF][START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF][START_REF] Indrei | Deficit estimates for the logarithmic Sobolev inequality[END_REF][START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF] and the references therein for some recent progresses regarding this question. The following theorem, which is one of our main results, shows in particular that the Mahler conjecture is equivalent to some particular bound on δ n .

Theorem 1. Let c ą 0 and n ě 1. The inverse functional Santaló inequality IS n pcq holds if and only if for all log-concave probability measures η 1 , η 2 on R n such that, for i " 1, 2, dη i " e ´Vi dx for some essentially continuous V i P F pR n q, it holds

(8) Hpη 1 |γ n q `Hpη 2 |γ n q `1 2 W 2 2 pν 1 , ν 2 q ď 1 2 Ipη 1 |γ n q `1 2 Ipη 2 |γ n q `n logp2π{cq,
as soon as ν 1 , ν 2 P P 2 pR n q, where, for i " 1, 2, ν i " ∇pV i q # η i is the moment probability measure of η i . Equivalently

δ n pη 1 q `δn pη 2 q ě 1 2 W 2 2 pν 1 , ν 2 q ´n logp2π{cq or δ 2n pη 1 b η 2 q ě 1 2 W 2
2 pν 1 , ν 2 q ´n logp2π{cq. The same statement holds for IS n,s pcq (resp. IS n,u pcq) with the extra condition that η 1 , η 2 are symmetric (resp. unconditional).

Before commenting this result, we need to clarify some notions used in the statement above:

' An absolutely continuous measure m (not necessarily finite) is said log-concave if dm " e ´V dx for some V : R n Ñ R Y t`8u convex (in this paper we don't consider log-concave measures supported on affine subspaces of dimension smaller than n). ' A function V P F pR n q is said to be essentially continuous if the set of points where it is discontinuous (as a function taking values in R Y t8u) is negligible for the Hausdorff measure H n´1 . Equivalently, V is essentially continuous if letting D " dompV q H n´1 ptx P BD : V pxq ă 8uq " 0.

Note in particular that in dimension 1, a function V P F pRq is essentially continuous if and only if it is continuous as a function taking values in R Y t`8u. ' If V P F pR n q is such that 0 ă ş e ´V ă `8, the moment measure of V is the probability measure ν defined as the push forward of the probability measure dη " e ´V ş e ´V pyq dy dx under the map ∇V . By extension, we also say that ν is the moment measure of η. ' As explained in Remark 5 below, if a probability measure is of the form dη " e ´V dx, with an essentially continuous V P F pR n q, then its density h with respect to γ n is such that h 1{2 is absolutely continuous on almost every line parallel to an axis. Note, for instance, that uniform distributions on convex bodies are never in this class.

According to the functional version of the Bourgain-Milman theorem established in [START_REF] Klartag | Geometry of log-concave functions and measures[END_REF] and [START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF], the inequality IS n pcq holds true for some constant c ą 0 independent on n. We immediately conclude from this that for the same constant c ą 0 it holds for all n ě 1 [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] δ 2n pη 1 b η 2 q ě 1 2 W 2 2 pν 1 , ν 2 q ´n logp2π{cq, whenever η 1 , η 2 are log-concave probability measures with an essentially continuous minus log density (and ν 1 , ν 2 are the associated moment measures). In dimension 1, this result can be refined. Indeed, as we mentioned above, Fradelizi and Meyer [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF] proved that IS 1 peq holds true. We thus derive from their result that (9) holds true for n " 1 and c " e. The following result shows that this bound on δ 2 is sharp:

Corollary 1. For all log-concave probability measures η 1 , η 2 on R such that, for i " 1, 2, dη i " e ´Vi dx for some continuous convex function

V i : R Ñ R Y t`8u, it holds δ 2 pη 1 b η 2 q ě 1 2 W 2 2 pν 1 , ν 2 q ´logp2π{eq
, where, for i " 1, 2, ν i " ∇pV i q # η i is the moment probability measure of η i . This bound is equivalent to the functional inverse Santaló inequality IS 1 peq. Moreover, there exist sequences of log-concave probability measures pη k 1 q kě1 and pη k 2 q kě1 with continuous densities as above (and with associated moment measures denoted by

ν k 1 , ν k 2 , k ě 1) such that δ 2 pη k 1 b η k 2 q ´1 2 W 2 2 pν k 1 , ν k 2 q `logp2π{eq Ñ 0 as k Ñ 8.
The sequences pη k 1 q kě1 and pη k 2 q kě1 are approximations in the class of log-concave measures with a continuous density of the following two probability measures τ pdxq " e ´p1`xq 1 r´1,`8r pxq dx and τ pdxq " e x´1 1 s´8,1s pxq dx whose minus log densities realize equality in IS 1 peq, and are up to affine transformations the only cases of equality, as observed by Fradelizi and Meyer [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF]. In particular, as the proof of Corollary 1 will reveal, there is no equality cases in the logarithmic Sobolev formulation of the inverse Santaló inequality. This point will be further commented in Section 3.3.

In a similar way, since IS n,u p4q holds for every n ě 1, the following result follows by choosing η 2 " τ bn s , where τ s pdxq " 1 2 e ´|x| dx denotes the symmetric exponential distribution on R. For every n ě 1, let C n Ă R n be the unit discrete cube C n " t´1, 1u n and denote by λ Cn the uniform probability measure on C n .

Theorem 2. For any log-concave and unconditional probability measure η on R n with dη " e ´V dx where V : R n Ñ R Y t`8u is an essentially continuous convex function, it holds

Hpη|γ n q `1 2 W 2 2 pν, λ Cn q ď n 2 log ´πe 2 ¯`1 2 Ipη|γ n q,
where ν " ∇V # η is the moment probability measure of η. In other words, for such η,

δ n pηq ě 1 2 W 2 2 pν, λ Cn q ´n 2 log ´πe 2 ¯.
Moreover, there exists a sequence of product measures pη bn k q kě1 such that This time the sequence pη k q kě1 is an approximation in the class of log-concave measures with a continuous density of the uniform measure on r´1, 1s. Note that Theorem 2 provides a new sharp dimensional lower bound on the deficit δ n on the class of unconditional log-concave probability measures with a regular density.

δ n pη bn k q ´1 2 W 2 2 `νbn k , λ Cn ˘`n 2 
Let us now give a flavor of the proof of Theorem 1 (in the case of IS n pcq, the other variants being similar). To prove Theorem 1, we will establish as an intermediate step that the reverse Santaló inequality IS n pcq holds if and only if for all ν 1 , ν 2 P P 2 pR n q, [START_REF] Bogachev | Gaussian measures[END_REF] inf

η1PP2pR n q
tT pν 1 , η 1 q `Hpη 1 |Lebqu `inf η2PP2pR n q tT pν 2 , η 2 q `Hpη 2 |Lebqu ď ´n log c `T pν 1 , ν 2 q,

where Hp ¨|Lebq denotes (minus) the Shannon entropy functional defined for all dη " h dx by

Hpη|Lebq " ż log h dη as soon as the integral makes sense, and where T p ¨, ¨q is the so-called maximal correlation transport cost defined as follows: for all ν 1 , ν 2 P P 2 pR n q,

T pν 1 , ν 2 q " sup X"ν1,Y "ν2
ErX ¨Y s.

The proof of the equivalence between [START_REF] Bogachev | Gaussian measures[END_REF] and IS n pcq follows by adapting an argument of Bobkov and Götze [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] showing equivalence between transport-entropy inequalities and infimum convolution inequalities (see also [START_REF] Gozlan | Transport inequalities. A survey, Markov Process[END_REF][START_REF] Gozlan | Kantorovich duality for general transport costs and applications[END_REF] for extensions). While Bobkov and Götze argument was based on the classical duality relations between relative entropy and log-Laplace functionals (recalled in Section 2.1), ours is based on a twisted duality involving the following functionals:

Lpf |Lebq :" ´log ż e ´f ˚dx, f P F pR n q.
and Kpν|Lebq :" sup f PL 1 pνqXF pR n q "ż p´f q dν ´Lpf |Lebq * , ν P P 1 pR n q.

A simple calculation shows that Kpν|Lebq " ´inf

ηPP1pR n q
tT pν, ηq `Hpη|Lebqu .

To see that IS n pcq implies [START_REF] Bogachev | Gaussian measures[END_REF], observe that for all function f P F pR n q such that 0 ă ş e ´f dx and 0 ă ş e ´f ˚dx and ν 1 , ν 2 P P 2 pR n q, it holds ż ´f dν 1 `log

ż e ´f ˚dx `ż ´f ˚dν 2 `log ż e ´f dx ě n log c ´ˆż f dν 1 `ż f ˚dν 2 ˙.
Bounding the left hand side by Kpν 1 |Lebq`Kpν 2 |Lebq, one sees that [START_REF] Bogachev | Gaussian measures[END_REF] follows (up to technicalities) by optimizing over f and using the dual Kantorovich formula

T pν 1 , ν 2 q " inf f PF pR n q ż f dν 1 `ż f ˚dν 2 .
Let us give an idea of the proof of the converse implication. As observed by Cordero-Erausquin and Klartag [START_REF] Cordero-Erausquin | Moment measures[END_REF], a remarkable consequence of the Prekopa-Leindler inequality is that the functional Lp ¨|Lebq is convex on F pR n q (see the proof of Lemma 1 where this simple argument is recalled).

The above functionals will be shown in Theorem 3 to be in convex duality (see Section 5 for precise statements about this duality), in the sense that the functional Lp ¨|Lebq can be recovered from the functional Kp ¨|Lebq as follows:

Lpf |Lebq " sup νPP1pR n q "ż p´f q dν ´Kpν|Lebq * for all f P F pR n q such that ş e ´f ˚dx ą 0. This reverse relation is the key to complete the equivalence between IS n pcq and (10).

To further analyze the inequality (10), we will make use of the remarkable characterization of moment measures recently obtained by Cordero-Erausquin and Klartag [START_REF] Cordero-Erausquin | Moment measures[END_REF] (building on earlier works [START_REF] Wang | Kähler-Ricci solitons on toric manifolds with positive first Chern class[END_REF][START_REF] Donaldson | Kähler geometry on toric manifolds, and some other manifolds with large symmetry[END_REF][START_REF] Berman | Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties[END_REF][START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF])) and revisited by Santambrogio [START_REF] Santambrogio | Dealing with moment measures via entropy and optimal transport[END_REF]. As shown in [START_REF] Cordero-Erausquin | Moment measures[END_REF][START_REF] Santambrogio | Dealing with moment measures via entropy and optimal transport[END_REF], for a given ν P P 1 pR n q the quantity inf ηPP1pR n q tT pν, ηq `Hpη|Lebqu is not ´8 if and only if ν is centered and its support is not contained in a hyperplane (for completeness the proof of "the only if" case is sketched in the proof of Proposition 4). In this case, the optimal η turns out to be a log-concave probability measure with a density of the form e ´V , where V P F pR n q is an essentially smooth convex function and ν is the moment measure of η. The converse is also true: if ν is the moment measure of a given log-concave probability measure η o with a regular density as above, then the function η Þ Ñ T pν, ηq `Hpη|Lebq reaches its infimum at η o . Let us mention that the notion of moment measures together with the above characterization recently found several applications in convex geometry [START_REF] Klartag | Logarithmically-concave moment measures I, Geometric aspects of functional analysis[END_REF][START_REF] Klartag | Remarks on curvature in the transportation metric[END_REF], probability theory [START_REF] Fathi | Stein kernels and moment maps[END_REF][START_REF] Kolesnikov | Moment measures and stability for Gaussian inequalities[END_REF] or functional inequalities [START_REF] Fontbona | A variational approach to some transport inequalities[END_REF]. Here, we will use this description of moment measures to reparametrize the inequality [START_REF] Bogachev | Gaussian measures[END_REF] in terms of η 1 , η 2 instead of ν 1 , ν 2 , yielding to the following equivalent statement: for all log-concave probability measures η 1 , η 2 with an essentially continuous log-density, it holds [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF] T pν 1 , η 1 q `Hpη 1 |Lebq `T pν 2 , η 2 q `Hpη 2 |Lebq ď ´n log c `T pν 1 , ν 2 q, where ν 1 , ν 2 are the moment measures of η 1 , η 2 . This last inequality formulated with respect to the Lebesgue measure can then easily be recasted in terms of the Gaussian measure γ n yielding in particular to Theorem 1.

Let us further comment the Entropy-Transport inequality [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF]. It turns out that (11) also admits an information theoretic formulation. Recall that the entropy power of a random vector X with law η on R n is defined as [START_REF] Bourbaki | Éléments de mathématique. Intégration. Chapitres 1-4[END_REF] N pXq "

1 2πe exp ˆ´2 n Hpη|Lebq ˙.
With the notation above, one can easily prove (see Corollary 4) using a simple homogeneity argument that [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF] is equivalent to

(13) N pX 1 qN pX 2 qT pν 1 , ν 2 q 2 ě ´nc 2π ¯2 ,
for random vectors X 1 , X 2 having log concave distributions η 1 , η 2 with full support and associated moments measures

ν 1 , ν 2 . Let us note that if X 1 d " X 2 , then T pν 1 , ν 1 q " ş |∇V 1 | 2 dη 1 :" IpX 1 q
is the Fisher information of η 1 . Indeed, the optimal coupling in T pν 1 , ν 1 q is pY 1 , Y 1 q with Y 1 " ν 1 so that

T pν 1 , ν 1 q " ż |x| 2 ν 1 pdxq " ż |∇V 1 pxq| 2 η 1 pdxq
So, in this case, (13) boils down to

N pX 1 qIpX 1 q ě nc 2π .
A well known result of Stam [START_REF] Stam | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF] shows that the best constant in the inequality above is c " 2π (for general random vectors X 1 ). Inequality (13) thus appears as some bivariate form of Stam's inequality for log-concave random vectors.

Before closing this introduction, let us point out that the results obtained in the present paper for reverse Santaló inequalities echo several preceding results developed in the framework of direct Santaló inequalities. As proved by Ball in [4] in the case of even functions and then extended by Artstein-Avidan, Klartag and Milman [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of the Santaló inequality[END_REF] and Fradelizi and Meyer [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF], the direct Santaló inequality admits the following equivalent functional form: for any measurable function f : R n Ñ R Y t`8u, there exists a P R n such that ( 14)

ż e ´fa dx ż e ´pfaq ˚dx ď p2πq n ,
where f a pxq " f px `aq, x P R n . When f is even, a can be chosen to be 0. Direct proofs of this functional version were then obtained by Lehec [48,[START_REF] Lehec | A direct proof of the functional Santaló inequality[END_REF][START_REF] Lehec | Partitions and functional Santaló inequalities[END_REF]. The functional inequality [START_REF] Caglar | Functional versions of Lp-affine surface area and entropy inequalities[END_REF] immediately gives back the convex body version ( 1), but it is also interesting in itself. Let us mention two recent applications of the inequality ( 14) that are of the same spirit as our main contributions.

It was shown by Caglar, Fradelizi, Guédon, Lehec, Schütt and Werner [START_REF] Caglar | Functional versions of Lp-affine surface area and entropy inequalities[END_REF] that the inequality ( 14) implies back some inverse logarithmic Sobolev inequality first obtained by Artstein-Avidan, Klartag, Schütt and Werner [START_REF] Artstein-Avidan | Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality[END_REF]. More recently [START_REF] Fathi | A sharp symmetrized form of Talagrand's transport-entropy inequality for the Gaussian measure[END_REF], Fathi showed that the inequality ( 14) is in fact equivalent to some sharp symmetrized form of the Talagrand transport cost inequality (see Section 3.2 for more details). These symmetrized forms of Talagrand transport inequalities were further studied by Tsuji in [START_REF] Tsuji | Symmetrized Talagrand inequalities on Euclidean spaces[END_REF] (with in particular a direct transport proof of this sharp transport inequality in dimension 1). Finally, the inequality ( 13) is reminiscent of a work by Lutwak, Yang and Zhang [START_REF] Lutwak | Moment-entropy inequalities[END_REF] identifying the best constant c p,λ,n in the inequality

c p,λ,n pN λ pX 1 qN λ pX 2 qq p{n ď Er|X 1 ¨X2 | p s
where X 1 , X 2 are arbitrary independent random vectors on R n with finite p-th moment, N λ is the λ-Rényi-entropy power, and the parameters p, λ, n are in the range p ě 1, λ ě n n`p . As proved in [START_REF] Lutwak | Moment-entropy inequalities[END_REF], this family of inequalities gives back the Santaló inequality when X 1 , X 2 are uniformly distributed on convex bodies K, K ˝and when λ and p are sent to 8.

The paper is organized as follows. In Section 2, we introduce two functionals Kp ¨|mq and Lp ¨|mq associated to a given log-concave measure m on R n (which coincide with the functionals considered above when m is the Lebesgue measure). We study their basic properties and we show in Theorem 3 (using the result of [START_REF] Cordero-Erausquin | Moment measures[END_REF]) that these functionals are convex conjugates when m is the Lebesgue measure. This duality relation between these functionals turns out to be true for a general logconcave measure m, as shown in Theorem 4. In Section 2, we use the duality between functionals Kp ¨|Lebq and Lp ¨|Lebq to establish several dual equivalent versions of the functional inverse Santaló inequality IS n pcq and its variants. These dual versions involve various probability "distances" such as (relative) entropy, (relative) Fisher information and optimal transport costs. The proofs of Theorems 1 and 2 are given in this section. Finally, Section 3 contains the proof of Theorem 4 (based on Sion min-max theorem) and Section 4 an alternative proof of Theorem 3 (based on a general version of the Fenchel-Moreau biconjugation theorem).

Duality results

In the following m will always denote a Borel measure on R n such that mpKq ă `8 for all compact sets K Ă R n .

2.1.

Convex duality between relative entropy and log-Laplace functionals. Consider the relative entropy functional with respect to m: for any dν " h dm P PpR n q such that log h P L 1 pνq Hpν|mq "

ż h log h dm,
with the usual convention 0 log 0 " 0.

Remark 2. Note that, when m is a finite measure, then the integral ş h log h dm always makes sense in R Y t`8u, since the function x log x is bounded from below. So in this case, we can extend the definition of Hp ¨|mq by setting Hpν|mq " ş h log h dm if ν P PpR n q is absolutely continuous with respect to m and dν " h dm and Hpν|mq " `8 if ν is not absolutely continuous with respect to m. We will always adopt this convention when m is a finite measure.

Recall the following duality results for the relative entropy functional: Proposition 1. If dν " h dm P PpR n q with log h P L 1 pνq, then [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms, and applications[END_REF] Hpν|mq " sup

"ż f dν ´log ż e f dm : f s.t ż e f dm ă `8* . and, if ş e f dm ă `8, then (16) 
log ż e f dm " sup "ż f dν ´Hpν|mq : dν " h dm with log h P L 1 pνq * .

In both formulas, f is allowed to take values in R Y t˘8u and the fact that the integral ş f dν makes sense is a consequence of the proof below. Equalities ( 15) and ( 16) express that the two convex functionals ν Þ Ñ Hpν|mq and f Þ Ñ log ş e f dm are in convex duality. For the sake of completeness, we recall a classical proof of these identities (see also [START_REF] Dembo | Large deviations techniques and applications[END_REF]Lemma 6.2.13]).

Proof. Both results come from the following well known Young type inequality:

xy ď e x `y log y ´y, @x P R, @y ě 0.

Observe that if dν " h dm P PpR n q with log h P L 1 pνq and f is such that ş e f dm ă `8, then f h ď e f `h log h ´h and so rf hs `is m-integrable and satisfies ż f dν ď ż e f dm `Hpν|mq ´1.

Changing f into f `a, for some a P R, then gives that ż f dν ď e a ż e f dm `Hpν|mq ´1 ´a and optimizing over a yields to ż f dν ď log ż e f dm `Hpν|mq.

For a given ν, there is equality if f " log h, whereas for a given f such that 0 ă ş e f dm ă `8, there is equality for ν " e f ş e f dm . If ş e f dm " 0 (which means that f " ´8 m a.s), then it follows from the inequality above that ş f dν " ´8 for any dν " h dm such that log h P L 1 pνq. This completes the proof.

2.2.

A twisted log-Laplace functional. Following [START_REF] Cordero-Erausquin | Moment measures[END_REF][START_REF] Santambrogio | Dealing with moment measures via entropy and optimal transport[END_REF], we will now consider a twisted version of ( 15) and ( 16) where the Log-Laplace functional

f Þ Ñ log ż e f dm
is replaced by the functional Lp ¨|mq defined by

(17) Lpf |mq :" ´log ż e ´f ˚dm, f P F pR n q,
where we recall that f ˚denotes the Fenchel-Legendre conjugate of f defined in [START_REF] Barthe | The volume product of convex bodies with many hyperplane symmetries[END_REF] and that F pR n q denotes the set of all convex and semicontinuous functions f : R n Ñ R Y t`8u, with a non empty domain.

As observed in [START_REF] Cordero-Erausquin | Moment measures[END_REF], the functional Lp ¨|mq turns out to be convex, when the measure m is assumed to be log-concave. Lemma 1. If m is a log-concave measure on R n , then for any measurable functions f 0 , f 1 : R n Ñ R Y t`8u, it holds ż e ´pp1´tqf0`tf1q ˚dm ě ˆż e ´f 0 dm ˙1´t ˆż e ´f 1 dm ˙t , @t P r0, 1s.

The proof of Lemma 1 given in [START_REF] Cordero-Erausquin | Moment measures[END_REF] is a simple application of Prekopa's theorem (which is a particular case of the Prekopa-Leindler inequality). For completeness, we give below a slightly different derivation of Lemma 1 that we learned from an anonymous referee.

Proof. Let us write dm " e ´V dx where V is a convex function on R n . Observe that Φpt, xq :" pp1 ´tqf 0 `tf 1 q ˚pxq`V pxq " sup

yPR n tx¨y´p1´tqf 0 pyq´tf 1 pyqu`V pxq, x P R n , t P r0, 1s.
Being a supremum of convex functions, Φ is a convex function on r0, 1s ˆRn . According to Prekopa's theorem [START_REF] Prekopa | On logarithmic concave measures and functions[END_REF]Theorem 6] on marginals of log-concave functions, the function t Þ Ñ ´log ş R n e ´Φpt,xq dx is also convex, which completes the proof.

2.3.

A twisted version of the relative entropy functional. Mimicking [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms, and applications[END_REF], we now introduce the following functional: for ν P P 1 pR n q, Kpν|mq :" sup

f PL 1 pνqXF pR n q "ż p´f q dν `log ż e ´f ˚dm * , " sup f PL 1 pνqXF pR n q "ż p´f q dν ´Lpf |mq * .
When m is the Lebesgue measure on R n , we will use the notation Kp ¨|Lebq.

This section is organized as follows: in Section 2.3.1, we first establish some basic properties of this functional, then we prove in Section 2.3.2 an alternative expression for Kp ¨|mq involving the maximum correlation transport cost T and finally, Section 2.3.3 establishes a reverse duality formula expressing back the functional Lp ¨|mq in terms of Kp ¨|mq.

2.3.1.

Basic properties of the functional Kp ¨|mq. We will use repeatedly the following classical lemma in the sequel. For all r ě 0, B r will denote in all the paper the closed Euclidean ball of radius r ě 0 centered at the origin. Lemma 2. If f P F pR n q, then for any r ą 0, the function f r defined by f r pxq " inf yPR n tf pyq `r|x ´y|u, x P R n is convex, r-Lipschitz, satisfies f r ď f and is such that f r pyq " f ˚pyq `χBr pyq, y P R n . Moreover f r Ñ f pointwise monotonically as r Ñ `8.

Proof. As an infimum of r-Lipschitz functions, f r is also r-Lipschitz. It clearly satisfies f r ď f and is convex as an infimum convolution of two convex functions. The Legendre transform of f r can be calculated as follows: For the pointwise convergence of f r , we refer to [37, Proposition 4.1.5].

f r pyq " sup
It will often be useful to restrict the supremum defining Kp ¨|mq to the smaller class F Lip pR n q of all convex and Lipschitz functions on R n . Proposition 2. For any ν P P 1 pR n q, the supremum defining Kpν|mq can be restricted to F Lip pR n q.

Proof. Consider f k pxq " inf yPR n tf pyq `k|x ´y|u, x P R n , as in Lemma 2. It holds ż p´f q dν`log

ż e ´f ˚1B k dm ď ż p´f k q dν`log ż e ´f k dm ď sup gPFLippR n q "ż p´gq dν `log ż e ´g˚d m * .
By monotone convergence, and optimizing over f , one concludes that sup

f PF pR n qXL 1 pνq "ż p´f q dν `log ż e ´f ˚dm * ď sup gPFLippR n q "ż p´gq dν `log ż e ´g˚d m * .
The converse inequality being obvious, this completes the proof.

Recall that the notions of symmetry and unconditionality were already defined in the Introduction for functions and for probability measures. Similarly, a measure m on R n (not necessarily of unit mass) is said unconditional if it is invariant under all flipping of coordinates: for all non-negative functions h on R n it holds ż hpε 1 x 1 , . . . , ε n x n qmpdx 1 , . . . , dx n q " ż hpx 1 , . . . , x n qmpdx 1 , . . . , dx n q for any ε " pε 1 , . . . , ε n q P t´1; 1u n . We define similarly symmetric measure. We will denote by P s,1 pR n q (resp. P u,1 pR n q) the set of symmetric (resp. unconditional) elements of P 1 pR n q and by F u pR n q (resp. F u,Lip pR n q) the subset of F pR n q consisting of unconditional functions (resp. Lipschitz and unconditional functions). We define similarly the sets F s pR n q and F s,Lip pR n q.

Proposition 3. If m is log-concave and unconditional and ν P P u,1 pR n q (resp. P s,1 pR n q), the supremum defining Kpν|mq can be restricted to F u pR n q or F u,Lip pR n q (resp. F s pR n q or F s,Lip pR n q).

Proof. We only treat the unconditional case, the symmetric case being similar and simpler. Let ν P P 1 pR n q and f P F pR n q X L 1 pνq. For any ε " pε 1 , . . . , ε n q P t´1; 1u n , denote by f ε the function defined by f ε pxq " f pε 1 x 1 , . . . , ε n x n q, x P R n , and by f P F u pR n q the function defined by f "

1 2 n ř εPt´1,1u n f ε . Since pf ε q ˚"
pf ˚qε and the function Lp ¨|mq is convex by Lemma 1, it follows from the unconditionality of ν and m that ż p´f q dν ´Lpf |mq "

ż ´f dν ´1 2 n ÿ εPt´1,1u n Lpf ε |mq ď ż ´f dν ´Lp f |mq.
Therefore, the supremum defining Kpν|mq can be restricted to F u pR n q. The same reasoning together with Proposition 2 shows that it can be further reduced to F u,Lip pR n q.

Following [START_REF] Cordero-Erausquin | Moment measures[END_REF], we now collect some informations on the domain of Kp ¨|Lebq: Proposition 4. A probability measure ν P P 1 pR n q satisfies Kpν|Lebq ă `8 if and only if ş x νpdxq " 0 and the support of ν is not contained in a hyperplane.

Proof. We simply sketch the proof of the first implication. Let ν P P 1 pR n q and f be a convex and Lipschitz function. Denoting ℓ a pxq " a ¨x, a, x P R n and noticing that pf `ℓa q ˚pyq " f ˚py ´aq, we get Kpν|Lebq ě a ¨ż x νpdxq ´ż f dν `log ż e ´f ˚py´aq dy " a ¨ż x νpdxq ´ż f dν `log ż e ´f ˚pyq dy.

So if ş

x νpdxq ‰ 0, then taking the supremum over a gives that Kpν|Lebq " `8.

Suppose now that the support of ν is included in a hyperplane H. Without loss of generality, one can assume that H is the hyperplan x 1 " 0. Let f be the function defined by f pxq " χ t0u px 1 q `řn i"2 |x i |, x P R n . Then, an easy calculation shows that f ˚pyq " ř n i"2 χ r´1,1s py i q, y P R n . Therefore, ż e ´f ˚pyq dy "

ż n ź i"2
1 r´1,1s px i q dx " `8.

On the other hand, ş f dν " ş ř n i"2 |x i | νpdxq ă `8, and so Kpν|mq " `8. The proof of the converse implication is much more involved. We refer to Proposition 12 of [START_REF] Cordero-Erausquin | Moment measures[END_REF].

An alternative expression.

In this paragraph, we assume that m is a Borel measure on R n such that ( 18)

ż e ´β|x| mpdxq ă `8
for some β ą 0. This assumption is clearly satisfied for any log-concave measure on R n . It will be convenient to introduce the probability measure m defined by mpdxq "

e ´β|x| ş e ´β|y| mpdyq mpdxq. Under Assumption [START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF], one can unambiguously extend the definition of Hp ¨|mq on the set P 1 pR n q, as follows:

Hpν|mq " " ş dν dm log dν dm dm if ν ! m `8
otherwise @ν P P 1 pR n q.

To see that this definition makes sense, recall that according to Remark 2, the relative entropy Hpν| mq is well defined, for any ν P PpR n q. Therefore, using that Hpν| mq " Hpν|mq `β ż |x| νpdxq `constant, one sees that Hpν|mq " ş h log h dm makes sense in R Y t8u for any dν " h dm P P 1 pR n q.

The functional Kp ¨|mq admits another expression involving the so-called maximal correlation cost T that we shall now define. Given ν 1 , ν 2 P P 1 pR n q, we set

T pν 1 , ν 2 q " inf f PF pR n q "ż f dν 1 `ż f ˚dν 2 * .
Note that the integral of a convex function f P F pR n q with respect to ν P P 1 pR n q always makes sense in R Y t`8u since, up to the subtraction of an affine function, f can be assumed to be nonnegative. As already mentioned in the introduction, when ν 1 , ν 2 P P 2 pR n q, then it easily follows from the Kantorovich duality for the W 2 2 transport cost (see e.g [START_REF] Villani | Optimal transport, Grundlehren der Mathematischen Wissenschaften[END_REF]) that T pν 1 , ν 2 q " sup ErX ¨Y s,

where the supremum runs over the set of pairs of random vectors pX, Y q such that X " ν 1 and Y " ν 2 .

Proposition 5. Under Assumption (18), for any ν P P 1 pR n q, it holds Kpν|mq " ´inf

ηPP1pR n q
tT pν, ηq `Hpη|mqu , and the infimum can be restricted to compactly supported η's. Moreover, if ν and m are symmetric (resp. unconditional), then the infimum can be restricted to (compactly supported) elements of P s,1 pR n q (resp. P u,1 pR n q).

Proof. By definition of Kp ¨|mq and applying Lemma 3 below to ϕ " f ˚, one gets

Kpν|mq " sup f PL 1 pνqXF pR n q "ż p´f q dν `log ż e ´f ˚dm * " sup f PL 1 pνqXF pR n q sup ηPP1pR n q "ż p´f q dν `ż p´f ˚q dη ´Hpη|mq * " sup ηPP1pR n q sup f PL 1 pνqXF pR n q "ż p´f q dν `ż p´f ˚q dη ´Hpη|mq * " ´inf ηPP1pR n q
tT pν, ηq `Hpη|mqu .

Since the supremum in Lemma 3 can be restricted to compactly supported probability measures, the same is true for the infimum above.

In the preceding proof, we used the following slight extension of the identity [START_REF] Cordero-Erausquin | Moment measures[END_REF].

Lemma 3. For any ϕ P F pR n q, it holds log ż e ´ϕ dm " sup

νPP1pR n q "ż ´ϕ dν ´Hpν|mq * ,
and the supremum can be restricted to compactly supported ν. Moreover, if ϕ and m are symmetric (resp. unconditional), then the supremum can be restricted to (compactly supported) elements of P s,1 pR n q (resp. P u,1 pR n q).

Note that, since ϕ is convex, the integral ş ´ϕ dν makes sense in R Y t´8u for any ν P P 1 pR n q.

Proof. Reasoning as in the proof of ( 15) and ( 16), we see that if ν P P 1 pR n q is such that Hpν|mq ă 8 one has, ż ´ϕ dν ´Hpν|mq ď log ż e ´ϕ dm and so taking the supremum over ν, it holds sup

νPP1pR n q "ż ´ϕ dν ´Hpν|mq * ď log ż e ´ϕ dm.
To show the converse inequality, consider ν k pdxq " 1 Z k e ´ϕpxq 1 B k pxq mpdxq, where we recall that B k is the closed ball of radius k centered at 0 and Z k " ş e ´ϕpxq 1 B k pxq mpdxq. Since ϕ is convex, there exists a P R n , b P R such that ϕpxq ě a ¨x `b. The probability measure ν k has thus a bounded density and is supported on B k , and so belongs to P 1 pR n q. Also, Hpν k |mq " ş B k ´ϕpxqe ´ϕpxq dm ´log Z k , and the first integral is finite. Therefore,

ż ´ϕ dν k ´Hpν k |mq " log Z k Ñ log ż e ´ϕ dm
as k Ñ 8, by monotone convergence. The fact that the supremum can be restricted to symmetric or unconditional η when ϕ and m are symmetric or unconditional is left to the reader. This completes the proof.

Reverse duality.

The functional Kp ¨|mq is defined as some sort of conjugate of the functional Lp ¨|mq. In this paragraph, we address the question of the following reverse duality formula:

(19) sup

νPP1pR n q "ż p´f q dν ´Kpν|mq * " Lpf |mq, f P F pR n q,
and we are looking for conditions on f and m under which [START_REF] Donaldson | Kähler geometry on toric manifolds, and some other manifolds with large symmetry[END_REF] holds true.

An easy observation, is that this formula always holds with ď instead of ", under no particular assumptions. Proposition 6. For any Borel measure m on R n and f P F pR n q, it holds

sup νPP1pR n q "ż p´f q dν ´Kpν|mq * ď Lpf |mq.
In the following, a measure m being fixed, we will denote by r F Lip pR n q the set of elements of F Lip pR n q such that ş e ´f ˚dm ‰ 0.

Proof. Let f P F pR n q; by definition of Kp ¨|mq, it holds sup

νPP1pR n q "ż p´f q dν ´Kpν|mq * " sup νPP1pR n q inf ϕP r FLippR n q "ż pϕ ´f q dν ´log ż e ´ϕ˚d m * .
Observe that, for any fixed ν P P 1 pR n q, it holds

inf ϕP r FLippR n q "ż pϕ ´f q dν ´log ż e ´ϕ˚d m * ď ´log ż e ´f ˚dm.
Indeed, defining f k pxq " inf yPR n tf pyq `k|x ´y|u, x P R n , k ě 1, it follows from Lemma 2 that The following result shows that ( 19) holds true at least when m is the Lebesgue measure.

f k ď f , f k is k-Lipschitz,
Theorem 3. For any f P F pR n q such that ş e ´f ˚dx ą 0, it holds

sup νPP1pR n q "ż p´f q dν ´Kpν|Lebq * " Lpf |Lebq,
and the supremum can be restricted to compactly supported ν. If f is further assumed to be unconditional (resp. symmetric), then the supremum above can be restricted to unconditional P u,1 pR n q (resp. P s,1 pR n q).

Below, we will derive Theorem 3 from the results of [START_REF] Cordero-Erausquin | Moment measures[END_REF]. Another independent proof of Theorem 3 (based on a general Fenchel-Moreau biconjugation theorem) will be given in Section 5.

We will need the following elementary lemma (also used in [START_REF] Cordero-Erausquin | Moment measures[END_REF]): Lemma 4. Let ψ : R n Ñ R Y t`8u be some lower semicontinuous convex function such that ş e ´ψ dx ą 0. Then the following propositions are equivalent:

(i) ş e ´ψ dx ă `8, (ii) There exists a ą 0 and b P R such that ψpxq ě a|x| `b, x P R n , (iii) The point 0 belongs to the interior of the set dompψ ˚q.

Observe that the lemma is no longer true if ş e ´ψ dx " 0. For example, if ψ " χ H , for some hyperplan H, then (i) is true but (ii) is obviously false. Also, since ψ ˚" χ H K , (iii) is also false in this case.

Proof. It is clear that (ii) implies (i). The implication (i) ñ (ii) is Lemma 2.1 of [START_REF] Klartag | Uniform almost sub-Gaussian estimates for linear functionals on convex sets[END_REF]. To see that (ii) ñ (iii), observe that for all y P R n such that |y| ď a it holds ψ ˚pyq " sup and so 0 belongs to the interior of tx P R n : ψ ˚pxq ă `8u. Finally, let us show that (iii) implies (ii). Assume that there exists a ą 0 such that ψ ˚pyq ă `8 for all y P B a . Being convex, ψ ˚is continuous on B a and so there exists b P R such that ψ ˚ď ´b `χBa . Since ψ is lower semicontinuous, one gets by duality that ψpxq ě p´b `χBa q ˚" b `a|x|, which completes the proof.

Recall that the definitions of essentially continuous convex functions and of moment measures are given after Theorem 1.

Proof of Theorem 3. Note that, according to Proposition 6, there is nothing to prove if ş e ´f ˚dx " `8.

According to Theorem 8 of [START_REF] Cordero-Erausquin | Moment measures[END_REF], if ψ 0 , ψ 1 P F pR n q are such that 0 ă ş e ´ψ0 dx ă `8 and 0 ă ş e ´ψ1 dx ă `8 and ψ 0 is essentially smooth, then it holds log ż e ´ψ0 dx ´log ż e ´ψ1 dx ě ż pψ 0 ´ψ1 qdν ψ0 .

In other words, Kpν ψ0 |Lebq " ż p´ψ 0 q dν ψ0 `log ż e ´ψ0 dx.

Therefore, if ψ 0 is essentially continuous and 0 ă ş e ´ψ0 dx ă `8, then it holds sup νPP1pR n q "ż p´ψ 0 q dν ´Kpν|Lebq * ě ż p´ψ 0 q dν ψ0 ´Kpν ψ0 |Lebq " ´log ż e ´ψ0 dx and so, according to Proposition 6, equality [START_REF] Donaldson | Kähler geometry on toric manifolds, and some other manifolds with large symmetry[END_REF] is satisfied for f " ψ 0 . In other words, ( 19) is true for any f P F pR n q which is essentially continuous and such that 0 ă ş e ´f ˚dx ă `8. Now let us remove the assumption of essential continuity. Let f P F pR n q be such that 0 ă ş e ´f ˚dx ă `8 and let us prove [START_REF] Donaldson | Kähler geometry on toric manifolds, and some other manifolds with large symmetry[END_REF] in that case. Consider f k defined by

f k " f `χB k , k ě 1.
Note that, according to Lemma 2, pf k q ˚pyq " pf ˚qk pyq " inf xPR n tf ˚pxq `k|x ´y|u, y P R n .

According to Lemma 4, since ş e ´f ˚dx ă `8 it follows that 0 belongs to the interior of dompf q.

Therefore, for any k ě 1, 0 also belongs to the interior of dompf k q, and so ş e ´pf k q ˚dx ă `8. Also, since pf k q ˚is finite over R n , it is continuous on R n and thus essentially continuous. Therefore, for every k ě 1, it holds ´log ż e ´pf k q ˚dx " sup νPP1pR n q "ż p´f ´χB k q dν ´Kpν|Lebq * " sup ν compactly supported "ż p´f ´χB k q dν ´Kpν|Lebq * .

According to Lemma 2, and the dominated convergence theorem (note that e ´pf1q ˚is integrable), one gets

´log ż e ´f ˚dx " sup kě1 ´log ż e ´pf k q ˚dx " sup kě1 sup ν compactly supported "ż p´f ´χB k q dν ´Kpν|Lebq * " sup ν compactly supported sup kě1 "ż p´f ´χB k q dν ´Kpν|Lebq * " sup ν compactly supported "ż p´f q dν ´Kpν|Lebq * ď sup νPP1pR n q "ż p´f q dν ´Kpν|Lebq * ď ´log ż e ´f ˚dx,
where the last inequality comes from Proposition 6. This completes the proof of the reverse duality formula.

Now let us assume that f P F u pR n q (the symmetric case is similar) and let us show that the supremum in the reverse duality formula can be restricted to P u,1 pR n q. For any ε " pε 1 , . . . , ε n q P t´1; 1u n and ν P P 1 pR n q, denote by ν ε the push forward of ν under the map x Þ Ñ pε 1 x 1 , . . , ε n x n q, x P R n , and consider the unconditional probability measure ν " 1 2 n ř εPt´1,1u n ν ε . It is easily checked that Kpν ε |Lebq " Kpν|Lebq, for any ε P t´1; 1u n . Therefore, f being unconditional it holds ż p´f q dν `Kpν|Lebq "

ż ´f dν ´1 2 n ÿ εPt´1,1u n Kpν ε |Lebq ď ż ´f dν ´Kpν|Lebq,
where the inequality follows from the convexity of ν Þ Ñ Kpν|Lebq. This shows that the supremum in the reverse duality formula can be restricted to P u,1 pR n q.

It turns out that the conclusion of Theorem 3 can be extended to general log-concave measures m, as shown in the following result whose proof is postponed to Section 4.

Theorem 4. Suppose that m is an arbitrary absolutely continuous log-concave measure. For any f P F pR n q such that ş e ´f ˚dm ą 0, it holds

sup νPP1pR n q "ż p´f q dν ´Kpν|mq * " Lpf |mq.
If m and f are further assumed to be unconditional (resp. symmetric), then the supremum above can be restricted to P u,1 pR n q (resp. P s,1 pR n q).

HWI formulation of functional inverse Santaló inequalities

In this section, we establish dual equivalent versions of the functional inverse Santaló inequalities introduced in Definition 1. These equivalent versions are expressed in terms of entropy (H), Kantorovich transport distance (W) and Fisher information (I). Remark 3. In [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF], ( 6) is required to hold only for functions f : R n Ñ R such that 0 ă ş e ´f dx ă `8, without assumptions on f ˚. Note that if f satisfies these assumptions, then according to Lemma 4, the function f ˚is finite on a neighborhood of 0, and therefore ş e ´f ˚dx ą 0. It is not difficult to see that (6) can then be extended to f P F pR n q such that 0 ă ş e ´f dx and 0 ă ş e ´f ˚dx, so that the two definitions actually coincide. 

(20) Kpν 1 |Lebq `Kpν 2 |Lebq ě n log c ´T pν 1 , ν 2 q,
for all ν 1 , ν 2 P P 1 pR n q (resp. for all compactly supported ν 1 , ν 2 ). In the case of the reverse Santaló inequality IS n,u pcq (resp. IS n,s pcq), the same statement holds with the extra condition that ν 1 , ν 2 belong to P u,1 pR n q (resp. P s,1 pR n q).

Proof. Assume that IS n pcq holds and let us show [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF]. Fix ν 1 , ν 2 P P 1 pR n q. If Kpν 1 |Lebq Kpν 2 |Lebq " `8 or T pν 1 , ν 2 q " `8, there is nothing to prove. One can thus assume further that all these quantities are finite. Let f P F pR n q be such that f P L 1 pν 1 q, f ˚P L 1 pν 2 q (such f exists since T pν 1 , ν 2 q ă `8). Since for i " 1, 2, Kpν i |Lebq ă `8, Proposition 4 implies that ν i is centered and that its support is not contained in a hyperplane. Therefore, copsupqpν i q (the closed convex hull of the support of ν i ) has a non empty interior. Since ş f dν 1 ă `8, one easily concludes that copsupqpν 1 q Ă dompf q and so f is finite on a small ball which implies that ş e ´f dx ą 0. Similarly ş e ´f ˚dx ą 0. Applying the inequality (6) then gives that ż p´f q dν 1 `log ż e ´f ˚dx `ż p´f ˚q dν 2 `log

ż e ´f dx ě n log c ´ˆż f dν 1 `ż f ˚dν 2 ˙.
So, by definition of Kp ¨|Lebq, we get

Kpν 1 |Lebq `Kpν 2 |Lebq ě n log c ´ˆż f dν 1 `ż f ˚dν 2 ˙.
Optimizing over all f P F pR n q such that f P L 1 pν 1 q, f ˚P L 1 pν 2 q yields Kpν 1 |Lebq `Kpν 2 |Lebq ě n log c ´T pν 1 , ν 2 q.

Conversely assume that (20) holds for all compactly supported ν 1 , ν 2 . Take f P F pR n q such that 0 ă ş e ´f dx and 0 ă ş e ´f ˚dx. Since ν 1 , ν 2 are compactly supported, T pν 1 , ν 2 q is finite and it holds ż p´f q dν 1 ´Kpν 1 |Lebq `ż p´f ˚q dν 2 ´Kpν 2 |Lebq ď ´n log c ´ˆż f dν 1 `ż f ˚dν 2 ˙`T pν 1 , ν 2 q ď ´n log c, since by definition T pν 1 , ν 2 q ď `ş f dν 1 `ş f ˚dν 2 ˘, for any convex function f . Thus optimizing over all compactly supported ν 1 , ν 2 , it follows from Theorem 3 that ´log ż e ´f ˚dx ´log ż e ´f dx ď ´n log c, which completes the proof.

The following is a straightforward consequence of Theorem 5 and Proposition 5. tT pν 1 , η 1 q `Hpη 1 |Lebqu `inf

η2PP1pR n q
tT pν 2 , η 2 q `Hpη 2 |Lebqu ď ´n log c `T pν 1 , ν 2 q, for all ν 1 , ν 2 P P 1 pR n q (resp. for all compactly supported ν 1 , ν 2 ). In the case of the reverse Santaló inequality IS n,u pcq (resp. IS n,s pcq), the same statement holds with the extra condition that ν 1 , ν 2 , η 1 , η 2 belong to P u,1 pR n q (resp. P s,1 pR n q).

We will now let moment measures enter the game using the following theorem.

Theorem 6 (Cordero-Erausquin-Klartag/Santambrogio).

(i) A probability measure ν P PpR n q is the moment measure of some log-concave probability measure η o on R n such that dη o " e ´Vo dx for some essentially continuous convex function V o : R n Ñ R Y t`8u if and only if ν P P 1 pR n q, ν is centered and its support is not contained in a hyperplane. The function V o is moreover unique up to translations. (ii) If ν is centered and its support is not contained in a hyperplane, then the probability measure η o is up to translations the unique minimizer of the functional η Þ Ñ T pν, ηq `Hpη|Lebq on P 1 pR n q: inf ηPP1pR n q tT pν, ηq `Hpη|Lebqu " T pν, η o q `Hpη o |Lebq.

(iii) Moreover, if ν P P u,1 pR n q (resp. P s,1 pR n q) then η o P P u,1 pR n q (resp. P s,1 pR n q).

In the preceding result, Item (i) is due to Cordero-Erausquin and Klartag [START_REF] Cordero-Erausquin | Moment measures[END_REF] and Item (ii) to Santambrogio [START_REF] Santambrogio | Dealing with moment measures via entropy and optimal transport[END_REF]. Item (iii) is an immediate consequence of the second part of Proposition 5. (ii) For all log-concave probability measures η 1 , η 2 on R n such that, for i " 1, 2, dη i " e ´Vi dx for some essentially continuous convex function

V i : R n Ñ R Y t`8u, it holds (22) 
T pν 1 , η 1 q `Hpη 1 |Lebq `T pν 2 , η 2 q `Hpη 2 |Lebq ď ´n log c `T pν 1 , ν 2 q, where ν 1 , ν 2 are the moment measures of η 1 and η 2 . (iii) For all log-concave probability measures η 1 , η 2 on R n such that, for i " 1, 2, dη i " e ´Vi dx for some essentially continuous convex function

V i : R n Ñ R Y t`8u, it holds ż V 1 dν 1 `ż V 2 dν 2 ď ´n log c `T pν 1 , ν 2 q,
where ν 1 , ν 2 are the moment measures of η 1 and η 2 .

Moreover, if V i : R n Ñ R, then (22) reduces to

(23) Hpη 1 |Lebq `Hpη 2 |Lebq ď ´n logpe 2 cq `T pν 1 , ν 2 q.
The same result holds for inequality IS n,u pcq (resp. IS n,s pcq) with the extra condition that η 1 , η 2 are unconditional (resp. symmetric).

Remark 4.

' Note that the equivalence is still true if in (ii) one puts the extra condition that ν 1 , ν 2 P P 2 pR n q. ' According to Lemma 5 of [START_REF] Cordero-Erausquin | Moment measures[END_REF], for a general V i P F pR n q, the inequality T pν i , η i q ď n is always true. Therefore, for general V i 's, [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF] is slightly stronger than [START_REF] Fathi | Stein kernels and moment maps[END_REF].

Proof. The equivalence between (i) and (ii) follows immediately from Corollary 2 and Theorem 6.

For i " 1, 2, let η i be a log-concave probability measure on R n such that dη i " e ´Vi dx, with V i P F pR n q, and denote by ν i the moment measure of η i . Let us show that (ii) and (iii) are equivalent. According to Proposition 7 of [START_REF] Cordero-Erausquin | Moment measures[END_REF] and its proof,

ş |V i | dη i ă `8 and ş |V i | dν i ă `8.
Therefore, for any function f P F pR n q such that f P L 1 pη i q and f ˚P L 1 pν i q, it follows from Young inequality that ż f dη i `ż f ˚dν i "

ż f pxq `f ˚p∇V i pxqq η i pdxq ě ż x ¨∇V i pxq η i pdxq " ż V i pxq `V i p∇V i pxqq dη i " ż V i dη i `ż V i dν i .
Therefore,

T pν i , η i q " ż x ¨∇V i pxq η i pdxq " ż V i dη i `ż V i dν i .
Since Hpη i |Lebq " ´ş V i dη i , we see that [START_REF] Fathi | Stein kernels and moment maps[END_REF] 

amounts to ż V 1 dν 1 `ż V 2 dν 2 ď ´n log c `T pν 1 , ν 2 q. Now let us assume that V i : R n Ñ R is finite over R n . Then (24) T pν i , η i q " ż x ¨∇V i pxqe ´Vipxq dx " ´ż ∇ ˆ|x| 2 2 ˙¨∇ ´e´Vipxq ¯dx " n,
where the second equality follows by an integration by parts. This is clear if V i is continuously differentiable. For a general V i , note that for any j P t1, . . . , nu and for any fixed x 1 , . . . , x j´1 , x j`1 , . . . , x n the function x j Þ Ñ x j e ´Vipx1,...,xj´1,xj,xj`1,...,xnq is locally Lipschitz and thus absolutely continuous. Therefore, for any a ą 0, ae ´Vipx1,...,xj´1,a,xj`1,...,xnq `ae ´Vipx1,...,xj´1,´a,xj`1,...,xnq " ż a ´a e ´Vipxq dx j `ż a ´a x j B j pV i qpxqe ´Vipxq dx j . Letting a Ñ 8, integrating with respect to x 1 , . . . , x j´1 , x j`1 , . . . , x n and summing over j gives the result. Therefore, when V i : R n Ñ R, ( 22) is equivalent to

Hpη 1 |Lebq `Hpη 2 |Lebq ď ´n logpe 2 cq `T pν 1 , ν 2 q.
The cases of Inequalities IS n,u pcq and IS n,s pcq are straightforward.

In the next result, we derive from [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF] an alternative formulation with an information-theoretic flavor. Recall the definition of the entropy power N pXq given at [START_REF] Bourbaki | Éléments de mathématique. Intégration. Chapitres 1-4[END_REF]. Corollary 4. If IS n pcq holds true then for any random vectors X 1 , X 2 drawn according to log-concave distributions η 1 , η 2 with full support on R n , it holds

N pX 1 qN pX 2 qT pν 1 , ν 2 q 2 ě ´nc 2π ¯2 ,
where ν 1 , ν 2 are the moment measures of η 1 , η 2 . If IS n,s pcq (resp. IS n,u pcq) holds true, then the inequality above holds with the extra condition that X 1 , X 2 are symmetric (resp. unconditional).

Proof. We only treat the case of the inequality IS n pcq the other cases being similar. Consider logconcave probability measures dη i " e ´Vi dx, i " 1, 2, with V i : R n Ñ R a finite valued convex function and let X i " η i . For any λ ą 0, define η λ i as the pushforward of η i under the map x Þ Ñ λx. Then η λ i pdxq " e ´Vipx{λq 1 λ n dx, i " 1, 2, and so Hpη λ i |Lebq " ´n log λ `Hpη i |Lebq. On the other hand, denoting ν λ i the moment measure of η λ i , then it is easily seen that ν λ i " Lawp 1 λ ∇V i pX i qq. Therefore, T pν λ 1 , ν λ 2 q " 1 λ 2 T pν 1 , ν 2 q. So, according to [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF], it holds Hpη 1 |Lebq `Hpη 2 |Lebq ď n logpλ 2 q `1 λ 2 T pν 1 , ν 2 q ´n logpe 2 cq.

Optimizing over λ, yields to

Hpη 1 |Lebq `Hpη 2 |Lebq ď n log ˆT pν 1 , ν 2 q n ˙´n logpecq,
which completes the proof.

form of reverse Santaló inequalities -Gaussian version.

Recall that the standard Gaussian measure γ n on R n satisfies the Talagrand transport-entropy inequality [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF]: 1 2 W 2 2 pν, γ n q ď Hpν|γ n q, @ν P P 2 pR n q.

This inequality admits a symmetric version (which can be easily deduced from the one above using the triangle inequality for the distance W 2 ), which is the following:

(25) 1 4 W 2 2 pν 1 , ν 2 q ď Hpν 1 |γ n q `Hpν 2 |γ n q, @ν 1 , ν 2 P P 2 pR n q.

The factor 1{4 is sharp. Indeed, if one takes ν 1 " N p´a, 1q and ν 2 " N pa, 1q, for some a ą 0, then there is equality in [START_REF] Fontbona | A variational approach to some transport inequalities[END_REF]. Recently, it was shown by Fathi [START_REF] Fathi | A sharp symmetrized form of Talagrand's transport-entropy inequality for the Gaussian measure[END_REF] that the factor 1{4 can be improved to 1{2 if at least one of the measures ν 1 , ν 2 is centered. This result is a consequence of the functional form of the Santaló inequality. Below, we show that reverse Santaló Inequalities can be translated in terms of lower bounds for the following functional Gpν 1 , ν 2 q " Hpν 1 |γ n q `Hpν 2 |γ n q ´1 2 W 2 2 pν 1 , ν 2 q, @ν 1 , ν 2 P P 2 pR n q.

Theorem 7. Let c ą 0. The reverse Santaló inequality IS n pcq holds if and only if for all ν 1 , ν 2 P P 2 pR n q, it holds

(26) Gpν 1 , ν 2 q ě inf η1PP2pR n q Gpη 1 , ν 2 q `inf η2PP2pR n q
Gpν 1 , η 2 q `n logpc{p2πqq.

In the case of the reverse Santaló inequality IS n,u pcq (resp. IS n,s pcq), the same statement holds with the extra condition that ν 1 , ν 2 , η 1 , η 2 belong to P u,2 pR n q (resp. P s,2 pR n q).

Proof. We only treat the case of the inequality IS n pcq, the others being similar. According to Corollary 2, the inequality IS n pcq is equivalent to inf η1PP2pR n q tT pν 1 , η 1 q `Hpη 1 |Lebqu `inf η2PP2pR n q tT pν 2 , η 2 q `Hpη 2 |Lebqu ď ´n log c `T pν 1 , ν 2 q, for all ν 1 , ν 2 P P 2 pR n q (we could even restrict η 1 , η 2 , ν 1 , ν 2 to compactly supported probability measures).

If ν 1 , ν 2 P P 2 pR n q, then (

T pν 1 , ν 2 q " ´1 2 W 2 2 pν 1 , ν 2 q `1 2 ż |x| 2 dν 1 `1 2 ż |x| 2 dν 2 and, if η 1 , η 2 P P 2 pR n q, then 27) 
T pν i , η i q " ´1 2 W 2 2 pν i , η i q `1 2 ż |x| 2 dν i `1 2 ż |x| 2 dη i . (28) 
Also, note that (29)

Hpη i |γ n q " Hpη i |Lebq ´ż log dγ n dx dη i " Hpη i |Lebq `1 2 ż |x| 2 dη i `n 2 logp2πq.
So, we get inf

η1PP2pR n q " ´1 2 W 2 2 pν 1 , η 1 q `Hpη 1 |γ n q * `inf η2PP2pR n q " ´1 2 W 2 2 pν 2 , η 2 q `Hpη 2 |γ n q * ď n logp2π{cq´1 2 W 2 2 pν 1 , ν 2 q.
So adding Hpν 1 |γ n q `Hpν 2 |γ n q, gives the claim.

3.3.

The deficit in Log-Sobolev and reverse Santaló inequalities. We are now ready to prove our main result (Theorem 1) which gives an equivalent formulation of functional inverse Santaló inequalities in terms of the deficit in the Gaussian logarithmic Sobolev inequality.

Proof of Theorem 1. Again we only treat the case of the inequality IS n pcq, the other being similar.

According to Corollary 3, the inequality IS n pcq holds if and only if for all log-concave measures η 1 , η 2 satisfying the assumptions of the theorem, the inequality ( 22) holds true. Assuming that ν 1 , ν 2 P P 2 pR n q and using ( 27), ( 28), [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF], one sees that [START_REF] Fathi | Stein kernels and moment maps[END_REF] amounts to

(30) ´1 2 W 2 2 pν 1 , η 1 q `Hpη 1 |γ n q ´1 2 W 2 2 pν 2 , η 2 q `Hpη 2 |γ n q ď n logp2π{cq ´1 2 W 2 2 pν 1 , ν 2 q. Note that h i pxq :" dη i dγ n pxq " p2πq n{2 e ´pVipxq´| x| 2 2 q , @x P R n .
This function is differentiable almost everywhere, so

Ĩpη i |γ n q " ż |∇h i | 2 h i dγ n pxq " ż |∇V i pxq ´x| 2 e ´pVipxq´| x| 2 2 q e ´|x| 2 2 dx,
where Ĩ is defined in [START_REF] Berndtsson | Complex integrals and Kuperberg's proof of the Bourgain-Milman theorem[END_REF]. On the other hand,

W 2 2 pν i , η i q " ż |∇V i pxq ´x| 2 e ´pVipxq´| x| 2 2 q e ´|x| 2 2
dx and so Ĩpη i |γ n q " W 2 2 pν i , η i q. Therefore, ( 30) is equivalent to

Hpη 1 |γ n q ´1 2 Ĩpη 1 |γ n q `Hpη 2 |γ n q ´1 2 Ĩpη 2 |γ n q ď n logp2π{cq ´1 2 W 2 2 pν 1 , ν 2 q.
Since Ĩpη i |γ n q ď Ipη i |γ n q, i " 1, 2, this completes the proof.

Remark 5. If dη " e ´V dx with an essentially continuous V P F pR n q, then Ĩpη|γ n q " Ipη|γ n q. Indeed, according to Lemma 5 below, the function e ´V {2 is absolutely continuous on almost every line parallel to an axis and so the same is true for h 1{2 , where hpxq " p2πq n{2 e ´pV pxq´| x| 2 2 q , x P R n , is the density of η with respect to γ n . In particular, we don't loose anything in the last step of the proof of Theorem 1. Lemma 5. Let W P F pR n q be essentially continuous. Then the function f " e ´W is absolutely continuous on almost every line parallel to an axis.

Proof. First let us show the lemma in dimension n " 1. Let W P F pRq be essentially continuous and not identically `8 (otherwise there is nothing to prove), and let us show that f " e ´W is absolutely continuous on any segment. To fix the idea, one can assume that dompW q " pa, `8q with W pxq Ñ `8 as x Ñ a (the other cases are similar). According to e.g [36, Theorem 1.1.9], for any ε ą 0, the function W satisfies, W pxq ´W pa `εq "

ż x a`ε W 1 r puq du, @x P ra `ε, `8q,
where W 1 r denotes the right derivative of W (which is well defined on pa, `8q). Fix b ą a and take ε ă b ´a ; the function W 1 r being bounded on ra `ε, bs, one concludes that W is absolutely continuous on ra `ε, bs (see e.g [59, Chap. 5, Theorem 14]). The function W being bounded on ra `ε, bs and the function x Þ Ñ e ´x being locally Lipschitz, one concludes that f " e ´W is absolutely continuous on ra `ε, bs. Thus it satisfies (see e.g [59, Chap. 5, Corollary 15 ]),

f pxq ´f pa `εq " ż x a`ε p´W 1
r puqqf puq du, @x P ra `ε, bs.

Letting ε Ñ 0, one easily sees that f pxq "

ż x a p´W 1 r puqqf puq du,
for x P ra, bs (the fact that the integrand is integrable on ra, bs is also easily justified). According to [START_REF] Royden | Real analysis[END_REF]Chap. 5,Theorem 14] this shows that f is absolutely continuous on any segment of the form ra, bs, a ă b. Since f vanishes on p´8, as, it follows that f is actually absolutely continuous on any segment.

Now, let us turn to the case n ě 2. Let W P F pR n q be essentially continuous, and consider the set A " tx P BdompW q : W pxq ă 8u.

By assumption H n´1 pAq " 0, therefore A n " tx P R n´1 : Dx n P R, px, x n q P Au has Lebesgue measure 0 (since it is the projection of A onto R n´1 ). For all x P R n´1 zA n , the function x n Þ Ñ W px, x n q is essentially continuous. According to the case n " 1, one concludes that F is absolutely continuous on any line of the form txu ˆR with x P R n´1 zA n . The same reasoning holds for lines parallel to the other axis. So the first part of Corollary 1 is an immediate consequence of Theorem 1 (note also that in dimension 1 a convex function is essentially continuous if and only if it is continuous as a function taking values in R Y t`8u).

us now show the optimality of the lower bound on δ 2 . Define, for all η 1 , η 2 satisfying the assumptions of Corollary 1,

∆pη 1 , η 2 q :" δ 2 pη 1 b η 2 q ´1 2 W 2 2 pν 1 , ν 2 q `logp2π{eq.
According to the proof of Theorem 1 and ( 23), we see that if V 1 , V 2 : R Ñ R then ∆pη 1 , η 2 q " T pν 1 , ν 2 q ´Hpη 1 |Lebq ´Hpη 2 |Lebq ´3.

We will now consider sequences pη k 1 q kě1 and pη k 2 q kě1 approximating the two exponential probability measures τ and τ defined by [START_REF] Gordon | Zonoids with minimal volume-product-a new proof[END_REF] τ pdxq " e ´p1`xq 1 r´1,`8r pxq dx and τ pdxq " e x´1 1 s´8,1s pxq dx which are not admissible since their densities are not continuous. More precisely, let us define dη k 1 "

1 Z k 1 e ´V k
1 dx, where

V k 1 pxq " ´kpx `1q1 s´8,´1r pxq `px `1q1 r´1,`8r pxq and Z k 1 " 1`k k is the normalizing constant. We define similarly η k 2 as the push forward of η k 1 under the map x Þ Ñ ´x. A simple calculation shows that, for i " 1, 2,

Hpη k i |Lebq " ´1 ´log ˆ1 `1 k ˙Ñ ´1
as k Ñ `8. It is also not difficult to check that

ν k 1 " 1 k `1 δ ´k `k k `1 δ 1 and ν k 2 " k k `1 δ ´1 `1 k `1 δ k .
The monotone optimal transport π k plan between ν k 1 and ν k 2 is given by

π k p´k, ´1q " 1 k `1 , π k p1, ´1q " k ´1 k `1 , π k p1, kq " 1 k `1 . So T pν k 1 , ν k 2 q " ż xy π k pdxdyq " k 1 k `1 ´k ´1 k `1 `k 1 k `1 " 1. Therefore, ∆pη k 1 , η k 2 q " 2 log ˆ1 `1 k ˙Ñ 0 as k Ñ `8.
Remark 6 (Equality cases in IS 1 peq). Let V, V : R Ñ R Y t`8u be the functions defined by V pxq " x if x ě ´1 and `8 if x ă ´1 (resp. V pxq " ´x if x ď 1 and `8 if x ą 1). As shown by Fradelizi and Meyer in [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF], the cases of equality in [START_REF] Giannopoulos | The isotropic position and the reverse Santaló inequality[END_REF] are precisely the functions of the form f pxq " V paxq `b, a ‰ 0, b P R. As already mentioned in the proof, the probability measures τ and τ defined by [START_REF] Gordon | Zonoids with minimal volume-product-a new proof[END_REF] are not admissible, because the functions V and V are not continuous on R. Note in particular that the moment measures ν τ and ν τ associated to τ and τ are respectively the Dirac masses δ 1 and δ ´1, which are not centered.

Remark 7 (Convergence of ν k i , i " 1, 2). Let us underline some subtleties concerning the convergence of the sequences ν k i , i " 1, 2. Note that ν k 1 is centered for every k ě 1 but weakly converges to δ 1 which is not. This means that convergence is not true for the W 1 metric and a fortiori for the W 2 metric. This is confirmed by the fact that T pν k 1 , ν k 2 q Ñ 1 ‰ T pδ 1 , δ ´1q " ´1. Also,

ş x 2 dν k i " k Ñ `8 as k Ñ `8. Thus W 2 2 pν k 1 , ν k 2 q " 2pk ´1q Ñ `8 as k Ñ `8.
Therefore, the sequence

δ 2 pη k 1 b η k 2 q ´1 2 W 2 2 pν k 1 , ν k 2 q `logp2π{eq
converges to 0 but is the difference of two diverging sequences.

Remark 8 (Ghost equality cases). Simple calculations show that

Hpτ |γ 1 q " Hpτ |γ 1 q " 1 2 log ˆ2π e ˙, W 2 2 pδ 1 , δ ´1q " 4, and Ĩpτ |γ 1 q " Ĩpτ |γ 1 q " 2,

where Ĩp ¨|γ 1 q is defined in [START_REF] Berndtsson | Complex integrals and Kuperberg's proof of the Bourgain-Milman theorem[END_REF]. Therefore the equation

Hpτ |γ 1 q `Hpτ |γ 1 q `1 2 W 2 2 pδ 1 , δ ´1q " 1 2 Ĩpτ |γ 1 q `1 2 Ĩpτ |γ 1 q `logp2π{eq
holds true. This suggests that the inequality

Hpη 1 |γ 1 q `Hpη 2 |γ 1 q `1 2 W 2 2 pν 1 , ν 2 q ď 1 2 Ĩpη 1 |γ 1 q `1 2 Ĩpη 2 |γ 1 q `logp2π{eq
could perhaps be extended outside the domain of log-concave probability measures of the form dη i " e ´Vi dx with a continuous V i : R Ñ R Y t`8u. Nevertheless, the fact that the simple approximation scheme used in the proof of Corollary 1 yields to blowing up quantities seems to leave little hope for that.

Let us now turn to the proof of Theorem 2.

Proof of Theorem 2. According to Fradelizi-Meyer [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF]Theorem 10], the inequality IS n,u p4q holds true. Therefore, Theorem 1 yields to the following reinforcement of the Gaussian logarithmic Sobolev inequality: if η 1 , η 2 are unconditional log-concave probability measures on R n such that, for i " 1, 2, dη i " e ´Vi dx with V i : R n Ñ R Y t`8u an essentially continuous convex function, it holds

Hpη 1 |γ n q `Hpη 2 |γ n q `1 2 W 2 2 pν 1 , ν 2 q ď n logpπ{2q `1 2 Ipη 1 |γ n q `1 2 Ipη 2 |γ n q,
where, for i " 1, 2, ν i is the moment measure of η i .

Consider the symmetric exponential probability measure τ s pdxq " 1 2 e ´|x| dx and let us choose η 2 pdxq " τ bn s pdxq " Therefore, for any ηp:" η 1 q as above, one gets

Hpη|γ n q `1 2 W 2 2 pν, λ Cn q ď n 2 log ´πe 2 ¯`1 2 
Ipη|γ n q.

Consider now the sequence of probability measures pη k q kě1 given by dη k " 1 Z k e ´Vk dx, with

V k pxq " $ & % k|x ´1| if x ě 1 0 if x P r´1, 1s k|x `1| if x ď ´1
and Z k " 2pk`1q k . Easy calculations show that, when k Ñ `8,

Hpη k |γ 1 q " 1 2 log ´π 2 ¯´log ˆ1 `1 k ˙`k pk `1q " 1 6 `2 k 3 `2 k 2  " 1 2 log ´π 2 ¯`1 6 `op1q, Ipη k |γ 1 q " k k `1 « 1 3 `1 k ˜1 k 2 `ˆ1 ´k `1 k ˙2¸ff " 1 3 `k ´3 `op1q and 
W 2 2 ˆνk , 1 2 δ ´1 `1 2 δ 1 ˙" 1 pk `1q `k2 ´k `1˘" k ´2 `op1q, where ν k " 1 2pk`1q δ ´k `k k`1 δ 0 `1 2pk`1q δ k is the moment measure of η k . So, 1 2 Ipη k |γ 1 q ´Hpη k |γ 1 q ´1 2 W 2 2 ˆνk , 1 2 δ ´1 `1 2 δ 1 ˙" ´1 2 log ´πe 2 ¯`op1q. Since 1 2 Ipη bn k |γ n q ´Hpη bn k |γ n q ´1 2 W 2 2 `νbn k , λ Cn ˘" n " 1 2 Ipη k |γ 1 q ´Hpη k |γ 1 q ´1 2 W 2 2 ˆνk , 1 2 δ ´1 `1 2 δ 1 ˙ ,
this completes the proof.

Proof of Theorem 4

During the proof, we will use the following version of the min-max theorem due to Sion [START_REF] Sion | On general minimax theorems[END_REF].

Theorem 8 (Sion min-max theorem). Let X and Y be two convex subsets of some linear topological spaces. Let F : X ˆY Ñ R be such that f px, ¨q is concave and upper semicontinuous for every x P X and f p¨, yq is convex and lower semicontinuous for every y P Y. If X or Y is compact, then

inf xPX sup yPY F px, yq " sup yPY inf xPX F px, yq.
Proof of Theorem 4. Let m be a log-concave measure and f P F pR n q some convex function such that 0 ă ş e ´f ˚dm ă `8 (according to Proposition 6, there is nothing to prove when this integral is `8).

First step. By definition of Kp ¨|mq, it holds sup νPP1pR n q "ż p´f q dν ´Kpν|mq * " sup

νPP1pR n q inf ϕP r FLippR n q "ż pϕ ´f q dν ´log ż e ´ϕ˚d m * ,
where we recall that r F Lip pR n q is defined just after Proposition 6. Let us assume for a moment that f is such that [START_REF] Gozlan | Transport inequalities. A survey, Markov Process[END_REF] sup

νPP1pR n q inf ϕP r FLippR n q "ż pϕ ´f q dν ´log ż e ´ϕ˚d m * " inf ϕP r FLippR n q sup νPP1pR n q "ż pϕ ´f q dν ´log ż e ´ϕ˚d m * .
This interversion of inf and sup will be justified in the second step below. Let us show that inf

ϕP r FLippR n q sup νPP1pR n q "ż pϕ ´f q dν ´log ż e ´ϕ˚d m * " ´log ż e ´f ˚dm.
Note that sup νPP1pR n q ż pϕ ´f q dν " sup First, note that if ϕ is such that m ϕ " 0, then ϕ ď f and so ´log ş e ´ϕ˚d m ě ´log ş e ´f ˚dm.

Conversely, let us construct a sequence of convex and Lipschitz functions f k such that m f k " 0 and ş e ´f k dm Ñ ş e ´f ˚dm. The function f being convex, one can find a P R n and b P R such that f pxq ě a ¨x `b, x P R n . Let us denote by gpxq " f pxq ´pa ¨x `bq, which is convex and non-negative. Consider the sequence of convex functions g k defined by

g k pxq " inf yPR n tgpyq `k|x ´y|u, x P R n , k ě 1,
as in Lemma 2, which is such that g k ď g, g k is k-Lipschitz, and g k " g ˚`χ B k . Letting f k pxq " g k pxq `a ¨x `b, one gets that f k pyq " g k py ´aq ´b " g ˚py ´aq `χB k py ´aq ´b " f ˚pyq `χB k py ´aq.

Therefore, ş e ´f k dm Ñ ş e ´f ˚dm, by the monotone convergence theorem (and in particular f k belongs to r F Lip pR n q for all k large enough). Note that m f k " sup xPR n tg k pxq ´gpxqu ď 0. Since g is bounded from below and lower semi-continuous, it reaches its infimum at some point α P R n , and it is easily seen that g k pαq " gpαq. Therefore, m f k " 0, which completes the proof of (34).

Second step. In this step, we show that if f P F pR n q is such that 0 ă ş e ´f ˚dm ă `8 and such that D :" dompf q is compact and f is bounded on D, then (33) holds true. Let us denote by PpDq the set of Borel probability measures on D and consider the function F : PpDq ˆr F Lip pR n q Ñ R Y t´8u defined by

F pν, ϕq " ż pϕ ´f q dν ´log ż e ´ϕ˚d m.

Let us denote by

Cpf q " sup νPP1pR n q "ż p´f q dν ´Kpν|mq * " sup νPPpDq inf ϕP r FLippR n q F pν, ϕq and note that this quantity is finite according to Proposition 6. Let us equip PpDq with the usual weak topology. Since D is compact, it follows from Prokhorov theorem that PpDq is also compact. Let us denote by MpDq the linear space of all finite Borel signed measures ν on D, and equip it with the coarsest topology that makes continuous the functionals MpDq Q ν Þ Ñ ş ϕ dν, for all continuous function ϕ on D. In restriction to PpDq, this topology coincides with the weak topology. Therefore, X :" PpDq can be seen as a compact convex subset of MpDq.

Consider the space CpR n q of all continuous functions on R n and equip it with the topology of uniform convergence over all compact subsets of R n . The set Y :" r F Lip pR n q is a convex subset of CpR n q. Indeed, r F Lip pR n q " tϕ P F Lip pR n q : ´log ş e ´ϕ˚d m ă `8u and this set is convex thanks to Lemma 1.

With these notations, it follows from what precedes that

Cpf q " sup νPX inf ϕPY F pν, ϕq.

In order to permute inf and sup, let us check the assumptions of Theorem 8.

' Restricted to X ˆY, the functional F takes finite values. Indeed, since f is bounded on D, it follows that ş |ϕ ´f | dν ă `8 for all ν P X and ϕ P F Lip pR n q. Furthermore, if ϕ P r F Lip pR n q, then ϕ ˚" `8 outside a closed ball, and so ş e ´ϕ˚d m ă `8 (and ‰ 0 by definition of r F Lip pR n q). ' For any fixed ϕ P Y, the map X Q ν Þ Ñ F pν, ϕq is upper-semicontinuous (this follows from the lower semicontinuity and boundedness of f and Portmanteau theorem).

' For any fixed ν P X , the map which gives [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] by letting ε Ñ 0. ' Finally, for any fixed ϕ P Y, the map ν Q X Þ Ñ F pν, ϕq is concave (and even linear), and according to Lemma 1, for any fixed ν P X , the map Y Q ϕ Þ Ñ F pν, ϕq is convex.

Y Q ϕ Þ Ñ F pν, ϕq is lower semi-continuous. Indeed, the map Y Q ϕ Þ Ñ ş ϕ dν
Therefore, applying Theorem 8, one gets that Cpf q " inf ϕP r FLippR n q sup νPPpDq F pν, ϕq " inf ϕP r FLippR n q sup νPP1pR n q F pν, ϕq.

Third step. According to the two preceding steps, the equality sup

νPP1pR n q "ż p´f q dν ´Kpν|mq * " ´log ż e ´f ˚dm
holds true for any function f P F pR n q such that 0 ă ş e ´f ˚dm ă 8 and such that D :" dompf q is compact and f is bounded on D. Let us finally remove this last assumption. Consider f P F pR n q such that 0 ă ş e ´f ˚dm ă 8. For all k ě 1, define D k " tf ď ku X B k , k ě 1 and f k " f `χD k , where B k is the closed ball of radius k centered at 0. The lower semicontinuity of f implies that the sets D k , k ě 1, are compact. The sequence f k , k ě 1, being non increasing, it follows that the sequence pf k q ˚, k ě 1, is non decreasing. Moreover, for any y P R n , sup kě1 pf k q ˚pyq " sup Let us admit for a moment that 0 ă ş e ´pf k q ˚pyq mpdyq ă `8, for all k large enough. Letting k Ñ 8 in the identity ´log ż e ´pf k q ˚pyq mpdyq " sup νPP1pR n q "ż p´f k q dν ´Kpν|mq * and reasoning as in the end of the proof of Theorem 3, one concludes that the identity holds for f as well. To finish the proof, let us show that 0 ă ş e ´pf k q ˚pyq mpdyq ă `8 for all k large enough. Since pf k q ˚ď f ˚, it is clear that 0 ă ş e ´pf k q ˚pyq mpdyq for all k ě 1. So, according to Lemma 4, ş e ´pf k q ˚pyq mpdyq ă `8 if and only if 0 belongs to the interior of dompppf k q ˚`V q ˚q. Note that ppf k q ˚`V q ˚pxq " f k ˝V ˚pxq :" inf yPR n tf k pyq `V ˚px ´yqu, where ˝denotes the infimum convolution operations. From this follows easily that dompppf k q ˚`V q ˚q " dompf k q `dompV ˚q " pdompf q X D k q `dompV ˚q.

Since 0 ă ş e ´f ˚dm ă `8, we know that 0 belongs to the interior of dompf q `dompV ˚q. Therefore, there is some ε ą 0 such that εr´1, 1s n Ă dompf q `dompV ˚q. So, for any u P t´1, 1u n , there exist a u P dompf q and b u P dompV ˚q such that a u `bu " εu. Choose k o large enough so that the 2 n points a u , u P t´1, 1u n , all belong to dompf q X D ko . Then, for all k ě k o , the convex set pdompf q X D k q `dompV ˚q contains the family of points εu, u P t´1, 1u n and so it contains their convex hull εr´1, 1s n . This proves that 0 belongs to the interior of dompppf k q ˚`V q ˚q and completes the proof.

5. Yet another proof of Theorem 3.

In this section, we indicate another way, based on a general Fenchel-Moreau biconjugation theorem, to prove Theorem 3. The same method could be used to establish Theorem 4 as well, but we prefer to restrict to the case where m is the Lebesgue measure to avoid lengthy developments.

Let Ω Ă R n be an open subset and denote by CpΩq the space of all continuous functions on Ω. We will equip CpΩq with the topology of uniform convergence on compact sets of Ω. This is the topology generated by the collection of seminorms p Ki , i ě 1, defined by p Ki pf q " sup xPKi |f pxq|, f P CpΩq, where pK i q iě1 is an increasing sequence of compact sets such that Ω " Y iě1 K i . The following result is a consequence of the Riesz-Markov representation theorem (see [START_REF] Bourbaki | Éléments de mathématique. Intégration. Chapitres 1-4[END_REF]Proposition 14 page 156]).

Theorem 9. The topological dual space pCpΩqq 1 of CpΩq can be identified with the set of finite signed Borel measures µ with a compact support K Ă Ω. Now let us define the conjugate operation on CpΩq. For any f P CpΩq, let c Ω pf q be the function defined on R n as follows c Ω pf qpyq " sup xPΩ tx ¨y ´f pxqu, y P R n .

We also define the functional Λ Ω : CpΩq Ñ R Y t˘8u as follows Λ Ω pf q " ´log ż e ´cΩpf q dx. Lemma 6. If 0 P Ω, the functional Λ Ω is lower semi-continuous, convex and never takes the value ´8.

Proof. The convexity of Λ Ω follows from the log-concavity of the Lebesgue measure exactly as in Lemma 1. Let a P Ω and r o ą 0 small enough so that B ro Ă Ω. Therefore, ş e ´cΩpf q dx ă `8 and so Λ Ω pf q ą ´8, for all f P CpΩq. Reasoning as in the proof of Theorem 4 (more precisely, the proof of [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF], taking α " r o ), one sees that if pf n q ně1 is a sequence of elements of CpΩq converging to f P CpΩq (uniformly on any compact of Ω), then lim sup nÑ8 ż e ´cΩpfnq dx ď ż e ´cΩpf q dx, which gives the announced lower semicontinuity of Λ Ω .

We recall the following general version of the Fenchel-Moreau duality theorem (see for instance [START_REF] Zȃlinescu | Convex analysis in general vector spaces[END_REF]Theorem 2.3.3]).

Theorem 10 (General Fenchel-Moreau theorem). Let E be a Hausdorff locally convex topological vector space and E 1 its topological dual space. For any lower semicontinuous convex function F : E Ñ s ´8, 8s, it holds F pxq " sup We are now ready to give the alternative proof of Theorem 3.

Alternative proof of Theorem 3. Let f P F pR n q be such that ş e ´f ˚dx ą 0 and denote by Ω the interior of dompf q (possibly empty).

If 0 does not belong to Ω, then according to Lemma 4, ş e ´f ˚dx " `8. Applying Proposition 6 gives the announced equality. Now let us assume that 0 P Ω. Since f is convex, f is continuous on Ω and so f |Ω P CpΩq. Moreover, since f is lower semicontinuous, it holds c Ω pf |Ω q " f ˚(the values of f on the boundary of dompf q are fully determined by the values of f on Ω). So applying, Theorem 10 to Λ Ω (and E " CpΩq) yields to We claim that Λ Ωpµq " `8 if µ is not of the form µ " ´ν with ν a probability measure. Indeed, let µ " µ `´µ ´be the Hahn decomposition of µ as a difference of finite positive measures, and assume that µ `pΩq ą 0. Then there is at least one compactly supported function Finally, let us fix some probability measure ν having a compact support in Ω and let us show that Λ Ωp´νq " Kpν|Lebq. Suppose that ϕ P F Lip pR n q, then c Ω pϕq ď ϕ ˚and so Λ Ωp´νq ě sup Consider the function ϕ : R n Ñ R Y t`8u defined by ϕ " h ˚˚. The function ϕ belongs to the class F pR n q and is such that ϕ ď h (it is actually the convex enveloppe of h, that is to say the greatest convex function below h). In particular ϕ P L 1 pνq and it holds ż ´g dν `log where the last equality comes from the fact that ϕ ˚" h ˚˚˚" h ˚" c K pgq. We conclude from this that Λ Ωp´νq ď Kpν|Lebq, which completes the proof.

log ´πe 2

 2 ¯Ñ 0, as k Ñ 8, where for k ě 1, ν bn k denotes the moment measure of η bn k .

  ¨y ´f puq ´r|x ´u|u " sup uPR n " u ¨y ´f puq `sup vPR n tv ¨y ´r|v|u * " f ˚pyq `χBr pyq.

  xPR n tx ¨y ´ψpxqu ď sup xPR n tx ¨y ´a|x|u ´b " sup rě0 tr|y| ´aru ´b " ´b,

3. 1 .Theorem 5 .

 15 Transport-Entropy form of reverse Santaló inequalities -Lebesgue version. Let c ą 0. The reverse Santaló inequality IS n pcq holds if and only if

Corollary 2 .

 2 Let c ą 0. The reverse Santaló inequality IS n pcq holds if and only if[START_REF] Fathi | A sharp symmetrized form of Talagrand's transport-entropy inequality for the Gaussian measure[END_REF] infη1PP1pR n q

Corollary 3 .

 3 Let c ą 0; the following propositions are equivalent:(i) Inequality IS n pcq holds.

Now let us turn to the proof of Corollary 1 .ş e ´f dx ą 0 and ş e ´f ˚dx ą 0

 10 Proof of Corollary 1. According to [29, Theorem 3], the inequality IS 1 peq holds true: for all f P F pRq such that

  FLippR n q s.t mϕ"0

  kě1 sup xPR n tx ¨y ´f pxq ´χD k pxqu " sup xPR n sup kě1 tx ¨y ´f pxq ´χD k pxqu " f ˚pyq.

ℓPE 1 tℓpxq

 1 ´F ˚pℓqu, x P E, where the Fenchel-Legendre transform F ˚of F is defined by F ˚pℓq " sup xPE tℓpxq ´F pxqu, ℓ P E 1 .

  runs over the set of all finite signed measures µ with a compact support in Ω, and Λ Ωpµq " sup ϕPCpΩq

  ψ o : Ω Ñ R `such that ş ψ o dµ `ą 0. By construction of µ `, it holds ş ψ o dµ `" supt ş ϕ dµ : 0 ď ϕ ď ψ o u, so we conclude that there exists at least one compactly supported function ϕ o : Ω Ñ R `such that ş ϕ o dµ ą 0. For all t ą 0, choosing ϕpxq " tϕ o pxq `|x|, x P Ω, as test function yields to Λ Ωpµq ě ż tϕ o pxq `|x| µpdxq `log ż e ´cΩptϕo`| ¨|q dx ě ż tϕ o pxq `|x| µpdxq `log ż e ´cΩp| ¨|q dx, where the second inequality comes from the monotonicity property of c Ω : h ď g ñ c Ω phq ě c Ω pgq. It is easily checked that ş e ´cΩp| ¨|q dx ‰ 0 and so, letting t Ñ 8, gives that Λ Ωpµq " `8. Finally, replacing ϕ by ϕ `u, u P R, in the definition of Λ Ωpµq, and using that c Ω pϕ `uq " c Ω pϕq ´u, one gets Λ Ωpµq " sup ϕPCpΩq sup uPR "ż ϕ dµ `log ż e ´cΩpϕq dx `upµpΩq `1q * , which shows that Λ Ωpµq " `8 if µpΩq ‰ ´1.

  Let us show the converse inequality. Let g P CpΩq and let K denote the convex hull of the support of ν. Consider the function h " g `χK . Since K Ă Ω, it holds h ˚pyq " c K pgqpyq :" sup xPK tx ¨y ´gpxqu ď c Ω pgqpyq, @y P R n .

ż e ´cΩpgq dx ď ż ´h dν `log ż e ´cK pgq dx

  

  |xi| dx (whose minus log density realizes the equality case in IS n,u p4q). Then simple calculations show that ν 2 " `1 2 δ ´1 `1 2 δ 1 ˘bn " λ Cn ,

	1 2 n e i"1 Hpτ bn ´řn s |γ n q "	n 2	log	´eπ 2	¯and	Ipτ bn s |γ n q " n.

  is clearly continuous since ν P X has a compact support. Furthermore, if ϕ k is a sequence of elements of Y converging to some ϕ P Y, then we claim that Then ψ r converges to ϕ ˚monotonically, as r Ñ 8, and ψ α pyq ě α|y| ´M , where M " sup |x|ďα ϕpxq. So, using the dominated convergence theorem, ż e ´ψr dm Ñ Define ψ k ro pyq " sup |x|ďr0 tx ¨y ´ϕk pxqu, y P R n . Since ϕ k converges uniformly to ϕ on any compact set, one sees that ψ k ro pyq Ñ ψ ro pyq for all y P R n . Furthermore, M 1 :" sup kě1 sup |x|ďα ϕpxq ă `8 and so ψ k ro pyq ě α|y| ´M 1 , y P R n . Therefore, by the dominated convergence theorem ż e

								ż	ż
	(35)						lim sup	e	´ϕk	dm ď	e	´ϕ˚d m,
							kÑ8
	which gives the announced lower-semicontinuity. To prove (35), we slightly adapt an argument
	from the proof of [16, Lemma 17]. Since m is log-concave, there exists α ą 0 such that ş e ´α|x| dm ă `8. For any r ą 0, denote by
							ψ r pyq " sup	tx ¨y ´ϕpxqu,	x P R n .
							|x|ďr
								ż
								e
								ż	ż
							´ψk r 0 dm Ñ	e ´ψr 0 dm ď	e	´ϕ˚d m `ε.
	Since,	ş	e	´ϕk dm ď	ş	e	´ψk r 0 dm, one concludes that
							ż	ż
							lim sup	e	´ϕk	dm ď	e	´ϕ˚d m	`ε
							kÑ8

´ϕ˚d m as r Ñ 8. Take some ε ą 0, and r 0 ě α large enough so that ş e ´ψr 0 dm ď ş e ´ϕ˚d m ὲ.

  Then if f P CpΩq, then denoting by M " sup xPBr o f pxq, it holds c Ω pf qpyq ě sup xPBr o tx ¨yu ´M " r o |y| ´M.
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