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ASYMPTOTIC BEHAVIOUR OF THE STEKLOV PROBLEM ON DUMBBELL DOMAINS

We analyse the asymptotic behaviour of the eigenvalues and eigenvectors of a Steklov problem in a dumbbell domain consisting of two Lipschitz sets connected by a thin tube with vanishing width. All the eigenvalues are collapsing to zero, the speed being driven by some power of the width which multiplies the eigenvalues of a one dimensional problem. In two dimensions of the space, the behaviour is fundamentally different from the third or higher dimensions and the limit problems are of different nature. This phenomenon is due to the fact that only in dimension two the boundary of the tube has not vanishing surface measure.

Introduction

The purpose of this paper is to analyse the asymptotic behaviour of the eigenvalues and eigenfunctions of the Steklov problem in a dumbbell domain. Given Ω ⊆ R n , open, bounded, connected, Lipschitz set, the Steklov problem on Ω consists in solving the eigenvalue problem [START_REF] José | Neumann eigenvalue problems on exterior perturbations of the domain[END_REF] ∆u = 0 Ω ∂ ν u = σu ∂Ω,

where ν stands for the outward normal at the boundary. As the trace operator H 1 (Ω) → L 2 (∂Ω) is compact, the spectrum of the Steklov problem is discrete and the eigenvalues (counted with their multiplicities) go to infinity

0 = σ 0 (Ω) < σ 1 (Ω) ≤ σ 2 (Ω) ≤ • • • → +∞.
We also have the following variational characterization of the Steklov eignevalues

σ k (Ω) = inf E k sup 0 =u∈E k Ω |∇u| 2 dx ∂Ω u 2 dH n-1
, where the infimum is taken over all k-dimensional subspaces of the Sobolev space H 1 (Ω) which are L 2 -orthogonal to constants on ∂Ω.

Let Ω ⊂ R n be a dumbbell shape domain given by (see Figure 1)

Ω = D 1 ∪ T ∪ D 2 ,
where D 1 and D 2 are disjoint, bounded, open, connected sets in R n with Lipschitz boundary and T is expressed as

T = x = (x 1 , x ) ∈ R n | - L 2 ≤ x 1 ≤ L 2 , |x | < ρ(x 1 ) ,
where L > 0 and ρ

∈ C 0 ([-L 2 , L 2 ]) ∩ C ∞ ((-L 2 , L 2 
)) is a positive function. The connection between the channel and the two regions D 1 and D 2 occurs as follows: we assume that there exist an orthogonal system of coordinate x = (x 1 , x 2 , ..., x n ) = (x 1 , x ) ∈ R n and two constants L, δ ∈ R such that

D 1 ∩ x = (x 1 , x ) ∈ R n |x 1 ≥ - L 2 , |x | ≤ δ = x = (- L 2 , x ) ∈ R n | |x | ≤ δ D 2 ∩ x = (x 1 , x ) ∈ R n |x 1 ≤ L 2 , |x | ≤ δ = x = ( L 2 , x ) ∈ R n | |x | ≤ δ .
The eigenvalues of the Steklov problem in Ω are denoted by

0 = σ 0 < σ 1 ≤ σ 2 ≤ ... ∞ ∀ > 0,
multiplicity being counted, and the corresponding eigenfunctions by u k , which are normalized in L 2 (∂Ω ), ||u k || L 2 (∂Ω ) = 1.

The main purpose of this work is to study what is the behaviour of (σ k , u k ) when goes to 0. The first thing to notice is that, if → 0, the channel T collapse to a line and the norm of the trace operator blows up. One can easily observe that ∀k ∈ N, σ k → 0 when → 0, our objective being to give precise estimates of the asymptotic behaviour of σ k when goes to 0. We shall prove that σ k behaves, roughly speaking, as µ k γ , where µ k is the k-th eigenvalue of some one dimensional problem and γ ∈ {1, n -1}.

As an interesting feature, we notice that the behaviour strongly depends on the dimension of the ambient space. Indeed we have to distinguish between the cases n = 2 and n ≥ 3, as we shall see below. This fact is due to the presence of the boundary energy in the Rayleigh quotient of the Steklov problem and to the fact that in dimension three, or higher, the surface area measure of the boundary of the tube is vanishing with .

Below, we denote by P (D) the surface area measure of the boundary of D and ω n is the Lebesgue measure of the n-dimensional unit ball. Let Φ ε : T 1 → T , Φ (x 1 , x ) = (x 1 , x ).

Here are our main results. The first theorem concerns the case n = 2.

Theorem 1.1. (n = 2) Let Ω ⊂ R 2 be the dumbbell shape domain defined as above. Then

σ k ∼ µ k + o( ) as → 0,
where µ k is the k-th eigenvalue of the following problem

(2)          -d dx ρ(x) dV k dx (x) = µ k V k (x) x ∈ -L 2 , L 2 ρ(-L 2 ) dV k dx (-L 2 ) = -µ k 2 P (D 1 )V k (-L 2 ) ρ( L 2 ) dV k dx ( L 2 ) = µ k 2 P (D 2 )V k ( L 2 ).
For every subsequence { n } ∞ n=1 such that n → 0, we have

u n k • Φ n V k in H 1 (T 1 ),
where V k is a k-th eigenfunction of the problem (2) constantly extended in the variable x 2 .

This kind of eigenvalue problem (in any dimension) where the eigenvalue µ k appears both inside the domain and in the boundary condition is sometimes called a dynamical eigenvalue problem. It appears at different places in the literature. we refer for example to [START_REF] Von | Spectral asymptotics for the Laplacian under an eigenvalue dependent boundary condition[END_REF] where a complete study of this eigenvalue problem has been done. See also [START_REF] Girouard | From Steklov to Neumann via homogenisation[END_REF] where a similar problem appears in the homogenization of the Steklov problem.

The next two theorems concern the case n ≥ 3. We shall distinguish between the behaviour of the first non-zero eigenvalue, and the others.

Theorem 1.2. (n ≥ 3, k ≥ 2)
Let Ω ⊂ R n be the dumbbell shape domain defined as above and n ≥ 3. Then for all k ≥ 2 we have

σ k ∼ α k-1 + o( ) as → 0,
where α k-1 is the (k -1)-th eigenvalue (counting from zero) of

(3)          -w n-1 d dx ρ n-1 (x) dV k dx (x) = α k w n-2 ρ n-2 (x)V k (x) x ∈ -L 2 , L 2 V k (-L 2 ) = 0 V k ( L 2 ) = 0.
For every subsequence { n } ∞ n=1 such that n → 0, we have

n-2 2 n u n k • Φ n V k-1 in H 1 (T 1 ), where V k-1 is an eigenfunction corresponding to α k-1 , constantly extended into the vari- ables x i for 2 ≤ i ≤ n.
Therefore, in the case n ≥ 3, k ≥ 2 we end up with a classical Dirichlet eigenvalue problem.

Theorem 1.3. (n ≥ 3, k = 1)
Let Ω ⊂ R n be the dumbbell shape domain defined as above and n ≥ 3. The first Steklov eigenvalue has the following asymptotic behaviour

σ 1 ∼ σ 1 n-1 + o( n-1 ) as → 0,
where σ 1 is the unique positive number such that the following differential equation has a non-trivial solution:

(4)

         -ω n-1 d dx ρ n-1 (x) dV 1 dx (x) = 0 x ∈ -L 2 , L 2 ρ n-1 (-L 2 ) dV 1 dx (-L 2 ) = -σ 1 ω n-1 P (D 1 )V 1 (-L 2 ) ρ n-1 ( L 2 ) dV 1 dx ( L 2 ) = σ 1 ω n-1 P (D 2 )V 1 ( L 2 ). For every subsequence { n } ∞ n=1 such that n → 0, we have u n 1 • Φ n V 1 in H 1 (T 1 ),
where V 1 is the solution of the equation (4) constantly extended to the variables x i for 2 ≤ i ≤ n.

Let us now comment on the existing literature. A similar problem for the eigenvalues of the Neumann Laplacian has been deeply studied, in particular in a series of papers by S. Jimbo. A first characterization of the eigenvalues in the Neumann case was given in [START_REF] Beale | Scattering frequencies of reasonators[END_REF]. In [START_REF] Shuichi | The singularly perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition[END_REF] there is a complete description of the behaviour of the Neumann eigenfunctions and in [START_REF] Jimbo | Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels[END_REF] there is a complete description of the Neumann eigenvalues when the channel collapse to a segment. Other references for the Neumann problem in dumbbell shape domains are [START_REF] José | Neumann eigenvalue problems on exterior perturbations of the domain[END_REF][START_REF] Shuichi | Singular perturbation of domains and semilinear elliptic equation[END_REF][START_REF] Shuichi | Singular perturbation of domains and the semilinear elliptic equation. II[END_REF][START_REF] Shuichi | Perturbation formula of eigenvalues in a singularly perturbed domain[END_REF][START_REF] Shuichi | Singular perturbation of domains and semilinear elliptic equations[END_REF]. These results turn out to be very useful in the study of the solutions of reaction diffusion systems in singular domains (see for instance [START_REF] José | Dynamics in dumbbell domains. I. Continuity of the set of equilibria[END_REF][START_REF] Fang | Asymptotic behavior and domain-dependency of solutions to a class of reaction-diffusion systems with large diffusion coefficients[END_REF][START_REF] Hale | A nonlinear parabolic equation with varying domain[END_REF][START_REF] Morita | Reaction-diffusion systems in nonconvex domains: invariant manifold and reduced form[END_REF]). Perturbations of the geometric domain for the Steklov problem have been considered in [START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF]. For an asymptotic behaviour of the Steklov problem on a singular perturbation somehow close to our analysis, we refer to the result of Nazarov [START_REF] Nazarov | Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions[END_REF] where he studies a two dimensional domain obtained by the junction of two rectangles (see also [START_REF] Nazarov | Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains[END_REF] for a perturbation by a small whole). At last, let us mention that in the case of Dirichlet boundary conditions, singular perturbations of this type are less interesting, since the spectrum is stable to this geometric perturbation. Indeed, it can be proved that the dumbbell γ-converges to the union of the two sets D 1 ∪ D 2 which means that its Dirichlet eigenvalues converge to the union of the spectrum of D 1 and D 2 . We refer to the books [START_REF] Bucur | Variational methods in shape optimization problems[END_REF] and [START_REF] Henrot | Shape variation and optimization[END_REF] for more details.

2. The case n = 2. Proof of Theorem 1.1.

In this section we will prove Theorem 1.1. We define ∂T e ⊂ ∂Ω in the following way

∂T e = x = (x 1 , x ) ∈ R n | - L 2 ≤ x 1 ≤ L 2 , x = |ρ(x 1 )|
In two dimensions, the set ∂T e is not connected and we decompose it

∂T e = Γ -∪ Γ + ,
where

Γ + = x = (x 1 , x 2 ) ∈ R n | - L 2 ≤ x 1 ≤ L 2 , x 2 = ρ(x 1 ) Γ -= x = (x 1 , x 2 ) ∈ R n | - L 2 ≤ x 1 ≤ L 2 , x 2 = -ρ(x 1 ) .

2.1.

Upper bound for Steklov eigenvalues. First of all we prove that there exists a constant C > 0 such that the following upper bound holds for small enough:

(5)

σ k ≤ C .
Precisely, we prove the following.

Lemma 2.1. Let µ k the k-th eigenvalue of (2) then we have

(6) σ k ≤ µ k + o( ).
Proof. In order to obtain this upper bound, we use the variational formulation

σ k = inf E k sup 0 =u∈E k Ω |∇u| 2 dx ∂Ω u 2 ds
, where the infimum is taken over all k-dimensional subspace of the Sobolev space H 1 (Ω ) which are orthogonal to constants on ∂Ω . We choose a particular subspace E k in order to obtain the upper bound. We consider the eigenvalue problem (2) and take a basis of eigenfunctions {φ i } i∈N normalized in the following way

(7) L 2 -L 2 φ i φ j dx 1 + 1 2 P (D 2 )φ i L 2 φ j L 2 + 1 2 P (D 1 )φ i - L 2 - L 2 = δ ij . Then L 2 -L 2 ρφ i φ j dx 1 = 0 if i = j (8) L 2 -L 2 ρ(φ i ) 2 dx 1 = µ i . (9)
From the variational formulation of the eigenvalue problem we know that ∀v ∈ H

1 (-L 2 , L 2 ) L 2 -L 2 ρφ i v dx 1 = µ i 2 P (D 2 )φ i L 2 v L 2 + µ i 2 P (D 1 )φ i - L 2 v - L 2 + µ i L 2 -L 2 φ i vdx 1 ,
we choose v = 1 we obtain:

(10) 1 2 P (D 2 )φ i L 2 + 1 2 P (D 1 )φ i - L 2 + L 2 -L 2 φ i dx 1 = 0.
We now introduce our test functions that are the basis of our test subspace E k . We define

Φ i =          φ i (-L 2 ) if (x 1 , x 2 ) ∈ D 1 φ i (x 1 ) if (x 1 , x 2 ) ∈ T φ i ( L 2 ) if (x 1 , x 2 ) ∈ D 2 ,
and we introduce its mean value

m i = 1 |∂Ω | ∂Ω Φ i ds.
The mean goes to zero if → 0, indeed

∂Ω Φ i ds = P (D 2 )φ i L 2 + P (D 1 )φ i - L 2 + 2 L 2 -L 2 φ i 1 + 2 ρ 2 dx 1 ,
from equation [START_REF] Girouard | Sharp isoperimetric upper bounds for planar Steklov eigenvalues[END_REF], dominated convergence and the fact that |∂Ω | → P (D 1 ) + P (D 2 ) + 2L > 0 we obtain [START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF] m i → 0 ∀i ∈ N.

We introduce now our basis elements

Ψ i = Φ i -m i ,
and our subspace will be E k = Span < Ψ 1 , ..., Ψ k >. Now we compute all the quantities we need for the Rayleigh quotient. We start by the numerator, if i = j:

Ω ∇Ψ i • ∇Ψ j ds = T ∇Φ i • ∇Φ j ds = 2 L 2 -L 2 ρφ i φ j dx 1 = 0,
where the last equality is given by (8), and

Ω |∇Ψ i | 2 ds = T |∇Φ i | 2 ds = 2 L 2 -L 2 ρ(φ i ) 2 dx 1 = 2 µ i ,
where the last equality is given by ( 9). Now we compute the terms in the denominator,

f i,j ( ) := ∂Ω Ψ i Ψ j ds = ∂Ω (Φ i -m i )(Φ j -m j )ds = ∂Ω Φ i Φ j ds -m i m j P (Ω ) = 1 2 P (D 2 )φ i L 2 φ j L 2 + 1 2 P (D 1 )φ i - L 2 φ j - L 2 + L 2 -L 2 
φ i φ j 1 + 2 ρ 2 dx 1 -m i m j P (Ω ).
From [START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF], [START_REF] Fang | Asymptotic behavior and domain-dependency of solutions to a class of reaction-diffusion systems with large diffusion coefficients[END_REF] and the dominated convergence we obtain [START_REF] Hale | A nonlinear parabolic equation with varying domain[END_REF] lim

→0 f i,j ( ) = 0 i = j.
Similarly,

f i,i ( ) := ∂Ω Ψ 2 i ds = ∂Ω (Φ i -m i ) 2 ds = ∂Ω Φ 2 i ds -(m i ) 2 P (Ω ) = 2 L 2 -L 2 φ 2 i 1 + 2 ρ 2 dx 1 + P (D 2 )φ i L 2 2 + P (D 1 )φ i - L 2 2 -(m i ) 2 P (Ω ),
now from ( 11), [START_REF] Fang | Asymptotic behavior and domain-dependency of solutions to a class of reaction-diffusion systems with large diffusion coefficients[END_REF] and dominated convergence we obtain, (13) lim

→0 f i,i ( ) = 2.
Now if we use the test subspace E k in the variational characterization we obtain

σ k ≤ sup (x 1 ,...,x k )∈R k 2 k i=1 x 2 i µ i k i=1 x 2 i f i,i ( ) + i<j 2x i x j f i,j ( ) ,
if is small enough from ( 12) and ( 13) we obtain ( 14)

σ k ≤ sup (x 1 ,...,x k )∈R k k i=1 x 2 i µ i k i=1 x 2 i + o( ) = µ k + o( ).
2.2. Convergence of eigenfunctions. We start by showing the convergence on the two regions D i where i = 1, 2

Lemma 2.2. Let k ≥ 1 we have (up to a sub-sequence that we still denote by u k )

u k c i,k in H 1 (D i ), u k → c i,k locally uniformly in D i .
where c i,k ∈ R are constants

Proof. First of all we know that σ k → 0 as goes to 0, and from

||u k || L 2 (∂Ω ) = 1 we conclude that lim →0 Ω |∇u k | 2 dx = 0, so it means that ||∇u k || L 2 (D 1 ) ≤ ||∇u k || L 2 (Ω ) ≤ C. Now we want to bound ||u k || L 2 (D 1 )
uniformly on . Using Poincaré-Friedrichs inequality we obtain

D 1 (u k ) 2 dx ≤ Ω (u k ) 2 dx ≤ C Ω Ω |∇u k | 2 dx + ∂Ω (u k ) 2 ds , we know that ||u k || L 2 (∂Ω ) = 1 and ||∇u k || L 2 (Ω ) ≤ C, we have only to check that C Ω ≤ C ≤ ∞ if is small enough.
We have the following variational characterization for the constant

C Ω 1 C Ω = inf v∈H 1 (Ω ) Ω |∇v| 2 dx + ∂Ω v 2 ds Ω v 2 dx = λ 1 (Ω , 1),
where λ 1 (Ω , 1) is the first Robin eigenvalue with boundary parameter 1 (see [START_REF] Daners | A Faber-Krahn inequality for Robin problems in any space dimension[END_REF]). We denote by B R the ball with the same measure of Ω , now, using the Bossel-Daners inequality and the rescaling property of the Robin eigenvalue (see [START_REF] Daners | A Faber-Krahn inequality for Robin problems in any space dimension[END_REF]), we obtain

1 C Ω = λ 1 (Ω , 1) ≥ λ 1 (B R , 1) = 1 R 2 λ 1 (B 1 , R ).
Now, for small enough, we have

|D 1 | + |D 2 | ≤ |Ω | ≤ |D 1 | + |D 2 | + 1 so
, by monotonicity of the Robin eigenvalue on balls we finally obtain

1 C Ω = λ 1 (Ω , 1) ≥ λ 1 (B R , 1) = π |D 1 | + |D 2 | + 1 λ 1 B 1 , |D 1 | + |D 2 | π > 0.
Finally we conclude that C Ω ≤ C < ∞ for small enough. We conclude that

||u k || H 1 (D 1 ) ≤ C < ∞,
so exist a sequence, that we still denote by u k , and

u 0 k ∈ H 1 (D 1 ) such that u k u 0 k in H 1 (D 1 ).
We also know that ||∇u k || L 2 (D 1 ) → 0, so we conclude that there exists a constant

c 1,k ∈ R such that u k c 1,k in H 1 (D 1
). We can improve this convergence since u k are harmonic. Fix a compact set K ⊂ D 1 and take δ > 0 such that B δ (x) ⊂ D 1 for all x ∈ K. By the average properties of harmonic functions and the Cauchy-Schwartz inequality we have:

|u k (x)| = 1 |B δ (x)| B δ (x) |u k (y)|dy ≤ |B δ (x)| -1 2 ||u k || L 2 (D 1 ) ≤ C.
Up to a subsequence, we get that u k uniformly converges on K to a constant. We conclude that for i = 1, 2

u k c i,k in H 1 (D i ), u k → c i,k locally uniformly in D i .
Now we study the behaviour of the eigenfunctions in the tube T . We define the following functions

v k (x 1 , x 2 ) = u k (x 1 , x 2 ) ∀ (x 1 , x 2 ) ∈ T 1 Lemma 2.3. Let k ≥ 1. There exists V k ∈ H 1 (T 1 ) such that v k V k in H 1 (T 1 ),
(up to a sub-sequence, still denoted by v k ), where V k depends only on the variable x 1 .

Proof. We start with the bound of

||∇v k || L 2 (T 1 ) T 1 |∇v k | 2 dx ≤ T 1 ∂v k ∂x 1 2 + 1 2 ∂v k ∂x 2 2 dx = 1 T |∇u k | 2 dy ≤ C
where we did the change of coordinates y 1 = x 1 , y 2 = x 2 and the last inequality is true because of [START_REF] Bucur | Stability and instability issues of the Weinstock inequality[END_REF]. We want now to bound ||v k || L 2 (T 1 ) . By the Poincaré-Friedrichs inequality we get

T 1 (v k ) 2 dx ≤ C T 1 T 1 |∇v k | 2 dx + Γ + 1 ∪Γ - 1 (v k ) 2 ds . Now ||∇v k || L 2 (T 1 )
is bounded, so it remains to bound the second term in the r.h.s. of the inequality. Since 1 + ρ 2 is a bounded function, for small enough we obtain

Γ + 1 (v k ) 2 ds = L 2 -L 2 (v k (x 1 , ρ(x 1 )) 2 1 + ρ 2 dx 1 ≤ C L 2 -L 2 (u k (x 1 , ρ(x 1 )) 2 1 + 2 ρ 2 dx 1 ≤ C Γ + (u k ) 2 ds ≤ C
where the last inequality is true becuase

||u k || L 2 (∂Ω ) = 1.
The same computation is true for the integral over Γ - 1 .

We conclude that there exists V k ∈ H 1 (T 1 ) such that (up to a sub-sequence that we still denote by

v k ) v k V k in H 1 (T 1 ).
We finish the proof by showing that V k does not depend on x 2 . Indeed

T 1 ∂v k ∂x 2 2 dx = T ∂u k ∂x 2 2 dx ≤ C 2 → 0.
2.3. Limit eigenvalue problem. From ( 6) we know that there exists 0

≤ β ≤ µ k such that σ k → β.
First, we prove that there exists j ∈ N such that 0 ≤ j ≤ k and β = µ j and, in a second step, we prove that j = k.

Step 1. We begin with the following.

Lemma 2.4. There exists j ∈ N such that 0 ≤ j ≤ k and

σ k → µ j ,
where µ j is the j-th eigenvalue of the problem (2).

Proof. We define β in such a way that

σ k → β, from (6) 
we know that 0 ≤ β ≤ µ k . We use the variational formulation of the Steklov problem with the following test function

φ ∈ C ∞ c (-L 2 , L
2 ) (we constantly extend φ in the last variable x 2 ), we obtain:

T ∂u k ∂x 1 ∂φ ∂x 1 dx = σ k Γ + ∪Γ - u k φds.
Now we make the change of variable y 1 = x 1 and y 2 = x 2 and we write the integral in the right hand side by the integral in the graph of ρ

T 1 ∂v k ∂y 1 ∂φ ∂y 1 dy = σ k L 2 -L 2 u k (x 1 , ρ(x 1 ))φ 1 + 2 ρ 2 dx 1 + L 2 -L 2 u k (x 1 , -ρ(x 1 ))φ 1 + 2 ρ 2 dx 1 = σ k L 2 -L 2 v k (x 1 , ρ(x 1 ))φ 1 + 2 ρ 2 dx 1 + L 2 -L 2 v k (x 1 , -ρ(x 1 ))φ 1 + 2 ρ 2 dx 1 We know that v k V k in H 1 (T 1
) and V k depends only on the variable x 1 , we introduce the function V k that is the restriction of V k to the variable x 1 . We let goes to 0 and we obtain

T 1 ∂V k ∂y 1 ∂φ ∂y 1 dy = 2β L 2 -L 2 V k φdx 1 .
Integrating by parts in the left hand side, we finally obtain

-2 L 2 -L 2 d dx 1 ρ d dx 1 V k φdx 1 = 2β L 2 -L 2 V k φdx 1 .
This relation is true for every test function

φ ∈ C ∞ c (-L 2 , L
2 ) so we have that V k and β must have to satisfy the following differential equation ( 15)

- d dx ρ(x) dV k dx (x) = βV k (x) x ∈ - L 2 , L 2 
.

We find now the boundary conditions associated to this equation. Fix a real number ξ > 0 and define the extended function ρ in the following way

ρ =          ρ(-L 2 ) if -L 2 -ξ ≤ x 1 ≤ -L 2 ρ(x 1 ) if -L 2 ≤ x 1 ≤ L 2 ρ( L 2 ) if L 2 ≤ x 1 ≤ L 2 + ξ. We define the extended tube E (16) E = x = (x 1 , x 2 ) ∈ R 2 | - L 2 -ξ ≤ x 1 ≤ L 2 + ξ, |x 2 | < ρ(x 1 ) ,
and we choose ξ in such a way that E ⊂ Ω . Now, repeating all the arguments in Lemma 2.3, we obtain that

v k V k in H 1 (E 1 )
and V k depends only on x 1 . We also know from Lemma 2.2 that u k locally uniformly converge to c 1,k in D 1 . From this fact we have that

v k (- L 2 -δ, 0) → c 1,k = V k (- L 2 -δ) ∀ ξ ≥ δ > 0,
where V k is the restriction of V k to the variable x 1 . We know that V k ∈ H 1 (E 1 ), from embedding theorem V k is continuous so we finally obtain

(17) V k (- L 2 ) = c 1,k = lim δ→0 V k (- L 2 -δ).
Similarly,

V k ( L 2 ) = c 2,k .
We use the variational formulation of the Steklov eigenvalue with a test function ψ defined on all Ω and that depends only on x 1 ,

Ω ∂u k ∂x 1 ∂ψ ∂x 1 dx = σ k ∂Ω u k ψds.
We repeat all the computations above and letting goes to 0, we obtain

2 L 2 -L 2 ρ dV k dx 1 dψ dx 1 dx 1 = β V k - L 2 ∂D 1 ψds + V k L 2 ∂D 2 ψds + 2 L 2 -L 2 V k ψdx 1 .
Integrating by parts the left hand side and recalling the equation ( 15) we finally get

ρ( L 2 ) dV k dx ( L 2 )ψ( L 2 ) -ρ(- L 2 ) dV k dx (- L 2 )ψ(- L 2 ) = β V k - L 2 ∂D 1 ψds + V k L 2 ∂D 2 ψds .
Choosing a test function such that ψ = 1 in D 1 and ψ = 0 in D 2 , we get the first boundary condition

ρ(- L 2 ) dV k dx (- L 2 ) = - β 2 P (D 1 )V k (- L 2 )
and, similarly, chosing a test function such that ψ = 0 in D 1 and ψ = 1 in D 2 we get the second boundary condition

ρ( L 2 ) dV k dx ( L 2 ) = β 2 P (D 2 )V k ( L 2 
).

We finally obtain the following eigenvalue problem for β

(18)          -d dx ρ(x) dV k dx (x) = βV k (x) x ∈ -L 2 , L 2 ρ(-L 2 ) dV k dx (-L 2 ) = -β 2 P (D 1 )V k (-L 2 ) ρ( L 2 ) dV k dx ( L 2 ) = β 2 P (D 2 )V k ( L 2 )
. To be able to conclude, it remains to prove that V k is not the zero function. If V k would be zero, from the normalization ∂Ω u k 2 = 1 and the convergence on the extended tube, we would have

1 = P (D 1 )c 2 1,k + P (D 2 )c 2 2,k + 2 L/2 L/2 V 2 k .
Therefore, c 1,k or c 2,k would not be zero yielding a contradiction since the function V k being in H 1 (-L 2 -δ, L 2 + δ) is continuous and thus cannot be constant (different from zero) on (-L 2 -δ, -L 2 ) and zero after -L 2 . Therefore we have proved that there exist j ∈ N such that 0 ≤ j ≤ k and β = µ j , where µ j is the j-th eigenvalue of the problem (2).

Step 2. We have just proved that σ k ∼ µ j , with 0 ≤ j ≤ k. In this step we justify that j = k . We denote by V k the function constructed by taking the k-th eigenfunction of problem [START_REF] José | Dynamics in dumbbell domains. I. Continuity of the set of equilibria[END_REF] and extending it constantly in the x 2 variable and equally constant to

V k (-L 2 ) in D 1 and to V k ( L 2 ) in D 2 .
We proceed by induction on the eigenvalue rank k. The case k = 0 is obvious. Now suppose that for all 0 ≤ j ≤ k -1 we have that v j V j in H 1 (T 1 ) and σ j ∼ µ j . Now we will prove that µ k + o( ) ≤ σ k . By contradiction we suppose that there exists

j ∈ N such that 0 ≤ j ≤ k -1, v k V j in H 1 (T 1 ) and σ k ∼ µ j .
From the orthogonality of the Steklov eigenfunctions we have the following equality

0 = lim →0 ∂Ω u k V j ds + ∂Ω u k (u j -V j )ds.
For the first term, from [START_REF] Fang | Asymptotic behavior and domain-dependency of solutions to a class of reaction-diffusion systems with large diffusion coefficients[END_REF], we have that lim →0 ∂Ω u k V j = 2. For the second term, we recall the inductive hypothesis v j V j , using the same argument in the proof of Lemma 2.4 we conclude also the equality (17) and, using Cauchy-Schwartz inequality, we obtain

| lim →0 ∂Ω u k (u j -V j )ds| ≤ lim →0 ||u k || L 2 (∂Ω ) ||u j -V j || L 2 (∂Ω ) = 0.
This is a contraddiction, we conclude that µ k + o( ) ≤ σ k . Now recalling that σ k ≤ µ k + o( ) (see inequality ( 6)) we can conclude that

σ k ∼ µ k + o( ).
We also conclude that

u k (x 1 , x 2 ) V k (x 1 , x 2 ) in H 1 (T 1 ),
where V k is the k-th eigenfunction of the problem (2) constantly extended to x 2 . We end the proof by proving that the convergence is true not only up to a subsequence but is true for all the sequence. We have seen that the only possible accumulation point is V k eigenfunction of Problem [START_REF] Shuichi | Singular perturbation of domains and semilinear elliptic equations[END_REF]. Now it is a classical result for Sturm-Liouville type problem that any eigenfunction is simple: use the ODE to prove that the Wronskian is constant and the boundary conditions to prove that it is zero, yielding the result.

From the uniqueness of the accumulation point we conclude that the convergence holds for the whole sequence. This concludes the proof of Theorem 1.1 3. The case n ≥ 3 and k ≥ 2. Proof of Theorem 1.2.

In this section we will prove the second part of Theorem 1.2. We will use the following notation, take x ∈ R n then we write x = (x 1 , x ) where x 1 ∈ R and x ∈ R n-1 3.1. Upper bound for the Steklov eigenvalue. In this section we prove un upper bound for all the Steklov eigenvalues. In the following lemma we give an estimate from above of the speed of convergence to zero of the Steklov eigenvalues. Lemma 3.1. Let n ≥ 3 and let Ω ⊂ R n be a dumbbell shape domain then

• for the first Steklov eigenvalue

(19) σ 1 ≤ σ 1 n-1 + o( n-1 )
where σ 1 > 0 is the unique positive number such that the following differential equation has a non-trivial solution:

         -w n-1 d dx ρ n-1 (x) dV 1 dx (x) = 0 x ∈ -L 2 , L 2 ρ n-1 (-L 2 ) dV 1 dx (-L 2 ) = -σ 1 ω n-1 P (D 1 )V 1 (-L 2 ) ρ n-1 ( L 2 ) dV 1 dx ( L 2 ) = σ 1 ω n-1 P (D 2 )V 1 ( L 2 ).
• For all the other Steklov eigenvalues (k ≥ 2)

(20) σ k ≤ λ k + o( )
where λ k is defined by the following 1-dimensional eigenvalue problem:

(21)          -ω n-1 d dx ρ n-1 (x) dV k dx (x) = λ k ω n-2 ρ n-2 (x)V k (x) x ∈ -L 2 , L 2 ρ n-1 (-L 2 ) dV k dx (-L 2 ) = - λ k n-2 P (D 1 )V k (-L 2 ) ρ n-1 ( L 2 ) dV k dx ( L 2 ) = λ k n-2 P (D 2 )V k ( L 2 
). Proof. We introduce the following functional space

(22) H 1 co (Ω ) = u ∈ H 1 (Ω )|u ≡ c i in D i ∂Ω u = 0
, and u depends only on x 1 in T and denote σ co k (Ω ) the (pseudo) k-th Steklov eigenvalue computed by replacing the Sobolev space H 1 (Ω ) with H 1 co (Ω ) in the variational formulation using the Rayleigh quotient. Since H 1 co (Ω ) is a subspace of H 1 (Ω ), we obtain:

σ 1 ≤ σ co 1 (Ω ) = inf 0 =u∈H 1 co (Ω ) Ω |∇u| 2 dx ∂Ω u 2 dH n-1 ≤ inf 0 =u∈H 1 co (Ω ) n-1 w n-1 L 2 -L 2 ρ n-1 (u ) 2 dx 1 P (D 1 )u 2 (-L 2 ) + P (D 2 )u 2 ( L 2 ) + o( n-1 ) ≤ σ 1 n-1 + o( n-1 ).
The last inequality is true because the quantity inf

0 =u∈H 1 co (Ω ) w n-1 L 2 -L 2 ρ n-1 (u ) 2 dx 1 P (D 1 )u 2 (-L 2 ) + P (D 2 )u 2 ( L 2 
) is equal to σ 1 that is the unique positive number such that the following differential equation has a non-trivial solution:

         -w n-1 d dx ρ n-1 (x) dV 1 dx (x) = 0 x ∈ -L 2 , L 2 ρ n-1 (-L 2 ) dV 1 dx (-L 2 ) = -σ 1 w n-1 P (D 1 )V 1 (-L 2 ) ρ n-1 ( L 2 ) dV 1 dx ( L 2 ) = σ 1 w n-1 P (D 2 )V 1 ( L 2 
). We now prove the second part of the lemma. We start by noticing that from the geometric properties of ∂T e we can compute the surface measure and we obtain that

(23) dH n-1 ∂T e = n-2 ρ n-2 1 + 2 ρ 2 dx 1 dϕ 1 ...dϕ n-2
Let S k be the family of all the k-dimensional subspaces of the functional space H 1 co (Ω ) with k ≥ 2, as above we have the following inequalities

σ k ≤ σ co k (Ω ) = inf E∈S k+1 sup u∈E Ω |∇u| 2 dx ∂Ω u 2 dH n-1 ≤ inf E∈S k+1 sup u∈E n-1 w n-1 L 2 -L 2 ρ n-1 (u ) 2 dx 1 P (D 1 )u 2 (-L 2 ) + P (D 2 )u 2 ( L 2 ) + n-2 w n-2 L 2 -L 2 u 2 ρ n-2 1 + 2 ρ 2 dx 1 + o( ) ≤ inf E∈S k+1 sup u∈E w n-1 L 2 -L 2 ρ n-1 (u ) 2 dx 1 P (D 1 ) n-2 u 2 (-L 2 ) + P (D 2 ) n-2 u 2 ( L 2 ) + w n-2 L 2 -L 2 u 2 ρ n-2 dx 1 + o( ) ≤ λ k + o( ).
Where the last inequality is true because the quantity

w n-1 L 2 -L 2 ρ n-1 (u ) 2 dx 1 P (D 1 ) n-2 u 2 (-L 2 ) + P (D 2 ) n-2 u 2 ( L 2 ) + w n-2 L 2 -L 2 u 2 ρ n-2 dx 1
is the Rayleigh quotient of the following eigenvalue problem that depends on (24)

         -w n-1 d dx ρ n-1 (x) dV k dx (x) = λ k w n-2 ρ n-2 (x)V k (x) x ∈ -L 2 , L 2 ρ n-1 (-L 2 ) dV k dx (-L 2 ) = - λ k n-2 P (D 1 )V k (-L 2 ) ρ n-1 ( L 2 ) dV k dx ( L 2 ) = λ k n-2 P (D 2 )V k ( L 2 ).
3.2. Convergence of eigenfunctions. We begin with the convergence on the two regions D i where i = 1, 2. The proof of the following lemma is the same of the proof of Lemma 2.2, so we do not repeat it.

Lemma 3.2. Let k ≥ 1 we have (up to a sub-sequence that we still denote by u k )

u k c i,k in H 1 (D i ), u k → c i,k locally uniformly in D i .
where c i,k are constants

We study the behaviour of the eigenfunctions in the tube T . For every k ≥ 2 we define the following rescaled functions

v k (x 1 , x ) = n-2 2 u k (x 1 , x ) ∀ (x 1 , x ) ∈ T 1 Lemma 3.3. Let n ≥ 3 and k ≥ 2. There exists V k ∈ H 1 (T 1 ) which depends only on the variable x 1 such that v k V k in H 1 (T 1 ),
up to a sub-sequence (that we still denote by v k ).

Proof. Below, by C we denote a constant which may change from line to line. We start with the bound of

||∇v k || L 2 (T 1 ) T 1 |∇v k | 2 dx ≤ T 1 ∂v k ∂x 1 2 + 1 2 |∇ x v k | 2 dx = 1 T |∇u k | 2 dy ≤ C
where we performed the change of coordinates y 1 = x 1 , y = x . The last inequality is true because of [START_REF] Morita | Reaction-diffusion systems in nonconvex domains: invariant manifold and reduced form[END_REF]. We want now to bound ||v k || L 2 (T 1 ) . By Fubini Tonelli we have:

(25)

T 1 (v k ) 2 dx = 1 L 2 -L 2 B n-1 ρ(x 1 ) (x 1 ) (u k (x 1 , x )) 2 dH n-1 dx 1 ,
where B n-1 ρ(x 1 ) (x 1 ) is the n -1 dimensional ball centered in x 1 with radius ρ(x 1 ). Using the characterization of Robin eigenvalues, we obtain for all x 1 ∈ (-L 2 , L 2 ):

(26)

B n-1 ρ(x 1 ) (x 1 ) (u k ) 2 dH n-1 ≤ B n-1 ρ(x 1 ) (x 1 ) |∇u k | 2 dH n-1 + ∂B n-1 ρ(x 1 ) (x 1 ) (u k ) 2 dH n-2 λ 1 (B n-1 ρ(x 1 ) (x 1 ), 1)
where λ 1 (B n-1 ρ(x 1 ) (x 1 ), 1) is the first Robin eigenvalue with parameter 1 of the ball B n-1 ρ(x 1 ) (x 1 ). Now we recall that (see [START_REF] Giorgi | Monotonicity results for the principal eigenvalue of the generalized Robin problem[END_REF])

λ 1 (B , 1) ∼ n
where B is the n-dimensional ball of radius . In particular we have

λ 1 (B n-1 ρ(x 1 ) (x 1 ), 1) ∼ n -1 ρ(x 1
) .

This asymptotic formulae together with ( 26) and (25) give

T 1 (v k ) 2 dx ≤ C T (u k ) 2 dx + ∂T e (u k ) 2 ds ≤ C,
where the last inequality is true because

||∇u k || L 2 (D 1 ) ≤ C and ||u k || L 2 (∂Ω ) = 1.
We conclude that there exists V k ∈ H 1 (T 1 ) such that (up to a sub-sequence that we still denote by

v k ) v k V k in H 1 (T 1 ).
We finish the proof by showing that V k does not depend on x i for all i ≥ 2, indeed

T 1 ∂v k ∂x i 2 dx = T ∂u k ∂x i 2 dx ≤ C 2 → 0.
Let now V k be the restriction of V k to the variable x 1 , the main goal now is to prove that V k is not the zero function and

V k (-L 2 ) = V k (-L 2 ) = 0.
In order to reach this result we start by some consideration about the constants c i,k in Lemma 3.2.

We know that ∂Ω (u k ) 2 dH n-1 = 1 for all and it is easy to see that, by change of variable, we have that ∂T (u k ) 2 dH n-1 = ∂T 1 (v k ) 2 dH n-1 . Now by Lemmas 3.2 and 3.3 we obtain that for all k ≥ 2,

∂Ω (u k ) 2 dH n-1 → c 2 1,k P (D 1 ) + c 2 2,k P (D 2 ) + w n-2 L 2 -L 2 V 2 k (x 1 )ρ n-2 (x 1 )dx 1 ,
so if we prove that c 1,k = c 2,k = 0, we conclude that V k is not identically zero. We now prove that c 1,k = c 2,k = 0 for k ≥ 2.

E

Figure 2. Extended tube E .

We note that for all k ≥ 1, by Cauchy-Schwarz inequality

| ∂T u k dH n-1 | ≤ P (T ) 1 2 ||u k || L 2 (∂T ) → 0,
and we also know that ∂Ω u k dH n-1 = 0, from Lemmas 3.2 and 3.3 we obtain that for all

k ≥ 1 (27) c 1,k P (D 1 ) + c 2,k P (D 2 ) = 0.
Like in the proof of Lemma 2.4, we introduce the extended tube E . We fix a real number ξ > 0 and we define the extended function ρ in the following way

ρ =          ρ(-L 2 ) if -L 2 -ξ ≤ x 1 ≤ -L 2 ρ(x 1 ) if -L 2 ≤ x 1 ≤ L 2 ρ( L 2 ) if L 2 ≤ x 1 ≤ L 2 + ξ. We define the extended tube E (28) E = x = (x 1 , x ) ∈ R n | - L 2 -ξ ≤ x 1 ≤ L 2 + ξ, |x | < ρ(x 1 ) ,
and we choose ξ in such a way that E ⊂ Ω . Repeating all the arguments in Lemma 3.3, we obtain that for all k ≥ 2

v k V k in H 1 (E 1 )
and V k depends only on x 1 . We also know from Lemma 3.2 that, for all k ≥ 1, u k locally uniformly converge to c 1,k in D 1 and to c 2,k in D 2 .

The following lemma contains a key result on the asymptotic behaviour of the first eigenfunctions.

Lemma 3.4. Let n ≥ 3 and let Ω ⊂ R n be a dumbbell shape domain then the following holds

(29) lim →0 ∂T (u 1 ) 2 dH n-1 = 0.
In particular c 1,1 = 0, c 2,1 = 0.

Proof. By contradiction we assume that there exists α > 0 such that for small enough (30)

∂T (u 1 ) 2 dH n-1 ≥ α > 0.
For every x 1 ∈ (-L 2 , L 2 ) we consider the ball B n-1 ρ(x 1 ) (x 1 ), that is x 1 -section of the tube T e . We use the Trace Theorem in any section of the tube T e 1 and we rescale to the sections of the tube T e , we obtain, for all x 1 ∈ (-L 2 , L 2 ):

∂B n-1 ρ(x 1 ) (x 1 ) (u 1 ) 2 dH n-2 ≤ 1 B n-1 ρ(x 1 ) (x 1 ) (u 1 ) 2 dH n-1 + B n-1 ρ(x 1 ) (x 1 ) |∇ x u 1 | 2 dH n-1 .
Integrating this inequality in x 1 we obtain

∂T e (u 1 ) 2 dH n-1 ≤ T e (u 1 ) 2 dx + 2 T e |∇ x u 1 | 2 dx,
from this inequality, the fact that σ 1 ≤ C n-1 and inequality (30) we finally have

(31) α 2 ≤ T e (u 1 ) 2 dx.
From the fact that ∂Ω u 1 dH n-1 = 0 for all we have two cases: either

c 1,1 = c 2,1 = 0 or c 1,1 and c 2,1 have opposite sign, say c 1,1 > 0 > c 2,1 . If c 1,1 > 0 > c 2,1 , then at x fixed the function x 1 → u 1 (x 1 , x ) change sign.
In particular there exist C > 0 such that:

L 2 +ξ -L 2 -ξ ∂u k ∂x 1 2 (x 1 , x )dx 1 ≥ C L 2 -L 2 (u k ) 2 (x 1 , x )dx 1 ,
by integrating in x we finally obtain

E |∇u k | 2 dx ≥ C α 2 .
which is a contradiction to the fact that

σ 1 ≤ C n-1 . If c 1,1 = c 2,1 = 0, we define g 1 (x 1 , x ) = n-2 2 u 1 (x 1 , x ).
Using the same argument in Lemma 3.3 we conclude that there exist

G 1 ∈ H 1 (E 1 ) such that g 1 G 1 in H 1 (E 1 ).
From this convergence, the fact that ∂Ω (u k ) 2 dH n-1 = 1 for all and the assumption c 1,1 = c 2,1 = 0 we get

∂T e 1 G 2 1 dH n-1 = 1 and ∂D 1 ∪∂D 2 (u 1 ) 2 dH n-1 → 0.
From this consideration we conclude that

C n-1 ≥ σ 1 ≥ E 1 |∇G 1 | 2 dx, hence E 1 |∇G 1 | 2 dx = 0.
In particular G 1 is almost everywhere constant C = 0. Consider a point in the extremity on the extended tube E 1 , where we know that u 1 uniformly converge to a constant. More precisely we find x = (x 1 , x ) ∈ E 1 such that the following holds

g 1 (x 1 , x ) → C > 0 and g 1 (x 1 , x ) = n-2 2 u 1 (x 1 , x ) → 0.
This is a contradiction.

We now prove that c 1,k = c 2,k = 0 for all k ≥ 2, concluding that V k is not identically zero for all k ≥ 2. Lemma 3.5. Let n ≥ 3, k ≥ 2 and let let Ω ⊂ R n be a dumbbell shape domain. The following holds

u k 0 in H 1 (D i ), u k → 0 locally uniformly in D i .
Proof. We start by fixing k ≥ 2. Form the orthogonality condition of the Steklov eigenfunctions we know that

∂Ω u 1 u k dH n-1 = ∂D 1 u 1 u k dH n-1 + ∂T e u 1 u k dH n-1 + ∂D 2 u 1 u k dH n-1 = 0.
From this equality and Lemmas 3.2, 3.3 and 3.4 we obtain the equality

c 1,k c 1,1 P (D 1 ) + c 2,k c 2,1 P (D 2 ) = 0
which, together with

c 1,k P (D 1 ) + c 2,k P (D 2 ) = 0 c 1,1 P (D 1 ) + c 2,1 P (D 2 ) = 0,
lead to a system of equations. We know that c 1,1 = 0 and c 2,1 = 0 and (without loss of generality) c 1,1 > 0 > c 2,1 . Suppose by contradiction that c 2,k = 0, from the system above we have the following

c 1,1 c 2,1 = c 1,k c 2,k = c 1,1 c 1,k c 2,1 c 2,k ,
it means that c 1,1 = c 2,1 and c 1,k = c 2,k that is a contradiction. We obtain the same conclusion if we suppose that c 1,k = 0.

Let V k be the restriction to x 1 of the limit eigenfunction V k in Lemma 3.3, in the next lemma we prove that V k is not constant and we find the boundary conditions of V k . Lemma 3.6. Let n ≥ 3, k ≥ 2 and let V k be the restriction to x 1 of the limit eigenfunction V k in Lemma 3.3 . Then

• V k is continuous • V k (-L 2 ) = V k ( L 2 ) = 0 • V k is not constant Proof.
The first point is immediate because we know that, if we consider the extended tube

E 1 , V k ∈ H 1 ((-L 2 -ξ, L 2 + ξ)), by classical embedding theorem we have V k ∈ C((-L 2 - ξ, L 2 + ξ)).
We prove the second point, we know, from Lemma 3.5 that u k locally uniformly converge to 0 in D 1 . From this fact we have that

v k (- L 2 -δ, 0) = n-2 2 u k (- L 2 -δ, 0) → 0 = V k (- L 2 -δ) ∀ ξ ≥ δ > 0.
From the continuity of V k we conclude that

V k (- L 2 ) = lim δ→0 V k (- L 2 -δ) = 0.
The same is true for V k ( L 2 ). The tird point is a direct consequence of this, indeed if V k is constant then V k must be equal to zero and this is a contradiction with Lemma 3.5 3.3. Proof of Theorem 1.2. In this section we prove Theorem 1.2. We will first prove a bound from below for the asymptotic of σ k . Then we will prove that this bound from below is also a bound from above finding in that way the right asymptotic of σ k . Lemma 3.7. Let n ≥ 3 and k ≥ 2 then, for small enough

(32) σ k ≥ α k-1 + o( )
where α k is defined by the following 1-dimensional Dirichlet eigenvalue problem:

         -w n-1 d dx ρ n-1 (x) dV k dx (x) = α k w n-2 ρ n-2 (x)V k (x) x ∈ -L 2 , L 2 V k (-L 2 ) = 0 V k ( L
2 ) = 0. Proof. We start by showing that there exists a constant C k > 0 such that σ k ≥ C k . Indeed we have

σ k = Ω |∇u k | 2 dx ∂Ω (u k ) 2 dH n-1 ≥ n-2 T e |∇u k | 2 dx n-2 ∂D 1 ∪∂D 2 (u k ) 2 dH n-1 + n-2 ∂T e (u k ) 2 dH n-1 ≥ T e |∇v k | 2 dx ∂D 1 ∪∂D 2 (u k ) 2 dH n-1 + ∂T e (v k ) 2 dH n-1
. Now from Lemmas 3.3 and 3.5, recalling that V k is the restriction to x 1 of the limit eigenfunction V k in Lemma 3.3 and recalling also the geometry of the tube, we finally obtain (33)

σ k = Ω |∇u k | 2 dx ∂Ω (u k ) 2 dH n-1 ≥ w n-1 L 2 -L 2 (V k ) 2 ρ n-1 dx 1 w n-2 L 2 -L 2 V 2 k ρ n-2 dx 1 .
From this inequality and Lemma 3.6 follow that there exists

C k > 0 such that σ k ≥ C k .
From the variational characterization of the Steklov eigenvalues we have

σ k = max u∈<u 1 ,u 2 ,...,u k > Ω |∇u| 2 dx ∂Ω u 2 dH n-1 ,
where < u 1 , u 2 , ..., u k > is the subspace of H 1 (Ω ) generated by u 1 , u 2 , ..., u k-1 and u k . We know that that the maximum is achieved when u = u k , so we have

σ k = max u∈<u 2 ,...,u k > Ω |∇u| 2 dx ∂Ω u 2 dH n-1 ≥ max {β j } k j=2 k j=2 β 2 j T e |∇u j | 2 dx k j=2 β 2 j ∂Ω (u j ) 2 dH n-1
.

From the inequality above and inequality (33) we obtain

σ k ≥ max {β j } k j=2 k j=2 β 2 j w n-1 L 2 -L 2 (V j ) 2 ρ n-1 dx 1 k j=2 β 2 j w n-2 L 2 -L 2 V 2 j ρ n-2 dx 1 ≥ max V ∈<V 2,...,V k > w n-1 L 2 -L 2 (V ) 2 ρ n-1 dx 1 w n-2 L 2 -L 2 V 2 ρ n-2 dx 1 . (34) From Lemma 3.6 we know that V j ∈ H 1 0 ((-L 2 , L 2 
)) for all 2 ≤ j ≤ k and from the orthogonality of the Steklov eigenfunctions we also know that dim< V 2, ..., V k >= k -1. It is easy to check that the ratio (34) is the Rayleigh quotient of the following eigenvalue problem

         -w n-1 d dx ρ n-1 (x) dV k dx (x) = α k w n-2 ρ n-2 (x)V k (x) x ∈ -L 2 , L 2 V k (-L 2 ) = 0 V k ( L 2 ) = 0.
From (34) we finally conclude that

σ k ≥ α k-1 + o( )
We prove that the bound from below given in (32) is in fact also a bound from above.

Lemma 3.8. Let α k be the k-th eigenvalue of the problem (3) and let λ k be k-th eigenvalue of the problem (21), then for small enough we have

(35) λ k ≤ α k-1 + o( ). Proof. We choose V 1 , .., V k-1 eigenfunctions of the problem (3), in particular V i (-L 2 ) = V i ( L 2 ) = 0 for all i = 1, ..., k -1. Now we define a function ψ ∈ C ∞ (-L 2 , L 2 ) such that ψ(-L 2 ) = 1, ψ( L 2 ) = 0 and dim< ψ, V 1 , .., V k-1 >= k.
Using the variational characterization of the eigenvalue λ k we obtain

λ k ≤ max u∈<ψ,V 1 ,..,V k-1 > w n-1 L 2 -L 2 ρ n-1 (u ) 2 dx 1 P (D 1 ) n-2 u 2 (-L 2 ) + P (D 2 ) n-2 u 2 ( L 2 ) + w n-2 L 2 -L 2 u 2 ρ n-2 dx 1 ≤ max β 0 ( )∪{β j } k-1 j=1 w n-1 L 2 -L 2 ρ n-1 (β 0 ( )ψ + k-1 i=1 β i V i ) 2 dx 1 P (D 1 ) n-2 β 0 ( ) 2 + w n-2 L 2 -L 2 ρ n-2 (β 0 ( )ψ + k-1 i=1 β i V i ) 2 dx 1 . (36) 
In the inequality above, in order to study the cases in full generality, we must impose that the first real coefficient β 0 depends on , because the boundary conditions of the eigenvalue problem (21) depends on . We define the following quantity

A β ( ) = w n-1 L 2 -L 2 ρ n-1 (β 0 ( )ψ + k-1 i=1 β i V i ) 2 dx 1 P (D 1 ) n-2 β 0 ( ) 2 + w n-2 L 2 -L 2 ρ n-2 (β 0 ( )ψ + k-1 i=1 β i V i ) 2 dx 1 .
It is easy to check that in order to get the maximum (36) we must have that lim →0

β 0 ( ) 2 n-2 = C < ∞. Otherwise if lim →0 β 0 ( ) n-2 =
∞ we will have that lim →0 A β ( ) = 0, so we don't reach the maximum in this case.

We conclude that β 0 ( )

∼ β 0 n-2 2 + o( n-2 2 ), (if β 0 ( ) < β 0 n-2 2 + o( n- 2 
2 ) we have the same results) from (36) we obtain that

λ k ≤ max {β j } k-1 j=0 w n-1 L 2 -L 2 ρ n-1 ((β 0 n-2 2 + o( n-2 2 ))ψ + k-1 i=1 β i V i ) 2 dx 1 P (D 1 )β 2 0 + w n-2 L 2 -L 2 ρ n-2 ((β 0 n-2 2 + o( n-2 2 ))ψ + k-1 i=1 β i V i ) 2 dx 1 ≤ max {β j } k-1 j=1 k-1 j=1 β 2 j w n-1 L 2 -L 2 (V j ) 2 ρ n-1 dx 1 k-1 j=1 β 2 j w n-2 L 2 -L 2 V 2 j ρ n-2 dx 1 + o( ).
Recalling that V 1 , .., V k-1 are eigenfunctions of the problem (3), by the variational characterization of the eigenvalue of the problem (3) we finally conclude that

α k-1 = max {β j } k-1 j=1 k-1 j=1 β 2 j w n-1 L 2 -L 2 (V j ) 2 ρ n-1 dx 1 k-1 j=1 β 2 j w n-2 L 2 -L 2 V 2 j ρ n-2 dx 1
and this concludes the proof.

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. From the second part of Lemma 3.1, Lemma 3.7 and Lemma 3.8, we finally conlclude that for all k ≥ 2 we have

σ k ∼ α k-1 + o( ) as → 0.
We prove the convergence of the eigenfunctions, showing that V k must be the (k -1)-th eigenfunction of problem (4). From Lemma 3.6 we know that V k satisfies the Dirichlet boundary conditions, it remains to prove the fact that V k satisfies the eigenvalue equation. We use the variational formulation of the Steklov problem using the following test function

φ ∈ C ∞ c (-L 2 , L
2 ) (we constantly extend φ in the last variables x ), we obtain:

T ∂u k ∂x 1 ∂φ ∂x 1 dx = σ k ∂T e u k φdH n-1 .
We make the following change of variable y 1 = x 1 and y = x in the right hand side of the variational formulation, using the formula [START_REF] Von | Spectral asymptotics for the Laplacian under an eigenvalue dependent boundary condition[END_REF] for the surface measure in the right hand side we obtain

T 1 ∂v k ∂y 1 ∂φ ∂y 1 dy = σ k n-2 2 L 2 -L 2 ∂B n-1 ρ(x 1 ) (x 1 ) u k (x 1 , ρ(x 1 ))φ(x 1 )ρ n-2 1 + 2 ρ 2 dx 1 dϕ 1 ...dϕ n-2 = σ k L 2 -L 2 ∂B n-1 ρ(x 1 ) (x 1 ) v k (x 1 , ρ(x 1 ))φ(x 1 )ρ n-2 1 + 2 ρ 2 dx 1 dϕ 1 ...dϕ n-2 ,
where ρ(x 1 ) are the spherical coordinates that describes ∂B n-1 ρ(x 1 ) (x 1 ). Now we let goes to 0, recalling that v k V k in H 1 (T 1 ) and σ k ∼ α k-1 + o( ) we obtain

T 1 ∂V k ∂y 1 ∂φ ∂y 1 dy = α k-1 L 2 -L 2 w n-2 ρ n-2 V k φdx 1 .
Now integrating by part the left hand side, we finally obtain

-w n-1 L 2 -L 2 d dx 1 ρ n-1 d dx 1 V k φdx 1 = α k-1 L 2 -L 2 w n-2 ρ n-2 V k φdx 1 .
This relation is true for every test function φ ∈ C ∞ c (-L 2 , L 2 ) so we have

-w n-1 d dx ρ n-1 (x) dV k dx (x) = α k-1 w n-2 ρ n-2 (x)V k (x) x ∈ - L 2 , L 2 
,

and V k (-L 2 ) = V k ( L 2 ) = 0.
Using the same argument as at the end of proof of Theorem 1.1 we conclude that the result is true for all the sequence { n } ∞ n=1 . This concludes the proof. In this section we prove Theorem 1.3.

4.1.

Convergence of the eigenfunctions. From Lemma 3.2, we know that

u 1 c i,1 in H 1 (D i ), u 1 → c i,2 locally uniformly in D i ,
We also know that c 1,1 > 0 > c 2,1 , this information letting us to improve Lemma 3.4.

Lemma 4.1. Let n ≥ 3 and let Ω ⊂ R n be a dumbbell shape domain. There exists a constant C > 0 such that

(37) lim sup →0 ∂T (u 1 ) 2 dH n-1 n-2 ≤ C.
Proof. By contradiction we suppose

(38) N n-2 ≤ ∂T (u 1 ) 2 dH n-1 ∀ N ∈ N.
Using the same argument in the proof of Lemma 3.4 we conclude that

∂T e (u 1 ) 2 dH n-1 ≤ T e (u 1 ) 2 dx + 2 T e |∇ x u 1 | 2 dx.
from this inequality, the fact that σ 1 ≤ C n-1 and inequality (38) we finally have

n-1 N 2 ≤ T e (u 1 ) 2 dx ∀ N ∈ N.
We know that c 1,1 > 0 > c 2,1 , repeating all the arguments in the first part of the proof of Lemma 3.4, we obtain that

CN n-1 ≤ E |∇u 1 | 2 dx ∀ N ∈ N,
where E is the extended tube defined in (28). This is a contradiction with the fact that

σ 1 ≤ C n-1 .
We introduce the following function

v 1 (x 1 , x ) = u 1 (x 1 , x ) ∀ (x 1 , x ) ∈ T 1 .
Lemma 4.2. Let n ≥ 3 then there exists V 1 ∈ H 1 (T 1 ) such that (up to a sub-sequence that we still denote by v 1 )

v 1 V 1 in H 1 (T 1 ).
and V 1 depends only on the variable x 1 .

Proof. We start with the bound of ||∇v 1 || L 2 (T 1 )

T 1 |∇v 1 | 2 dx ≤ T 1 ∂v 1 ∂x 1 2 + 1 2 |∇ x v 1 | 2 dx = 1 n-1 T |∇u 1 | 2 dy ≤ C
where we did the change of coordinates y 1 = x 1 , y = x and the last inequality is true because of [START_REF] Jimbo | Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels[END_REF]. We want now to bound ||v 1 || L 2 (T 1 ) . Following the computations in the proof of Lemma 3.4 we obtain

T e 1 (v 1 ) 2 dx = 1 n-1 T e (u 1 ) 2 dx ≤ L 2 -L 2 B n-1 ρ(x 1 ) (x 1 ) |∇u 1 | 2 dH n-1 + ∂B n-1 ρ(x 1 ) (x 1 ) (u 1 ) 2 dH n-2 n-1 λ 1 (B n-1 ρ(x 1 ) (x 1 ), 1) ≤ C n-2 T e |∇u 1 | 2 dx + ∂T e (u 1 ) 2 dH n-1 ≤ C,
where the last inequality is true beacuse of (37) and [START_REF] Jimbo | Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels[END_REF]. We conclude that there exist V 1 ∈ H 1 (T 1 ) such that (up to a sub-sequence that we still denote by v 1 )

v 1 V 1 in H 1 (T 1 ).
We finish the proof by showing that V 1 does not depend on x i for all i ≥ 2, indeed

T 1 ∂v 1 ∂x i 2 dx = 1 n-3 T ∂u k ∂x i 2 dx ≤ C 2 → 0.
We denote by V 1 the restriction to the x 1 variable of the function V 1 and we introduce the extended tube E (see (28)). In the next Lemma we find the boundary conditions of

V k . Lemma 4.3. Let n ≥ 3 and let V 1 be the restriction to x 1 of the limit eigenfunction V 1 in Lemma 4.2 then V 1 is continuous and V 1 (- L 2 ) = c 1,1 and V 1 ( L 2 ) = c 2,1 .
Proof. The first point is immediate because we know that, if we consider the extended tube

E 1 , V 1 ∈ H 1 ((-L 2 -ξ, L 2 + ξ)), by classical embedding theorem we have V 1 ∈ C((-L 2 - ξ, L 2 + ξ)).
We prove the second point, we know, from Lemma 4.1 that u 1 locally uniformly converge to c 1,1 in D 1 . From this fact we have that

v 1 (- L 2 -δ, 0) = u 1 (- L 2 -δ, 0) → c 1,1 = V 1 (- L 2 -δ) ∀ ξ ≥ δ > 0. From the continuity of V 1 we conclude that V 1 (- L 2 ) = lim δ→0 V 1 (- L 2 -δ) = c 1,1 .
Using the same techniques we obtain also V 1 ( L 2 ) = c 2,1 . 4.2. Proof of Theorem 1.3. In this section we prove Theorem 1.3. We will show that the bound from above given in the first part of Lemma 3.1 is actually the right asymptotics. In particular the following result holds. Lemma 4.4. Let n ≥ 3 then, for small enough

(39) σ 1 ≥ σ 1 n-1 + o( n-1 )
where σ 1 is the positive number such that the following differential equation has a solution:

         -w n-1 d dx ρ n-1 (x) dV 1 dx (x) = 0 x ∈ -L 2 , L 2 ρ n-1 (-L 2 ) dV 1 dx (-L 2 ) = -σ 1 w n-1 P (D 1 )V 1 (-L 2 ) ρ n-1 ( L 2 ) dV 1 dx ( L 2 ) = σ 1 w n-1 P (D 2 )V 1 ( L 2 
). Proof. From the variational characterization of the first Steklov eigenfunction we have:

σ 1 = Ω |∇u 1 | 2 dx ∂Ω (u 1 ) 2 dH n-1 ≥ n-1 T e 1 |∇v 1 | 2 dx ∂D 1 ∪∂D 2 (u 1 ) 2 dH n-1 + o( ) .
From this inequality and the convergence results, in particular Lemmas 3.2, 4.2 and 4.3 we obtain

σ 1 ≥ n-1 w n-1 L 2 -L 2 (V 1 ) 2 ρ n-1 dx P (D 1 )V 2 1 (-L 2 ) + P (D 2 )V 2 1 ( L 2 ) + o( n-1 ) ≥ n-1 σ 1 + o( n-1 ),
where σ 1 > 0 is the positive number such that the following differential equation has a solution:

         -w n-1 d dx ρ n-1 (x) dV 1 dx (x) = 0 x ∈ -L 2 , L 2 ρ n-1 (-L 2 ) dV 1 dx (-L 2 ) = -σ 1 w n-1 P (D 1 )V 1 (-L 2 ) ρ n-1 ( L 2 ) dV 1 dx ( L 2 ) = σ 1 w n-1 P (D 2 )V 1 ( L 2 ).
Now we are ready to prove Theorem 1.3

Proof of Theorem 1.3. From the first part of Lemma 3.1 and Lemma 4.4, we get that

σ 1 ∼ σ 1 n-1 + o( n-1 ) as → 0,
We use the variational formulation of the Steklov problem using the following test function

φ ∈ C ∞ c (-L 2 , L 2 
) (we constantly extend φ in the last variables x ), we obtain:

T ∂u 1 ∂x 1 ∂φ ∂x 1 dx = σ k ∂T e u 1 φdH n-1 .
We perform the following change of variable y 1 = x 1 and y = x in the right hand side of the variational formulation, using the formula [START_REF] Von | Spectral asymptotics for the Laplacian under an eigenvalue dependent boundary condition[END_REF] for the surface measure in the right hand side we obtain

T 1 ∂v 1 ∂y 1 ∂φ ∂y 1 dy = σ k L 2 -L 2 ∂B n-1 ρ(x 1 ) (x 1 ) u k (x 1 , ρ(x 1 ))φ(x 1 )ρ n-2 1 + 2 ρ 2 dx 1 dϕ 1 ...dϕ n-2 = σ k L 2 -L 2 ∂B n-1 ρ(x 1 ) (x 1 ) v k (x 1 , ρ(x 1 ))φ(x 1 )ρ n-2 1 + 2 ρ 2 dx 1 dϕ 1 ...dϕ n-2 ,
where ρ(x 1 ) are the spherical coordinates that describes ∂B n-1 ρ(x 1 ) (x 1 ). We let goes to 0, recalling that v 1 V 1 in H 1 (T 1 ) and the fact that σ 1 ∼ σ 1 n-1 + o( n-1 ) we obtain In order to find the boundary conditions for this equation we use the variational formulation with a test function ψ defined on all Ω and which depends only on x 1 ,

Ω ∂u 1 ∂x 1 ∂ψ ∂x 1 dx = σ 1 ∂Ω u 1 ψdH n-1 .
We recall that u 1 uniformly converge to c 1,1 in D 1 and to c 2,1 in D 2 , so we extend the functions v 1 to be equal to u 1 in D 1 and the same for D 2 . From Lemma 4.3 we have that

v 1 → c 1,1 = V 1 -L 2 in D 1 and v 1 → c 2,1 = V 1 L 2 in D 2 .
We repeat all the computations that we did above and we obtain

w n-1 L 2 -L 2 ρ n-1 dV 1 dx 1 dψ dx 1 dx 1 = σ 1 V 1 - L 2 ∂D 1 ψdH n-1 + V 1 L 2 ∂D 2 ψdH n-1 .
Integrating by parts in the left hand side and recalling (40), we finally obtain

ρ n-1 ( L 2 ) dV 1 dx ( L 2 )ψ( L 2 ) -ρ n-1 (- L 2 ) dV 1 dx (- L 2 )ψ(- L 2 ) = = σ 1 V 1 - L 2 ∂D 1 ψdH n-1 + V 1 L 2 ∂D 2 ψdH n-1 .
We choose the test function such that ψ = 1 in D 1 and ψ = 0 in D 2 and we deduce the first boundary condition

ρ n-1 (- L 2 ) dV 1 dx (- L 2 ) = - σ 1 w n-1 P (D 1 )V 1 (- L 2 
).

Similarly if we choose the test function such that ψ = 0 in D 1 and ψ = 1 in D 2 we get the second boundary condition

ρ n-1 ( L 2 ) dV 1 dx ( L 2 ) = σ 1 w n-1 P (D 2 )V 1 ( L 2 
).

We finally obtain the following differential equation

         -w n-1 d dx ρ n-1 (x) dV 1 dx (x) = 0 x ∈ -L 2 , L 2 ρ n-1 (-L 2 ) dV 1 dx (-L 2 ) = -σ 1 w n-1 P (D 1 )V 1 (-L 2 ) ρ n-1 ( L 2 ) dV 1 dx ( L 2 ) = σ 1 w n-1 P (D 2 )V 1 ( L 2 
). Using the same argument as at the end of proof of Theorem 1.1 we conclude that the result is true for all the sequence { n } ∞ n=1 . This concludes the proof.

Application: counter-example to a Spectral Inequality

We consider the Neumann eigenvalue problem

-∆v k = µ k v k Ω ∂ ν v k = 0 ∂Ω.
During the writing of the paper [START_REF] Girouard | From Steklov to Neumann via homogenisation[END_REF] came the following question: is it true that the inequality µ 1 |Ω| ≥ σ 1 P (Ω), holds for any plane domains? For several domains like balls, annulus, rectangles, convex sets with a ratio between the inradius and circumradius large enough, this inequality turns out to be true. Nevertheless, the results of [START_REF] Bucur | Stability and instability issues of the Weinstock inequality[END_REF][START_REF] Girouard | Sharp isoperimetric upper bounds for planar Steklov eigenvalues[END_REF] implicitly show that the inequality can not be true in general, its failure coming either from highly oscillating boundaries or from the presence of a large number of small holes.

Our aim in this section is to provide another counter-example which is simply connected and do not have an oscillating boundary, for which the reverse inequality holds: One can compute the eigenvalues of problem (2), becomes

         -d 2 V k dx 2 (x) = α k V k (x) x ∈ -L 2 , L 2 
dV k dx (-L 2 ) = -α k 2 P (D 1 )V k (-L 2 ) dV k dx ( L 2 ) = α k 2 P (D 2 )V k ( L 2 ).
The general solution has the following form V In order to have non trivial solutions the determinant of this 2 × 2 system must be equal to 0, so we obtain that w k must be satisfies the following transcendental equation .

We know that σ 1 ∼ α 1 , where α 1 = w 2 1 where w 1 is the first value for which the equation (41) holds.
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 1121 Figure 1. Dumbbell shape domain Ω .
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 4 The case n ≥ 3 and k = 1. Proof of Theorem 1.3.

  true for every test function φ ∈ C ∞ c (-L 2 , L2 ) so we have that V 1 and α 1 must have to satisfy the following differential equation

µ 1 Figure 3 .

 13 Figure 3. Dumbbell shape domain in n = 2, with ρ ≡ 1.

  k = A cos(w k x) + B sin(w k x) where w 2 k = α k and the boundary conditions give us the following equations for the unknowns A and B,

  k L) = w 2 k P (D 1 )P (D 2 ) -4 2w k (P (D 1 ) + P (D 2 ))
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By choosing, in the variational formulation, a test function which is constant on each disk and affine in the tube, we can prove that µ 1 ≤ 4 L , so we conclude that

If we prove that there exists L > 0 such that:

we conclude that there exists such that

We introduce the following function

an easy computation shows that

So we conclude that for all L such that L > 3 4 (

providing the desired counter-example.