
HAL Id: hal-02895548
https://hal.science/hal-02895548v1

Submitted on 9 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-Dependent Automatic Parameter Configuration of
a Local Search Algorithm

Weerapan Sae-Dan, Marie-Eléonore Kessaci, Nadarajen Veerapen, Laetitia
Jourdan

To cite this version:
Weerapan Sae-Dan, Marie-Eléonore Kessaci, Nadarajen Veerapen, Laetitia Jourdan. Time-Dependent
Automatic Parameter Configuration of a Local Search Algorithm. GECCO ’20 Companion: Com-
panion Conference on Genetic and Evolutionary Computation, ACM, Jul 2020, Cancún, Mexico.
�10.1145/3377929.3398107�. �hal-02895548�

https://hal.science/hal-02895548v1
https://hal.archives-ouvertes.fr

Time-Dependent Automatic Parameter Configuration
of a Local Search Algorithm

Weerapan Sae-Dan
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL

F-59000 Lille, France
weerapan.saedan@univ-lille.fr

Marie-Eléonore Kessaci
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL

F-59000 Lille, France
mkessaci@univ-lille.fr

Nadarajen Veerapen
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL

F-59000 Lille, France
nadarajen.veerapen@univ-lille.fr

Laetitia Jourdan
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL

F-59000 Lille, France
laetitia.jourdan@univ-lille.fr

ABSTRACT
In combinatorial optimization, where problems are often NP-hard,
metaheuristics and other approximation algorithms frequently have
many parameters in order to adapt to a wide range of scenarios.
Very often, obtaining good values for these parameters is a long
and tedious manual task but automatic algorithm configuration has
been shown to overcome this issue. At the same time, it may also
be useful for parameter values to change during the search in order
to fine-tune the search process. These parameters include low-level
heuristic components. In this article, we propose to use automatic
parameter configuration coupled with a control mechanism that
switches between parameter configurations at specific times during
the search, as an in-between classic parameter tuning and selection
hyperheuristics. We test this idea on a local search algorithm, whose
parameters allow for selecting different design components, and
three combinatorial problems: the Permutation Flowshop Problem,
the Traveling Salesman Problem, and the Quadratic Assignment
Problem. In comparisons with traditional static automatic parame-
ter configuration, the proposed approach time-dependent is shown
to perform better. Additionally, better-performing local search com-
ponent configurations are identified and discussed.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
Randomized local search;

KEYWORDS
Combinatorial Optimization; Local Search; Automatic Algorithm
Configuration

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7127-8/20/07. . . $15.00
https://doi.org/10.1145/3377929.3398107

ACM Reference Format:
Weerapan Sae-Dan, Marie-Eléonore Kessaci, Nadarajen Veerapen, and Laeti-
tia Jourdan. 2020. Time-Dependent Automatic Parameter Configuration
of a Local Search Algorithm. In Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’20 Companion), July 8–12, 2020, Cancún, Mexico.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3377929.3398107

1 INTRODUCTION
Difficult optimisation problems are often solved by metaheuristics
and hyperheuristics. These frequently have many parameters that
alter their behavior. There exists a set of parameter values that cor-
responds to the best configuration for each instance of a problem.
The problem of finding parameter values to achieve the best perfor-
mance can be approached through parameter tuning and parameter
control [5]. Parameter tuning of an algorithm involves optimizing
the parameter values before running the algorithm, while parameter
control, or dynamic configuration, is about adjusting the parameter
values during execution. This paper focuses on parameter tuning,
where we use a configurator that tests several instances and config-
urations, measures the performance of the algorithm across these
instances and configurations and then chooses the best configu-
ration. A number of configurators have been proposed, including
irace [12] which uses statistical racing, ParamILS [9, 10] which is
based on iterative search, and SPOT [1] which sequentially builds
one or several meta-models and allows for interactive tuning. In
this paper, we have chosen to use irace for automatic configuration.

Parameter control, or dynamic configuration, is aimed at adjust-
ing running algorithm parameter values during execution. When
design components, or low-level building blocks, of the algorithm
are included as parameters, dynamic configuration is akin to a se-
lection hyperheuristic. In time-dependent control, the parameter
values can be changed using certain deterministic rules, such as
using some rules when a set number of generations has elapsed.
An alternative example is to set parameter values to use at evenly
spaced intervals of evaluations [6]. Here, we explore the benefits
of integrating some amount of time-dependent control within pa-
rameter tuning by proposing a tuning framework that switches
between different configurations at deterministically chosen times
during execution. In order to test this idea in a reasonably simple,
yet challenging context, we consider an Iterated Local Search (ILS)
with a basic hill-climber where the different algorithmic compo-
nents (such as initial solution generation, local search, perturbation

https://doi.org/10.1145/3377929.3398107
https://doi.org/10.1145/3377929.3398107

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico W. Sae-Dan, M.-E. Kessaci, N. Veerapen, and L. Jourdan

neighborhoods and acceptance criterion) are considered and can
be configured as required.

We evaluate the idea on three combinatorial problems: the Per-
mutation Flowshop Scheduling Problem (PFSP), the Traveling Sales-
man Problem (TSP), and the Quadratic Assignment Problem (QAP).

The rest of the paper is structured as follows. First, in Section 2,
we present parameter tuning and parameter control, and introduce
our time-dependent automatic algorithm configuration framework.
Then, in Section 3, we present the local search algorithm and the
different design components. Sections 4, 5, and 6 present the results
of our experiments on the PFSP, TSP and QAP, respectively. Finally,
Section 8 presents our conclusions and aspects of forthcoming
work.

2 AUTOMATIC DESIGN OF A
TIME-DEPENDENT ALGORITHM

In the taxonomy for parameter setting proposed by Eiben et al. [5],
there are two categories: parameter tuning and parameter control.

Parameter tuning can be considered as an optimisation problem.
The objective is to identify the best configuration out of a set of pos-
sible configurations that are assessed on a set of training instances.
Parameter tuning, as known as automatic algorithm configuration,
is an offline process, with the best configuration then being used to
run the algorithm on new instances of interest.

Parameter control is aimed at adjusting parameter values during
execution instead of only using the initial values that will otherwise
remain fixed throughout the algorithm’s execution. It was observed
that there is no reason why the entire behavior of an optimization
method should be and remain ideal for a certain parameter configu-
ration for the entire duration of a run. Eiben et al. [5] describe three
categories of algorithms: (1) deterministic, where the parameter
value changes using certain deterministic laws; (2) adaptive, where
the parameter value is modified by some form of optimization feed-
back; and (3) self-adaptive, where the parameter value is encoded
in a new genotype and evolves during the optimization process.
Although, it was initially applied only to evolutionary algorithms,
now it is used in a broader sense.

Over the 20 years following Eiben et al.’s classification in 1999 [5],
new ideas and methodologies have been proposed across the three
categories of parameter control that had been identified. Doerr
and Doerr [2] have observed that adaptation strategies can be split
into subcategories: (1) time-dependent, (2) fitness-dependent, (3)
rank-dependent, and (4) diversity-dependent.

2.1 A Time-Dependent Algorithm
Configuration Framework

Our contribution proposes an improved method to parameterize
an algorithm with time-dependent parameter configurations. It
runs some algorithm (𝐴) with some initial configuration (𝜃), the
latter being allotted a specific time budget. Following this, the algo-
rithm is switched to a new configuration, carrying on its execution
from its current state but without the algorithm being restarted
whenever the configuration is changed. A number of further con-
figuration changes may occur. This behavior was described as a
dynamic framework by Pageau et al. [14] even though the configu-
rations were precomputed. Here, we choose to simply define it as

time-dependent – instead of dynamic – given that the configuration
changes are determined offline via parameter tuning. Figure 1 illus-
trates two instantiations of the time-dependent framework 𝐹 and 𝐹

′

where 𝐹 uses three different configurations and 𝐹
′
uses four differ-

ent configurations, and where both instantiations of the framework
used a priori fixed time periods. One of the contributions of this
paper is to allow for time periods of varying lengths.

Figure 1: Examples of time-dependent parameter configura-
tion [14].

2.2 Automatic Configuration with our
Framework

To date, the majority of the automatic configurators in the literature
(irace [12], SMAC [8], ParamILS [9]) focuses on optimizing the
performance of an algorithm against a single criterion. We use
irace, an iterated racing method. irace is an automatic configurator
based on racing approaches and statistical tests. In practice, irace
starts by evaluating a certain number of possible configurations of
the algorithm on some training instances. Then, a statistical test
is performed to discard the worst configurations and additional
configurations are evaluated. These last configurations are chosen
to be close to the best configurations already found. This process is
iterated until a time budget is reached where the best performing
configurations (for the training set of instances) are returned.

In this paper, the framework we propose uses automatic al-
gorithm configuration instead of the parameter control mecha-
nisms to switch between different parameter settings across dif-
ferent time periods. We denote the total time budget by 𝑇 and the
number of time splits by 𝐾 . The duration of each time split (𝑇𝑘)
is chosen as a percentage (𝑡𝑘) of the remaining time budget, in
the list {10, 25, 50, 75, 90}. Each time split is calculated as follows:
𝑇1 = (𝑇×𝑡1)/100;𝑇2 = ((𝑇−𝑇1)×𝑡2)/100; more generally, for𝑘 < 𝐾 ,
𝑇𝑘 = ((𝑇 −∑𝑘−1𝑖=1 𝑇𝑖)×𝑡𝑘)/100. The final time split,𝑇𝐾 = 𝑇 −∑𝐾−1𝑖=1 𝑇𝑖 ,
uses up the remaining time budget. For 𝐾 time splits, we therefore
have {𝑇1,𝑇2, . . . ,𝑇𝐾 } associated time budgets. We experiment with
three scenarios where K equals 1, 2, or 3, corresponding to the
different time splits {𝑇 }, {𝑇1,𝑇2} and {𝑇1,𝑇2,𝑇3} respectively.

3 LOCAL SEARCH
3.1 Local Search (LS)
Hill-climbing methods are well-known and fast. Given a solution
space Ω and considering a minimization problem, without loss
of generality, hill-climbing consists in (i) starting with an initial
solution 𝑠 from Ω and (ii) choosing a neighbor solution 𝑠 ′ of 𝑠 such
that 𝑓 (𝑠 ′) < 𝑓 (𝑠), then replacing 𝑠 by 𝑠 ′ and repeating (ii) until

Time-Dependent Automatic Parameter Configuration of a LS Algorithm GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

there are no improving neighbors. 𝑠 is then a local optimum. There
are several procedures for choosing a better neighbor, two of which
are widely used. First improvement involves choosing the first
neighbor encountered that has better quality (partial exploration
of the neighborhood). Best improvement chooses the neighbor that
most improves the objective function [13]. Tari et al. [16] studied
a different strategy, the worst improving neighbor, which selects
from all improving neighbors the one that improves the least the
objective function. For each of the strategies, the stopping criterion
is reached when a local optimum is met.

The major disadvantage of hill-climbing is that the search stops
as soon as a local optimum is reached. To avoid this, there are differ-
ent strategies to continue exploring the search space, for instance
iterated local research.

3.2 Iterated Local Search (ILS)
Hill-climbing algorithms are quick and easy to implement but gen-
erally do not lead to the best optima because they stop as soon as a
local optimum is found. To avoid getting stuck on this local opti-
mum, the ILS framework has been proposed [11] where different
perturbation strategies allow for further exploring the search space.
As these strategies allow the search to continue after having found
an optimum, it is then necessary to define a stopping criterion. The
common stopping criteria include the execution time, the number
of iterations, the total number of evaluations.

In an Iterated Local Search, the following steps are performed
from the optimum found: (i) apply a perturbation to the current
solution, (ii) apply a local search such as a hill-climbing algorithm
to this solution, (iii) choose via an acceptance criterion if the new
optimum becomes the current solution and loop back to (i) until
the stopping criterion is reached. The perturbation may consist in
restarting from a solution randomly taken from the research space,
or choosing a solution in a region of the search space far from the
optimum, or still choosing a neighbor of equivalent fitness to the
optimum.

3.3 The Iterated Local Search Components
In this paper, four of the components of our ILS algorithm can be
parameterized, and are highlighted in bold font:

(1) Initialization: to generate the starting solution.
(2) Local Search: we apply a hill-climbing algorithm as Local

Search which uses the three following components.
(a) Neighborhood Order: the neighborhood is either ex-

plored randomly or in order.
(b) NeighborhoodOperator: we are considering four neigh-

borhood operators. The shift operator consists in chang-
ing the position of an element by shifting it into another
position in the solution. The swap operator consists in
exchanging the positions of two elements of the solution.
The k-opt operator (2-opt and 3-opt) consists in breaking
and reconnecting 𝑘 edges in a Hamiltonian cycle.

(c) Exploration Strategy: the neighborhood of each chosen
solution is searched and an archive of nominee solutions
is generated with some of the neighbors visited. The pro-
cedure for choosing an improving neighbor can be either
first improvement, best improvement or worst improvement.

(3) Perturbation: a perturbation can consist in restarting a so-
lution randomly in the search space or applying a less drastic
perturbation to the optimum. The perturbation strategies
used here are a complete restart or partially modifying the
solution, i.e., a kick.

(4) Acceptance Criterion: only accepts strictly improving solu-
tions.

Some of the component choices are problem specific. In this pa-
per we consider the Permutation Flowshop Problem Problem (PFSP,
Section 4), the Traveling Salesman Problem (TSP, Section 5) and the
Quadratic Assignment Problem (QAP, Section 6). The respective
component choices are summarized in Table 1. They represent 24
(2x2x3x2), 48 (4x2x3x2) and 24 potential different configurations
of the ILS, respectively. These numbers being fairly low, this al-
lows us to exhaustively test all configurations and identify the best,
thus providing a baseline against which to compare the proposed
time-dependent approach.

Table 1: Search Components

Parameter Value

Neighborhood for PFSP / QAP {swap, shift}
Neighborhood for TSP {swap, shift, 2-opt, 3-opt}
Neighborhood Order {order, random}
Exploration Strategy {firstimp, bestimp, worstimp}

Perturbation {restart, kick}

4 PERMUTATION FLOWSHOP PROBLEM
The Permutation Flowshop Problem (PFSP) consists in scheduling a
set of 𝑁 jobs on a set of𝑀 machines. Machines are so-called critical
resources because at most one task can be executed at the same
time on a machine. Job 𝐽𝑖 is composed of 𝑀 consecutive tasks to
be performed in order on the𝑀 machines. Each task has a specific
execution time on each machine. We are trying to minimize the
makespan of the latest scheduled task.

We use the Taillard instances [15]. We use different problem
sizes of 𝑁 jobs,𝑀 machines: 50 × 20, 100 × 10, 100 × 20, 200 × 10,
and 200 × 20. For each size, 10 instances are used.

For the PFSP, we consider four experimental conditions that
correspond to apply automatic algorithm configuration to different
combinations of instance sizes in order to observe whether and/or
how the set of training instances has an impact on the chosen
parameter settings. The experimental conditions are summarized
in Table 2.

Table 2: Design of experiments for PFSP instances

Scenario Instances (𝑁 ×𝑀)

𝑆𝑎𝑙𝑙 all instances
𝑆𝑁=100 {100 × 10, 100 × 20}
𝑆𝑁=200 {200 × 10, 200 × 20}
𝑆𝑀=20 {50 × 20, 100 × 20, 200 × 20}

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico W. Sae-Dan, M.-E. Kessaci, N. Veerapen, and L. Jourdan

For the PFSP, we have 24 potential configurations (Table 1)
of our algorithm per time split. For a single time split (𝐾 = 1),
we therefore have the same 24 configurations and are not using
the time-dependent nature of the framework. This is our baseline,
which we call the exhaustive no control environment (or 𝑒𝑥). For
𝐾 = 2, or 2 time splits, then the fraction of the first time split will
be chosen among the 5 different possibilities already presented
(|𝑠 | = |{10,25,50,75,90}| = 5) and the second and final time split will
take the remaining time budget. This amounts to approximately
2.9 × 103 different configurations (24 + 5 × 242). When 𝐾 = 3, or 3
time splits, then we have a total of approximately 3.5×105 different
configurations (24 + 5 × 242 + 52 × 243). For 𝐾 = 2 and 𝐾 = 3, the
values of the parameters are modified during execution, and we
call this the with control (or 𝑐) environment.

We set the stopping criterion of the algorithm to 0.1 × 𝑁 2 ×𝑀
milliseconds.

5 TRAVELING SALESMAN PROBLEM
The Traveling Salesman Problem (TSP) involves finding the short-
est Hamiltonian path between 𝑛 cities. We use the portgen and
portcgen generators of the 8th DIMACS Implementation Challenge
to create two types of random instances respectively: random uni-
form Euclidean, 𝑆𝑢 , and random 10-cluster Euclidean instances, 𝑆𝑐 .

We use different values of 𝑛: 100, 200, and 400 cities. For each
size, 10 instances are generated. They are solved to optimality with
the Concorde TSP solver1 in order to obtain the objective function
value of the global optimum.

Since we consider the 𝑘-opt neighborhood operator, which is
specific to the TSP, we have a different number of possible configu-
rations for our ILS than for the PFSP or the QAP. In fact, we have
48 configurations, per time split, that can be generated from the
combination of components given in Table 1.

For a single time split (𝐾 = 1), we have 48 configurations ex-
haustively run and this will be our baseline (or 𝑒𝑥). For 𝐾 = 2 and
𝐾 = 3, our with control (or 𝑐) environments, we have approximately
11.6 × 103 and 27.8 × 105 different configurations, respectively.

We set the stopping criterion of the algorithm to 𝑛2 milliseconds.

6 QUADRATIC ASSIGNMENT PROBLEM
The Quadratic Assignment Problem (QAP) involves assigning 𝑛
facilities to 𝑛 locations according to both the distance between
locations and the flow between facilities.

We use instances constructed using the generator proposed by
Drugan [4]. The instances are constructed in such a way that the
value of the objective function for the global optimum is known.
We use different instance sizes 𝑛: 20, 25 and 30. For each size, 10
instances are generated. All instances are used in the experiments 𝑆 .

The operators for the QAP being the same as those for the PFSP,
we also have 24 configurations per time split and the calculations
when different number of time splits considered are identical.

We set the stopping criterion of the algorithm to 10×𝑛2 millisec-
onds.

1http://www.math.uwaterloo.ca/tsp/concorde.html

7 EXPERIMENTS
In this paper, we use irace (Section 2.2) to implement the automatic
algorithm configuration and to find the configuration of our ILS
(Section 3.3) and its components (neighborhood operator, neighbor-
hood order, exploration strategy, and perturbation) best adapted to
the instances of the problem at hand. The training instances and
the validation instances are independent. Only the results on the
validation instances are shown in the experimental results. Table 3
presents, for each problem or scenario, the total number of config-
urations tested and the distribution following the number of time
splits. This table will help with the analysis of the results for each
problem.

Table 3: Data provided by irace runs

Problem Scenario
Number of Configurations Tested

Total Number of Time Splits

𝐾 = 1 𝐾 = 2 𝐾 = 3

𝑃𝐹𝑆𝑃

𝑆𝑎𝑙𝑙
𝑆𝑁=100
𝑆𝑁=200
𝑆𝑀=20

646
676
531
654

24
12
12
12

139
159
167
151

483
505
352
491

𝑇𝑆𝑃
𝑆𝑢
𝑆𝑐

549
717

24
24

247
191

278
502

𝑄𝐴𝑃 𝑆 528 12 146 370

Naturally, the simplicity of the ILS and its design components
studied in this paper cannot match the performance of the state-of-
the-art approaches for each of the three problems considered, and
a comparison is beyond the scope of this paper. Nevertheless, the
same simplicity allows us to observe which components have some
effect on the algorithm and to assess the merits of our proposed
time-dependent approach.

ILS is a stochastic method. Therefore, all parameter configu-
rations of the algorithm are executed 30 times per instance, and
Friedman and Wilcoxon statistical tests are performed to compare
configurations.

For the three problems, we will first analyze the results of the
exhaustive runs and then the ones obtained by irace according to
the different scenarios. In each case, irace returns up to three best
statistically significant configurations it found within an allotted
budget of 5000 algorithm runs.

7.1 Experimental Results for the PFSP
Let us first consider the PFSP. Table 5 gives the description of the
best static ILS configurations for each problem size tackled. Only
two configurations are statistically better than the other ones and
they share three parameters out of four, namely the neighborhood
operator (shift), the neighborhood order (random) and the explo-
ration strategy (firstimp). For 50 × 20, 100 × 10 and 200 × 10
instances, the two possible perturbation parameters give equiva-
lent performance, whereas for the remaining two other types of
instances, the kick perturbation gives better results. Obviously,

Time-Dependent Automatic Parameter Configuration of a LS Algorithm GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

Table 4: Best time-dependent configurations returned by irace for the PFSP instances

Inst. Conf. Parameter Values Time Split

𝑇1 𝑇2 𝑇3 𝑡1 𝑡2

𝑆𝑎𝑙𝑙

𝑐𝜃1
𝑐𝜃2
𝑐𝜃3

{shift, random, firstimp, restart}
{shift, random, firstimp, restart}
{swap, random, firstimp, restart}

{shift, order, firstimp, restart}
{shift, order, firstimp, kick}

{swap, random, worstimp, kick}

{shift, random, firstimp, kick}
{shift, random, firstimp, kick}
{shift, random, firstimp, kick}

50%
50%
50%

10%
10%
90%

𝑆𝑁=100
𝑐𝜃1
𝑐𝜃2
𝑐𝜃3

{swap, random, firstimp, kick}
{swap, random, firstimp, kick}
{swap, random, firstimp, restart}

{swap, random, firstimp, kick}
{shift, random, firstimp, kick}
{swap, random, firstimp, kick}

{shift, random, firstimp, kick}
{shift, random, firstimp, kick}
{shift, random, firstimp, kick}

10%
10%
10%

75%
75%
50%

𝑆𝑁=200
𝑐𝜃1
𝑐𝜃2
𝑐𝜃3

{swap, random, firstimp, kick}
{shift, random, firstimp, kick}

{swap, random, firstimp, restart}

{shift, order, firstimp, kick}
{swap, order, firstimp, kick}
{swap, order, firstimp, kick}

{shift, random, firstimp, kick}
{shift, random, firstimp, kick}
{shift, random, firstimp, kick}

25%
90%
25%

10%
75%
25%

𝑆𝑀=20
𝑐𝜃1
𝑐𝜃2
𝑐𝜃3

{swap, random, firstimp, restart}
{swap, random, firstimp, kick}
{swap, random, firstimp, restart}

{shift, random, bestimp, restart}
{swap, random, firstimp, kick}
{shift, random, bestimp, restart}

{shift, random, firstimp, kick}
{shift, random, firstimp, kick}
{shift, random, firstimp, kick}

10%
25%
25%

25%
10%
50%

Occurrences of the best static configuration 𝑒𝑥𝜃 are highlighted in blue.

Table 5: Best configurations for PFSP for the static algorithm

Instances Best Configurations

50 × 20 {shift, random, firstimp, kick}
{shift, random, firstimp, restart}

100 × 10 {shift, random, firstimp, kick}
{shift, random, firstimp, restart}

100 × 20 {shift, random, firstimp, kick}

200 × 10 {shift, random, firstimp, kick}
{shift, random, firstimp, restart}

200 × 20 {shift, random, firstimp, kick}

All scenarios {shift, random, firstimp, kick}

when we consider the best configuration across all 4 scenarios (de-
fined in Table 2), only the configuration with the kick perturbation
remains. Therefore, in the following, this static configuration is
called 𝑒𝑥𝜃 .

Table 4 gives, for each scenario, the three configurations returned
by irace (𝑐𝜃1, 𝑐𝜃2 and 𝑐𝜃3), including the actual parameters chosen
for each time split and the percentage length (with respect to the
remaining time budget) of the first 2 time splits (the last one using up
the remaining time). These time-dependent configurations all have
three splits, meaning that three different ILS should be performed
successively during one run. The 𝑒𝑥𝜃 configuration is used by all
the time-dependent configurations in the third phase. Surprisingly,
the parameters of the first and the second phases are more varied,
with the swap neighborhood operator, considered quite inefficient
by PFSP specialists, being used here. Interestingly, the worstimp
selection operator was found to be useful in one of the time periods
(for 𝑆𝑎𝑙𝑙 , in 𝑇2 of 𝑐𝜃3). This is in keeping with the literature [16]
that shows that this unlikely operator can be useful in specific

situations. Moreover, the values reported in Table 3 show that irace
tested all (24) or half (12) of static configurations (column 𝐾 = 1)
and eliminated them. In addition, it seems that 3 time splits gives
better results since more configurations have been tested.

Table 6 gives, for each scenario, the result of the statistical test be-
tween the static configuration (𝑒𝑥𝜃) and the three time-dependent
configurations returned by irace (𝑐𝜃1, 𝑐𝜃2 and 𝑐𝜃3) on the validation
instances. A plus (+) sign indicates a configuration significantly
better than, or equivalent to, the other configurations under the
considered scenario, while a minus sign (-) indicates a significantly
worse configuration. For all scenarios, the three time-dependent
configurations outperform the static configuration. These exper-
iments show that it is important to consider different sets of pa-
rameters during a single run. Moreover, no parameters should be
discarded: parameters that are considered inefficient when they are
used for the whole run could be efficient during a phase of a time
dependent ILS. This is indeed one of the key insights also observed
with selection hyperheuristics [3].

Table 6: Statistical comparison of configurations for each
scenario of PFSP

Scenario 𝑒𝑥𝜃 𝑐𝜃1 𝑐𝜃2 𝑐𝜃3

𝑆𝑎𝑙𝑙 − + + +
𝑆𝑁=100 − + + +
𝑆𝑁=200 − + + +
𝑆𝑀=20 − + + +

For this problem, we designed different experiment scenarios in
order to see whether it is better to train irace on either all instances
or instances sharing the same number of jobs or machines. Table 7
summarizes, for each size of PFSP, the results of the statistical tests

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico W. Sae-Dan, M.-E. Kessaci, N. Veerapen, and L. Jourdan

between the static configuration and the time-dependent config-
urations for the different scenario tested. Here, the equal sign (=)
denotes the statistical tests that cannot discriminate between the
configurations. It seems, based on these experiments, that the train-
ing instances can share either the same number of jobs or the same
number number of machines (see results for 100 × 20 and 200 × 20).
Regarding the results for 100 × 10 instances, irace gives better con-
figurations when the training used similar instances (sharing the
same number of jobs) than all the available instances. Indeed, based
on these experiments, we would suggest to use instances with same
number of jobs or machines to train irace rather than using all
available instances.

Table 7: Statistical comparison of configuration perfor-
mance for each size of PFSP

Instances 𝑒𝑥𝜃
𝑆𝑎𝑙𝑙 𝑆𝑁=100 𝑆𝑁=200 𝑆𝑀=20

𝑐𝜃1,2,3 𝑐𝜃1,2,3 𝑐𝜃1,2,3 𝑐𝜃1,2,3

50 × 20 − + + − + + +
100 × 10 − − + − + + +
100 × 20 − + + + + + + + + +
200 × 10 = = = = = = =

200 × 20 − − + + + + + + + +

7.2 Experimental Results for the TSP
For the TSP, two scenarios are considered: the first one with random
uniform Euclidean instances (𝑆𝑢) and the second one with random
10-cluster Euclidean instances (𝑆𝑐) as detailed in Section 5.

Table 8 gives the description of the best static ILS configurations
for the two scenarios. For the 𝑆𝑢 scenario with random uniform Eu-
clidean instances, three configurations are statistically better over
the 48 tested. These three static configurations (𝑒𝑥𝜃1, 𝑒𝑥𝜃2 and 𝑒𝑥𝜃3)
share two parameters namely the neighborhood operator (2-opt)
and the exploration strategy (bestimp). Regarding the two other
parameters, the neighborhood order (random) is associated with the
two available perturbations (restart and kick) while the neigh-
borhood order (order) is more efficient with the kick perturbation.
For the 𝑆𝑐 scenario with random 10-Cluster Euclidean instances,
one single static configuration (𝑒𝑥𝜃) is statistically better than the
others. Contrary to 𝑆𝑢 , the 3-opt operator is preferred together
with the random neighborhood order, the firstimp exploration
strategy and the restart perturbation.

Table 9 gives, for each scenario (𝑆𝑢 and 𝑆𝑐), the time-dependent
configurations returned by irace. For the 𝑆𝑢 scenario, only two
time-dependent configurations was returned and each one has only
two time splits. Table 3 show that irace tested half (24) of static
configurations (column 𝐾 = 1) and eliminated them, and almost
the same number of configurations with 2 or 3 splits. This is in
contrast to the rest of the scenarios across the 3 problems, where the
3 splits configurations are explored to a greater extent. It seems that,
here, only two splits are preferable for this scenario. The difference
between these two configurations is the time allocated to 𝑡1: 90% for
𝑐𝜃1 and 50% for 𝑐𝜃2. We also observe that, during the first phase𝑇1,

Table 8: Best configurations for TSP for the static algorithm

Instances Best Configurations

Random Uniform Euclidean Instances

𝑆𝑢

{2-opt, order, bestimp, restart}
{2-opt, random, bestimp, kick}
{2-opt, random, bestimp, restart}

Random 10-Cluster Euclidean Instances
𝑆𝑐 {3-opt, random, firstimp, restart}

one of the best exhaustive configurations is used ({2-opt, random,
bestimp, restart}, or 𝑒𝑥𝜃3) while, during the second phase𝑇2, the
set of parameters {shift, random, firstimp, kick} is used. This
set is quite surprising since the shift operator is not known to
be an efficient neighborhood operator for TSP. Our hypothesis is
that, given the fairly limited allocated time budget, less efficient but
faster operators are selected by the configurator. This would also
explain why the 3-opt operator is not used more frequently.

For the 𝑆𝑐 scenario, three time-dependent configurations have
been returned by irace. All have three splits. Table 3 show that
irace also tested half (24) of static configurations and configura-
tions with 3 splits were performing better on training instances.
Analyzing the time-dependent configurations, we notice that the
only difference between 𝑐𝜃2 and 𝑐𝜃3 is the perturbation parameter
(restart for 𝑐𝜃2 and kick for 𝑐𝜃3) of the first phase𝑇1. Here, none
of the time-dependent configurations include the set of parameters
corresponding to the best static configuration 𝑒𝑥𝜃 . We observe that
the successive neighborhood operators look like the variable neigh-
borhoods that might be used in Variable Neighborhod Search [7]
where the neighborhood operators change in size and nature to
allow for an escape from local optima.

Tables 10 and 11 give, for each scenario (𝑆𝑢 and 𝑆𝑐), the result of
the statistical test between the static configuration(s) and the time-
dependent configurations. For both scenarios 𝑆𝑢 and 𝑆𝑐 , the time-
dependent configurations outperform the static ones. Interestingly
for 𝑆𝑢 , although the two time-dependent configurations start with
the set of parameters of one of the static configurations (𝑒𝑥𝜃3), both
of them manage to outperform the static configuration, meaning
that the second set of configurations (during 𝑇2, using the shift
operator) enables the time-dependent ILS to reach better solutions.

7.3 Experiments Results of QAP
For the QAP, we consider only one scenario (𝑆) where the instances
are differentiated by their number of facilities as detailed in Sec-
tion 6.

Table 12 gives the description of the best static ILS configuration
(called 𝑒𝑥𝜃) where the swap operator is preferred to the shift
operator (a fact well-known byQAP specialists). As for the PFSP, the
firstimp exploration strategy and the random neighborhood order
give the best performance. However, here, the restart perturbation
is selected instead of the kick.

Table 13 gives the three time-dependent configurations returned
by irace (𝑐𝜃1, 𝑐𝜃2 and 𝑐𝜃3). These configurations all have three splits
and all of them start by the set of parameters used by 𝑒𝑥𝜃 . This set

Time-Dependent Automatic Parameter Configuration of a LS Algorithm GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

Table 9: Best time-dependent configurations returned by irace for the TSP instances

Inst. Conf. Parameter Values Time Split

𝑇1 𝑇2 𝑇3 𝑡1 𝑡2

Random Uniform Euclidean Instances

𝑆𝑢
𝑐𝜃1
𝑐𝜃2

{2-opt, random, bestimp, restart}
{2-opt, random, bestimp, restart}

{shift, random, firstimp, kick}
{shift, random, firstimp, kick}

-
-

90%
50%

-
-

Random 10-cluster Euclidean Instances

𝑆𝑐

𝑐𝜃1
𝑐𝜃2
𝑐𝜃3

{2-opt, random, bestimp, restart}
{2-opt, random, bestimp, restart}
{2-opt, random, bestimp, kick}

{shift, order, firstimp, restart}
{3-opt, random, firstimp, kick}
{3-opt, random, firstimp, kick}

{3-opt, order, firstimp, kick}
{shift, random, bestimp, kick}
{shift, random, bestimp, kick}

75%
25%
25%

25%
25%
25%

Occurrences of the best static configuration 𝑒𝑥𝜃3 are highlighted in blue. It is the only one that is reused within the time-dependent configurations.

Table 10: Statistical comparison of configuration perfor-
mance for the random uniform Euclidean TSP scenario

Scenario 𝑒𝑥𝜃1 𝑒𝑥𝜃2 𝑒𝑥𝜃3 𝑐𝜃1 𝑐𝜃2

𝑆𝑢 − − − + +

Table 11: Statistical comparison of configuration perfor-
mance for the random 10-cluster TSP scenario

Scenario 𝑒𝑥𝜃 𝑐𝜃1 𝑐𝜃2 𝑐𝜃3

𝑆𝑐 − + + +

Table 12: Best configuration for QAP for the static algorithm

Instances Best Configuration

𝑆 {swap, random, firstimp, restart}

is run for either 75% or 95% (90% of the time budget + 50% of the
remaining budget) of the whole runtime. Surprisingly, the shift
neighborhood operator is considered by two out of three returned
configurations. Moreover, the values reported in Table 3 show that
irace tested half (12) of static configurations (column 𝐾 = 1) and
eliminated them in favor of an ILS with three time splits.

Table 14 reports the result of the statistical test between the
static configuration (𝑒𝑥𝜃) and the three configurations returned
by irace (𝑐𝜃1, 𝑐𝜃2 and 𝑐𝜃3) on the validation instances. As for FSP
and TSP, the time-dependent configurations are statistically better
than the static configuration. The results show also that even if the
static configuration is used at the beginning of run, other sets of
parameters have to be run in order to get better performance.

8 CONCLUSION AND FUTUREWORK
Parameter setting maybe be split into parameter tuning – offline
– and parameter control – online. In traditional parameter tuning,
the parameter configuration is set before the start of an algorithm’s

execution and does not change thereafter. We investigated the intro-
duction of time-dependent parameter configuration changes during
the execution, something that is usually done via online parameter
control or hyperheuristics, using pretuned time splits. In particular,
our contribution consisted in considering various possible time
period lengths, which are themselves tunable parameters, where
previous work only considered a fixed number of time periods
with fixed lengths. Our results, across the Permutation Flowshop
Scheduling Problem, Traveling Salesman Problem and Quadratic
Assignment Problem, show that it is generally preferable to use
time-dependent control over a single configuration for the whole
execution.

In the experiments on the PFSP, we also investigated the impact
of using configurations obtained via tuning on different training
instances. We observed that, as expected, training on instances with
specific characteristics and then using the configurations on unseen
instances with similar characteristics worked well. In addition,
training across all types of instances also worked reasonably well.

Another interesting observation, across all three problems, was
that different configurations worked better across the different
time splits. We also observed that the single configuration for the
entire run found to be the best via exhaustive exploration usually,
but not always, appeared during one of the time splits, but never
throughout all of them. Some less common operators, such as the
worst-improvement neighbor selection, also performed well in very
specific phases. All of this highlights that, as always, we are faced
with the No-Free-Lunch theorem, and that parameter tuning and
control can be one of the tools that help us in trying to overcome it.

This work is an initial step. Future work will delve into com-
bining additional parameter control features, such as the detection
of stationary or non-improving phases of the search process, into
our automatic algorithm configuration framework. We are also
interested in how we can transpose the ideas expressed here into a
multi-objective context and how meta-learning approaches could
help to overcome some of the hurdles currently faced by both pa-
rameter tuning and parameter control.

ACKNOWLEDGMENTS
The first author is supported by a PhD scholarship from the Royal
Thai Government.

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico W. Sae-Dan, M.-E. Kessaci, N. Veerapen, and L. Jourdan

Table 13: Best time-dependent configurations returned by irace for the QAP instances

Inst. Conf. Parameter Values Time Split

𝑇1 𝑇2 𝑇3 𝑡1 𝑡2

𝑆
𝑐𝜃1
𝑐𝜃2
𝑐𝜃3

{swap, random, firstimp, restart}
{swap, random, firstimp, restart}
{swap, random, firstimp, restart}

{swap, random, firstimp, kick}
{swap, order, firstimp, kick}

{swap, random, firstimp, restart}

{shift, order, bestimp, kick}
{swap, random, bestimp, kick}
{shift, order, bestimp, kick}

75%
75%
90%

90%
50%
50%

Occurrences of the best static configuration 𝑒𝑥𝜃 are highlighted in blue.

Table 14: Statistical comparison of configuration perfor-
mance for the QAP

Scenario 𝑒𝑥𝜃 𝑐𝜃1 𝑐𝜃2 𝑐𝜃3

𝑆 − + + +

REFERENCES
[1] Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss. 2010. The Se-

quential Parameter Optimization Toolbox. Springer Berlin Heidelberg, Berlin,
Heidelberg, 337–362. https://doi.org/10.1007/978-3-642-02538-9_14

[2] Benjamin Doerr and Carola Doerr. 2020. Theory of Parameter Control for Discrete
Black-Box Optimization: Provable Performance Gains Through Dynamic Parameter
Choices. Springer International Publishing, Cham, 271–321. https://doi.org/10.
1007/978-3-030-29414-4_6

[3] John H. Drake, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. 2020. Recent
advances in selection hyper-heuristics. European Journal of Operational Research
285, 2 (2020), 405 – 428. https://doi.org/10.1016/j.ejor.2019.07.073

[4] Mădălina M. Drugan. 2013. Instance generator for the quadratic assignment
problem with additively decomposable cost function. In 2013 IEEE Congress on
Evolutionary Computation. 2086–2093. https://doi.org/10.1109/CEC.2013.6557815
ISSN: 1941-0026.

[5] A.E. Eiben, R. Hinterding, and Z. Michalewicz. 1999. Parameter control in evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation 3, 2 (July
1999), 124–141. https://doi.org/10.1109/4235.771166

[6] Brian W. Goldman and Daniel R. Tauritz. 2011. Meta-Evolved Empirical Evidence
of the Effectiveness of Dynamic Parameters. In Proceedings of the 13th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO ’11).
Association for Computing Machinery, New York, NY, USA, 155–156. https:
//doi.org/10.1145/2001858.2001945

[7] Pierre Hansen and Nenad Mladenović. 2018. Variable Neighborhood Search.
Springer International Publishing, Cham, 759–787. https://doi.org/10.1007/
978-3-319-07124-4_19

[8] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2012. Parallel Algorithm
Configuration. In Learning and Intelligent Optimization, Youssef Hamadi and
Marc Schoenauer (Eds.). Vol. 7219. Springer Berlin Heidelberg, Berlin, Heidelberg,
55–70. https://doi.org/10.1007/978-3-642-34413-8_5

[9] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stuetzle. 2009. ParamILS: An
Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence
Research 36 (Oct. 2009), 267–306. https://doi.org/10.1613/jair.2861

[10] Frank Hutter, Holger H. Hoos, and Thomas Stützle. 2007. Automatic Algorithm
Configuration Based on Local Search. (2007). https://www.aaai.org/Library/
AAAI/2007/aaai07-183.php

[11] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. 2010. Iterated Local
Search: Framework and Applications. In Handbook of Metaheuristics, Michel
Gendreau and Jean-Yves Potvin (Eds.). Springer US, Boston, MA, 363–397. https:
//doi.org/10.1007/978-1-4419-1665-5_12

[12] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birat-
tari, and Thomas Stützle. 2016. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives 3 (Jan. 2016), 43–58.
https://doi.org/10.1016/j.orp.2016.09.002

[13] Gabriela Ochoa, Sébastien Verel, and Marco Tomassini. 2010. First-Improvement
vs. Best-Improvement Local Optima Networks of NK Landscapes. In Parallel
Problem Solving from Nature, PPSN XI, Robert Schaefer, Carlos Cotta, Joanna
Kołodziej, and Günter Rudolph (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 104–113. https://doi.org/10.1007/978-3-642-15844-5_11

[14] Camille Pageau, Aymeric Blot, Holger H. Hoos, Marie-Eléonore Kessaci, and
Laetitia Jourdan. 2019. Configuration of a Dynamic MOLS Algorithm for Bi-
objective Flowshop Scheduling. In Evolutionary Multi-Criterion Optimization
(Lecture Notes in Computer Science), Kalyanmoy Deb, Erik Goodman, Carlos A.
Coello Coello, Kathrin Klamroth, Kaisa Miettinen, Sanaz Mostaghim, and Patrick
Reed (Eds.). Springer International Publishing, Cham, 565–577. https://doi.org/
10.1007/978-3-030-12598-1_45

[15] E. Taillard. 1993. Benchmarks for basic scheduling problems. European Jour-
nal of Operational Research 64, 2 (Jan. 1993), 278–285. https://doi.org/10.1016/
0377-2217(93)90182-M

[16] Sara Tari, Matthieu Basseur, and Adrien Goëffon. 2018. Worst Improvement Based
Iterated Local Search. In Evolutionary Computation in Combinatorial Optimization
(Lecture Notes in Computer Science), Arnaud Liefooghe and Manuel López-Ibáñez
(Eds.). Springer International Publishing, Cham, 50–66. https://doi.org/10.1007/
978-3-319-77449-7_4

https://doi.org/10.1007/978-3-642-02538-9_14
https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1016/j.ejor.2019.07.073
https://doi.org/10.1109/CEC.2013.6557815
https://doi.org/10.1109/4235.771166
https://doi.org/10.1145/2001858.2001945
https://doi.org/10.1145/2001858.2001945
https://doi.org/10.1007/978-3-319-07124-4_19
https://doi.org/10.1007/978-3-319-07124-4_19
https://doi.org/10.1007/978-3-642-34413-8_5
https://doi.org/10.1613/jair.2861
https://www.aaai.org/Library/AAAI/2007/aaai07-183.php
https://www.aaai.org/Library/AAAI/2007/aaai07-183.php
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/978-3-642-15844-5_11
https://doi.org/10.1007/978-3-030-12598-1_45
https://doi.org/10.1007/978-3-030-12598-1_45
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1007/978-3-319-77449-7_4
https://doi.org/10.1007/978-3-319-77449-7_4

	Abstract
	1 Introduction
	2 Automatic Design of a Time-Dependent Algorithm
	2.1 A Time-Dependent Algorithm Configuration Framework
	2.2 Automatic Configuration with our Framework

	3 Local Search
	3.1 Local Search (LS)
	3.2 Iterated Local Search (ILS)
	3.3 The Iterated Local Search Components

	4 Permutation Flowshop Problem
	5 Traveling Salesman Problem
	6 Quadratic Assignment Problem
	7 Experiments
	7.1 Experimental Results for the PFSP
	7.2 Experimental Results for the TSP
	7.3 Experiments Results of QAP

	8 Conclusion and Future Work
	Acknowledgments
	References

