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We propose a protocol for creating moving, long-lived shock waves in interacting one-dimensional
Bose fluids. The fluid is prepared in a moving state by phase imprinting and sent against the walls of
a box trap. We demonstrate that the shock wave front thus formed remains robust against dephas-
ing and thermal fluctuations, over several oscillation periods. We show that this large amplitude
dynamics is universal across the whole spectrum of the interatomic interaction strength, from weak
to strong interactions, and it is fully controlled by the sound velocity inside the fluid. The shock
waves we propose are within reach for ultracold atom experiments.

Large-amplitude moving perturbations are found in all
types of fluids, and even in solids. As a response to a sud-
den change of parameters, a shock wave—a sharp jump
in hydrodynamic variables capable of propagating with-
out dispersion—may form. Even ideal fluids can support
shock waves as long as the infinitely sharp discontinuities
are consistent with the conservation laws. Dissipative ef-
fects, present in real-world fluids, give the shock layer
a thickness and a shape [1]. Superfluids can host shock
waves, within the corresponding hydrodynamic two-fluid
theory, as, e.g., in the case of Helium-4 [2, 3]. Shock
waves were also experimentally observed in dilute, weakly
interacting Bose-Einstein condensates of ultracold atoms
[4–7].

One-dimensional (1D) Bose fluids constitute particu-
larly suitable media for a study of shock waves. Only
collective modes are possible in such reduced dimension-
ality, and the fluids belong to the Luttinger liquid uni-
versality class [8], thus opening a possibility for a uni-
fied theory. Furthermore, at strong interactions, one-
dimensional Bose gases display a statistical transmuta-
tion, i.e., some of their properties coincide with those of
an ideal, and thus easily tractable Fermi gas [9]. In addi-
tion, several theoretical methods are available in the full
spectrum of the interaction strength [10–12], thanks to
the integrability of the underlying model [13].

In a strongly interacting 1D Bose gas, shock waves of
a specific class were predicted to form as a result of the
time evolution following a density bump in the density
profile [14]. This type of shock waves maps to a solu-
tion breakdown in the nonlinear transport equation (also
known as inviscid Burgers’ equation). This type of solu-
tion is well supported by the hydrodynamic equations,
but the effects beyond hydrodynamics—e.g., quantum
pressure and microscopic correlations—are not capable
of stabilizing this shock wave and it disappears after the
collapse of the underlying nonlinear transport equation.

In our work, we propose a dynamical protocol for gen-
erating the more conventional type of shock waves that

are well stabilized by the beyond-hydrodynamics effects,
across all parameter regimes. We obtain them by a large
perturbation on top of a moving quantum fluid in one
dimension. The shock-wave front is created when the
fluid, with an initially imprinted velocity, hits against the
walls of a box trap. We then follow the large-amplitude
dynamics and in particular the velocity and the shape of
the wavefront, as well as the current across the sample.

By combining three theoretical methods, i.e., classical
field theory, generalized hydrodynamics and exact solu-
tion we describe all interaction strengths from weak to
strong repulsion. We observe a remarkably robust be-
havior of the shock wave propagation at all interaction
regimes: we find a universal trend for the wavefront in
form of a stable step-like flow and of the current, which
displays a triangular-shape oscillation. Both features are
robust under inclusion of thermal fluctuations. We also
show why our shock waves are not collapsing, at differ-
ence from [14]: the underlying equation is not a trans-
port equation, rather, it is a free-wave (or massless Klein-
Gordon) equation. Our microscopic approaches evidence
also non-universal features which depend on the inter-
action strength: at weak interactions, formation of den-
sity modulations due to emissions of phonons and soliton
trains, and at large interactions density modulations as-
sociated to the Friedel-like oscillations in proximity of a
wall, due to quantum fluctuations of the density.
Model We consider a one-dimensional Bose gas with

repulsive interactions described by the Lieb-Liniger
Hamiltonian:

Ĥ =

∫ L

0

dz Ψ̂†
(
− ~2

2m

∂2

∂z2
+ V (z) +

g

2
Ψ̂†Ψ̂

)
Ψ̂, (1)

where m is the mass of the particles, g is the one-
dimensional interaction strength [15] describing the colli-
sions in a tight atomic waveguide. V (z) is a box trap po-
tential of size L with infinitely high walls which we model
by imposing hard-wall boundary conditions and Ψ̂(z),
Ψ̂†(z) are bosonic field operators satisfying the commu-
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tation relations [Ψ̂(z), Ψ̂†(z′)] = δ(z − z′). The trap con-

tains a fixed number of particles N =
∫ L

0
dz 〈Ψ̂†Ψ̂〉. We

define the dimensionless coupling strength γ = gm/~2n0,
n0 = N/L being the average fluid density.

We study the dynamics following a quench in momen-
tum space: starting from the equilibrium state, at time
t = 0 we apply a phase imprinting to all particles, gen-
erated by the shift operator Û = eik0ẑ, yielding a boost
of all the particles with velocity v = ~k0/m. As will
be shown below the relevant velocity scale is the speed
of sound c(γ) [16]. We then follow the quantum dy-
namics of the particle density n(z, t) = 〈Ψ̂†(z, t)Ψ̂(z, t)〉
and of the spatial average of the current density J =

−i(~/2m)
∫ L

0
dz 〈Ψ̂†∂zΨ̂− (∂zΨ̂

†)Ψ̂〉.
The system under consideration is, in general, exactly

solvable by Bethe-Ansatz [17], however a quench dynam-
ics can be difficult to compute, requiring to evaluate over-
laps of excited-state Bethe wavefunctions. Thus, in order
to cover the whole interaction range we use three com-
plementary theoretical approaches: the mean-field Gross-
Pitaevskii (GP) equation for the weakly interacting gas,
the Generalized Hydrodynamic (GHD) theory for inter-
mediate interactions [11, 12, 18] and the time-dependent
Bose-Fermi mapping [9, 19] for the strongly interacting
Tonks-Girardeau (TG) limit.

The Gross-Pitaevskii equation describes the time evo-
lution of the condensate wavefunction ψ(z, t) [20] by the
nonlinear Schrödinger equation

i~
∂ψ

∂t
=

(
− ~2

2m

∂2

∂z2
+ V (z) + g |ψ|2

)
ψ. (2)

We solve it numerically by time evolving the initial equi-
librium solution ψeq(z), satisfying the box boundary con-
ditions ψeq(0) = ψeq(L) = 0, boosted by the phase im-
printing ψ(z, t = 0) = eik0zψeq(z).

The Gross-Pitaevskii equation breaks down at inter-
mediate interactions, when quantum fluctuations start
to significantly affect the dynamics and modify the equa-
tion of state of the Bose fluid. In this regime, we describe
the fluid at long wavelengths using the generalized hydro-
dynamic equations for the distribution function n(z, k, t)
of the quasiparticles of the Lieb-Liniger model

∂n

∂t
+ veff

n

∂n

∂z
= 0, (3)

solved self-consistently with the equation for the dressed
velocity

veff
n (k) =

~
m

[k]dr

[1]dr
, (4)

where the dressing operation is defined by hdr(k) −∫
dk
2πφ(k − k′)n(k′)hdr(k′) = h(k) and the Lieb-Liniger

kernel from the Bethe Ansatz solution reads φ(k− k′) =
2kc/[k

2
c + (k − k′)2], with kc = mg/~2 the inverse length

time [L/c]
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FIG. 1. (Color online) Dynamics of the particle density fol-
lowing a velocity boost of ∼ 0.1c(γ). Upper panel: GP regime
(γ � 1) with γN2 = 2×104. Middle panel: GHD predictions
for γ = 1. Lower panel: TG regime γ →∞, for N = 101. For
each map the time is rescaled by L/c(γ).

scale associated to the interaction strength. To imple-
ment the quench and impose hard wall boundary con-
ditions we use a mirror image method [21]. Once the
self-consistent solution n(z, k, t) is found, we compute
the current density according to j(z, t) =

∫
dk
2π

~k
m n(z, k, t)

and the total current J(t) =
∫ L

0
dz j(z, t).

Finally, in the Tonks-Girardeau regime of infinitely
strongly interacting bosons, we describe the dynamics us-
ing an exact solution based on the time-dependent Bose-
Fermi mapping [22–24], where the many-body wavefunc-
tion ΨTG(z1, ...., zN ) reads

ΨTG(z1, ..., zN ) =
∏

1≤`′<`′′≤N

sgn(z`′−z`′′) det[ψ`(zi, t)]|`,i=1..N ,

(5)
where ψ`(z, t) is the solution of the single-particle
Schrödinger equation i~∂tψ` =

[
−~2∂2

z/2m+ V (z)
]
ψ`

with the initial conditions ψ`(z, 0) = ψ0
` (z), where ψ0

` (z)
is the eigenfunction of the Schrödinger equation at ini-
tial time, boosted by the phase imprinting [21]. This
approach allows us to describe in an exact way the full
dynamics after the quantum quench.
Results Figure 1 shows the universal behavior of the

density dynamics in a one-dimensional Bose gas in a box
trap. At early times, the density develops a double step
profile, corresponding to the shock wave: as the particles
are moving towards one side of the box and bounce on
the boundary, a high-density plateau develops upstream,
while a low-density plateau develops downstream as par-
ticles move away from the other boundary. In between
the density remains unchanged, until the two plateaus
meet and the total current vanishes. At this point the
two propagating fronts cross each other (see Fig. S.6 of
[21]) and the sign of the current is reversed. Later, the
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FIG. 2. (Color online) (a) Particle density n(z) (normalized to N/L) and (b) local current j(z) (normalized to c(γ)N/L) in
the box at different times (t = τ × L/c(γ)), using GP (blue solid lines), GHD (orange solid lines) and TG (yellow solid lines)
calculations, for the same parameters as in Fig. 1. The dashed black lines are the predictions of the step density profile model
(see (7) and (8)). The light gray triangle is a guide to the eye emphasizing the common propagation velocity of the fronts.
Particle densities (local currents) at successive times are shifted downwards by 0.15N/L (0.15c(γ)N/L) for clarity.

role of the two boundaries being exchanged because the
flow is now reversed, the two plateaus develop again, and
so on. As shown in Fig. 2(a), focusing on the early time
evolution, the two fronts separating the density plateaus
propagate at the speed of sound in the fluid at that fluid
density, such that if time is rescaled by L/c(γ) the density
cuts as a function of time fall onto each other displaying
a remarkable universal dynamical behavior.

In addition to universal features, we notice also small
differences among the three regimes [25]: at weak in-
teractions, in addition to a shock wave, we observe the
formation of soliton trains upstream of the flow, see, e.g.,
Fig. 1 at times t = 2.5L/c(γ), as we have checked by ana-
lyzing the phase of the condensate wavefunction [21], and
also reported in [26, 27]. At very large interactions, we
observe modulations in the density profile due to the ef-
fect of the box confinement, which correspond to Friedel
oscillations of the mapped Fermi gas. These are present
generally in strongly correlated fluids and are due to the
quantum fluctuations of the density [8, 28].

In order to gain insight into this dynamics, we an-
alyze the shock wave formation at weak interactions,
where we show that the long-wavelength limit of the
Gross-Pitaevskii equation supports shock waves, provid-
ing the observed wave speed (i.e., the speed of sound)
and the correct relationship between the velocity and
density discontinuities. Assuming a weak perturbation
on top of a density n0 and neglecting box boundaries we
set ψ(z, t) =

(√
n0 + δψ(z, t)

)
e−iµ0t/~, with µ0 ≡ gn0.

Using (2), the equation to first order in δψ reads:

1

c2GP

∂2

∂t2
δψ − ∂2

∂z2
δψ = −1

4
ξ2 ∂

4

∂z4
δψ , (6)

where cGP ≡
√
µ0/m is the speed of sound, and ξ ≡

~/mcGP is the healing length. Note that equation (6)
is nothing else but a convenient rewriting of the stan-
dard Bogoliubov equations for small excitations of a ho-
mogeneous stationary Bose condensate. In the long-
wavelength limit, the typical length scale of the variation
of the excitation wavefunction δψ(z, t) is much greater
than the healing length ξ. To the zeroth order in ξ,
Eq. (6) reduces to the free-wave or zero-mass Klein-

Gordon equation 1
c2GP

∂2

∂t2 δψ − ∂2

∂z2 δψ = 0, which admits

as general solution a linear combination of right and left
moving wavepackets

δψ(z, t) =
√
n0[f+(z − cGPt) + f−(z + cGPt) + f0] . (7)

We search for a δψ(z, t) of a form (7), that on one hand
corresponds to a sharp right-moving jump in the field
variables, and on the other hand constitutes a small ex-
citation limit of two distinct exact solutions of the Gross-
Pitaevskii equation (2) (with V (z) = 0) on either sides of
the discontinuity. Consider the following Ansatz, corre-
sponding, for simplicity, to a single boundary on the left
at z = 0:

ψ(z, t) = e−iµ0t/~
{ √

n0 −∆n eig∆nt/~ z < cGPt√
n0 e

imvz/~−imv2t/2~+i∆φ z > cGPt
.

(8)
The discontinuity is created at t = 0, and it propagates
in the positive direction, with the speed of sound. To
the left of the discontinuity, we have a stationary con-
densate featuring a density depression ∆n, relatively to
the “reference” density n0; to the right, the condensate
is moving with a velocity v0, at a density restored to its
reference value n0. Linearization of the above for small
density depression ∆n, velocity v, and phase ∆φ allows
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to write δψ in the form of Eq. (7) provided that [21]

∆n

n0
=

v

cGP
.

We have verified that this condition is satisfied in our
simulations for all interaction regimes.

It is remarkable that despite being very different mi-
croscopically, the three models behave identically in the
long wavelength domain. Indeed, as our analysis of the
GP model in the infrared limit given above indicates, the
shock waves, in spite of being sharp features, are long
wavelength phenomena, and as such they replicate the
universality that one-dimensional gases with sound en-
joy [8]. There is no contradiction here: within a long
wavelength theory, the shock waves appear as structure-
less discontinuities, themselves fully regulated by the ob-
servables residing within the infrared domain. Note that
more detailed properties of the shock waves, such as the
density and velocity profiles, are governed by the ultra-
violet part of the momentum spectrum, and they remain
model-specific. A similar phenomenon—an availability of
a self-sufficient description of the shock-wave-induced dis-
continuities and their dynamics by a theory incapable of
resolving their width—is observed in dissipationless hy-
drodynamics (see [1], §82), with the discontinuity width
and shape being specific to particular values of the viscos-
ity and thermal conductivity coefficients [1] (§87 there).

Figure 3 shows the oscillations of the current at longer
times obtained from the three theoretical approaches:
GP (γ � 1), GHD at γ = 1, and TG (γ →∞). We have
also used GHD to investigate the dynamics at the hydro-
dynamic scale for the whole interaction strength range.
We find a good agreement for the current dynamics with
the TG exact solution at large γ and with the GPE at
small γ. We also obtain the period of the current oscil-
lations, as shown in Fig. 3(b). We find that the period is
well accounted for by the expression T = L/c(γ) where
c(γ) is the exact speed of sound obtained from the solu-
tion of the Lieb-Liniger model [16]: this provides another
confirmation that even though the shock wave is gener-
ated by a large-amplitude oscillation, its hydrodynamic
nature implies that the speed of sound sets its dynamics.

Our microscopic calculation finally allows us to address
the robustness of the shock waves created by the pro-
posed protocol. At long times, as illustrated in Fig. 1
and in Fig. 2(a), one wavefront (the mid-to-low density
one, [21]) gradually broadens during the propagation, re-
sulting in a loss of contrast between the two density re-
gions. Correspondingly, the oscillations of the current
progressively damp and change shape from triangular to
sinusoidal, see Fig. 3(a). The damping of the current os-
cillations weakly increases with interaction strength, and
can be estimated within GHD by the dephasing time
τd = L/(vhigh − vlow) ∼ (n0/∆n) × L/c(γ) and hence
is faster for stronger quenches. Here vhigh (vlow) corre-
sponds to the effective velocity of the fastest (slowest)
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FIG. 3. (Color online) (a) Dynamics of the particle cur-
rent versus time (in scaled units) for the same parameters
as in Fig. 1, for GPE (blue), GHD (orange) and TG (yellow)
regimes, and their exponential envelope with a time scale τd
(black solid lines) (see text). (b-c) Blue dots: (b) period
(units: t0 = mL2/~) and (c) damping rate of the current os-
cillations in a zero–temperature GHD simulation for a quench
of strength 0.1c(γ) and n0 = 100. (b) Dashed black line:
T = L/c(γ) (see text). Solid red curves: periods expected in
the GPE (γ � 1) and TG (γ � 1) limits. (c) Red diamonds:
damping from the data in (a); Horizontal dashed line: inverse
of the dephasing time 1/τd.

quasi-particles involved in the dynamics [21]. Its micro-
scopic origin depends on the interaction regime: at weak
interactions, it is due to the mode-mode coupling induced
by the nonlinearity in the GPE [29], at strong interac-
tions it is due to the slightly different dispersion of each
single-particle mode with time.

We have also explored the effect of thermal fluctua-
tions in the propagation of the shock waves. We find
that the phenomenon persists at finite temperature up
to T ∼ µ/kB , with µ being the chemical potential, and
that the damping of the current oscillations increases
with temperature (see [21] for details).

Conclusions. We have proposed a protocol for gener-
ating shock waves in a 1D Bose fluid: we use phase im-
printing to impart a velocity flow onto the gas, driving it
against the walls of the container. By combining several
theoretical techniques, we have shown that the formed
wavefront is stable, and it is capable of propagating over
several periods of oscillations in the box trap; the effect
persists for any interaction strength, from weak to strong
repulsion, and it is robust against thermal fluctuations.
We have found that even under such a strong quench the
wavefront follows a universal dynamics fixed by the hy-
drodynamic sound velocity. From the theoretical point of
view this means that the underlying microscopic theory
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supports the universal features and keeps them stable:
the large-amplitude dynamics is fully consistent with in-
frared hydrodynamic regime, and does not depend on
short-distance cutoff except for the details of the shape
of the wavefront.

Our work calls for further studies on the dynamics at
long times, e.g., exploration of the emergence of grey soli-
tons in the weakly interacting regime and their analogues
at strong interactions, and of the origin of the damping
mechanisms in one dimension. More generally, our work
constitutes a new avenue towards the theoretical and
experimental study of strongly driven one-dimensional
quantum systems, allowing for an access to quantum tur-
bulence. Finally, our result implies an existence of a new
kind of universality in out-of-equilibrium dynamics.

Note added. After completing this work we became
aware of Ref. [30] which studies dispersive shock waves
of the type proposed in [14].
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Methods

Here we provide details on the different methods and
approaches used in the main text.

Details on the solution of the Gross-Pitaevskii
equation To describe the dynamics in the γ � 1
regime we solve the Gross-Pitaevskii equation (2 – main
text) numerically, using a spectral method relying on the
discrete sine transform embedding the hard wall bound-
ary conditions ψ(0) = ψ(L) = 0. We first use imaginary
time propagation to find the groundstate in the box, then
we quench the state at t = 0 and compute the subsequent
dynamics. To ensure that the system is in the mean-field
hydrodynamic regime we choose a sufficiently large non
linear coefficient gN = γN2 = 20000. We have checked
that the transition between the single particle and mean-
field regime occurs at gN ∼ 500.

Details on the solution of the generalized hydro-
dynamics equations The GHD equations are given in
Eqs. (3-4) of the main text, which we recall here:

∂n

∂t
+ veff

n

∂n

∂z
= 0,

where n is the occupation function of the Lieb-Liniger
quasi-particles, and the dressed velocity is given by:

veff
n (k) =

~
m

[k]dr

[1]dr
.

At first the GHD formalism seems incompatible with the
box boundary conditions, because it relies on the local
density approximation. One method to naturally include
the effect of the hard-wall boundaries is to double the sys-
tem size (from [0, L] to [−L,L]), impose periodic bound-
ary conditions with period 2L, and use an anti-symmetric
initial state: the right part z ≥ 0 (resp. left part z < 0) is
quenched with a positive (resp. negative) velocity boost:

n0(z, k) =

{
n̄(k − k0) z ≥ 0,

n̄(k + k0) z < 0,
(9)

where n̄(k) is the equilibrium occupation function ob-
tained from the equation of state. This approach is well
adapted to GHD and exact at the level of the initial Lieb-
Liniger Hamiltonian.

To integrate the GHD equations at zero temperature
we use the zero entropy subspace method [31]. In this
case it is sufficient to compute the evolution of the edges
of the Fermi sea, that are located initially at k = ±kF .
After the quench described by (9), the edges are shifted
to ±kF ± k0. Furthermore the box boundary condi-
tion imposes that a quasi-particle arriving at the right
boundary with quasi-momentum k > 0 is reflected at
quasi-momentum −k (particles at k < 0 are already
moving away from the boundary). A symmetric con-
dition occurs at the left boundary. Therefore, immedi-
ately after the quench, the dynamics of the front moving

to the left is fixed by the quasi-particles lying in k ∈
[−kF −k0,−kF +k0], while the front moving to the right
corresponds to quasi-particles in k ∈ [kF − k0, kF + k0].
The broadening of the fronts is then explained by the
fact that these quasi-particles move at different effec-
tive velocities: for example, the width of the front mov-
ing to the right will evolve as: t × (vhigh − vlow), where
vhigh = veff

n (kF + k0) and vlow = veff
n (kF − k0).

This simple explanation indicates that both fronts
broaden within GHD, as is seen in the simulation. There-
fore, GHD is not able to reproduce the microscopic de-
tails of the exact GP and TG results, while giving an
accurate prediction for global observables, see figures S.1
and S.2 below.

We have also benchmarked our results using an in-
dependent integration scheme, based on the iterative
method of [32], which also allows for finite temperature
calculations. To summarize, the occupation function at
time t+ dt is obtained by solving the implicit equation:

n(z, k, t+ dt) = n
(
z − veff

n(z,k,t+dt)dt, k, t
)
. (10)

This is done by iterating this formula starting with the
initial guess n(z, k, t + dt) = n(z, k, t). During this pro-
cess, periodic boundary conditions are enforced on the in-
terval [−L,L]. To proceed numerically, we use a discrete
rectangular grid to store the values of n(z, k, t) at time
t and rely on a cubic interpolation formula on this grid
to evaluate equation (10). Once satisfactory convergence
is obtained the same method is repeated to compute the
next time step, until the desired final time is achieved.
Details on the Tonks-Girardeau exact solution
In the infinitely strongly repulsive limit, γ → ∞, we

focus on the exact Tonks-Girardeau (TG) model [22].
In particular, we make use of the time-dependent Bose-
Fermi mapping [22–24], where the many-body wavefunc-
tion ΨTG is writtn in Eq. (5 – main text).

Our specific protocol is the following: we write the ini-
tial wavefunction as the ground state of a hard-wall box
potential, constructed by the first N single-particle or-
bitals χ`(z), which we then multiply by a phase profile,
induced by the phase imprinting, obtaining the wavefunc-
tion ψ0

` (z) = eik0zχ`(z), which is used as starting point
for the time evolution. The evolution is then calculated
by projecting this state in the eigenbasis of the unper-
turbed system ψ`′(z, t) =

∑∞
` 〈χ`|ψ0

`′〉χ`(z)e−iε`t/~ and
where ε` is the `-th single-particle eigenenergy [33, 34].

The current of a TG gas at finite temperature is then
readily obtained in terms of the evolved single-particle
orbitals according to

j(z, t) =
~
m

Im

[ ∞∑
`

f(ε`)ψ
∗
` (z, t)∂zψ`(z, t)

]
(11)

with f(ε) being the Fermi-Dirac distribution. In our spe-
cific quench setup, the current density after the phase
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imprinting reads

j(z, t) =
~
Nm

Im

[ ∞∑
`

∞∑
`′

A`′,`(z)e
−i(ε`′−ε`)t/~

]
, (12)

with an amplitude of the excitations being given by

A`,`′(z) =
~
mL

Im

[ ∞∑
i

f(εi)〈χi|ψ`′〉〈ψ`|χi〉ψ∗`′(z)∂zψ`(z)
]
.

(13)

The sound velocity of a TG gas is readily obtained
from its equation of state. In order to compare it with the
generalized hydrodynamics predictions, we have included
the first order correction due to the boundary [17], such
that at zero temperature it reads:

cTG =
~πn
m

√
1 +

3

2N
.

This correction has been included in all figures appearing
in the main paper. It is particularly relevant to obtain
the proper rescaling of the time axis, leading to an al-
most perfect collapse of all density and current dynamics
curves obtained with the three different models consid-
ered here. In addition to this correction, finite size ef-
fects can also play an important role in the long time
dynamics, as the TG time evolution exhibits revivals at
Tr = NcTG/L.

Details of the derivation of the constraints on
the discontinuities across the shock wave front
imposed by the consistency between the GPE
equation and the wave equation Not every so-
lution of the wave equation (6 -main text) is a proper
low-amplitude long-wavelength limit of a solution of the
Gross-Pitaevskii equation (2 – main text), but some are.
Consider a such limit for the Ansatz (8 – main text).
Assuming the density depression ∆n, the velocity v, and
the phase ∆φ be small (with the smallness of v being
required in the long wavelength limit) and of the same
order in variation of the base solution of the Schrödinger
equation, we can expand the expression (8 – main text)
to the first order in ∆n, v, and ∆φ, arriving at

δψ(z, t) =
√
n0 ×

{ − 1
2

∆n
n0

+ ig∆nt/~ z < cGPt

imvz/~ + i∆φ z > cGPt

}
.

Notice that this expression is not, a priori, in the required
form (7 – main text) a solution of a wave equation must
yield. However, if we impose

∆n

n0
=

v

cGP
, (14)

the fields f+ and f− become readily available:

f+(ζ) =
imv

~
ζΘ[ζ]− imv

2~
ζ +

(
v

2cGP
+ i∆φ

)
Θ[ζ]

f−(ζ) = +
imv

2~
ζ

f0 = − v

2cGP
,

leading to

δψ(z, t) =
√
n0

( imv
~

(z − cGPt)Θ[z − cGPt] +
imv

~
cGPt

− v

2cGP
Θ[−(z − cGPt)] + i∆φΘ[z − cGPt]

)
.

(15)

Note that (a) it can be shown that the relationship
Eq. (14) is fully consistent with—and is, in fact, nec-
essary for—conservation of matter; (b) the small phase
jump ∆φ remains undetermined.

Benchmark of generalized hydrodynamic predictions
at weak and strong interactions

Figure S.1 shows a comparison of the dynamics of the
particle current at weak interactions, according to the
predictions of the Gross-Pitevskii equation and of the
GHD solution at γ = 1.5× 10−3. The agreement is very
good, both for the oscillation frequency and the decay
time.

0 2 4 6 8 10
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-0.05

0

0.05

0.1

time [L/c]

c
u
rr

e
n
t 
[c

N
/L

]

GPE gN=2e4

GHD γ=0.00153

FIG. S.1. Current as a function of time using GP and GHD
at small γ. The system is quenched with a velocity boost of
0.1c(γ).

Figure S.2 compares the current dynamics from the
exact Tonks-Girardeau result for N = 23, N = 33, and
N = 101, and the GHD simulation at γ = 940. The GHD
and exact Tonks-Girardeau solution agree very well for
N = 101, thereby benchmarking the validity of the GHD
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]
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FIG. S.2. Current as a function of time using the exact TG
solution and the GHD, at large γ. The system is quenched
with a velocity boost of 0.1c(γ). The N = 101 TG and GHD
curves are undistinguishable at this scale.

predictions also at strong interactions. At lower number
of particles we attribute the discrepancies to finite size
effects, that are not captured within GHD. Our analysis
shows that the study of the shock wave dynamics pro-
vides a very accurate test of the validity of the GHD
equations.

Oscillations of the current at finite temperature and
strong interactions

In the strongly interacting regime, at finite tempera-
tures, bosonic particles can be described using the Bose-
Fermi mapping, in which particles populate the eigen-
states of the system following the Fermi-Dirac distribu-
tion. When considering a quench into such Fermi sphere,
the Hilbert space over which the quenched state projects
increases, leading to more low energy excitations dur-
ing the quench [35]. In Fig. S.3 we calculate the total
current, Eq. (11), at different temperatures. Note that
at temperatures lower than the Fermi temperature, the
current oscillations are still visible and follow a few full
oscillations, which shows the robustness of the universal
features discussed in the main text. For temperatures
of the order of the Fermi temperature, the damping in-
creases dramatically and shock waves diffuse rapidly.

Oscillations of the current at finite temperature
using GHD

In order to include finite temperature effects in the
GHD we use the Thermodynamic Bethe-Ansatz [36]. The

−0.1

−0.05
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0.05

0.1
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C
ur

re
nt

[c
N

/L
]

Time [L/c]

T =0.0
T =0.2
T =0.4
T =0.6
T =0.8
T =1.0

FIG. S.3. Current per particle as a function of time for
different temperatures using the exact TG for N = 23. Tem-
peratures are given in units of the Fermi temperature and
the system is quenched with a velocity boost of 0.087c. Time
is given in units of L/c(T ) where the speed of sound c(T )
depends on the temperature.

initial equilibrium occupation function is:

n̄(k) =
1

1 + eβεk
,

where the pseudo-energy εk is the solution of:

βεk = β

(
~2k2

2m
− µ

)
−
∫
dk′

2π
φ(k − k′) ln

(
1 + e−βεk′

)
.

The box boundary conditions and quench protocol are
implemented in the initial state as in the zero tempera-
ture case and we use the iterative integration algorithm
explained above.

Figure S.4 shows the decay of the current oscillations
as temperature increases. The phenomenon reported in
the paper is robust up to T ∼ 0.25× ~2n2

0/(mkB) where
n0 = N/L is the one-dimensional density.

Identification of the density dips as a soliton train

Figure S.5 shows the density and phase a profile ob-
tained in the GPE equation at an intermediate time
t = 3.26×L/cGP, where a train of 11 to 13 solitons is seen
as small density dips associated to well defined “steps”
in the phase profile. Therefore it seems that for our
scenario the density oscillations associated to the shock
front propagation are mainly due to fast grey solitons.
As the solitons propagate with slightly different speeds
(the shallower the faster) and bounce back on the hard
wall boundaries, the phase profile can be complicated to
interpret at later times where solitons propagates in both
directions and overlap. We have checked that the number
of generated solitons increases with the quench strength.
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FIG. S.4. Current (in units of cN/L) as a function of time (in
units of L/c(T )), computed with the GHD approach at γ = 1
and several temperatures covering the range [0.01, 1.3] × µ.
For each temperature the initial velocity boost is 0.1c(T ),
where the speed of sound c(T ) weakly depends on the tem-
perature.
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FIG. S.5. Density and phase profiles in the GPE simulation
at t = 3.26 × L/cGP. The black vertical lines indicate the
points where the slope of the phase is (locally) minimal, and
match the position of the density dips.

A simple fitting function for the density profiles

We analyse the output of the GPE and TG simulations
by using a trial density profile:

n(z, t) = n0 +
∆n

2

(
tanh

x− x1(t)

ξ1(t)
+ tanh

x− x2(t)

ξ2(t)

)
.

(16)
As shown in Fig. S.6 this simple model allows to fit
reasonably well the density profiles in the GP and TG
regimes, at different times, up to t = L/cGP. In par-
ticular the shape of the density steps is well captured,
despite the density oscillations (soliton train in GP and
Friedel oscillations in TG). By analyzing the fit results as
a function of time we confirm to very good accuracy that:
(i) the two fronts propagate in opposite directions but at
the same velocity ẋ1 = −ẋ2 = cGP, corresponding to the
speed of sound; (ii) ξ2 remains constant while ξ1 grows
approximately linearly with time; and (iii) the parame-
ters n0 and ∆n remain constant. Observation (i) is not
a surprise as it follows from the long wavelength analy-
sis discussed in the main text. Observations (ii) and (iii)
suggest that it may be possible to find a simple analytical
model describing the class of hydrodynamic shock waves
studied in this work and suggest a common mechanism is
at play throughout the whole interaction strength range.
This analysis goes beyond the scopes of the current work.
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FIG. S.6. Density profile in the GPE (left panel) and TG (right panel) simulations (solid blue lines), fitted to the Ansatz
of equation (16) (dashed red lines), at times: t = L/c(γ) × {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} (from top to bottom).
Densities at successive times are vertically shifted by 0.15N/L for clarity.
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