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Introduction

Hyperbolic systems in one dimensional space are frequently used in modeling of many systems such as traffic flow [START_REF] Amin | On stability of switched linear hyperbolic conservation laws with reflecting boundaries, Hybrid systems: computation and control[END_REF], heat exchangers [START_REF] Xu | Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems[END_REF], and fluids in open channels [START_REF] De Halleux | Boundary feedback control in networks of open channels[END_REF][START_REF] Valérie | Boundary control of open channels with numerical and experimental validations[END_REF][START_REF] Gugat | Global boundary controllability of the de St. Venant equations between steady states[END_REF][START_REF] Gugat | Global controllability between steady supercritical flows in channel networks[END_REF], transmission lines [START_REF] Curró | A reduction procedure for generalized Riemann problems with application to nonlinear transmission lines[END_REF], phase transition [START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF]. In our recent works [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF][START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF], we introduced time independent feedbacks leading to the finite stabilization for the optimal time of homogeneous linear and quasilinear hyperbolic systems. In this work, we present Lyapunov's functions for these feedbacks and use estimates for Lyapunov's functions to rediscover the finite stabilization results. More precisely, we are concerned about the following homogeneous, quasilinear, hyperbolic system in one dimensional space (1.1) ∂ t w(t, x) = Σ x, w(t, x) ∂ x w(t, x) for (t, x) ∈ [0, +∞) × (0, 1).

Here w = (w 1 , • • • , w n ) T : [0, +∞) × (0, 1) → R n , Σ(•, •) is an (n × n) real matrix-valued function defined in [0, 1] × R n . We assume that Σ(•, •) has m ≥ 1 distinct positive eigenvalues, and k = n -m ≥ 1 distinct negative eigenvalues. We also assume that, maybe after a change of variables, Σ(x, y) for x ∈ [0, 1] and y ∈ R n is of the form

(1.2) Σ(x, y) = diag -λ 1 (x, y), • • • , -λ k (x, y), λ k+1 (x, y), • • • , λ k+m (x, y) ,
where

(1.3) -λ 1 (x, y) < • • • < -λ k (x, y) < 0 < λ k+1 (x, y) < • • • λ k+m (x, y).
Throughout the paper, we assume (1.4) λ i and ∂ y λ i are of class C 1 with respect to x and y for 1 ≤ i ≤ n = k + m.

Denote w -= (w 1 , • • • , w k ) T and w + = (w k+1 , • • • , w k+m ) T . The following types of boundary conditions and controls are considered. The boundary condition at x = 0 is given by (1.5) w -(t, 0) = B w + (t, 0) for t ≥ 0,

1
for some B ∈ C 2 (R m ) k with B(0) = 0, and the boundary control at x = 1 is (1.6) w + (t, 1) = (W k+1 , • • • , W k+m ) T (t) for t ≥ 0, where W k+1 , . . . , W k+m are controls. Set

(1.7)

τ i = ˆ1 0 1 λ i (x, 0) dx for 1 ≤ i ≤ n.
The exact controllability, the null-controllability, and the boundary stabilization of hyperbolic systems in one dimension have been widely investigated in the literature for almost half a century, see e.g. [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] and the references therein. Concerning the exact controllability and the nullcontrollability related to (1.5) and (1.6), the pioneer works date back to Jeffrey Rauch and Michael Taylor [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF] and David Russell [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF] for the linear inhomogeneous system. In the quasilinear case with m ≥ k, the null controllability was established for m ≥ k by Tatsien Li in [START_REF] Li | Controllability and observability for quasilinear hyperbolic systems[END_REF]Theorem 3.2] (see also [START_REF] Li | Local exact boundary controllability for a class of quasilinear hyperbolic systems[END_REF]). These results hold for the time τ k + τ k+1 .

Concerning the stabilisation of (1.1), many works are concerned about the boundary conditions of the following specific form (1.8) w -(t, 0)

w + (t, 1) = G w + (t, 1) w -(t, 0) ,
where G : R n → R n is a suitable smooth vector field. Three approaches have been proposed to deal with (1.8). The first one is based on the characteristic method. This method was investigated in the framework of C 1 -norm [START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF][START_REF] Tsien | Global classical solutions for quasilinear hyperbolic systems[END_REF]. The second one is based on Lyapunov functions [START_REF] Coron | Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF][START_REF] Coron | Dissipative boundary conditions for onedimensional nonlinear hyperbolic systems[END_REF][START_REF]Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF][START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saint-venant equations[END_REF][START_REF]A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF][START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF][START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF]. The third one is via the delay equations and was investigated in the framework of W 2,p -norm with p ≥ 1 [START_REF] Coron | Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems[END_REF]. Surprisingly, the stability criterion in the nonlinear setting depends on the norm considered [START_REF] Coron | Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems[END_REF]. Required assumptions impose some restrictions on the magnitude of the coupling coefficients when dealing with inhomogeneous systems. Another way to stabilise (1.1) is to use the backstepping approach. This was first proposed by Jean-Michel Coron et al. [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] for 2×2 inhomogeneous system (m = k = 1). Later this approach has been extended and now can be applied for general pairs (m, k) in the linear case [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF][START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF][START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF][START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF][START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF]. In [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF], the authors obtained feedbacks leading to the finite stabilization in time τ 1 + τ 2 with m = k = 1. In [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF], the authors considered the case where Σ is constant and obtained feedback laws for the null-controllability at the time τ k + m l=1 τ k+l . Later [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF], feedbacks leading to the finite stabilization in time τ k + τ k+1 were derived.

Set, as in [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF][START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF] (1.9)

T opt :=    max τ 1 + τ m+1 , . . . , τ k + τ m+k , τ k+1 if m ≥ k, max τ k+1-m + τ k+1 , τ k+2-m + τ k+2 , . . . , τ k + τ k+m if m < k. Define (1.10) B := B ∈ R k×m ; such that (1.11) holds for 1 ≤ i ≤ min{m -1, k} ,
where (1.11) the i × i matrix formed from the last i columns and the last i rows of B is invertible.

Using the backstepping approach, we established the null-controllability for the linear inhomogeneous systems for the optimal time T opt under the condition B := ∇B(0) ∈ B [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF][START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF] (see also [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF] for the non-linear, homogeneous case). This condition is very natural to obtain the nullcontrollability at T opt which roughly speaking allows to use the l controls W k+m-l+1 , • • • , W k+m to control the l directions w k-l+1 , • • • , w k for 1 ≤ l ≤ min{k, m} (the possibility to implement l controls corresponding to the fastest positive speeds to control l components corresponding to the lowest negative speeds1 ). The optimality of T opt was given in [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF] (see also [START_REF] Weck | A remark on controllability for symmetric hyperbolic systems in one space dimension[END_REF]). Related exact controllability results can be also found in [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF][START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF][START_REF] Hu | Sharp time estimates for exact boundary controllability of quasilinear hyperbolic systems[END_REF][START_REF] Hu | Minimal time for the exact controllability of one-dimensional first-order linear hyperbolic systems by one-sided boundary controls[END_REF]. It is easy to see that B is an open subset of the set of (real) k ×m matrices and the Hausdorff dimension of its complement is min{k, m-1}.

We previously obtained time independent feedbacks leading finite stabilization for the optimal time T opt of the system (1.1), (1.5), and (1.6) when B ∈ B in the linear case [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF], and in the nonlinear case [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF]. In this paper, we introduce Lyapunov functions for these feedbacks. As a consequence of our estimate on the decay rate of solutions via the Lyapunov functions (Theorem 1.1 and Theorem 3.1), we are able to rediscover the finite stabilization results in the optimal time [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF][START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF].

To keep the notations simple in the introduction, from now on, we only discuss the linear setting, i.e., Σ(x, y) = Σ(x) (so λ i (x, y) = λ i (x)) and B(•) = B• (recall that B = ∇B(0)). The nonlinear setting will be discussed in Section 3. The boundary condition at x = 0 becomes (1.12) w -(t, 0) = Bw + (t, 0) for t ≥ 0.

We first introduce/recall some notations. Extend

λ i in R with 1 ≤ i ≤ k + m by λ i (0) for x < 0 and λ i (1) for x > 1. For (s, ξ) ∈ [0, T ] × [0, 1], define x i (t, s, ξ) for t ∈ R by (1.13) d dt x i (t, s, ξ) = λ i x i (t, s, ξ) and x i (s, s, ξ) = ξ if 1 ≤ i ≤ k, and 
(1.14) d dt x i (t, s, ξ) = -λ i x i (t, s, ξ) and x i (s, s, ξ) = ξ if k + 1 ≤ i ≤ k + m
(see Figure 1). For x ∈ [0, 1], and k + 1 ≤ j ≤ k + m, let τ (j, x) ∈ R + be such that

x j τ (j, x), 0, x = 0, and set, k

+ 1 ≤ i < j ≤ k + m, (1.15) a i,j (x) = x i 0, τ (j, x), 0 (see Figure 1-b)). It is clear that τ (j, 1) = τ j for k + 1 ≤ j ≤ k + m.
We now recall the feedback in [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF]. We first consider the case m ≥ k. Using (1.11) with i = 1, one can derive that w k (t, 0) = 0 if and only if (1.16) w m+k (t, 0) = M k (w k+1 , • • • , w m+k-1 ) T (t, 0), for some constant matrix M k of size 1 × (m -1). Using (1.11) with i = 2, one can derive that w k (t, 0) = w k-1 (t, 0) = 0 if and only if (1.16) and

(1.17)

w m+k-1 (t, 0) = M k-1 (w k+1 , • • • , w m+k-2 ) T (t, 0) 1 t 0 τ 6 x 6
x 5 (0, τ 6 , 0)

x 4 (0, τ 6 , 0)

τ 3 + τ 6
x 3 τ 5

x 5

x 4 (0, τ 5 , 0)

τ 2 + τ 5 x 2 τ 4 x 4 τ 1 + τ 4 x 1 a)
x j (•, 0, 1)

x i (•, 1, 0) 1 t 0 x a i,j (x) τ (j, x) x j (•, 0, x) b) Figure 1. a) k = m = 3, Σ is constant, x 1 = x 1 (•, τ 4 , 0), x 2 = x 2 (•, τ 5 , 0), x 3 = x 3 (•, τ 4 , 0), x 4 = x 4 (•, 0, 1), x 5 = x 5 (•, 0, 1), and x 6 = x 6 (•, 0, 1). b) k + 1 ≤ i < j ≤ k + m, and Σ is constant.
hold for some constant matrix M k-1 of size 1 × (m -2) by the Gaussian elimination method, etc. Finally, using (1.11) with i = k, one can derive that w k (t, 0) = w k-1 (t, 0) • • • = w 1 (t, 0) = 0 if and only if (1.16), (1.17), . . . , and

(1.18) w m+1 (t, 0) = M 1 (w k+1 , • • • , w m ) T (t, 0)
hold for some constant matrix M 1 of size 1 × (m -k) by applying (1.11) with i = k and using the Gaussian elimination method when m > k. When m = k, similar fact holds with M 1 = 0. The feedback is then given as follows:

(1.19) w m+k (t, 1) = M k w k+1 t, x k+1 (0, τ m+k , 0) , . . . , w k+m-1 t, x k+m-1 (0, τ m+k , 0) ,

(1.20) w m+k-1 (t, 1) = M k-1 w k+1 t, x k+1 (0, τ m+k-1 , 0) , . . . , w k+m-2 t, x k+m-2 (0, τ m+k-1 , 0) , . . .
(1.21) w m+1 (t, 1) = M 1 w k+1 t, x k+1 (0, τ m+1 , 0) , . . . , w m t, x m+1 (0, τ m+1 , 0) , and

(1.22) w j (t, 1) = 0 for k + 1 ≤ j ≤ m.

(see Figure 1-a)). 2 2 In [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF], we use xi(-τj, 0, 0) with k + 1 ≤ i < j ≤ k + m in the feedback above. Nevertheless, xi(-τj, 0, 0) = xi(0, τj, 0).

We next deal with the case m < k. The construction in this case is based on the construction given in the case m = k. The feedback is then given by (1.23) w k+m (t, 1) = M k w k+1 t, x k+1 (0, τ k+m , 0) , . . . , w k+m-1 t, x k+m-1 (0, τ k+m , 0) ,

(1.24) w k+m-1 (t, 1) = M k-1 w k+1 t, x k+1 (0, τ k+m-1 , 0) , . . . , w k+m-2 t, x k+m-2 (0, τ k+m-1 , 0) , . . . (1.25) w k+2 (t, 1) = M k+2-m w k+1 t, x k+1 (0, τ k+m-1 , 0) , (1.26) w k+1 (t, 1) = M k+1-m ,
with the convention M k+1-m = 0.

Remark 1.1. The well-posedness of (1.1) with Σ(x, y) = Σ(x), (1.5), with the feedback given above for w 0 ∈ L ∞ (0, 1) n is given by [13, Lemma 3.2]. More precisely, for w 0 ∈ L ∞ (0, 1) n and T > 0, there exists a unique broad solution

w ∈ L ∞ (0, T ) × [0, 1] n ∩ C [0, T ]); L 2 (0, 1) n ∩ C [0, 1]); L 2 (0, T ) n .
The broad solutions are defined in [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF]Definition 3.1]. The proof is based on a fixed point argument using the norm

w = sup 1≤i≤n ess sup (τ,ξ)∈(0,T )×(0,1) e -L 1 τ -L 2 ξ |w i (τ, ξ)|,
where L 1 , L 2 are two large positive numbers with L 1 much larger than L 2 .

Concerning these feedbacks, we have Theorem 1.1. Let m, k ≥ 1, and w 0 ∈ L ∞ (0, 1) n . There exists a constant C ≥ 1, depending only on B and Σ, such that for all q ≥ 1 and Λ ≥ 1, it holds

(1.27) w(t, •) L q (0,1) ≤ Ce Λ Topt-t w(t = 0, •) L q (0,1) for t ≥ 0.
As a consequence, we have

(1.28) w(t, •) L ∞ (0,1) ≤ Ce Λ Topt-t w(t = 0, •) L ∞ (0,1) for t ≥ 0.
As a consequence of Theorem 1.1, the finite stabilization in the optimal time T opt is achieved by taking Λ → +∞ since C is independent of Λ. The spirit of deriving appropriate information for L ∞ -norm from the one associated to L q -norm was also considered in [START_REF] Coron | Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF]. The proof of Theorem 1.1 is based on considering the following Lyapunov function. Let q ≥ 1 and let V : [L q (0, 1)] n → R be defined by, with = max{m, k},

(1.29) V(v) = i=1 ˆ1 0 p i (x)|v i (x)| q dx + i +1≤m+i≤k+m ˆ1 0 p m+i (x) v m+i (x)-M i v k+1 a k+1,m+i (x) , . . . , v m+i-1 a m+i-1,m+i (x) q dx,
where (1.30)

p i (x) = λ -1 i (x)e -qΛ ´x 0 λ -1 i (s) ds+qΛ ´1 0 λ -1 i (s) ds for 1 ≤ i ≤ k, (1.31) p i (x) = Γ q λ -1 i (x)e qΛ ´x 0 λ -1 i (s) ds for k + 1 ≤ i ≤ , (1.32) p m+i (x) = Γ q λ -1 m+i (x)e qΛ ´x 0 λ -1 m+i (s) ds+qΛ ´1 0 λ -1 i (s) ds for + 1 ≤ m + i ≤ m + k.
for some large positive constant Γ ≥ 1 depending only on Σ and B (it is independent of Λ and q). Remark 1.2. Our Lyapunov functions are explicit. This is useful to study the robustness of our feedback laws with respect to disturbances. The use of Lyapunov functions is a classical tool to study the robustness of feedback laws for control system in finite dimension (see The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.1. The nonlinear setting is considered in Section 3. The main result there is Theorem 3.1, which is a variant of Theorem 1.1. In the appendix, we will establish a lemma, which is used in the proof of Theorem 1.1 and Theorem 3.1.

,

Analysis for the linear setting -Proof of Theorem 1.1

This section containing two subsections is devoted to the proof of Theorem 1.1. The first one is on the case m ≥ k and the second one is on the case m < k.

2.1. Proof of Theorem 1.1 for m ≥ k. One can check that a i,j is of class C 1 since Λ is of class C 1 (see, for example, [27, Chapter V]). We claim that, for k + 1 ≤ i < j ≤ k + m and for x ∈ [0, 1], (2.1) a i,j (x) = λ i a i,j (x) /λ j (x).
Indeed, by the characteristic method and the definition of a i,j and τ (j, •) (see also Figure 1-b)), we have a i,j x j (t, 0, x) = x i t, τ (j, x), 0 for 0 ≤ t ≤ τ (j, x). Taking the derivative with respect to t gives

a i,j x j (t, 0, x) ∂ t x j (t, 0, x) = ∂ t x i t, τ (j, x), 0 .
This implies, by the definition of x i and x j , a i,j x j (t, 0, x) λ j x j (t, 0, x) = λ i x i (t, τ (j, x), 0) .

Considering t = 0, we obtain (2.1).

As a consequence of (2.1), we have

(2.2) ∂ x w i t, a i,j (x) = λ i a i,j (x) λ j (x) ∂ x w i t, a i,j (x)
.

Identity (2.
2) is one of the key ingredients in deriving properties for d dt V w(t, •) , which will be done next.

In what follows, we assume that w is smooth. The general case will follow by a standard approximation argument. Set

(2.3) S m+i (t, x) = λ m+i (x)∂ x w m+i (t, x) -M i λ k+1 a k+1,m+i (x) ∂ x w k+1 t, a k+1,m+i (x) , . . . , λ m+i-1 a m+i-1,m+i (x) ∂ x w m+i-1 t, a m+i-1,m+i (x) ,

and (2.4)

T m+i (t, x) = w m+i (t, x) -M i w k+1 t, a k+1,m+i (x) , . . . , w m+i-1 t, a m+i-1,m+i (x) .

Since M i is constant, it follows from the definition of V(v) and (1.1) that, for t ≥ 0, (2.5)

d dt V(w(t, •)) = U 1 (t) + U 2 (t),
where

(2.6) U 1 (t) = - k i=1 ˆ1 0 p i (x)λ i (x)∂ x |w i (t, x)| q dx + m i=k+1 ˆ1 0 p i (x)λ i (x)∂ x |w i (t, x)| q dx, and 
(2.7) U 2 (t) = k i=1 ˆ1 0 qp m+i (x)S m+i (t, x)|T m+i (t, x)| q-2 T m+i (t, x) dx.
We next consider U 1 . An integration by parts yields

(2.8) U 1 (t) = k i=1 ˆ1 0 (λ i p i ) (x)|w i (t, x)| q dx - m i=k+1 ˆ1 0 (λ i p i ) (x)|w i (t, x)| q dx - k i=1 λ i (x)p i (x)|w i (t, x)| q 1 0 + m i=k+1 λ i (x)p i (x)|w i (t, x)| q 1 0 .
Using the feedback (1.22) and the boundary condition (1.5), we obtain

(2.9) U 1 (t) = k i=1 ˆ1 0 (λ i p i ) (x)|w i (t, x)| q dx - m i=k+1 ˆ1 0 (λ i p i ) (x)|w i (t, x)| q dx - k i=1 λ i (1)p i (1)|w i (t, 1)| q + k i=1 λ i (0)p i (0)|(Bw + ) i (t, 0)| q - m i=k+1 λ i (0)p i (0)|w i (t, 0)| q .
We next deal with U 2 . Using (2.2), we derive from the definition of S m+i that

(2.10) S m+i (t, x) = λ m+i (x)∂ x w m+i (t, x) -λ m+i (x)M i ∂ x w k+1 t, a k+1,m+i (x) , . . . , ∂ x w m+i-1 t, a m+i-1,m+i (x) , which yields, since M i is constant, (2.11) S m+i (t, x) = λ m+i (x)∂ x T m+i (t, x).
Combining (2.7) and (2.11), and integrating by parts yield (2.12)

U 2 (t) = - k i=1 ˆ1 0 (λ m+i p m+i ) (x)|T m+i (t, x)| q + k i=1 λ m+i (x)p m+i (x)|T m+i (t, x)| q 1 0 .
By the feedback laws (1.19)-(1.21), the boundary term in the RHS of (2.12) is

- k i=1 λ m+i (0)p m+i (0) w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) q .
One then has

(2.13) U 2 (t) = - k i=1 ˆ1 0 (λ m+i p m+i ) (x)|T m+i (t, x)| q - k i=1 λ m+i (0)p m+i (0) w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) q .
From (2.9) and (2.13), we obtain

(2.14) U 1 (t) + U 2 (t) = W 1 (t) + W 2 (t),
where

(2.15) W 1 (t) = - k i=1 λ i (1)p i (1)|w i (t, 1)| q + k i=1 λ i (0)p i (0)|(Bw + ) i (t, 0)| q - m i=k+1 λ i (0)p i (0)|w i (t, 0)| q - k i=1 λ m+i (0)p m+i (0) w m+i (t, 0)-M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) q , and 
(2.16) W 2 (t) = k i=1 ˆ1 0 (λ i p i ) (x)|w i (t, x)| q dx - m i=k+1 ˆ1 0 (λ i p i ) (x)|w i (t, x)| q dx - k i=1 ˆ1 0 (λ m+i p m+i ) (x) w m+i (t, x)-M i w k+1 t, a k+1,m+i (x) , . . . , w m+i-1 t, a m+i-1,m+i (x) q dx.
On the other hand, (1.30), (1.31), and (1.32) imply (2.17)

(λ i p i ) = -qΛp i for 1 ≤ i ≤ k, (2.18) (λ i p i ) = qΛp i for k + 1 ≤ i ≤ k + m.
Using (2.17) and (2.18), we derive from (2.16) that

(2.19) W 2 (t) = -qΛV(t).
We have, by the Gaussian elimination process,

k i=j w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) ≥ C k i=j |(Bw + ) i (t, 0)|.
for j = k, then j = k -1, . . . , and finally for j = 1. Using the fact

ˆ1 0 λ -1 i 1 (s) ds < ˆ1 0 λ -1 i 2 (s) ds for 1 ≤ i 1 < i 2 ≤ k,
and, for a i ≥ 0 with 1 ≤ i ≤ j ≤ k and 1 ≤ q < +∞,

j i=1 a i q ≤ C q j i=1 a q i ,
for some positive constant C independent of q and a i , we derive from (1.30) and (1.32) that, for large Γ (the largeness of Γ depends only on B, k, and l; it is in particular independent of Λ and q),

k i=1 λ m+i (0)p m+i (0) w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) q ≥ k i=1 λ i (0)p i (0)|(Bw + ) i (t, 0)| q .
It follows from ( 

p i (x),
and define, for v ∈ [L 2 (0, 1)] n , (2.23)

v q V = ˆ1 0 m i=1 |v i (x)| q dx + ˆ1 0 k i=1 v m+i (x) -M i v k+1 a k+1,m+i (x) , . . . , v m+i-1 a m+i-1,m+i (x) q dx.
Using (1.30), (1.31), (1.32), and the definition of T opt (1.9), one can check that (2.24) A/a ≤ C q e qΛTopt , for some positive constant C depending only on Γ and Σ. It follows that

w(t, •) q V (2.22),(2.23) ≤ 1 a V w(t, •) (2.21) ≤ 1 a e -qΛt V w(0, •) (2.22),(2.23) ≤ A a e -qΛt w 0 q V (2.24)
≤ C q e qΛ(Topt-t) w 0 q V .

Since v V ∼ v L q (0,1) for v ∈ L q (0, 1) n by Lemma A1 in the appendix, assertion (1.27) follows.

It is clear that (1.28) is a consequence of (1.27) by taking q → +∞. We have, by the Gaussian elimination process, for k

+ 1 ≤ m + j ≤ m + k, i m+j≤m+i≤m+k w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) ≥ C i m+j≤m+i≤m+k |(Bw + ) i (t, 0)|. and, for 1 ≤ j ≤ k -m, i k+1≤m+i≤m+k w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) ≥ C|(Bw + ) j (t, 0)|. Using the fact ˆ1 0 λ -1 i 1 (s) ds < ˆ1 0 λ -1 i 2 (s) ds for 1 ≤ i 1 < i 2 ≤ k,
we derive from (1.30) and (1.32) that, for large Γ (the largeness of Γ depends only on B, k, and l; it is in particular independent of Λ and q), i k+1≤m+i≤m+k

λ m+i (0)p m+i (0) w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) q ≥ k i=1 λ i (0)p i (0)|(Bw + ) i (t, 0)| q .
One can then derive that (2.26) W 1 (t) ≤ 0.

Combining (2.25) and (2.26) yields

d dt V(t) ≤ -ΛV(t).
The conclusion now follows as in the proof of Theorem 1.1 for m ≥ k. The details are omitted.

On the nonlinear setting

The following result was established in [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF].

Proposition 3.1. Assume that ∇B(0) ∈ B. For any T > T opt , there exist ε > 0 and a timeindependent feedback control for (1.1), (1.5), and (1.6) such that if the compatibility conditions (at x = 0) (3.1) and (3.2) below hold for w(0, •),

w(0, •) C 1 ([0,1]) < ε ⇒ (w(T, •) = 0) .
In what follows, we denote, for x ∈ [0, 1] and

y ∈ R n , Σ -(x, y) = diag -λ 1 (x, y), • • • , -λ k (x, y) and Σ + (x, y) = diag λ k+1 (x, y), • • • , λ n (x, y) .
The compatibility conditions considered in Theorem 3.1 are:

(3.1) w -(0, 0) = B w + (0, 0) and (3.2) Σ -0, w(0, 0) ∂ x w -(0, 0) = ∇B w + (0, 0) Σ + 0, w(0, 0) ∂ x w + (0, 0).

We next describe the feedback given in the proof of Proposition 3.1 in [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF]. Let x j be defined as d dt x j (t, s, ξ) = λ j x j (t, s, ξ), w t, x j (t, s, ξ) and x j (s, s, ξ) = ξ for 1 ≤ j ≤ k, and d dt x j (t, s, ξ) = -λ j x j (t, s, ξ), w t, x j (t, s, ξ) and x j (s, s, ξ) = ξ for k + 1 ≤ j ≤ k + m.

We do not precise at this stage the domain of the definition of x j . Later, we only consider the flows in the regions where the solution w is well-defined.

To arrange the compatibility of our controls, we also introduce auxiliary variables satisfying autonomous dynamics. Set δ = T -T opt > 0. For t ≥ 0, let, for k + 1 ≤ j ≤ k + m,

(3.3) ζ j (0) = w 0,j (1), ζ j (0) = λ j 1, w 0 (1) w 0,j (1), ζ j (t) = 0 for t ≥ δ/2,

and

(3.4)

η j (0) = 1, η j (0) = 0, η j (t) = 0 for t ≥ δ/2.
We first deal with the case m ≥ k. Consider the last equation of (1.5). Impose the condition w k (t, 0) = 0. Using (1.11) with i = 1 and the implicit function theorem, one can then write the last equation of (1.5) under the form (3.5) w m+k (t, 0) = M k w k+1 (t, 0), • • • , w m+k-1 (t, 0) , for some C 2 nonlinear map M k from U k into R for some neighborhood U k of 0 ∈ R m-1 with M k (0) = 0 provided that |w + (t, 0)| is sufficiently small. Consider the last two equations of (1.5) and impose the condition w k (t, 0) = w k-1 (t, 0) = 0. Using (1.11) with i = 2 and the Gaussian elimination approach, one can then write these two equations under the form (3.5) and

(3.6) w m+k-1 (t, 0) = M k-1 w k+1 (t, 0), • • • , w m+k-2 (t, 0) , for some C 2 nonlinear map M k-1 from U k-1 into R for some neighborhood U k-1 of 0 ∈ R m-2 with M k-1 (0) = 0 provided that |w + (t, 0)
| is sufficiently small, etc. Finally, consider the k equations of (1.5) and impose the condition [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF] with i = k and the Gaussian elimination approach, one can then write these k equations under the form (3.5), (3.6), . . . , and

w k (t, 0) = • • • = w 1 (t, 0) = 0. Using (1.
(3.7) w m+1 (t, 0) = M 1 w k+1 (t, 0), • • • , w m (t, 0) , for some C 2 nonlinear map M 1 from U 1 into R for some neighborhood U 1 of 0 ∈ R m-k with M 1 (0) = 0 provided that |w + (t, 0)| is sufficiently small for m > k. When m = k, we just define M 1 = 0.
We are ready to construct a feedback law for the null-controllability at the time T . Let t m+k be such that

x m+k (t + t m+k , t, 1) = 0. As a consequence, the feedback

(3.9) w m+k-1 (t, 1) = ζ m+k-1 (t) +(1-η m+k-1 (t))M k-1 w k+1 t, x k+1 (t, t+t m+k-1 , 0) , . . . , w k+m-2 t, x k+m-2 (t, t+t m+k-1 , 0)
is well-defined by the current state w(t, •).

We continue this process and reach the system (1.1), (1.5), (3.8), . . .

(3.10) w m+2 (t, 1) = ζ m+2 (t)
+ (1 -η m+2 (t))M 2 w k+1 t, x k+1 (t, t + t m+2 , 0) , . . . , w m+1 t, x m+1 (t, t + t m+2 , 0) .

Let t m+1 be such that x m+1 (t + t m+1 , t, 1) = 0. It is clear that t m+1 depends only on the current state w(t, •) and the feedback law (3.8), . . . , (3.10). Let D m+1 = D m+1 (t) ⊂ R 2 be the open set whose boundary is {t}×[0, 1], [t, t+t m+1 ]×{0}, and s, x m+1 (s, t, 1) ; s ∈ [t, t + t m+1 ] . Then D m+1 depends only on the current state. This implies x k+1 (t, t + t m+1 , 0), . . . , x m (t, t + t m+1 , 0) are well-defined by the current state w(t, •).

As a consequence, the feedback

(3.11) w m+1 (t, 1) = ζ m+1 (t) + (1 -η m+1 (t))M 1 w k+1 t, x k+1 (t, t + t m+1 , 0) , . . . , w m t, x m (t, t + t m+1 , 0)
is well-defined by the current state w(t, •).

To complete the feedback for the system, we consider, for k + 1 ≤ j ≤ m, (3.12)

w j (t, 1) = ζ j (t),
We next consider the case k > m. The feedback law is then given as follows

w m+k (t, 1) = ζ m+k (t) + (1 -η m+k (t))M k w k+1 t, x k+1 (t, t + t m+k , 0) , . . . , w k+m-1 t, x k+m-1 (t, t + t m+k , 0) , . . . w k+2 (t, 1) = ζ k+2 (t) + (1 -η k+2 (t))M k+2-m w k+1 t, x k+1 (t, t + t k+2 , 0) , and 
w k+1 (t, 1) = ζ k+1 (t) + (1 -η k+1 (t))M k+1-m , with the convention M k+1-m = 0.
Remark 3.1. The feedbacks above are time-independent and the well-posedness of the control system is established in [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF]Lemma 2.2] for small initial data.

To introduce the Lyapunov function, as in the linear setting, for k + 1 ≤ i < j ≤ k + m, and for x ∈ [0, 1], t ≥ δ/2, let τ (j, t, x) be such that x j τ (j, t, x), t, x = 0, and define

a i,j (t, x) = a i,j x, w(t, •) = x i t, τ (j, t, x), 0 . 
In the last identities, by convention, we considered x i t, τ (j, t, x), 0 as a function of t and x denoted by a i,j (t, x) or a function of x and w(t, •) denoted by a i,j x, w(t,

•) . Set H = v ∈ [C 1 ([0, 1])
] n ; v satisfies the compatibility conditions at 0 and 1 .

Let q ≥ 1 and let V : H → R (q ≥ 1) be defined by

(3.13) V(v) = V(v) + V(v).
Here, with = max{m, k},

(3.14) V(v) = i=1 ˆ1 0 p i (x)|v i (x)| q dx + i +1≤m+i≤k+m ˆ1 0 p m+i (x) v m+i (x)-M i v k+1 a v k+1,m+i (x, v) , . . . , v m+i-1 a v m+i-1,m+i (x, v) q dx, and 
(3.15) V(v) = i=1 ˆ1 0 p i (x)|∂ t v(0, x)| q dx + i +1≤m+i≤k+m ˆ1 0 p m+i (x) ∂ t v m+i (0, x) -∂ t M i v k+1 t, a v k+1,m+i (t, x) , . . . , v m+i-1 t, a v m+i-1,m+i (t, x) t=0 q dx.
Here v(t, •) is the corresponding solution with v(t = 0, •) = v and a v k+j,m+i is defined as a k+j,m+i with w(t, •) replaced by v(t, •). We also define here (3.16)

p i (x) = λ -1 i (x, 0)e -qΛ ´x 0 λ -1 i (s,0) ds+qΛ ´1 0 λ -1 i (s,0) ds for 1 ≤ i ≤ k, (3.17) p i (x) = Γ q λ -1 i (x, 0)e qΛ ´x 0 λ -1 i (s,0) ds for k + 1 ≤ i ≤ , (3.18) p m+i (x) = Γ q λ -1 m+i (x, 0)e qΛ ´x 0 λ -1 m+i (s,0) ds+qΛ ´1 0 λ -1 i (s,0) ds for + 1 ≤ m + i ≤ m + k,
for some large positive constant Γ ≥ 1 depending only on Σ and B (it is independent of Λ and q).

Concerning the feedback given above, we have 

w(t, •) W 1,q (0,1) ≤ Ce Λ Topt-t w(0, •) W 1,q (0,1) + ζ C 1 + η C 1 w(0, •) W 1,q (0,1) .
As a consequence, we have

(3.20) w(t, •) C 1 ([0,1]) ≤ Ce Λ Topt-t w(0, •) C 1 ([0,1]) + ζ C 1 + η C 1 w(0, •) C 1 ([0,1]) .
Proof. We first claim that, for k + 1 ≤ i < j ≤ k + m and x ∈ [0, 1],

(3.21) λ i a i,j (t, x), w t, a i,j (t, x) + ∂ t a i,j (t, x) = λ j x, w(t, x) ∂ x a i,j (t, x).

Indeed, by the characteristic, we have a i,j s, x j (s, t, x) = x i (s, τ (j, t, x), 0) for t ≤ s ≤ τ (j, t, x).

Taking the derivative with respect to s yields, for t ≤ s ≤ τ (j, t, x), ∂ t a i,j s, x j (s, t, x) + ∂ s x j (s, t, x)∂ x a i,j s, x j (s, t, x) = ∂ s x i (s, τ (j, t, x), 0).

Considering s = t and using the definition of the flows, we obtain the claim. As a consequence of (3.21), we have (3.22) ∂ x w i t, a i,j (t, x) = λ i a i,j (t, x), w t, a i,j (t, x) + ∂ t a i,j (t, x) λ j x, w(t, x) ∂ x w i t, a i,j (t, x) .

Identity (3.22

) is a variant of (2.2) for the nonlinear setting and plays a role in our analysis.

We next only consider the case m ≥ k. The case m < k can be proved similarly as in the proof of Theorem 1.1. We will assume that the solutions are of class C 2 . The general case can be established via a density argument as in [6, page 1475] and [4, Comments 4.6, page 127-128].

We first deal with V. We have, for t ≥ δ/2, 

(3.23) d dt V(w(t, •)) = - k i=1 ˆ1 0 p i (x)λ i x, w(t, x) ∂ x |w i (t, x)| q dx + m i=k+1 ˆ1 0 p i (x)λ i x, w(t, x) ∂ x |w i (t, x)| q dx + k i=1 ˆ1 0 qp m+i (x)∂ t T m+i (t, x)|T m+i (t, x)| q-2 T m+i (t,
+ k i=1 λ i (0, w(t, 0))p i (0)|(Bu + ) i (t, 0)| q - m i=k+1 λ i (0, w(t, 0))p i (0)|w i (t, 0)| q - k i=1 λ m+i (0, w(t, 0))p m+i (0) w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) q , and (3.28) 
Ŵ2 (t) = k i=1 ˆ1 0 λ i (x, w(t, x))p i (x) x |w i (t, x)| q dx - m i=k+1 ˆ1 0 λ i (x, w(t, x))p i (x) x |w i (t, x)| q dx - k i=1 ˆ1 0 λ m+i (x, w(t, x))p m+i (x) x w m+i (t, x) dx -M i w k+1 t, a k+1,m+i (t, x) , . . . , w m+i-1 t, a m+i-1,m+i (t, x) q dx.
As in the proof of Theorem 1.1, we also have, for large Γ and |w(t, 0)| sufficiently small, k i=1 λ m+i (0, w(t, 0))p m+i (0) w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0)

2 ≥ k i=1 λ i (0, w(t, 0))p i (0)|(Bw + ) i (t, 0)| 2 .
This implies

(3.29) Ŵ1 (t) ≤ 0.
Concerning Ŵ2 (t), we write

λ i (x, w(t, x))p i (x) = λ i (x, w(t, x)) λ i (x, 0) λ i (x, 0)p i (x).
Note that, since Σ and ∂ y Σ are of class C 1 , 

λ i (x, w(t, x)) λ i (x, 0) -1 + ∂ x λ i (x, w(t, x)) λ i (x, 0) ≤ C(ε,
d dt V(t) ≤ -q(Λ -C(ε, δ))V(t) for t ≥ δ/2.
We next investigate V. By (3.15), we have, for t ≥ δ/2,

(3.32) V(w(t, x)) = k i=1 ˆ1 0 p i (x)|∂ t w(t, x)| q dx + i k+1≤m+i≤k+m ˆ1 0 p m+i (x) ∂ t w m+i (t, x)
-M i w k+1 t, a k+1,m+i (t, x) , . . . , w m+i-1 t, a m+i-1,m+i (t, x)

t q dx.
Using (3.25), we have

d dt V(w(t, •)) = - k i=1 ˆ1 0 p i (x)λ i x, w(t, x) ∂ x |∂ t w i (t, x)| q dx + k i=1 ˆ1 0 qp i (x) λ i (x, w(t, x)) ∂ y λ i (x, w(t, x))∂ t w(t, x)|∂ t w i (t, x)| q dx + m i=k+1 ˆ1 0 p i (x)λ i x, w(t, x) ∂ x |∂ t w i (t, x)| q dx + m i=k+1 ˆ1 0 qp i (x) λ i (x, w(t, x)) ∂ y λ i x, w(t, x) ∂ t w(t, x)|∂ t w i (t, x)| q dx + k i=1 ˆ1 0 p m+i (x)λ m+i (x, w(t, x))∂ x (|∂ t T m+i (t, x)| q ) dx + k i=1 ˆ1 0 qp m+i (x) λ m+i (x, w(t, x)) ∂ y λ m+i (x, w(t, x))∂ t w(t, x)|∂ t T m+i (t, x)| q dx. Set (3.33) W 3 (t) = k i=1 ˆ1 0 qp i (x) λ i (x, w(t, x)) ∂ y λ i (x, w(t, x))∂ t w(t, x)|∂ t w(t, x)| q dx + m i=k+1 ˆ1 0 qp i (x) λ i (x, w(t, x)) ∂ y λ i x, w(t, x) ∂ t w(t, x)|∂ t w(t, x)| q dx + k i=1 ˆ1 0 qp m+i (x) λ m+i (x, w(t, x)) ∂ y λ m+i (x, w(t, x))∂ t w(t, x)|∂ t T m+i (t, x)| q dx.
An integration by parts yields -M i w k+1 t, a k+1,m+i (t, x) , . . . , w m+i-1 t, a m+i-1,m+i (t, x)

t q dx.
As before, we have (3.37) W 1 (t) + W 2 (t) ≤ -qΛ(1 -C(ε, δ)) V.

One can check that The conclusion now follows as in the linear case after taking ε sufficiently small, replacing Λ(1 -Cε) by Λ, and noting that

w(t, •) C 1 ([0,1]) ≤ C w(0, •) C 1 ([0,1]) + ζ C 1 + η C 1 w(0, •) C 1 ([0,1]) for 0 ≤ t ≤ δ/2.
We also note here that the conclusion (A3) of Lemma A1 also holds for nonlinear maps M i of class C 1 with M i (0) = 0 provided that v C 1 ([0,1) is sufficiently small. The details are omitted. for some positive constants c 1 and c 2 . Set = max{k, m}. Let, for + 1 ≤ m + i ≤ m + k, M i ∈ R 1×(m+1-k-i) . Define, for v ∈ [L q (0, 1)] n , (A2) |||v||| q = i=1 ˆ1 0 |v i (x)| q dx + i +1≤m+i≤k+m ˆ1 0 v m+i (x) -M i v k+1 b k+1,m+i (x) , . . . , v m+i-1 b m+i-1,m+i (x)

q dx.
We have (A3) λ -1 v L q (0,1) ≤ |||v||| ≤ λ v L q (0,1) , for some λ ≥ 1 depending only on k, m, c 1 , and c 2 , and M i ; it is independent of q.

Proof. We only consider the case m ≥ k. The other case can be proved similarly. It is clear that (A4) |||v||| ≤ C v L q (0,1) .

On the other hand, using the inequality, for ξ 1 , ξ 2 ∈ R d with d ≥ 1,

|ξ 1 | q + |ξ 2 -ξ 1 | q ≥ C -q (|ξ 1 | q + |ξ 2 | q ),
we have, for 1 ≤ i ≤ k, (A5) ˆ1 0 v m+i (x) -M i v k+1 b k+1,m+i (x) , . . . , v m+i-1 b m+i-1,m+i (x) q dx + k+1≤j≤m+i-1 ˆ1 0 |v i b j,m+i (x) | q dx ≥ C -q ˆ1 0 |v m+i (x)| q dx.

Using (A1), by a change of variables, we obtain, for k + 1 ≤ i < j ≤ m + k,

(A6) ˆ1 0 |v i b i,j (x) | q dx ≤ C ˆ1 0 |v i (x)| q dx.
From (A5) and (A6), we deduce that (A7)

k i=1 ˆ1 0 v m+i (x) -M i v k+1 b k+1,m+i (x) , . . . , v m+i-1 b m+i-1,m+i (x) q dx + m i=k+1 ˆ1 0 |v i (x)| q dx ≥ C -q ˆ1 0 n i=k+1 |v i (x)| q dx.
The conclusion then follows from (A4) and (A7).
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 2 Proof of Theorem 1.1 for m < k. The proof of Theorem 1.1 for m < k is similar to the one for m ≥ k. Indeed, one has (2.25) W 2 (t) = -ΛV.
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 31 Let m, k ≥ 1. There exists a constant C ≥ 1, depending only on B and Σ such that for Λ ≥ 1 and for T > T opt , there exist ε > 0 such that if the compatibility conditions (at x = 0) (3.1) and (3.2) hold for w(0, •), and w(0, •) C 1 ([0,1]) < ε, we have, for t ≥ δ/2 with δ = T -T opt ,(3.19) 

(3. 38 ) W 3 ≤

 383 C(ε, δ)q V.From (3.34), (3.37), and (3.38), we derive that (3.39) d dt V(t) ≤ -qΛ(1 -C(ε, δ)) V. Combining (3.31) and (3.39) yields d dt V(t) ≤ -qΛ(1 -C(ε, δ))V.

  Appendix A. A useful lemma Lemma A1. Let m, k ≥ 1. For k + 1 ≤ i < j ≤ k + m, let b i,j : [0, 1] → [0, 1] be of class C 1 such that (A1) c 1 ≤ |b i,j (x)| ≤ c 2 for x ∈ (0, 1),

  for example,[START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF] Sections 4.6, 4.7, 5.5.2, 11.7]. For 1-D hyperbolic systems Lyapunov functions are in particular used for the study of a classical robustness property called the Input-to-State Stability (ISS); see, for example,[START_REF] Ferrante | Boundary control design for conservation laws in the presence of measurement noise[END_REF][START_REF] Hayat | PI controller for the general Saint-Venant equations[END_REF][START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF][START_REF] Gediyon | An analysis of the input-to-state stabilization of linear hyperbolic systems of balance laws with boundary disturbances[END_REF].

  It is clear that t m+k depends only on the current state w(t, •). Let D m+k = D m+k (t) ⊂ R 2 be the open set whose boundary is {t}×[0, 1], [t, t+t m+k ]×{0}, and s, x m+k (s, t, 1) ; s ∈ [t, t+t m+k ] . Then D m+k depends only on the current state as well. This implies x k+1 (t, t + t m+k , 0), . . . , x k+m-1 (t, t + t m+k , 0) are well-defined by the current state w(t, •). -η m+k (t))M k w k+1 t, x k+1 (t, t + t m+k , 0) , . . . , w k+m-1 t, x k+m-1 (t, t + t m+k , 0) is well-defined by the current state w(t, •).We then consider the system (1.1), (1.5), and the feedback (3.8). Let t m+k-1 be such thatx m+k-1 (t + t m+k-1 , t, 1) = 0.

	As a consequence, the feedback
	(3.8) w m+k (t, 1) = ζ m+k (t)
	+ (1

It is clear that t m+k-1 depends only on the current state w(t, •) and the feedback law

(3.8)

. Let

D m+k-1 = D m+k-1 (t) ⊂ R 2 be the open set whose boundary is {t} × [0, 1], [t, t + t m+k-1 ] × {0},

and s, x m+k-1 (s, t, 1) ; s ∈ [t, t + t m+k-1 ] . Then D m+k-1 depends only on the current state. This implies x k+1 (t, t + t m+k-1 , 0), . . . , x k+m-2 (t, t + t m+k-1 , 0) are well-defined by the current state w(t, •).

  T m+i (t, x) = w m+i (t, x) -M i w k+1 t, a k+1,m+i (t, x) , . . . , w m+i-1 t, a m+i-1,m+i (t, x) .

			x) dx,
	where		
	(3.24) one can prove that		
	(3.25) ∂ Using (3.25) and making an integration by parts, as in (2.14), we obtain
	(3.26)	d dt	V(w(t, •))) = Ŵ1 (t) + Ŵ2 (t),
	where		
	(3.27) Ŵ1 (t) = -		

Using

(3.22) 

and noting that, for k

+ 1 ≤ i ≤ j ≤ k + m, ∂ t w i (t, a i,j (t, x)) = λ i a i,j (t, x), w(t, a i,j (t, x)) ∂ x w i (t, a i,j (t, x)), t T m+i (t, x) = λ m+i (x, w(t, x))∂ x T m+i (t, x).

k i=1 λ i (1, w(t, 1))p i (1)|w i (t, 1)| q

  (1, w(t, 1))p i (1)|∂ t w i (t, 1)| q + (0, w(t, 0))p i (0)|∂ t (Bu + ) i (t, 0)| q i (x, w(t, x))p i (x) x |∂ t w i (t, x)| q dx i (x, w(t, x))p i (x) x |∂ t w i (t, x)| q dx m+i (x, w(t, x))p m+i (x) x ∂ t w m+i (t, x)

	and		
	(3.36) W 2 (t) =	k i=1 ˆ1 0
				-	m i=k+1 ˆ1 0
	-	k i=1 ˆ1 0
	(3.34)			d dt	V(w(t, •))) = W 1 (t) + W 2 (t) + W 3 (t),
	where		
	(3.35) W 1 (t) = -	k i=1	λ i k i=1 m λ i -λ i (0, w(t, 0))p i (0)|∂ t w i (t, 0)| q
				i=k+1
				q
	-			,
				t

k i=1 λ m+i (0, w(t, 0))p m+i (0) ∂ t w m+i (t, 0) -M i w k+1 (t, 0), . . . , w m+i-1 (t, 0) λ λ λ

The i direction (1 ≤ i ≤ n) is called positive (resp. negative) if λi is positive (resp. negative).
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