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THE DEFICIT IN THE GAUSSIAN LOG-SOBOLEV INEQUALITY AND
INVERSE SANTALO INEQUALITIES

NATHAEL GOZLAN

ABSTRACT. We establish dual equivalent forms involving relative entropy, Fisher information and
optimal transport costs of inverse Santalé inequalities. We show in particular that the Mahler
conjecture is equivalent to some dimensional lower bound on the deficit in the Gaussian logarithmic
Sobolev inequality. We also derive from existing results on inverse Santal6 inequalities some sharp
lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality.

INTRODUCTION

The aim of this paper is to highlight some new connections between reverse forms of the Santald
inequality and some improved versions of the Gaussian logarithmic Sobolev inequality. In particular,
the celebrated Mahler conjecture is shown to be equivalent to some dimensional lower bound on the
deficit in the logarithmic Sobolev inequality for the standard Gaussian measure.

Recall the classical Santalé inequality [52]: if K < R™ is a convex body and
K> :={yeR": (v —2)-(y—2) <1,Yxre K}
denotes its polar with respect to the point z € R™ (simply denoted K° if z = 0), then
(1) P(K) := Zierﬁéfn Vol(K)Vol(K°*) < P(B%),

where Vol denotes the Lebesgue measure on R”™ and, for any p > 1, B} = {x e R" : 3" | 2| < 1}
denotes the £, unit ball of R”. When K is centrally symmetric, then the infimum in P(K) is attained
for z = 0, and in this case, the Santalé inequality reads as follows
Vol(K)Vol(K°) < Vol(By)?.
The Mahler conjecture [46] states reverse bounds for P(K), which are the following: if K is centrally
symmetric, then
4'n,
(2) Vol(K)Vol(K°) = P(BY) = Vol(BT)Vol(Bj,) = )

and for a general convex body K,
(n+1)ntt
(n!)?
where A" is any non-degenerate simplex of R™. FEven if these two conjectures are still open, some

progresses have been made in the understanding of this problem and some particular cases have
been established. In [51], Saint-Raymond (see also [47]) showed that (2) holds true for unconditional

(3) P(K) = P(A") =
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2 NATHAEL GOZLAN

convex bodies, that is to say convex body K satisfying z = (z1,...,z,) € K = (e121,...,epxy,) € K,
for all ¢ = (e1,...,e,) € {—1,1}". Other particular cases were established in [50, 28, 48, 5, 1].
Recently, Conjecture (2) has been established in dimension n = 3 by Iriyeh and Shibata (see [22] for
an alternative proof). Bourgain and Milman [10] (see also [39], [49] and [27] for alternative proofs)
showed that Conjecture (3) is asymptotically true: there exists some absolute constant o > 0 such
that for all n > 1 and all convex body K < R", it holds

(4) P(K) > a"P(A™).

The Mahler conjectures admit functional equivalent versions that were considered in particular by
Klartag and Milman [37] and by Fradelizi and Meyer [25, 24], that we shall now recall.

We first need to introduce some notation and definitions that will be useful in all what follows.
We will denote by F(R™) the set of lower semi-continuous functions f : R — R u {+00} which are
convex and such that f(xz) < +oo for at least one value of x. The domain of a convex function f is
the convex set dom(f) = {x € R™ : f(x) < +00}. We recall, that the Fenchel-Legendre transform of
f € F(R™) is the function denoted by f* and defined by

(5) f*y) = supfe-y = f@)}, yeR™
TER™
A function f:R"™ — R U {400} is said unconditional if for any € = (e1,...,e,) € {—1,1}" it holds

flerz, .o enan) = f(@1,.. . 2p), Vo = (x1,...,2,) € R™

We will denote by Fy,(R™) the set of all unconditional elements of F(R™) and by F5(R™) the set of
functions f € F(R™) that are symmetric: f(—z) = f(x), z € R™. Finally, for any convex set C' < R",
we will denote by 1o the convex indicator of C' which is the function defined by ¢ (z) = 0 if x € C
and 400 otherwise.

Definition 1 (Functional Inverse Santalé Inequalities). Let ¢ > 0 and n = 1.

o We will say that that the functional inverse Santald inequality 1S, (c) holds with the constant
¢ > 0 if for all function f € F(R™) such that 0 < {e~/ dz and 0 < Seff* dz, it holds

(6) Jeif dx J e dr > e

o We will say that that the symmetric (resp. unconditional) functional inverse Santald in-
equality 1S, s(c) (resp. IS, (c)) holds with the constant ¢ > 0 if (6) holds for all function

feFs(R™) (resp. Fu(R™)) such that 0 < {e=/ dx and 0 < Se_f* dx.

Let us briefly recall how the functional and the convex body versions are related. Let K be a
centrally symmetric convex body and denote by |z|x = inf{r > 0: 2 € rK}, x € R", its gauge. Then
an easy calculation shows that | - |% = 1x-. Therefore (e~ I% @) da = Vol(K°). On the other hand,

+00 +o0
J‘(f”zHK dz = f e "Vol({z e R" : |z||x < u})du = f e “u" duVol(K) = n!Vol(K).
0 0

Therefore, IS,, s(4) implies (2). Conversely, it is shown in [25, Proposition 1] that if (2) holds for all
n = 1, then IS, s(4) holds for all n > 1. Furthermore, according to [25, Proposition 1] again, IS,,(e)
holds for all n > 1 if and only if (3) holds for all n > 1. Similarly, it follows from (4) that there exists
some absolute constant ¢ > 0 such that IS, (c) holds for all n = 1 (see [37, 24]). In addition, Fradelizi
and Meyer gave in [24, 25] a direct functional proof of the fact that IS, ,,(4) holds for every n > 1,
which gives back in particular Saint-Raymond’s result. They also proved in [25] that IS; (e) holds true
(see also [26]). Note that other special classes of functions are considered in [25, 24].
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The goal of this paper is to study dual forms, expressed on the space of probability measures, of
the functional inverse Santald inequality IS, (c) and its variants.

To state our main results, we need to introduce additional notations. We will denote by P(R™)
the set of all Borel probability measures on R™, and by Pr(R™), k > 1, the subset of probability
measures having a finite moment of order k. A probability measure v € P(R") realized by a random
vector X = (X1,...,X,) will be said symmetric if —X has the same law as X and unconditional
if (£1X1,...,e,X,) has the same law as X for any ¢ € {—1,1}". Finally, if v1,v5 € Pr(R™), their
Wasserstein distance Wy, (v, v2) is defined by

W,f(ul, vy) = ian |lx — y|]C m(dxdy),

where | - | denotes the standard Euclidean norm on R™ and where the infimum runs over the set of
all transport plans 7 between 1 and o, that is to say the set of probability measures w on R™ x R™
having 11 and v, as marginals.

According to a celebrated result of Gross [31], the standard Gaussian measure

1 ||

’}/n(d(E) = W€_7 dzr

on R™ satisfies the logarithmic Sobolev inequality: for all n € P(R™) absolutely continuous with
respect to yn,

1
H(nly) < 51(lwm),  Yne PR,
where, for any probability measure of the form n(dx) = h(z) v, (dz),

e the relative entropy of n with respect to =, is defined by

Hnl) = floghdn,

o the Fisher information of n with respect to v, is defined by
Hnba) = 4 [9072) (),

whenever h'/2 € W'2(~,) (the subspace of L?(7,) consisting of functions f whose weak
derivative is also in L?(v,)) and 4o otherwise. More generally, if h/? is almost everywhere
differentiable, we will denote by I(v|y,) = 4 § |V (h'/?)|? v, (dx). Note that one can easily find
examples for which I(v|y,) = 40 and I(v|y,) < +o.

The deficit in the Gaussian logarithmic Sobolev inequality is the non-negative function J,, defined
by

() = 51 (n1a) — Hlnbn),

for all n = h~,, with h € W12(v,). Recently, bounding from below the function d,, attracted a lot
of attention. We refer to [20, 33, 8, 14, 19, 40, 12, 9, 16] and the references therein for some recent
progresses regarding this question. The following theorem, which is one of our main results, shows in
particular that the Mahler conjecture is equivalent to some particular bound on the closely related
quantity §,, defined by

. 1.

0n(n) = 5L(0l7m) = H(nlm),
for all log-concave probability measure 1 (note that in this case, H(n|v,) is finite).
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Theorem 1. Let ¢ > 0 and n = 1. The inverse functional Santald inequality IS, (c) holds if and only
if for all log-concave probability measures 11,12 on R™ such that, for i = 1,2, n;(dzx) = e~Vidx for
some essentially continuous V; € F(R"™), it holds

1 1- 1.
(7) H(mlyn) + H(m2lym) + §W22(V1, va) < §I(ml%) + §I(nzl%) +nlog(2m/c),

as soon as vq,vs € Po(R™), where, for i = 1,2, v; = V(V;)xn; is the moment probability measure of
1. Equivalently

—_

On (M) + on(n2) = —W22(1/1, v2) — nlog(2m/c)

[\

or

5271(771 ®nz) = W22(V1, vo) —nlog(2m/c).

The same statement holds for IS, s(¢) (resp. 1S, .(c)) with the extra condition that m,ne are sym-
metric (resp. unconditional).

DN =

Before commenting this result, we need to clarify some notions used in the statement above :

e An absolutely continuous measure m (not necessarily finite) is said log-concave if m(dx) =
e™V(®@) dzx for some V : R — R U {+00} convex (in this paper we don’t consider log-concave
measures supported on strict affine subspaces of R™).

e A function V € F(R™) is said to be essentially continuous if the set of points were it is
discontinuous (as a function taking values in R u {c0}) is negligible for the measure H,_;.
Equivalently, V' is essentially continuous if letting D = dom(V")

Hp—1 ({x€dD:V(zx) <wo})=0.
Note in particular that in dimension 1, a function V' € F(R) is essentially continuous if and
only if it is continuous as a function taking values in R u {+0o0}.

e If V e F(R") is such that 0 < {e™" < +00, the moment measure of V is the probability
measure v defined as the push forward of the probability measure n(dz) = S::VV%

the map VV. By extension, we also say that v is the moment measure of 7.

dx under

According to the functional version of the Bourgain-Milman theorem, inequality IS, (¢) holds true
for some constant ¢ > 0 independent on n. We immediately conclude from this that for the same
constant ¢ > 0 it holds for all n > 1

= 1
(8) dan(m ®m2) = §W22(V1, ve) — nlog(27/c),

whenever 71,72 are log-concave probability measures with an essentially continuous log density (and
v1, Vo are the associated moment measures). In dimension 1, this result can be refined. Indeed, as we
mentioned above, Fradelizi and Meyer [25] proved that IS;(e) hods true. We thus immediately derive
from their result that (8) holds true for n =1 and ¢ = e. The following result shows that this bound
on 0y is sharp:

Corollary 1. For all log-concave probability measures 1n1,n2 on R such that, for i = 1,2, n;(dz) =
e Vidx for some continuous convex function V; : R — R U {+0}, it holds

1
da(m ®@m2) = §W22(1/1, ve) — log(27/e).

This bound is equivalent to the functional inverse Santald inequality 1S1(e). Moreover, there exist
sequences of log-concave probability measures (nF)r=1 and (n§)x=1 with continuous densities as above
(and with associated moment measures denoted by v¥, v5, k = 1) such that

1
o2 ®1z) — 5 W3 (V1 v3) + log(2m/e) — 0
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as k — 0.

The sequences (7} )x=1 and (n5)x>1 are approximations in the class of log-concave measures with
a continuous density of the following two probability measures

T(dz) = ef(Hz)l[,lﬁw[(:r) dx and F(dz) = "1y gy (2) da

whose log densities realize equality in IS (e), and are up to affine transformations the only cases of
equality, as observed by Fradelizi and Meyer [25]. In particular, as the proof of Corollary 1 will reveal,
there is no equality cases in the logarithmic Sobolev formulation of the inverse Santalé inequality. This
point will be further commented in Section 2.3.

In a similar way, since IS,, ,(4) holds for every n > 1, the following result follows by choosing
ne = 7", where

1
Ts(dz) = Ee_m dx

denotes the symmetric exponential distribution on R. For every n > 1, let C,, < R™ be the unit
discrete cube C), = {—1,1}" and denote by A¢, the uniform probability measure on C,,.

Theorem 2. For any log-concave and unconditional probability measure n on R™ with n(dx) =
e~ V@) dz where V : R — R U {+m} is an essentially continuous convex function, it holds
1 n Te 1-
H(nl) + 3W3 (v.Ac,) < S log (5) + 51 (nla).

In other words, for such n,
e

< 1.5 n
571(77) = §W2 (I/u )‘Cn) - 5 log (7) .

Moreover, there exists a sequence of product measures (nk®”)k>1 such that
~ 1 n me
(") — §W22 (2" Ae,) + ) log (7) — 0,
as k — o, where for k =1, V7" denotes the moment measure of nk®".

This time the sequence (n)k=1 is an approximation in the class of log-concave measures with a
continuous density of the uniform measure on [—1,1]. Note that Theorem 2 provides a new sharp di-
mensional lower bound on the deficit 6, on the class of unconditional log-concave probability measures
with a regular density.

Let us now give a flavor of the proof of Theorem 1 (in the case of IS, (¢), the other variants being
similar). To prove Theorem 1, we will establish as an intermediate step that the reverse Santal6
inequality IS, (¢) holds if and only if for all v, 15 € Po(R™),

(9) inf {7 (v1,m)+ H(m[Leb)} + inf  {T(v2,n2) + H(nz2|Leb)} < —nloge+ T(v1,v2),

m EP2(R™) n2€P2(R™)
where T (v1,m1) is the so-called maximal correlation transport cost between vy, v € Po(R™) defined
by

T(Vl, I/Q) = X~Viln}f/~U2 E[X . Y]

The proof of the equivalence between (9) and IS, (c) follows by adapting an argument of Bobkov
and Gotze [7] showing equivalence between transport-entropy inequalities and infimum convolution
inequalities (see also [29, 30] for extensions). While Bobkov and Gétze argument was based on the
classical duality relations between relative entropy and log-Laplace functionals (recalled in Section
1.1), ours is based on a twisted duality involving the following functionals:

L(f|Leb) := — 1ogfe*f* dz,  feF(R").
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and
K (v|Leb) := sup {J(—f) dl/—L(f|Leb)} : ve Pi(R").
feLr(v)nF(R™)
A simple calculation shows that
K(v[Leb) = — inf {T(v,m)+ H(nlLeb)},
neP1 (]Rn)

so that the fact that IS, (c) implies (9) is clear up to technicalities. Let us give an idea of the
proof of the converse implication. As observed by Cordero-Erausquin and Klartag [13], a remarkable
consequence of the Prekopa-Leindler inequality is that the functional L(-|Leb) is convex on F(R™)
(see the proof of Lemma 1 where this simple argument is recalled). The above functionals will be
shown in Theorem 3 to be in convex duality (see Section 4 for precise statements about this duality),
in the sense that the functional L(-|Leb) can be recovered from the functional K (- |Leb) as follows:

L(f|Leb) = sup : {J(—f) dv — K(U|Leb)}

vePy (R"

for all f € F(R™) such that Se‘f * dz > 0. This reverse relation is the key to complete the equivalence
between IS,,(c) and (9).

To further analyze Inequality (9), we will make use of the remarkable characterization of moment
measures recently obtained by Cordero-Erausquin and Klartag [13] (building on earlier works [59,
15, 6, 41])) and revisited by Santambrogio [53]. As shown in [13, 53], for a given v € P;(R"™) the
quantity inf,cp, &ny {7 (v,n) + H(n|Leb)} is not —oo if and only if v is centered and its support is not
contained in an hyperplan (for completeness the proof of “the only if” case is sketched in the proof
of Proposition 4). In this case, the optimal 7 turns out to be a log-concave probability measure with
a density of the form e~V where V € F(R") is an essentially smooth convex function and v is the
moment measure of 7. The converse is also true: if v is the moment measure of a given log-concave
probability measure 7, with a regular density as above, then the function n — T (v,n) + H(n|Leb)
reaches its infimum at 7,. Let us mention that the notion of moment measures together with the
above characterization recently found several applications in convex geometry [35, 36], probability
theory [18, 38] or functional inequalities [21]. Here, we will use this description of moment measures
to reparemeterize Inequality (9) in terms of 71,72 instead of v1, vs, yielding to the following equivalent
statement: for all log-concave probability measures 71,72 with an essentially continuous log-density,
it holds

(10) T(v1,m) + H(ni|Leb) + T (va,m2) + H(n2|Leb) < —nloge+ T (v1, 1),

where vy, v, are the moment measures of 71,72, and H(n;|Leb) = — {V; dn;, ¢ = 1,2, (which amounts
to minus the Shannon entropy of 7;). This last inequality formulated with respect to the Lebesgue
measure can then easily be recasted in terms of the Gaussian measure 7, yielding in particular to
Theorem 1.

Let us further comment the Entropy-Transport Inequality (10). It turns out that (10) also admits
an information theoretic formulation. Recall that the entropy power of a random vector X with law
n on R" is defined as

(11) N(X) = ﬁexp <%H(U|Leb)) .

With the notation above, one can easily prove (see Corollary 4) using a simple homogeneity argument
that (10) is equivalent to

(12) NN ()T, > (55)



THE DEFICIT IN THE GAUSSIAN LOG-SOBOLEV INEQUALITY AND INVERSE SANTALO INEQUALITIES 7

for random vectors X1, Xo having log concave distributions 71,72 with full support and associated
moments measures 1, vy. Let us note that if X; = Xs, then T (vq,11) = S|VV1|2 dvy = I(Xy) is the
Fisher information of 7; so that, in this case, (12) boils down to

ne

N(X)I(X1) = —.

2T
A well known result of Stam [55] shows that the best constant in the inequality above is ¢ = 27 (for
general random vectors X7). Inequality (12) thus appears as some bivariate form of Stam’s inequality
for log-concave random vectors.

Before closing this introduction, let us point out that the results obtained in the present paper
for reverse Santald inequalities echo several preceding results developed in the framework of direct
Santalé inequalities. As proved by Ball in [4] in the case of even functions and then extended by
Artstein-Avidan, Klartag and Milman [2] and Fradelizi and Meyer [23], the direct Santal$ inequality
admits the following equivalent functional form: for any measurable function f : R — R u {+},
there exists a € R™ such that

(13) Jeif“ darjef(f“)* dx < (2m)",

where fq(x) = f(z + a), © € R". When f is even, a can be chosen to be 0. Direct proofs of
this functional version were then obtained by Lehec [42, 43, 44]. The functional inequality (13)
immediately gives back the convex body version (1), but it is also interesting in itself. Let us mention
two recent applications of Inequality (13) that are of the same spirit as our main contributions. It
was shown by Caglar, Fradelizi, Guédon, Lehec, Schiitt and Werner [11] that Inequality (13) implies
back some inverse logarithmic Sobolev inequality first obtained by Artstein-Avidan, Klartag, Schiitt
and Werner [3]. More recently [17], Fathi showed that Inequality (13) was in fact equivalent to some
sharp symmetrized form of the Talagrand transport cost inequality (see Section 2.2 for more details).
These symmetrized forms of Talagrand transport inequalities were further studied by Tsuji in [57]
(with in particular a direct transport proof of this sharp transport inequality in dimension 1). Finally,
Inequality (12) is reminiscent of a work by Lutwak, Yang and Zhang [45] identifying the best constant
Cp.a,n in the inequality

cpan(NA(X1)NA(X2))P/" < E[| X1 - Xa”]

where X7, X5 are arbitrary independent random vectors on R” with finite p-th moment, N, is the
A-Rényi-entropy power, and the parameters p, A\, n are in the range p > 1, A > n—ip. As proved in [45],
this family of inequalities gives back the Santald inequality when X7, X5 are uniformly distributed on
convex bodies K, K° and when A and p are sent to co.

The paper is organized as follows. In Section 1, we introduce two functionals K(-|m) and L(-|m)
associated to a given log-concave measure m on R™ (which coincide with the functionals considered
above when m is the Lebesgue measure). We study their basic properties and we show in Theorem 3
(using the result of [13]) that these functionals are convex conjugates when m is the Lebesgue measure.
This duality relation between these functionals turns out to be true for a general log-concave measure
m, as shown in Theorem 4. In Section 2, we use the duality between functionals K (-|Leb) and
L(-|Leb) to establish several dual equivalent versions of the functional inverse Santalé inequality
IS, (c) and its variants. These dual versions involve various probability “distances” such as (relative)
entropy, (relative) Fisher information and optimal transport costs. We in particular prove Theorems
1 and 2. Finally, Section 3 contains the proof of Theorem 4 (based on Sion min-max theorem)
and Section 4 an alternative proof of Theorem 3 (based on a general version of the Fenchel-Moreau
biconjugation theorem).
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1. DUALITY RESULTS

In all what follows m will always denote a Borel measure on R™ such that m(K) < 4oo for all
compact set K < R".

1.1. Convex duality between relative entropy and log-Laplace functionals. Consider the
relative entropy functional with respect to m: for any v = h.m € P(R") such that logh € L' (v)

H(v|m) = Jhlog hdm,

with the usual convention 0log0 = 0.

Remark 1. Note that, when m is a finite measure, then the integral § hlog hdm always makes sense
in R u {400}, since the function xzlogx is bounded from below. So in this case, we can extend the
definition of H(-|m) by setting H(v|m) = (hloghdm if v € P(R™) is absolutely continuous with
respect tom and v = h.m and H(v|m) = +00 if v is not absolutely continuous with respect to m. We
will always adopt this convention when m is a finite measure.

Recall the following duality results for the relative entropy functional:

Proposition 1. If v = h.m € P(R™) with logh € L'(v), then
(14) H(v|m) = sup {deu - logJe-f dm: f s.t Je-f dm < +oo} .

and, ifSef dm < 4+, then
(15) logjef dm = sup {deu — H(v|m) : v = hm with logh € Ll(u)} .

In both formulas, f is allowed to take values in R U {£o0} and the fact that the integral § f dv
makes sense is a consequence of the proof below. Equalities (14) and (15) express that the two convex
functionals v +— H(v|m) and f — log { e dm are in convex duality.

For the sake of completeness, we recall the classical proof of these identities.

Proof. Both results come from the following well known Young type inequality:
xy < e* +ylogy — v, VreR,Vy = 0.
Observe that if v = h.m € P(R™) with logh € L'(v) and f is such that {efdm < +oo, then
fh<el +hlogh— h and so [fh], is m-integrable and satisfies
ffdu < Jefdm+H(1/|m) —1.
Changing f into f + a, for some a € R, then gives that
deygeafefderH(Wm)—lfa
and optimizing over a yields to

del/ < logfef dm + H(v|m).

For a given v, there is equality if f = logh, whereas for a given f such that 0 < Sef dm < 40, there

Seﬁiim' It Sef dm = 0 (which means that f = —o0 m a.s), then it follows from

the inequality above that { f dv = —o0 for any v = hm such that logh € L'(v). This completes the
proof. O

is equality for v =
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1.2. A twisted log-Laplace functional. Following [13, 53], we will now consider a twisted version
of (14) and (15) where the Log-Laplace functional

f—log J ef dm
is replaced by the functional L(-|m) defined by
(16) L(f|m) = —logJe_f* dm,  fe F(RY),

where we recall that f* denotes the Fenchel-Legendre conjugate of f defined at (5) and that F(R™)
denotes the set of all convex and semicontinuous functions f : R" — R u {+00}, with a non empty
domain (i.e f(x) < 400 for at least one value of x).

As observed in [13], the functional L( - |m) turns out to be convex, when the measure m is assumed
to be log-concave.

Lemma 1. If m is a log-concave measure on R™, then for any measurable functions fo, f1 : R™ —
R U {+0o0c}, it holds
t

1-t
fe—((l—t).f0+tf1)* dm > (J‘e_f(;k dm) (J‘e_fl* dm) .

For completeness, we recall below the simple argument from [13] based on the Prekopa-Leindler
inequality.

Proof. Since m is log-concave, then as an immediate consequence of the Prekopa-Leindler inequality,
it satisfies the following property: if go, g1,h : R" — R U {+00} are measurable functions such that
for some t € (0,1) it holds

(1 -tz +ty) < (1 —t)go(x) +toi(y),  Vz,yeR"

f e dm > (J e % dm) a (J e o dm) t :

Note that if foy, f1 are two measurable functions, then
(A=fo+tf)" (L-tz+ty) <L -)fF (x) +tfi(y), Vo,yeR",  Vte(0,1).
So applying the inequality above to go = f&, g1 = fi and h = ((1 —t)fo + tf1)* gives the result. [

then

1.3. A twisted version of the relative entropy functional. Mimicking (14), we now introduce
the following functional: for v € Py (R™),

Km):=  sup ) U(f) dv + 1ogje*f* dm} ,

feL(v)nF(R"

~ U(—f)dv—L(flm)}-
feL () nF®R™)

When m is the Lebesgue measure on R”, we will use the notation K (- |Leb).

This section is organized as follows: in Section 1.3.1, we first establish some basic properties of
this functional, then we prove in Section 1.3.2 an alternative expression for K(-|m) involving the
maximum correlation transport cost 7 and finally, Section 1.3.3 establishes a reverse duality formula
expressing back the functional L(-|m) (given by (16)) in terms of K (-|m).
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1.3.1. Basic properties of the functional K(-|m). It will often be useful to restrict the supremum

defining K (-|m) to the smaller class Fi,i,(R™) of all convex and Lipschitz functions on R™.

Proposition 2. For any v € P1(R"™), the supremum defining K (v|m) can be restricted to Frip(R™).
We will use repeatedly the following classical lemma in the sequel. In all the paper, we recall that

| - | will denote the standard Euclidean norm on R™ and, for all » = 0, B, will denote the closed
Euclidean ball of radius 7 > 0 centered at the origin.

Lemma 2. If f € F(R"), then for any r > 0, the function f, defined by
fr(x) = sup{f(y) +rlz —yl},  zeR"
yeR™

is convex, r-Lipschitz, satisfies f. < f and is such that f¥(y) = f*(y) +15,.(y), y € R™. Moreover
fr — [ pointwise monotonically as r — +00.

Proof. As an infimum of r-Lipschitz functions, f, is also r-Lipschitz. It clearly satisfies f,. < f and
is convex as an infimum convolution of two convex functions. The Legendre transform of f, can be
calculated as follows:

fEy) = sup{z -y — fr(2)}

zeR™

= sup sup{z -y — f(u) —rlz — ul}
zeR™ ueR"”

= sup fuy = fa) + sup oy~ rhl)
ueR” veR™

= f*(y) + 5, (y).

For the pointwise convergence of f,., we refer to [32, Proposition 4.1.5]. O

Proof of Proposition 2. Consider fi(z) = infyern{f(y) + k|z — y|}, x € R", as in Lemma 2. It holds
J(ff) du+1ogfe*f*13k dm < J(*fk) du+1ogfe*f: dm < sup {J(g) dV+10gJ\€7g* dm} ,
g€ FLip (R™)

By monotone convergence, and optimizing over f, one concludes that

sup {J(f) du+1ogfe*f* dm} < sup {J(g) dV+10gJ\€7g* dm} )
feFR™)NLY(v) geFLip(R™)

The converse inequality being obvious, this completes the proof. 0

Recall that the notions of symmetry and unconditionality were already defined in the Introduction
for functions and for probability measures. Similarly, a measure m on R™ (not necessarily of unit
mass) is said unconditional if it is invariant under all flipping of coordinates: for all non-negative
functions h on R™ it holds

Jh(alxl, ooy EnZp)m(day, ... dey) = fh(xl, coyxp)m(day, ... day,)

for any ¢ = (e1,...,e,) € {—1;1}". We define similarly symmetric measure. We will denote by
Ps.1(R™) (resp. Pu1(R™)) the set of symmetric (resp. unconditional) elements of P;(R™) and by
Fu(R™) (resp. Fu rip(R™)) the subset of F(R™) consisting of unconditional functions (resp. Lipschitz
and unconditional functions). We define similarly the sets F5(R") and F; rip(R").

Proposition 3. If m is log-concave and unconditional and v € Py1(R™) (resp. Psa1(R™)), the
supremum defining K (v|m) can be restricted to F,(R™) or Fy rip(R™) (resp. Fs(R™) or Fsrip(R™)).
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Proof. We only treat the unconditional case, the symmetric case being similar and simpler. Let
v e Pi(R") and f € F(R") n L' (v). For any ¢ = (1,...,e,) € {—1;1}", denote by f. the function
defined by f.(z) = f(e121,...,6n%y), ©* € R? and by f € F,(R") the function defined by f =
> Dice—1,1yn Jo- Since (fe)* = (f*) and the function L(-|m) is convex by Lemma 1, it follows from
the unconditionality of v and m that

Jenar—sigm = [~Far- 50 ¥ Lisim)

ce{—1,1}n
< Jff_du — L(f|m).
Therefore, the supremum defining K (v|m) can be restricted to F, (R™). The same reasoning together
with Proposition 2 shows that it can be further reduced to F, rip(R"). O
Following [13], we now collect some informations on the domain of K (- |Leb):
Proposition 4. A probability measure v € P1(R™) is such that K(v|Leb) < +oo if and only if

SIV(dI) = 0 and the support of v is not contained in an hyperplan.

Proof. We simply sketch the proof of the first implication. Let v € P;(R™) and f be a convex and
Lipschitz function. Denoting ¢,(z) = a - x, a,z € R™ and noticing that (f + ¢,)*(y) = f*(y — a), we
get

K(v|Leb) = a - un(dx) - del/ + logJeff*(y*a) dy = a- fxu(dac) - ffdu + logJeff*(y) dy.

So if §xv(dx) # 0, then taking the supremum over a gives that K (v|Leb) = +c0.

Suppose now that the support of v is included in an hyperplan H. Without loss of generality, one
can assume that H is the hyperplan z; = 0. Let f be the function defined by f(x) = 2goy(@1)+>1 5 |2l
x € R™. Then, an easy calculation shows that f*(y) = 37" , 11_1,1)(%i), y € R™. Therefore,

J\eif'*(y) dy = JH 1[,171] (xz) dxr = +00.
=2

On the other hand, { fdv = {37, |z;| v(dz) < +00, and so K (v|m) = +c0.

The proof of the converse implication is much more involved. We refer to Proposition 12 of [13]. O

1.3.2. An alternative expression. In this paragraph, we assume that m is a Borel measure on R" such
that

(17) Jeiﬁlx‘ m(dzx) < +oo

for some § > 0. This assumption is clearly satisfied for any log-concave measure on R™. It will be

convenient to introduce the probability measure m defined by m(dz) = Wlﬂ;‘(dwm(dm).

Under Assumption (17), one can unambiguously extend the definition of H( - |m) on the set P;(R™),
as follows :

S og g ify<m n
H{vm) = { 400 otherwise Vv e P1(RY).

To see that this definition makes sense, recall that according to Remark 1, the relative entropy H (v|m)
is well defined, for any v € P(R"™). Therefore, using that

H(vim) = H(vim) + B J |z| v(dz) + constant,
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one sees that H(v|m) = { hloghdm makes sense in R U {co0} for any v = h.m € Py (R™).

The functional K (-|m) admits another expression involving the so-called maximal correlation cost
T that we shall now define. Given vy, 15 € Py (R™), we set

Tlm) = int deV1+Jf* de}

Note that the integral of a convex function f € F(R™) with respect to v € P;(R™) always makes
sense in R U {400} since, up to the subtraction of an affine function, f can be assumed to be non-
negative. As already mentioned in the introduction, when vy, v5 € Po(R™), then it easily follows from
the Kantorovich duality for the W3 transport cost (see e.g [58]) that

T(vi,v2) =supE[X - Y],

where the supremum runs over the set of pairs of random vectors (X,Y’) such that X ~ 1v; and
Y ~ V.

Proposition 5. Under Assumption (17), for any v € P1(R™), it holds

K(v|m) = - e {T(v.n) + H(nlm)},

and the infimum can be restricted to compactly supported n. Moreover, if v and m are symmetric (resp.
unconditional), then the infimum can be restricted to (compactly supported) elements of Ps.1(R™) (resp.
Pu1(R™)).

One needs to slightly extend the validity of (15).

Lemma 3. For any ¢ € F(R"), it holds

logJe_“" dm = sup {f —pdv — H(V|m)} ,
Uepl(R")

and the supremum can be restricted to compactly supported v. Moreover, if p and m are symmetric
(resp. unconditional), then the supremum can be restricted to (compactly supported) elements of

Ps1(R™) (resp. Py1(R™)).

Note that, since ¢ is convex, the integral § —¢ dv makes sense in R U {—o0} for any v € Py (R").

Proof. Reasoning as in the proof of (14) and (15), we see that if v € P;(R™) is such that H(v|m) < o0
one has,

J7<p dv — H(vlm) < logJef“’ dm

and so taking the supremum over v, it holds

sup {J —pdv — H(V|m)} < logfe_‘/’ dm.
UEPl(Rn)

To show the converse inequality, consider v (dx) = Z%Ce_ﬁ"(w)l B, () m(dz), where we recall that By,
is the closed ball of radius k centered at 0 and Zj = {e %@ 1p, (z) m(dx). Since ¢ is convex, there
exists a € R™, b € R such that p(z) = a-x+b. The probability measure v, has thus a bounded density
and is supported on By, and so belongs to Py (R™). Also, H(vi|m) = SBk —p(z)e ) dm —log Z,
and the first integral is finite. Therefore,

fﬂp dvi, — H(vg|m) = log Z), — logJe*“" dm
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as k — 00, by monotone convergence. The fact that the supremum can be restricted to symmetric or
unconditional 77 when ¢ and m are symmetric or unconditional is left to the reader. This completes
the proof. O

Proof of Proposition 5. By definition, and applying Lemma 3 to ¢ = f*, one gets

K(v|m) = sup {f(—f) du+logfe_-f* dm}
feL*(v)nF(R™)

= sup sup )U(—f)dwrf(—f*)dn—H(nlm)}

feLY(v)nF(R™) neP1(R™

— {f (de+Jk f)dnfﬂmww}
neP1(R™) feLt (1/ ﬁ]:(]R"

= e {T(v,n) + H(nlm)} .

since the supremum in Lemma 3 can be restricted to compactly supported probability measures, the
same is true for the infimum above. O

1.3.3. Reverse duality. The functional K(-|m) is defined as some sort of conjugate of the functional
L(-|m). In this paragraph, we address the question of the following reverse duality formula:

a9 swp (D)~ Kilm)} = Llm), 7€ 7R,
veP, (Rn)
and we are looking for conditions on f and m under which (18) holds true.

An easy observation, is that this formula always holds with < instead of =, under no particular
assumptions.

Proposition 6. For any Borel measure m on R™ and f € F(R™), it holds

wpﬁf<ﬂwK@mﬁ<Lum>

vePy (]Rn

In what follows, a measure m being fixed, we will denote by ]—N'Lip(R") the set of elements of
Frip(R™) such that {e=f* dm # 0.

Proof. Let f e F(R™) ; by definition of K(-|m), it holds

sup UkﬁWKMm}=sw mf‘U¢ f@m]awm%.
vePy(R™) veP1 (R™) peFLip(R™)

Observe that, for any fixed v € P;(R"™), it holds
inf {J(gﬁ f)dyflog e ¥ dm} flog * dm.
pEFLip(R™)
Indeed, defining fi(z) = infyern{f(y) + k|lz—y|}, z € R", k > 1, it follows from Lemma 2 that f < f,

fx is k-Lipschitz, and Sefflzk dm = Seff*lBk dm. Therefore, for k large enough f € .}N'Lip (R™) and it
holds

J(f;C -1 dl/—logJ‘e_-lek dm < —logje_f*lj_r;,c dm,

which letting £ — o0 gives the claim. O

The following result shows that (18) holds true at least when m is the Lebesgue measure.



14 NATHAEL GOZLAN

Theorem 3. For any f € F(R™) such that Seif* dzx > 0, it holds

sup {f(—f) dv — K(V|Leb)} = L(f|Leb),
)

veP, (R"

and the supremum can be restricted to compactly supported v. If f is further assumed to be uncondi-
tional (resp. symmetric), then the supremum above can be restricted to unconditional Py 1(R™) (resp.

Ps1(R™)).

Below, we will derive Theorem 3 from the results of [13]. Another independent proof of Theorem
3 (based on a general Fenchel-Moreau biconjugation theorem) will be given in Section 4.

We will need the following elementary lemma (also used in [13]):

Lemma 4. Let ¢ : R" — R u {+o} be some lower semicontinuous convex function such that
Se_w dx > 0. Then the following propositions are equivalent:

(1) e ¥ dx < +oo,
(2) There exists a >0 and b € R such that (x) = alz| + b, © € R",
(3) The point 0 belongs to the interior of the set {x € R™ : ¢*(x) < 4+00}.

Observe that the lemma is no longer true if {e % dz = 0. For example, if ¢ = 1p, for some
hyperplan H, then (1) is true but (2) is obviously false. Also, since ¥* = 1571, (3) is also false in this
case.

Proof. Tt is clear that (2) implies (1). The implication (1) = (2) is Lemma 2.1 of [34]. To see that
(2) = (3), observe that for all y € R” such that |y| < a it holds

*(y) = sup{z -y —¥(x)} < sup{z -y —alz[} —b=sup{rly| —ar} —b= -0,
xeR" zeR™ =0

and so 0 belongs to the interior of {z € R™ : *(z) < +0}. Finally, let us show that (3) implies (2).
Assume that there exists a > 0 such that ¥*(y) < +oo for all y € B,. Being convex, ¢* is continuous
on B, and so there exists b € R such that ¢* < —b+1p,. Since 9 is lower semicontinuous, one gets
by duality that ¢ (z) = (=b+ 1p,)* = b+ alz|, which completes the proof. O

Recall the definitions of essentially continuous convex functions and of moment measures given
after Theorem 1.

Proof of Theorem 3. Note that, according to Proposition 6, there is nothing to prove if Se_f* dr =
+00.

According to Theorem 8 of [13], if 9,11 € F(R™) are such that 0 < {e"%°dz < +o0 and 0 <
Se*‘”l dx < +00 and g is essentially smooth, then it holds

log J e Vo dr — 1ogfe*¢1 dr > J(%*‘ — pF)dvy, -

(This inequality shows that, as soon as fy € F(R™) is such that 0 < Se_ft;k dr < 400 and fJ is
essentially smooth, the probability measure Vi is a subgradient of L(-|Leb) at the point fy.) In
other words,

K (vy,|Leb) = J(fwa") dvy, + log J e Vo dr.

Therefore, if 1)y is essentially continuous and such that 0 < Se‘wo dx < +00, then it holds

sup U(—wg‘) dv — K(u|Leb)} > f(—w;;‘)duwo — K (v, |Leb) = —1ogJe*¢° da

vePy (R")
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and so, according to Proposition 6, equality (18) is satisfied for f = ¢§. In other words, (18) is true
for any f € F(R™) which is essentially continuous and such that 0 < {e~/ *dr < +o0.

Now let us remove the assumption of essential continuity. Let f € F(R™) be such that 0 <
Se*f* dz < +o0 and let us prove (18) in that case. Consider f* defined by

fk:f+ZBka kZI
Note that, according to Lemma 2,

()" () = (FIely) = inf {f*(2) + klz—yl},  yeR™

According to Lemma 4, since Se*f* dx < 4o it follows that 0 belongs to the interior of {x € R™ :
f(z) < +o0}. Therefore, for any k > 1, 0 also belongs to the interior of {x € R" : f¥(x) < +o0}, and
SO Se_(fk)* dr < +0o0. Also, since (f¥)* is finite over R™, it is continuous on R™ and thus essentially
continuous. Therefore, for every k > 1, it holds

—logfe_(-fk)* dx = sup {J(—f—sz)du—K(l/|Leb)}

veP, (R" )

- sup ”(f —p,) dv — K(V|Leb)} .

v compactly supported

)*

According to Lemma 2, and the dominated convergence theorem (note that e~ (™ ig integrable), one

gets

flogfe*f* dx = supflogfe*(f’c)* dx

k=1

sup sup U(f —p,) dv — K(V|Leb)}

k=1 v compactly supported

- sup sup U(f —p,) dv — K(V|Leb)}

v compactly supported k=1

- sup ”( f)dv — K(V|Leb)}

v compactly supported

< sup )U(—f) dv — K(V|Leb)}

veP, (R"
—f*
< —log|e dx,

where the last inequality comes from Proposition 6. This completes the proof of the reverse duality
formula.

Now let us assume that f € F,(R™) (the symmetric case is similar) and let us show that the
supremum in the reverse duality formula can be restricted to P, 1(R™). For any ¢ = (e1,...,&,) €
{—1;1}" and v € P1(R"™), denote by v, the push forward of v under the map = — (e121,...,6n02p),
x € R, and consider the unconditional probability measure v = 2% Dee (—1,1yn Ve It is easily checked
that K (v.|Leb) = K (v|Leb), for any € € {—1;1}". Therefore, f being unconditional it holds

J(ff) dv + K (v|Leb) = Jffdﬂ - 2in >, K(ve|Leb)

ee{—1,1}"

< f—f v — K (7|Leb),
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where the inequality follows from the convexity of v — K (v|Leb). This shows that the supremum in
the reverse duality formula can be restricted to P, 1(R"). O

It turns out that the conclusion of Theorem 3 can be extended to general log-concave measures m,
as shown in the following result whose proof is postponed to Section 3.

Theorem 4. Suppose that m is an arbitrary absolutely continuous log-concave measure. For any
f e F(R™) such that Seff* dm > 0, it holds

e () {f (=fdv = KWIm)} = L(fm).

If m and f are further assumed to be unconditional (resp. symmelric), then the supremum above can
be restricted to Py1(R™) (resp. Ps1(R™)).

2. HWI FORMULATION OF FUNCTIONAL INVERSE SANTALO INEQUALITIES

In this section, we establish dual equivalent versions of the functional inverse Santalé inequali-
ties introduced in Definition 1. These equivalent versions are expressed in terms of entropy (H),
Wasserstein distance (W) and Fisher information (I).

Remark 2. In [25], (6) is required to hold only for functions f : R* — R such that0 < { e~/ dz < +o0,
without assumptions on f*. Note that if f satisfies these assumptions, then according to Lemma /,
the function f* is finite on a neighborhood of 0, and therefore Se_f* dx > 0. It is not difficult to see

that (6) can then be extended to f € F(R™) such that 0 < §e~/ dx and 0 < Se_f* dz, so that the two
definitions actually coincide.

2.1. Transport-Entropy form of reverse Santalé inequalities - Lebesgue version.

Theorem 5. Let ¢ > 0. The reverse Santald inequality 1S, (c) holds if and only if
(19) K (v1|Leb) + K (v2|Leb) = nlogc — T (v1, va),
for all v1,v9 € P1(R™) (resp. for all compactly supported vi,vs). In the case of the reverse Santald

inequality IS, ,(c) (resp. 1Sy, s(c)), the same statement holds with the extra condition that vy, vy belong
to Pu1(R™) (resp. Ps1(R™)).

Proof. Fix v1,v5 € P1(R™). If K(v1|Leb) + K (v2|Leb) = 400 or T (v1,v2) = +00, there is nothing to
prove. One can thus assume further that all these quantities are finite. Let f € F(R™) be such that
fe LY (), f* € LY (va) (such f exists since T (v1,v2) < +00). Since for i = 1,2, K(v;|Leb) < +o0,
Proposition 4 implies that 1; is centered and that its support is not contained in an hyperplan.
Therefore, to(sup)(v;) (the closed convex hull of the support of v;) has a non empty interior. Since
§ f dvi < +00, one easily concludes that

w0 (sup) (1) < dom([)

and so f is finite on a small ball which implies that {e~/ da > 0. Similarly {e~/ *dx > 0. Applying
Inequality (6) then gives that

J(ff) dvi + 1ogfe*f* dz + J(—f*)dy2 + 1ogfe*f dz > nlogc — deul + Jf* dVQ) .

So, by definition of K (- |Leb), we get

K (11|Leb) + K (v2|Leb) = nlogc — (ffdyl + Jf* dyg) .
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Optimizing over all f € F(R™) such that f e L'(v1), f* € L*(1a) yields
K (v1|Leb) + K (v2|Leb) = nlogc — T (v1, va).

Conversely assume that (19) hods for all compactly supported vq,v5. Take f € F(R™) such that
0<f{e/drand0< Se*f* dx. Since vy, ve are compactly supported, T (v1,v2) is finite and it holds

J(ff) dvy — K (v |Leb) + J(—f*) dvy — K (v2|Leb) < —nlogec — (deyl + Jf* duz) + T (v1,v2)
< —nloge,

since by definition T (v1,12) < (§ fdvi + § f* dvs), for any convex function f. Thus optimizing over
all compactly supported vy, 1o, it follows from Theorem 3 that

flogfe*f* dxr — 1ogJe*f dr < —nloge,

which completes the proof. 0

The following is a straightforward consequence of Theorem 5 and Proposition 5.
Corollary 2. Let ¢ > 0. The reverse Santald inequality 1S, (c) holds if and only if

(20) inf {7 (vi,m)+ H(m|Leb)} + ) in

f T (vs, + H(n2|Leb)} < —nloge + T (v, 12),
et gepl(R"){ (v2,7m2) + H(n2|Leb)} g (v1,12)

for all vi,va € P1(R™) (resp. for all compactly supported vy,v2). In the case of the reverse Santald
inequality IS,, . (c) (resp. 1S, s(c)), the same statement holds with the extra condition that v1,va,m, N2
belong to Pu1(R™) (resp. Ps1(R™)).

We will now let moment measures enter the game using the following theorem.
Theorem 6 (Cordero-Erausquin-Klartag/Santambrogio).

(1) A probability measure v € P(R™) is the moment measure of some log-concave probability
measure 1, on R"™ such that n,(dr) = e~Ve dx for some essentially continuous convex function
Vo : R™ > Ru {+w} if and only if v € P1(R™), v is centered and its support is not contained
in an hyperplan. The function V, is moreover unique up to translations.

(2) If v is centered and its support is not contained in an hyperplan, then the probability measure
Mo is up to translations the unique minimizer of the functional n — T (v,n) + H(n|Leb) on
Py (R™):

inf {7 (v,n) + H(n|Leb)} = T(v,n,) + H(no|Leb).
nePy(R™)

(3) Moreover, if v e Py 1(R™) (resp. Ps1(R™)) then n, € Py1(R™) (resp. Psi(R™)).
In the preceding result, Item (1) is due to Cordero-Erausquin and Klartag [13] and Item (2) to
Santambrogio [53]. Ttem (3) is an immediate consequence of the second part of Proposition 5.

Corollary 3. Let ¢ > 0 ; the following propositions are equivalent :

(1) Inequality 1S, (c) holds.
(2) For all log-concave probability measures 11,12 on R™ such that, for i = 1,2, n;(dz) = e~V dx
for some essentially continuous convez function V; : R™ — R U {400}, it holds

(21) T(v1,m) + H(ni|Leb) + T (va,m2) + H(n2|Leb) < —nloge + T (v1, 1),

where vy, 9 are the moment measures of n1 and ns.
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(3) For all log-concave probability measures 11,12 on R™ such that, for i = 1,2, n;(dz) = e~ Vi dx
for some essentially continuous convex function V; : R™ — R u {+00}, it holds

JVl* dvy + JVQ* dve < —nloge + T (v1,12),
where v1,vs are the moment measures of m1 and 1.
Moreover, if V; : R® — R, then (21) reduces to

(22) H (m |Leb) + H(n2|Leb) < —nlog(e®c) + T (v, ).

The same result holds for inequality IS, . (c) (resp. 1S, s(c)) with the extra condition that n1,n2 are
unconditional (resp. symmetric).

Remark 3.

e Note that the equivalence is stil true if in (2) one puts the extra condition that vy, vs € Po(R™).
o According to Lemma 5 of [13], for a general V; € F(R™), the inequality

T(Viu 771) <n

is always true. Therefore, for general V;’s, (22) is slightly stronger than (21).

Proof. The equivalence between (1) and (2) follows immediately from Corollary 2 and Theorem 6.

For i = 1,2, let 7; be a log-concave probability measure on R” such that n;(dz) = e~V dz, with
Vi € F(R™), and denote by v; the moment measure of 7;. Let us show that (2) and (3) are equivalent.
According to Proposition 7 of [13] and its proof, §|V;|dn; < +oo and {|V;*|dv; < +c0. Therefore, for
any function f e F(R"™) such that f e L'(n;) and f* € L(1;), it follows from Young inequality that

[ rans [ av = [ 5@+ £V )
> [@ Vi) ()
— [Vitw) + V2 (Vi) dn
- Jvidm + JV{" dv,
Therefore,
T (vi,mi) = J:z: -VVi(z)n;(dx) = JVi dn; + JVl* dv;.
Since H(n;|Leb) = — {V; dn;, we see that (21) amounts to
JVl* dvy + JVQ* dve < —nloge + T (v1,12).
Now let us assume that V; : R — R is finite over R™. Then
—V |CC|2 VvV
(23) T(vi,mi) = J:c CVVi(x)e Vi@ dg = —JV - ) \% (e l(m)) dxr = n,

where the second equality follows by an integration by parts. This is clear if V; is continuously differ-
entiable. For a general V;, note that for any j € {1,...,n} and for any fixed x1,...,2;-1,Zj41,...,2n
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the function z; — xje*Vi(xl 7777 Tj—1,%5,%541,-%n) g Jocally Lipschitz and thus absolutely continuous.
Therefore, for any a > 0,

a a
_ Vi1, s T — 1, g 1505 . -Nara . . . Vi1, 0 j—1,T5,Tj41,...,T .
—J e Vim0, ’")da:JJr zj0i(Vi)(z1, ..., Tj1, 25, Tjg1, ..., Tn)e (@110, 1 ’")dxj.
—a

—a
Letting a — o0, integrating with respect to x1,...,2;-1,%j41,..., 2, and summing over j gives the
result. Therefore, when V; : R™ — R, (21) is equivalent to

H (m |Leb) + H(n2|Leb) < —nlog(e®c) + T (v1, ).
The cases of Inequalities IS,, ,,(¢) and IS, s(c) are straightforward. O

In the next result, we derive from (22) an alternative formulation with an information-theoretic
flavor. Recall the definition of the entropy power N(X) given at (11).

Corollary 4. IfIS,(c) holds true then for any random vectors X1, Xo drawn according to log-concave
distributions my,m with full support on R™, it holds

9 ne\?
NN (X T2 > (52)
where v1,ve are the moment measures of ni,m. If IS, s(¢) (resp. ISn..(c)) holds true, then the
inequality above holds with the extra condition that X1, X2 are symmetric (resp. unconditional).

Proof. We only treat the case of Inequality IS,,(¢) the other cases being similar. Consider log-concave
probability measures 1; = e~"%, i = 1,2, with V; : R® — R a finite valued convex function and
let X; ~ n;. For any A\ > 0, define 7' as the pushforward of 1, under the map x + Az. Then
nMdz) = e_Vi(’”/)‘)% dx,1=1,2, and so

H(n}MLeb) = —nlog A + H(n;|Leb).

On the other hand, denoting 1 the moment measure of n}, then it is easily seen that v} =
Law(3 VV;(X;)). Therefore,

1
T(Vl, I/Q).

T(V?,V%) = ﬁ

So, according to (22), it holds

1
H(n1|Leb) + H(nz2|Leb) < nlog(\?) + F’T(ul, va) — nlog(e?c).

Optimizing over A, yields to
H (m|Leb) + H(n2|Leb) < nlog <M> —nlog(ec),
n
which completes the proof. 0

2.2. Transport-Entropy form of reverse Santalé inequalities - Gaussian version. Recall
that the standard Gaussian measure 7y, on R" satisfies the Talagrand transport-entropy inequality
[56]:

1
W) < Hvbw), Yo e Pa(R"),

This inequality admits a symmetric version (which can be easily deduced from the one above), which
is the following:

1
(24) ng(yl, va) < H(vh|vn) + H(v2|vn), Vv, vg € Po(R™).
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The factor 1/4 is sharp. Indeed, if one takes v; = N (—a,1) and v = N'(a,1), for some a > 0, then
there is equality in (24).
Recently, it was shown by Fathi [17] that the factor 1/4 can be improved to 1/2 if at least one of

the measures vy, 12 is centered. This result is a consequence of the functional form of the Santald
inequality.

Below, we show that reverse Santalé Inequalities can be translated in terms of lower bounds for
the following functional

1
§W22(u1, va), Vi, v € Pa(R™).

Theorem 7. Let ¢ > 0. The reverse Santald inequality 1S, (c) holds if and only if for all v1,vq €
Po(R™), it holds

2 > inf , inf , log(c/(21)).
(25) G(v1,v2) meg;(Rn)g(m v2) +n2€7132(Rn)g(V1 12) + nlog(c/(2m))

G(v1,v2) = H(vi|vn) + H(v2|vn) —

In the case of the reverse Santald inequality 1S, ., (c) (resp. 1Sy, s(c)), the same statement holds with
the extra condition that v1,ve, 11,12 belong to Py 2(R™) (resp. Ps2(R™)).

Proof. We only treat the case of Inequality IS, (c), the other being similar. According to Corollary 2,
Inequality IS,,(c) is equivalent to

inf  {T(vi,m)+ H(m|Leb)} + inf {7 (v2,nm2) + H(nz2|Leb)} < —nloge + T (v1,v2),
neP2(R™) n26P2 (R™)

for all vy, 9 € P2(R™) (we could even restrict 1y, 12, 1,2 to compactly supported probability mea-
sures).

If Vi,V € PQ (Rn), then

1 1 1
(26) T(1,v2) = —§W22(U1,V2) + §J|x|2 dvy + §f|$|2dV2
and, if 1,72 € P2(R™), then
1 1 1
(27) T (viymi) = *§W22(Viﬂ7i) +5 J ||? dv; + 5 J || dnpi.
Also, note that
dyn,
NilVn) = n;|Leb) — | log ——dn; = H 771 € x| an; + 0gl4m).
(28) H(ni|vn) = H(n;|Leb) 1 T d |Leb) + || d 1 (2m)
So, we get
it LW ) + Hnb) b+ it S WR ) + il | < nlog(2n/e)—S W2 (1, )
meg;(Rn) 5 V2 V1T mi¥n mEg;(Rn) o V2 \V2, 12 2|V ¢ S MI08LET/ €)= 5 Wa (V1,12
So adding H (v1|y,) + H(v2|vy), gives the claim. O

2.3. The deficit in Log-Sobolev and reverse Santal6é inequalities. We are now ready to prove
our main result (Theorem 1) which gives an equivalent formulation of functional inverse Santald
inequalities in termes of the deficit in the Gaussian logarithmic Sobolev inequality.

Proof of Theorem 1. Again we only treat the case of Inequality IS, (¢), the other being similar. Ac-
cording to Corollary 3, Inequality IS, (c) holds if and only if for all log-concave measures 7,72
satisfying the assumptions of the theorem, Inequality (21) holds true. Assuming that vy, vs € Po(R™)
and using (26), (27), (28), one sees that (21) amounts to

1 1
5 W2 (v2,m2) + H (112 1n) < nlog(2m/c) = W3 (01, v2).

1
(29) *§W22(V1a m) + Hmi|vn) — 5
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Note that

d i : x|
hi(x) := i(:17) = (27‘()"/267(‘/’(96)7%), Vo e R",
dvn
and so

[ [Vhil® 2o (Vile) 2% 1282
I(mihm) = | == dm(@) = | [VVi(e) —affem M7 e da.
On the other hand,

_ =2

212
W22(V17771) = J\|V‘/1($) — ;1;|2e_(vi(;ﬂ)—%)e =

and 5o 1(n;]7n) = W3 (vi,m;)-
Therefore, (29) is equivalent to

1~ 1- 1
H(ni|vn) — 51(771|7n) + H(n2|vn) — 51(772|7n) < nlog(2m/c) — §W22(V1, va),

which completes the proof. g
Now let us turn to the proof of Corollary 1.

Proof of Corollary 1. According to [25, Theorem 3], the inequality IS; (e) holds true: for all f € F(R)
such that {e™/ dz > 0 and Seff* dx > 0, it holds

(30) Jeff dx J e dr > e

So the first part of Corollary 1 is an immediate consequence of Theorem 1 (note also that in dimension
1 a convex function is essentially continuous if and only if it is continuous as a function taking values
in Ru {+w}).

Let us now show the optimality of the lower bound on d2. Define, for all 7y, ns satisfying the
assumptions of Corollary 1,

1
A(n1,m2) 2= 62(m ®m2) — §W22(1/1, v2) + log(2m/e).
According to the proof of Theorem 1 and (22), we see that if V4,15 : R — R then
A(m,m2) = T (v1,v2) — H(m|Leb) — H(nz|Leb) — 3.

We will now consider sequences (7¥)x>1 and (75)x>1 approximating the two exponential probability
measures 7 and 7 defined by

(31) T(dz) = ef(Hz)l[_l’_,_oo[(:z:) dx and F(dz) = " ') gy (2) da
which are not admissible since their densities are not continuous. More precisely, let us define nf (dz) =
Zife_vlk(c”) dx, where

V(@) = =k(z + D)1} ap(@) + (2 + D1 (@)

and Z} = % is the normalizing constant. We define similarly 75 as the push forward of n¥ under
the map & — —x. A simple calculation shows that, for i = 1,2,

1
H(nF|Leb) = —1 — log (1 + E) — 1

as k — +o0o. It is also not difficult to check that

1 k k 1
uf=k+15,k+k+151 and vh
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The monotone optimal transport 7% plan between v and v is given by

1 k—1 1
¥ (—k,—1) T (1, -1) R (1, k) R
So 1 k—1 1
ko ky _ k _ _ v =
7(V1,V2)—f$yﬂ (dxdy) kkJrl k+1+kk+1 1.
Therefore,

1
A(nf,n5) = 2log (1 + E) —0
as k — +oo. O

Remark 4 (Equality cases in IS;(e)). Let V,V : R — R U {+m} be the functions defined by V(z) = x
ifx>=—1and +o0 ifv < —1 (resp. V(z) = —x if v <1 and +o0 ifx > 1). As shown by Fradelizi and
Meyer in [25], the cases of equality in (30) are precisely the functions of the form f(x) = V(ax) + b,
a # 0, beR. As already mentioned in the proof, the probability measures T and T defined by (31)
are not admissible, because the functions V and V are not continuous on R. Note in particular that
the moment measures vy and vz associated to T and T are respectively the Dirac masses 01 and d_1,
which are not centered.

Remark 5 (Convergence of uf, i =1,2). Let us underline some subtleties concerning the convergence
of the sequences vF, i = 1,2. Note that v} is centered for every k > 1 but weakly converges to 61 which
1s not. This means that convergence is not true for the W1 metric and a fortiori for the Ws metric.
This is confirmed by the fact that T (vE,vk) — 1 # T(61,6-1) = —1. Also, {22 dvF = k — 40 as
k — +o0. Thus Wi(v,vk) =2(k—1) — +o0 as k — +oo. Therefore, the sequence
1
020t ®1z) — 5 W3 (Vi v3) + log(2r/e)
converges to 0 but is the difference of two diverging sequences.

Remark 6 (Ghost equality cases). Simple calculations show that

N 1 2
H(rln) = (7o) = 10 (

R I (AR (DR
from which it follows that the equation

1 1~ 1-
H(t|y1) + H(T|7) + §W22(5175—1) = §I(T|71) + gf(ﬂﬁ) + log(2/e)

holds true. This suggests that the validity of the inequality

1 1- 1~
H(nily1) + H(nz2|v) + §W22(’/17 v2) < §I(n1|71) + §I(n2|71) + log(2/e)

could perhaps be extended outside the domain of log-concave probability measures of the form n;(dx) =
e~ Vidx with a continuous V; : R — R U {+w}. Nevertheless, the fact that the simple approzimation
scheme used in the proof of Corollary 1 yields to blowing up quantities seems to leave little hope for
that.

Let us now turn to the proof of Theorem 2.

Proof of Theorem 2. According to Fradelizi-Meyer [25, Theorem 10], the inequality IS,, ,(4) holds
true. Therefore, Theorem 1 yields to the following reinforcement of the Gaussian logarithmic Sobolev
inequality: if 71,72 are unconditional log-concave probability measures on R™ such that, for i = 1,2,
ni(dz) = e Vi dx with V; : R® — R U {+0o0} an essentially continuous convex function, it holds

1 1- 1~
H(n1|vn) + H(nz|vn) + §W§(V1, v2) < nlog(m/2) + gf(ml%) + gf(nzl%),
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where, for i = 1,2, v; is the moment measure of 7;.

Consider the symmetric exponential probability measure 75(dz) = %e‘m dx and let us choose
n2(dx) = 7" (dx) = Se” Zimilzil dg (whose log density realizes the equality case in IS,, ,(4)). Then
simple calculations show that vy = (%5_1 + %61)®n = A\c

n?

®n _n en f(-&n -
H(tI"|vn) 5 log( 5 ) and (&™) = n.

Therefore, for any n(:= 1) as above, one gets

me
2

Consider now the sequence of probability measures (nx)r>1 given by ni(dx) = Zike_vk(””) dz, with

1.5 n 1=
H(nly) + 3W3 (v Ac,) < S log (5 ) + 51 (nla).

ke —1] ifz>1
Ve(z) =4 0 if z e [-1,1]
klz+1] ifz<—1

and Zy = @ Easy calculations show that, when k — +o0,

1 m 1 k 1 2 2 1 T 1
Hngly) = 510g(§> —log (1+E> +m [g—l—ﬁ-i-ﬁ] = §log(§) +6+0(1)’

Eolt 11 1\? 1
I(nkhl):k—ﬂlg—i_E(ﬁ—i_(l_k—i_E)>1=§+k_3+0(1)

and
1 1 1
w2 5420 ) = B2 —k+1)=k—-2+0(1
20%2 1+21> (k+U( +1) +o(1),

where v}, = mé_k + %50 + mék is the moment measure of 7. So,

1 1 1 1 1 e

o7 —H W2 (=6 =6y ) = —=1 G—) 1).

3 1m) = Hln) = 593 (v 501+ 501 ) = =5108 (5F) + o)
Since
1 @n ®n 1 2 (. ®n 1 1 2 1 1
ymkwu—ﬂmkwm—5WA% Jm)=ngﬂ%hﬁ—HMWM—§W§VMf4+§& :
this completes the proof. O

3. PROOF OF THEOREM 4

During the proof, we will use the following version of the min-max theorem due to Sion [54].

Theorem 8 (Sion min-max theorem). Let X and Y be two convex subsets of some linear topological
spaces. Let F': X x Y — R be such that f(x,-) is concave and upper semicontinuous for every v € X
and f(-,y) is conver and lower semicontinuous for every y € Y. If X or Y is compact, then

inf sup F'(z,y) = sup inf F(z,y).
v yey TeX

zeX yE

Proof of Theorem 4. In all the proof, m is a log-concave measure and f € F(R™) is some convex

function such that 0 < Seff *dm <+ (according to Proposition 6, there is nothing to prove when
this integral is +00).
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First step. By definition of K(-|m), it holds

sup {J(f) dVK(V|m)} = sup _inf {J((pf) du—logjeﬂ"* dm} ,
vePy (R™) veP1(R™) peFLip(R™)

where we recall that fLip(R") is defined just after Proposition 6. Let us assume for a moment that
f is such that
(32)

sup _inf {J(w —f)dv— 1ogje*“"* dm} = inf sup {J(gp — f)dv — logJe*“"* dm} .
veP1(R™) peFLip(R™) PEFLip(R™) vePy (R™)

This interversion of inf and sup will be justified in the second step below. Let us show that
_inf sup {J(gp 1) dyflogfe*“"* dm} = flogfe*f* dm.
Q(JE]:Lip(R") veP (R")
Note that
sup [(0 = £)dv = sup (o(0) — f(a) i=

vePq (R™) reR™
So,

_inf sup {J(gp — f)dv — 1ogfe_“’* dm} = inf {mw — 1ogfe_“’* dm}
peFLip(R™) vePy (R™) peFLip(R™)

_inf {logfe“’* dm} .
@eFLip(R™) s.t m,=0
Let us show that

(33) inf { 1ogfe*v’* dm} =— 1ogfe*f* dm.

we]T"Lip(]R") s.t my=0

First, note that if ¢ is such that m, = 0, then ¢ < f and so —logSef“’* dm = —loggeff* dm.
Conversely, let us construct a sequence of convex and Lipschitz functions fi such that my = 0 and

Se_f: dm — Se_f* dm. The function f being convex, one can find a € R™ and b € R such that
f(z) = a-x+b, x € R". Let us denote by g(z) = f(z) — (a2 +b), which is convex and non-negative.
Consider the sequence of convex functions gi defined by

ge(w) = mf {g(y) + ko —yl},  zeR"k>1
.

as in Lemma 2, which is such that gp < g, gr is k-Lipschitz, and g} = ¢g* + 1p,. Letting fi(z) =
gr(z) + a - x + b, one gets that

i) =gily—a)—b=g*(y—a)+ip,(y—a)—b= f*(y) +1p,(y — a).

Therefore, Se*flf dm — Se*f* dm, by the monotone convergence theorem (and in particular fj

belongs to ]t"Lip(R”) for all k large enough). Note that my, = sup,cpn{gr(z) — g(x)} < 0. Since g is
bounded from below and lower semi-continuous, it reaches its infimum at some point a € R", and it
is easily seen that gi(c) = g(c). Therefore, my, = 0, which completes the proof of (33).

Second step. In this step, we show that if f € F(R™) is such that 0 < Se_f* dm < +00 and such that
D := dom(f) is compact and f is bounded on D, then (32) holds true. Let us denote by P(D) the

set of Borel probability measures on D and consider the function F : P(D) x Frip(R") — R U {—o0}
defined by

F(v,¢) = J((p — f)dv — 1ogfe*@* dm.
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Let us denote by

C(f)= sup {J(—f) dv — K(V|m)} = sup inf  F(v,¢)
vePy (R™) veP (D) peFLip(R™)

and note that this quantity is finite according to Proposition 6. Let us equip P (D) with the usual
weak topology. Since D is compact, it follows from Prokhorov theorem that P(D) is also compact.
Let us denote by M (D) the linear space of all finite Borel signed measures v on D, and equip it with
the coarsest topology that makes continuous the functionals M(D) 5 v +— {@dv, for all continuous
function ¢ on D. In restriction to P(D), this topology coincides with the weak topology. Therefore,
X :="P(D) can be seen as a compact convex subset of M(D).

Consider the space C(R™) of all continuous functions on R™ and equip it with the topology of
uniform convergence over all compact subsets of R™. The set ) := ]t"Lip(R”) is a convex subset of
C(R™). Indeed, fLip(R”) ={pe FrpR") : — logSe**"* dm < +oo} and this set is convex thanks to
Lemma 1.

With these notations, it follows from what precedes that
C(f) = sup inf F(v, ).
veX PEY
In order to permute inf and sup, let us check the assumptions of Theorem 8.

e Restricted to X x ), the functional F' takes finite values. Indeed, since f is bounded on D, it
follows that §|o — f|dv < 40 for all v € X and ¢ € Frip(R"). Furthermore, if ¢ € Frip(R™),
then ¢* = 400 outside a closed ball, and so Se_‘/’* dm < +o (and # 0 by definition of
Frip(R™)).

e For any fixed ¢ € ), the map X 3 v — F(v, ) is upper-semicontinuous (this follows from the
lower semicontinuity and boundedness of f and Portmanteau theorem).

e For any fixed v € X, the map YV 3 ¢ — F(v,¢) is lower semi-continuous. Indeed, the map
Y3ap— Sgpdy is clearly continuous since v € X has a compact support. Furthermore, if ¢y,
is a sequence of elements of ) converging to some ¢ € ), then we claim that

(34) lim sup f e~k dm < J‘e_“’* dm,
k—o0
which gives the announced lower-semicontinuity. To prove (34), we slightly adapt an argument
from the proof of [13, Lemma 17]. Since m is log-concave, there exists a > 0 such that
§e=elzl dm < +o0. For any r > 0, denote by
Ur(y) = sup{z -y —p(x)},  zeR™

|z|<r

Then ), converges to ¢* monotonically, as r — o0, and ¥, (y) = aly| — M, where M =
SUP|z|<a (). So, using the dominated convergence theorem,

Jeﬂpr dm — Jef“’* dm

as r — 0. Take some ¢ > 0, and rg > « large enough so that {e=¥r0 dm < Se*“’* dm +
e. Define ¢F (y) = SUD|z|<roi® ¥ — wr()}, y € R™. Since ¢j converges uniformly to ¢
on any compact set, one sees that ¥ (y) — ¥, (y) for all y € R™. Furthermore, M’ :=
SUD> 1 SUD|, (< () < +00 and so ¥F (y) = aly| — M, y € R". Therefore, by the dominated
convergence theorem

Jeﬂpfn dm — Je“’z’m dm < Jeﬂ"* dm + ¢.
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. Ak _w’f
Since, {e~%r dm < e Y7o dm, one concludes that

lim supJe‘“": dm < J‘e_“’* dm + e
k—o0
which gives (34) by letting ¢ — 0.
e Finally, for any fixed ¢ € ), the map v 3 X — F(v,p) is concave (and even linear), and
according to Lemma 1, for any fixed v € X, the map Y 3 ¢ — F(v, ) is convex.

Therefore, applying Theorem 8, one gets that

C(fy= _inf  sup Flrg)= inf  sup F(v,)
o€ FLip(R™) veP (D) $eFLip(R™) vePy (R™)

Third step. According to the two preceding steps, the equality

sup )U(—f) dv — K(V|m)} = —1ogfe*f* dm

vePy (R"

holds true for any function f € F(R™) such that 0 < Se*f* dm < o and such that D := dom(f) is
compact and f is bounded on D. Let us finally remove this last assumption. Consider f € F(R™)
such that 0 < Se*f* dm < 0. For all k > 1, define Dy = {f < k} n By, k> 1 and f* = f +1p,,
where By is the closed ball of radius k£ centered at 0. The lower semicontinuity of f implies that
the sets Dy, k > 1, are compact. The sequence f*, k > 1, being non increasing, it follows that the
sequence (f¥)*, k > 1, is non decreasing. Moreover, for any y € R",

sup(f*)*(y) = sup sup {& -y — f(z) —1p, (2)} = sup sup{z -y — f(2) —wp, (2)} = [*(y).

k=1 k=1 zeR™ zeR™ k=1
Let us admit for a moment that 0 < Se*(fk)*(y) m(dy) < +oo, for all k large enough. Letting k — o
in the identity

- logJe_(fk)*(y) m(dy) = sup {f(—fk) dv — K(V|m)}
uepl(R“)
and reasoning as in the end of the proof of Theorem 3, one concludes that the identity holds for f
as well. To finish the proof, let us show that 0 < Se_(fk)*(y) m(dy) < +oo for all k large enough.
Since (fF)* < f*, it is clear that 0 < Se_(fk)*(y)m(dy) for all £k > 1. So, according to Lemma 4,
Sef(fk)*(y) m(dy) < +co if and only if 0 belongs to the interior of dom(((f*)* + V)*). Note that
(/) + V) (@) = fFoVEi(z) = inf {f*(y) + V*(z —y)},

yeR™

where o denotes the infimum convolution operations. From this follows easily that
dom(((f*)* + V)*) = dom(f*) + dom(V*) = (dom(f) n Dy) + dom(V*).

Since 0 < Se*f* dm < 400, we know that 0 belongs to the interior of dom(f) + dom(V*). Therefore,
there is some € > 0 such that £[—1,1]" < dom(f) + dom(V*). So, for any u € {—1,1}", there
exist a, € dom(f) and b, € dom(V*) such that a, + b, = eu. Choose k, large enough so that
the 2™ points a,, u € {—1,1}", all belong to dom(f) n D, . Then, for all k¥ > k,, the convex set
(dom(f) n D) + dom(V*) contains the family of points eu, u € {—1,1}" and so it contains their
convex hull [—1,1]™. This proves that 0 belongs to the interior of dom(((f*)* + V)*) and completes
the proof. O
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4. YET ANOTHER PROOF OF THEOREM 3.

In this section, we indicate another way, based on a general Fenchel-Moreau biconjugation theorem,
to prove Theorem 3. The same method could be used to establish Theorem 4 as well, but we prefer
to restrict to the case where m is the Lebesgue measure to avoid lengthy developments.

Let © < R™ be an open subset and denote by C(€2) the space of continuous functions on 2. We
will equip C(€2) with the topology of uniform convergence on compact sets of Q. This is the topology
generated by the collection of seminorms pg,, p = 1, defined by

P, (f) = sup |f ()], fec(Q),

where (K,),>1 is an increasing sequence of compact sets such that @ = Up,>1K,. We recall the
following consequence of the Riesz-Markov representation theorem

Theorem 9. The topological dual space (C(2))" of C(2) can be identified with the set of finite signed
Borel measures pi with a compact support K < Q.

Proof. We sketch the proof for the sake of completeness. Let ¢ : C(€2) — R be a continuous linear
functional. Since ¢ is continuous, there exists an open neighborhood A of 0q (the zero function on
Q) such that |£(f)| < 1 for any f € A. By definition of the topology of C(2), there exists p, = 1 and
€ > 0 such that {f : px, (f) < e} = A. Therefore,

LI < o, (), Fec(®)

If g : K,, — R is a continuous function on K, and fi, fo : @ — R are continuous functions such
that f1 = fo = g on K, one easily concludes from this that ¢(f1) = ¢(f2). Therefore one can define
U(g) = L(f), for any f € C(Q) such that f = g on K,,. This map / is a continuous linear functional
on C(K),) (equipped with pg, ) and it holds ¢(f) = Z(f|Kpo), for all f € C(€2). According to the
Riesz-Markov representation theorem, there exists a finite signed Borel measure p on R™ such that

lul(K5 ) = 0 such that
U(g) =Jgdu, Vg € C(Kp,).

ans so, for any f € C(Q2), £(f) = { f du which completes the proof. O

Now let us define the conjugate operation on C(f2). For any f € C(2), let cq(f) be the function
defined on R" as follows

ca(f)(y) =Slelg{:v-y—f(:v)}, yeR".

We also define the functional Ag : C(Q) — R u {+w0} as follows

Aq(f) =— logfe_cﬂ(-f) dx.

Lemma 5. If 0 € Q, the functional Aq is lower semi-continuous, conver and never takes the value
—0Q0.

Proof. The convexity of Aq follows from the log-concavity of the Lebesgue measure exactly as in
Lemma 1. Let a €  and r, > 0 small enough so that B,.,, € Q. Then if f € C(2), then denoting by
M =sup,cp, f(z), it holds

co(f)(y) = sup {z-y} — M =ro|y| — M.

r€B,,
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Therefore, §e=*/) dz < 400 and so Aq(f) > —oo, for all f € C(R2). Reasoning as in the proof of
Theorem 4 (more precisely, the proof of (34), taking o = r,), one sees that if (f,),>1 is a sequence
of elements of C(£2) converging to f € C(2) (uniformly on any compact of §2), then

lim sup J e—celn) dp < Jefcﬂ(f) dz,

n—0o0

which gives the announced lower semicontinuity of Agq. O

We recall the following general version of the Fenchel-Moreau duality theorem (see for instance [60,
Theorem 2.3.3]).

Theorem 10 (General Fenchel-Moreau theorem). Let E be a Hausdorff locally convex topological
vector space and E' its topological dual space. For any lower semicontinuous convex function F': E —
] — o0, 00], it holds
F(z) = sup{l(z) — F*(0)}, re R,
leE’
where the Fenchel-Legendre transform F* of F is defined by

F*(0) = sup{{(x) — F(x)}, (e FE.
zeE
We are now ready to give the alternative proof of Theorem 3.

Alternative proof of Theorem 3. Let f € F(R™) be such that Se_f* dr > 0 and denote by €2 the
interior of dom(f) (possibly empty).

If 0 does not belong to €2, then according to Lemma 4, Se_f* dxr = 4. Applying Proposition 6
gives the announced equality.

Now let us assume that 0 € €. Since f is convex, f is continuous on 2 and so f|q € C(£2). Moreover,
since f is lower semicontinuous, it holds co(fjo) = f* (the values of f on the boundary of dom(f) are
fully determined by the values of f on ). So applying, Theorem 10 to Ag (and E = C(Q2)) yields to

~log [ /" da - sup{ffdu—Azs(u)},
m

where the supremum runs over the set of all finite signed measures p with a compact support in €2,
and

A&(p) = sup {dequlogJe_C“(“’)dx}.
)

0eC(Q

We claim that A§ () = +o0 if p is not of the form y = —v with v a probability measure. Indeed,
let 4 = p™ —p~ be the Hahn decomposition of p as a difference of finite positive measures, and assume
that g™ (Q) > 0. Then there is at least one compactly supported function %, : © — R, such that
§ 9o dp™ > 0. By construction of p*, it holds { ¢, du™ = sup{{pdu : 0 < ¢ < 9}, so we conclude
that there exists at least one compactly supported function ¢, : 2 — R, such that Sgpo dp > 0. For
all t > 0, choosing ¢(x) = ty,(z) + |z|, x € Q, as test function yields to

Aj() > [ tioola) + lal ) + log [ oot o

= Jt%’o(f) + |z| p(dx) + logJe*Cn(l D dz,

where the second inequality comes from the monotonicity property of cq : h < g
(

= cq(h) = ca(g).
It is easily checked that Se*m(‘ ‘Ddz # 0 and so, letting t — o0, gives that A () =

C
Iz +00. Finally,
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replacing ¢ by ¢ +u, u € R, in the definition of A& (1), and using that co(p + u) = ca(p) — u, one
gets

AS(p) = sup sup {deu + logfe_m(“’) dzr + u(p(Q) + 1)} ,
@eC () ueR

which shows that Af(u) = +oo if p(Q2) # —1.

Finally, let us fix some probability measure v having a compact support in  and let us show that
A (—v) = K(v|Leb). Suppose that ¢ € Frip(R™), then co(p) < ¢* and so

G(=v) = sup {dequlogJe“"* dx} = K (v|Leb).
P€FLip(R™)

Let us show the converse inequality. Let g € C(Q2) and let K denote the convex hull of the support of
v. Consider the function h = g + 1x. Since k < €2, it holds

h¥*(y) = cx(9)(y) := gscglg{w y—g(@)} <calg)ly), VyeR™

Consider the function ¢ : R® — R u {+o0} defined by ¢ = h**. The function ¢ belongs to the class
F(R™) and is such that ¢ < h (it is actually the convex envelop of h, that is to say the greatest convex
function below h). In particular ¢ € L' (v) and it holds

f —gdv+log f e=29) 4y < J —hdv+log J e k9 dy < f —pdv+log f e ok (9) gy = J —pdv+log J e v" dz,

where the last equality comes from the fact that ¢* = h*** = h* = ci(g). We conclude from this
that A& (—v) < K(v|Leb), which completes the proof. O
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