
HAL Id: hal-02895475
https://hal.science/hal-02895475v2

Submitted on 6 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accuracy of neural networks for the simulation of
chaotic dynamics: precision of training data vs precision

of the algorithm
S Bompas, Bertrand Georgeot, David Guéry-Odelin

To cite this version:
S Bompas, Bertrand Georgeot, David Guéry-Odelin. Accuracy of neural networks for the simulation of
chaotic dynamics: precision of training data vs precision of the algorithm. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 2020, 30 (11), pp.113118. �10.1063/5.0021264�. �hal-02895475v2�

https://hal.science/hal-02895475v2
https://hal.archives-ouvertes.fr

Accuracy of neural networks for the simulation of chaotic dynamics:
precision of training data vs precision of the algorithm

S. Bompas,1, 2 B. Georgeot,2 and D. Guéry-Odelin1
1)Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, UPS,
France
2)Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS,
France

We explore the influence of precision of the data and the algorithm for the simulation of chaotic dynamics by neural
networks techniques. For this purpose, we simulate the Lorenz system with different precisions using three different
neural network techniques adapted to time series, namely reservoir computing (using ESN), LSTM and TCN, for both
short and long time predictions, and assess their efficiency and accuracy. Our results show that the ESN network is
better at predicting accurately the dynamics of the system, and that in all cases the precision of the algorithm is more
important than the precision of the training data for the accuracy of the predictions. This result gives support to the idea
that neural networks can perform time-series predictions in many practical applications for which data are necessarily of
limited precision, in line with recent results. It also suggests that for a given set of data the reliability of the predictions
can be significantly improved by using a network with higher precision than the one of the data.

I. INTRODUCTION

Techniques of machine learning have been shown lately to
be efficient in a huge variety of tasks, from playing the game
of Go1 to speech recognition2 or automatic translation3. In
many cases, such breakthroughs correspond to complicated
tasks with complex decision-making processes. However, it
was highlighted recently that such tools can also be useful in
tasks which are much more adapted to standard algorithms,
such as simulation of physical systems. The simulation of
chaotic dynamical systems has been known for a long time to
be one of the most demanding, since the instability of the sys-
tem makes small errors increase exponentially with time (see
e.g.4–6). Nevertheless, it was shown in7–10 that a certain type
of machine learning algorithms called reservoir computing11

was able to forecast the evolution of chaotic dynamical sys-
tems, even of high dimensionality (see also the recent collec-
tion of articles Ref.12). Remarkably enough, the simulation is
made from the time series of the previous states of the system,
without solving explicitly the equations defining the model, in
a way similar to the model-free time series analysis approach
developed earlier13. In parallel, it was also shown that other
types of neural networks may be efficient as well in predict-
ing the behaviour of such systems, i.e. LSTM networks14,15

or deep artificial neural networks16. Some comparisons of
the different methods have already been performed on test
models17,18.

Chaotic dynamical systems are inherently unstable, with
positive Lyapunov exponents. This implies that any small
error in the trajectory is exponentially amplified by the dy-
namics, making long time simulation of a specific trajectory
practically impossible. In particular, small round-off errors
due to the finite precision of the computation unavoidably get
quickly amplified; for example, it was shown that it leads to
an effective irreversibility of the system even if the equations
are formally reversible19,20: the simulated trajectory fails to
retrace the original one after some time. Such short-time pre-
dictions of a specific trajectory are similar to weather forecast-
ing in meteorology, where one wants the evolution from a spe-

cific initial state. However, it is known that such limitations
do not preclude the long time simulation of chaotic systems
to describe with reasonable accuracy the typical behaviour of
trajectories of the system, enabling e.g. to get information
about the structure of attractors in dissipative systems. This
is similar to climate simulations, which can give information
about future climates several years in the future, well beyond
the limits of weather forecasting.

The results obtained so far have shown that the different
machine learning techniques implemented for such problems
can simulate with good accuracy both the short-time and long-
time behaviour of chaotic dynamics. However, it is impor-
tant for future applications to assess the accuracy of these
techniques in a precise way. In this paper, we explore the
role of precision of the data used for the training of the net-
work and of the algorithm itself on the accuracy of the sim-
ulation. We do so on a specific case of reservoir computing
(Echo State Network-ESN) as well as on two other standard
machine learning techniques used in this context, commonly
called LSTM21 and TCN22 techniques. We compare the accu-
racy of these methods to the explicit integration of the equa-
tions of motion, both for short time and long time predictions
of a well known chaotic system originating from meteorology,
the Lorenz system. Our results show that the precision of the
algorithm is more important than the precision of the training
data for the accuracy of the simulation. This has interesting
consequences for applications, since the precision of the al-
gorithm is by far easier to control than the one of the training
data. We also discuss the training by considering trajectories
of different size and by computing the time required to train
the networks.

II. SYSTEMS STUDIED

The Lorenz system was introduced in 1963 by Edward
Lorenz23 as an extremely simplified model of meteorology.
It corresponds to a set of three nonlinear coupled equations
for the variables x,y and z as a function of time:

2

ẋ = σ(y− x)
ẏ = x(ρ− z)
ż = xy−β z. (1)

Throughout the paper we choose the standard set of parame-
ters: σ = 10,ρ = 28 and β = 8/3.

This nonlinear and dissipative model displays chaotic fea-
tures. In particular, trajectories converge to a low dimensional
but complex structure referred to as a strange attractor, and in
this specific case as the Lorenz attractor.

0 500 1000 1500 2000 2500 3000

10

-14

10

-10

10
-6

10
-2

10
2

Time step iteration

D
ist

an
ce

FIG. 1. Euclidean distance between the reference trajectory of the
Lorenz system obtained with quadruple precision with the double
precision trajectory (dotted line) and the single precision trajectory
(solid line), with a time step dt = 0.02.

As said in the introduction, we distinguish two types of pre-
dictions. The short term predictions are similar to meteoro-
logical predictions: one starts from a specific initial point, and
the aim is to follow a specific trajectory of the system for as
long as possible. For strongly chaotic systems, this kind of
predictions is limited by the exponential growth of perturba-
tions: the distance between two nearby trajectories increases
exponentially with time. This process, quantified by the (max-
imal) Lyapunov exponent, limits the numerical prediction of
such systems since small imprecisions in the initial state will
quickly increase to a macroscopic size. This phenomenon,
noticed by Lorenz in the first paper on the system and often
dubbed the “butterfly effect” is associated to a Lyapunov time
which is logarithmic in the precision and sets a limit to nu-
merical simulations with a given precision. This is shown in
Fig. 1 in which we represent the distance to a reference trajec-
tory computed with a Runge-Kutta integration method of or-
der 4 (RK4) in quadruple precision for trajectories computed
using RK4 with lower precision (i. e. separated initially by
10−16 or 10−8). They strongly depart after a certain time from
the high precision trajectory. The separation time clearly in-
creases only logarithmically with the precision.

This property makes numerical simulation of specific tra-
jectories for chaotic systems very difficult: increasing by ex-
ponentially large factors the precision only increases linearly
the prediction time.

30 32 34 36 38 40 42 44 46 48

30

32

34

36

38

40

42

44

46

Zi

Zi+1

FIG. 2. Comparison of return map of the Lorenz system (long term
behavior) with quadruple precision (blue dots) and double (red dots)
and single precision (green dots). The points are nearly superim-
posed revealing that the long term prediction is almost the same in-
dependently of the precision.

However, one may ask a different type of questions. Even
if the short term behavior of a specific trajectory is hard to ob-
tain numerically in a reliable manner, is it still possible to get
accurate results on statistical properties of the system for long
term? To answer this question, we calculate the first return
application. This application, introduced by Lorenz, consists
in plotting the successive maxima of z(t) over a long period of
time. For that, it is enough to locate the maxima Zi of the curve
and plot the position of a given maximum Zi+1 as a function
of the preceding one, Zi. These data are related to the structure
of the Lorenz attractor to which trajectories converge for long
time. Figure 2 compares such long term predictions using the
RK4 algorithm to integrate (1) with different precision. We
observe that the statistical properties at long time are not dra-
matically sensitive to the precision at which the calculation is
performed. Even if individual trajectories are not accurately
described, their global properties are correctly described. This
is similar to what distinguish climate simulations from mete-
orological simulations: even if individual trajectories cannot
be simulated beyond a few weeks to predict the weather, long
term global properties of the system (climate characteristics)
can be obtained for much longer periods (years or decades).

To evaluate quantitatively the accuracy of long term simu-
lations, we made a polynomial fit of the return map obtained
with quadruple precision on each side of the peak of the re-
turn map in the window of parameters delimited by the blue
dashed lines on the left side and by the red dashed lines on
the right side (see Fig. 3). We have then computed the relative
error ξ between the fit and the data. The mean percentage er-
ror remains below 0.2 % in the zones delimited by the dashed
line.

We then compute for single and double precision the dis-
tance towards the fit as a function of the number of iteration
points considered (see Fig. 4). The results show that he mean
relative error converges to less than 0.2% for sufficiently large
databases, in both single and double precision. The large
spread of the relative error for a small number of iteration
steps is due to the fact that the system has not yet reached

3

FIG. 3. The return map is calculated using a RK4 integration algo-
rithm in quadruple precision (upper panel). We fit the data in between
the blue (red) dashed line with a polynomial of degree 10. We plot
the relative difference ξ between the fit and the return map in the
lower panel.

1000 10000 100000 10
6

0

0.05

0.1

0.15

0.2

M
ea

n
re

la
tiv

e
er

ro
r(

%
)

Time step iteration

FIG. 4. Mean relative error in percentage in the distance of the return
map points (calculated from the RK4 algorithm) from the polynomial
fit with time step dt = 0.02 (triangle) and for single precision (large
red symbol) and double precision (small blue symbol).

the asymptotic behavior of the return map. The data shown in
Fig. 4 indicate that the long term prediction characterized here
by the return map is almost insensitive to the precision with
which the trajectory is computed. We note that for this spe-
cific quantity the error cannot go to zero and has a minimum
value due to the fact that the fit we use is only an approxima-
tion of the correct return map. Indeed, it is known8,23 that the
return map is actually not a curve but a fractal, of dimension
slightly above one, thus close to a curve but not quite exactly.
In the following, we will thus investigate in parallel as another
benchmark the Lyapunov exponents of the system which have
also been studied in this context8,10 and do not suffer from the
same limitation.

In order to have data on another system, we also looked at
the Lyapunov exponents of the Rössler system25:

ẋ =−y− x
ẏ = x+ay
ż = b+ z(x− c). (2)

We choose the standard set of parameters: a = 0.2,b = 0.2
and c = 5.7. This model is also chaotic and dissipative with

trajectories converging to a strange attractor called the Rössler
attractor.

III. RESULTS: ACCURACY OF PREDICTIONS FOR THE
CHAOTIC MODELS STUDIED

In order to evaluate the accuracy of the machine learning
approaches to predict the behavior of the chaotic systems stud-
ied, we use three different methods: a reservoir computing
model as pioneered in this context in8–10, called Echo State
Network (ESN) and two other approaches based on Recurrent
Neural Networks (RNN) used in15–18, called LSTM and TCN.
The characteristics of the networks we used are detailed in the
Appendix.

In this Section, we compare the predictions and perfor-
mances of each network for the Lorenz system (1), focusing
especially on the effects of precision of both data and algo-
rithm. Networks are trained on trajectories generated by the
RK4 integration method and having thousands of points sep-
arated by a time step dt = 0.02. Predictions are performed
starting immediately after the last point used in the training
trajectories. Subsequent predictions are systematically done
from the point previously returned by the network.

A. Resources needed for the simulation by the three neural
networks

ESN200 ESN300 LSTM TCN

101

102

103

Tr
ai

ni
ng

tim
e

[s]

10−3

10−4

10−5Re
la

tiv
e

er
ro

r

FIG. 5. Upper panel: Comparison of the training time for
different neural networks: ESN200 (the reservoir contains 200
neurons),ESN300, a LSTM network (with a single hidden layer hav-
ing 64 neurons) and a TCN network. The red (blue) color is used for a
computation of the networks parameters in single (double) precision.
Lower panel: Figure of merit of each neural network representing
the mean relative error in the estimate of the training trajectories.

Figure 5 gives an overview of the different resources con-
sumed during the training phase by the three networks for

4

ESN200 ESN300 LSTM TCN

101

102

103

104
Nu

m
be

ro
fp

ar
am

et
er

s

FIG. 6. Comparison of number of parameters for the different neural
networks considered in Fig. 5. Red is the training size, blue the total
size.

achieving a similar converged simulation on the same com-
puter once the network has been set up. It is worth noticing
that the performance are for a standard processor. We have not
used GPU cards. For the training time, we use the same set
of training trajectories (100 trajectories, each trajectory con-
tains 50 000 points separated by a time interval dt = 0.02).
We compare an ESN with a reservoir size having 200 neurons
(ESN200), 300 neurons (ESN300), a LSTM network (with a
single hidden layer having 64 neurons) and a TCN network
(similar structure as the LSTM network). Note that the LSTM
and TCN are trained 10 times on the training data set while
the ESN scans the training data set only once. In addition, the
number of parameters that are updated are significantly differ-
ent depending on the reservoir type as illustrated in Figure. 6.
The LSTM and TCN networks adapt themselves by modify-
ing all the network parameters. This is to be contrasted with
the ESN that updates only the connections towards the output
as discussed in the appendix, making the training size much
smaller than the total size.

The figure of merit of each neural network is represented in
the lower panel of Figure 5 where we represent the mean rela-
tive distance between the trajectories provided by the network
compared to the training one. This quantity is here averaged
over all the training trajectories. When this relative error is
equal to 0.01, it means that the average relative error is on the
order of 1 %. As expected, for each neural network the com-
putation of the parameters in double precision yields better
results. We also see that the ESN network seems more accu-
rate at reproducing the training trajectory. We conclude that
the ESN turns out to be significantly more efficient that the
LSTM and TCN networks with respect to the training time
and moreover seems to better reproduce the training trajec-
tory.

B. Short term predictions

We now turn to the accuracy of the predictions of the differ-
ent networks as compared to a quadruple precision simulation

by integration of the equations of the Lorenz system (1).

-10

0

10

-20

-10

0

10

20

0 200 400 600 800 1000
0

10

20

30

40

x

y

z

Time step iteration

FIG. 7. Comparison between the quadruple precision RK4 simula-
tion (red line) and the prediction of the ESN in double precision with
a reservoir of size N = 300 (blue line) for the Lorenz system (1).
The initial conditions are x(0) = 0.00, y(0) = 0.45 and z(0) = 1.41,
and the time step is dt = 0.02. The ESN has been trained over 50000
time step iterations before the prediction for the subsequent iterations
represented in this figure.

We first look at short term predictions, i.e. accurate descrip-
tion of a single specific trajectory. That is the type of predic-
tions where chaotic systems are the most difficult to handle.
It is similar to meteorological predictions in weather models,
since one wants a precise state of the system starting from a
specific initial state. We recall that the data are generated via
the RK4 method, with a time step of 0.02 and a sampling of
thousands of points. Our reference trajectory is calculated in
quadruple precision for the same time step and sampling.

A parameter set specific to each network architecture has
been established allowing each network to converge. They
can be used to predict future points beyond the training set.
As said before, the protocol is the same for the three types of
networks. The output associated to input vector at time t = T
defines the next point for the trajectory at time T + dt. This
procedure is iterated to get the prediction over large amount
of time. We provide an example in Fig. 7 for an ESN neural
network which turns out to be able to provide an accurate pre-
diction of the trajectory over the short term for relatively long
time.

To be more quantitative, we evaluate for each simulation a
limit time, τlim, defined as the time when the simulation de-
parts from the correct trajectory by at least 5%. This quan-
tity is plotted in Fig. 8 for the three networks considered, as
a function of the size of training data (number of points of
the exact trajectory which are used to train the network). In
all cases, one sees an increase of the limit time with increas-
ing dataset, until it reaches a plateau where increasing the
dataset does not help any more. This defines a sort of ultimate
limit time for this kind of simulation. All three neworks are
effective at predicting the dynamics, giving accurate results

5

200

240

280

320

360

50

100

150

200

250

300

1000 10000 100000

100

150

200

250

300

τ l
im

τ l
im

τ l
im

Number of time steps of the trajectories for the training

(a)

(b)

(c)

FIG. 8. Impact of the precision of training data and of the neural net-
work on the short term quantified by the time τlim above which the
prediction departs by more than 5% from the quadruple precision tra-
jectory for the Lorenz system (1): (a) ESN, (b) LSTM and (c) TCN.
Data and network double precision (filled square), data single preci-
sion and network double precision (filled disk), data double precision
and network single precision (empty square), data and network single
precision (circle). Time step is dt = 0.02. Each point is an average
over 100 simulations with randomly selected initial positions, error
bars correspond to the standard deviation.

for hundreds of time steps. The LSTM and TCN networks
give very similar results, and are significantly and systemat-
ically less effective than the ESN network used in the semi-
nal paper9, with prediction times 20% smaller. We recall (see
preceding subsection) that the LSTM and TCN networks are
not only significantly less effective at predicting the dynam-
ics than the ESN, they are also more costly in resources. The
main difficulty for an ESN network is in the search for a viable
parameter.

We note that although these neural network methods are
effective, they are less efficient than standard classical simu-
lations like RK4 with lower precision (see Fig.1). We should
note however that neural networks techniques are still new and
far from optimized compared to integration methods. In addi-
tion, the neural network techniques do not need the equations
and do not depend on approximations which can have been
used to construct them.

Figure 8 also enables to assess the question of the impact
of precision on the predictive abilities of the neural networks.
We have changed independently the precision of the datasets
used to train the network, and the precision of the network
algorithm itself. We see that in all cases the precision of the
network will impact the accuracy of the prediction. Indeed,
for these short term predictions, a double precision network
always gives better results than a single precision network. In-
terestingly enough, with a single precision network, increas-

ing the precision of the training data does not help. On the
other hand, using a double precision network even on single
precision data is more advantageous than a single precision
network on any type of data. These results are valid for the
three types of networks over the full range of training sets
used. It therefore seems that the precision of the network is
crucial for the accuracy of the prediction, and more so than
the precision of the data. It is especially important in view of
the fact that the precision of the data can be less easily con-
trolled than the precision of the network.

1000 10000 100000

400

450

500

550

600

650

700

1000 10000 100000

80

100

120

140

160

180

τ l
im

τ l
im

Number of time steps of the trajectories for the training

(a)

(b)

FIG. 9. Impact of the precision of training data and of the neural
network on the short term quantified by the time τlim above which
the prediction departs by more than 5% from the quadruple precision
trajectory for the Lorenz system (1), for different sampling times.
Data and network double precision (filled square), data single preci-
sion and network double precision (filled disk), data double precision
and network single precision (empty square), data and network sin-
gle precision (circle). Time step is (a) dt = 0.01 (b) dt = 0.04. Each
point is an average over 100 simulations with randomly selected ini-
tial positions, error bars correspond to the standard deviation.

To verify that our results are not affected by a change of
the sampling time, we display in Fig. 9 the same quantity as
in Fig. 8 for the ESN network for two additional sampling
times, showing that the same result holds, the double precision
network giving better results than the single precision network
even when trained with lower precision data.

C. Long term predictions

We now turn to long term predictions. Figure 10 displays
an example of return map constructed from ESN predictions,
showing that, despite the fact that specific individual trajecto-
ries are not accurately simulated for long times, nevertheless
the points predicted by the network describe correctly the long
time dynamics of a typical trajectory, giving the general shape
of the return map.

To be more quantitative, Fig. 11 uses the measures defined
in Section II (see Fig. 3) to assess the efficiency of the neural
network methods for long term dynamics. Despite the fact
that the LSTM and TCN networks are more cumbersome to
implement and take more running time, the results are clearly

6

30 32 34 36 38 40 42 44 46 48

30

32

34

36

38

40

42

44

46

Zi

Zi+1

FIG. 10. Return map of the Lorenz system obtained by an ESN net-
work simulation.

0

0.2

0.4

0.6

0

1

2

3

4

1000 10000 100000
0

0.5

1

1.5

2

2.5

3

M
ea

n
re

la
tiv

e
er

ro
r(

%
)

M
ea

n
re

la
tiv

e
er

ro
r(

%
)

M
ea

n
re

la
tiv

e
er

ro
r(

%
)

Number of time steps of the trajectories for the training

(a)

(b)

(c)

FIG. 11. Impact of the precision of training data and of the neu-
ral network on the long term quantified by the mean relative error
defined in Section II for the return map of the Lorenz system (1):
(a) ESN, (b) LSTM and (c) TCN. Data and network double preci-
sion (filled square), data single precision and network double preci-
sion (filled disk), data double precision and network single precision
(empty square), data and network single precision (circle). Time step
is dt = 0.02. Each point is an average over 100 simulations with ran-
domly selected initial positions, error bars correspond to the standard
deviation.

better for the ESN network, which can achieve an accuracy
similar to the one of the RK4 simulations (see Fig. 11 a). For
the LSTM and TCN networks, the results presented in Figs. 11
b) and c) show that these networks are able to reproduce the
long term dynamics, but the accuracy is less good than for
ESN networks or RK4, even for large sizes of the training
dataset.

The data for the Lyapunov exponents of the Lorenz sys-
tem (1) are shown in the Tables I-IV. They display the same
trend as the data for the return map. Again, the ESN network

RK4 ESN LSTM TCN
Λ1 0.906 0.884 ±10−2 0.871 ±2.10−2 0.879±2.10−2

Λ2 0 3 10−5 ±10−4 −1.10−5 ±2.10−4 −1.10−5 ±2.10−4

Λ3 -14.567 -9.203 ±0.2 -8.498 ±0.3 -8.614 ±0.3

TABLE I. Lyapunov spectrum of the Lorenz system (1) estimated by
long time evolution through the different types of network. Each net-
work is trained with 10000 points on the Lorenz system and predicts
50000 points. Here, the networks are in single precision and the data
are in single precision. Each point is an average over 100 simulations
with randomly selected initial positions, error bars correspond to the
standard deviation.

RK4 ESN LSTM TCN
Λ1 0.906 0.891 ±10−2 0.872 ±2.10−2 0.885 ±2.10−2

Λ2 0 −1.10−5 ±10−4 1.10−5 ±2.10−4 −2.10−5 ±2.10−4

Λ3 -14.567 -9.471 ±0.3 -8.566 ±0.3 -8.681 ±0.3

TABLE II. Lyapunov spectrum of the Lorenz system (1) estimated by
long time evolution through the different types of network. Each net-
work is trained with 10000 points on the Lorenz system and predicts
50000 points. Here, the networks are in single precision and the data
are in double precision. Each point is an average over 100 simula-
tions with randomly selected initial positions, error bars correspond
to the standard deviation.

performs best, giving the best approximation of the Lyapunov
exponents wherever the difference is significative. The dou-
ble precision network is better at approximating the correct
Lyapunov, even if it is trained with single precision data. On
the contrary, training with double precision data a single pre-
cision network gives clearly worse results. We note that the
third Lyapunov is less well approximated by the network, as
was noted already in8, since it is associated with the deviation
of the return map from the approximating curve.

We also include data on the the computation of the Lya-
punov exponents for the Rössler system of (2) in Table V,
using only the ESN (reservoir computing) network. Again,
even if the third Lyapunov is not well approximated as for the
Lorenz system, the results indicate that the double precision
network is better in all cases, independently of the precision
of the training data.

At last, we include a different test on long time which ver-
ifies how the local dynamics at long times is accurately sim-
ulated. Starting from a given time, we compare the points
predicted by the network to the integration of the equation of

RK4 ESN LSTM TCN
Λ1 0.906 0.896 ±10−2 0.881 ±10−2 0.894 ±10−2

Λ2 0 −6.10−6 ±10−4 −4.10−6 ±2.10−4 −5.10−6 ±2.10−4

Λ3 -14.567 -10.102 ±0.3 -9.345 ±0.3 -9.460 ±0.3

TABLE III. Lyapunov spectrum of the Lorenz system (1) estimated
by long time evolution through the different types of network. Each
network is trained with 10000 points on the Lorenz system and pre-
dicts 50000 points. Here, the networks are in double precision and
the data are in single precision. Each point is an average over 100
simulations with randomly selected initial positions, error bars cor-
respond to the standard deviation.

7

RK4 ESN LSTM TCN
Λ1 0.906 0.900 ±3.10−3 0.885 ±8.10−3 0.894 ±9.10−3

Λ2 0 −5.10−6 ±10−4 −4.10−5 ±2.10−4 −4.10−5 ±2.10−4

Λ3 -14.567 -10.985 ±0.3 -9.513 ±0.3 -9.629 ±0.3

TABLE IV. Lyapunov spectrum of the Lorenz system (1) estimated
by long time evolution through the different types of network. Each
network is trained with 10000 points on the Lorenz system and pre-
dicts 50000 points. Here, the networks are in double precision and
the data are in double precision. Each point is an average over 100
simulations with randomly selected initial positions, error bars cor-
respond to the standard deviation.

RK4 ESNsp−sp ESNsp−d p
Λ1 0.067 0.062 ±3.10−3 0.063 ±3.10−3

Λ2 0 −3.10−6 ±2.10−4 3.10−5 ±2.10−4

Λ3 -5.41 -4.377 ±0.2 -4.434 ±2.10−3

RK4 ESNd p−sp ESNd p−d p
Λ1 0.067 0.066 ±2.10−3 0.066 ±2.10−3

Λ2 0 −8.10−7 ±2.10−4 −7.10−6 ±2.10−4

Λ3 -5.41 -4.797 ±0.1 -4.851 ±9.10−2

TABLE V. Lyapunov spectrum for the Rössler system (2) with a =
0.2,b = 0.2,c = 5.7 estimated by long time evolution through the
ESN network (reservoir computing), with different precisions: from
left to right and top to bottom network and data single precision,
network single precision and data double precision, network double
precision and data single precision, network double precision and
data double precision. The network is trained with 10000 points and
predicts 50000 points. Each point is an average over 100 simulations
with randomly selected initial positions, error bars correspond to the
standard deviation.

the Lorenz system (1) starting from the previously predicted
point, and average the error obtained over many consecutive
points. The results for the ESN network are displayed on Ta-
ble VI, and again the double precision network gives an error
an order of magnitude smaller than the single precision net-
work, almost independently of the precision of the data.

Globally, as in the case of short term predictions, the results
presented in Figs. 11 and Tables I-VI allow us to estimate the
effects of the precision on long term predictions. The ESN

mean standard deviation
errorsp_sp 0.009327 0.001065
errorsp_d p 0.007148 0.000934
errord p_sp 0.000378 0.000121
errord p_d p 0.000359 0.000107

TABLE VI. Long time mean error and standard deviation of pre-
dicted trajectories of the Lorenz system (1) for the ESN network, for
different precisions: from top to bottom network and data single pre-
cision, network single precision and data double precision, network
double precision and data single precision, network double precision
and data double precision. Starting from the 25000th predicted point,
we compare the point at timestep t + 1 from the ESN trajectories to
the one obtained by integrating (1) through RK4 from the predicted
point at timestep t. We repeat this procedure for 10000 points. Each
error is further averaged over 100 trajectories with random initial
conditions.

network fares better in predicting the correct quantities, and
in all cases it is clear that the precision of the results is dom-
inantly controlled by the precision of the network, indepen-
dently of the precision of the training data: even with low
precision data, the high precision network fares better than a
low precision network with high precision data.

IV. CONCLUSION

The results presented in this paper confirm previous works,
showing that neural networks are able to simulate chaotic sys-
tems, both for short term and long term predictions. We also
show that the ESN network (reservoir computing) seems glob-
ally more efficient in this task than LSTM or TCN networks,
in line with the recent work17. Our investigations allow to
assess the effect of the precision of the training data and pre-
cision of the network on the accuracy of the results. Our re-
sults show than in a very consistent manner, the precision of
the network matters more than the precision of the data on
which it is trained. It may seem surprising that using exactly
the same single precision data, changing the precision of the
algorithm can give results much closer to a full double pre-
cision simulation. However, this is good news for practical
applications, such as meteorology or climate simulations. In-
deed, eventhough the errors in the training datasets considered
in this paper are not observational errors, and are due solely
to the precision of the integration of the equations, our results
seem to indicate that one can compensate the lack of precision
of the dataset by increasing the precision of the network. In
many practical instances, the precision of the datasets is given
by the precision of observations, that may be hard to amelio-
rate, while the precision of the network is controlled at the
level of the algorithm used and may be increased at a cost of
more computing time.

ACKNOWLEDGMENTS

We thank Gael Reinaudi for discussions. We thank CalMiP
for access to its supercomputer. This study has been supported
through the EUR grant NanoX ANR-17-EURE-0009 in the
framework of the “Programme des Investissements d’Avenir”.

Appendix A: The three machine learning approaches used

In the Appendix, we give an overview of the main features
of the three neural networks that have been used in the article,
namely the ESN, LSTM and TCN networks.

1. Reservoir computing: ESN network

The first network we use corresponds to reservoir comput-
ing. We focus on a specific model called Echo State Net-
works (ESN). Reservoir computing methods were developed
in the context of computational neuroscience to mimick the

8

FIG. 12. Schematic representation of an Echo State Network (ESN).

processes of the brain. Their success in machine learning
comes from the fact that they are relatively cheap in comput-
ing time and have a simple structure. Their complexities lie in
their training and the adjustment of parameters to obtain the
desired results. The structure of ESN networks is schematized
on Fig. 12.

To train our ESN on a time-dependent signal un with n =
1, ...,T where T is the duration of the sequence in discretized
time, we must minimize a cost function between yre f

n and yn.
Here yre f

n is the output that we want to obtain with un, and yn
is the output of the network when we give it un as input. For
the Lorenz problem, un, yre f

n and yn are 3D vector. Generally,
the cost function that one seeks to minimize is the error be-
tween the output of the network and the reference signal. This
function is often in the form of a mean square error or, in our
case, of the mean standard deviation.

The output of the network is calculated as follows:

yn =Wout [1;un;xn], (A1)

where Wout is the output weight matrix that we are trying to
train, [.;.] represents the concatenation, un is our vectorial
input signal and xn the vector corresponding to the reservoir
neuron activations. It has the dimension N of the reservoir and
is calculated as follows:

xn = (1−α)xn−1 +α x̃n (A2)

with x̃n corresponding to the new value of xn :

x̃n = tanh(Win[1;un]+Wxn−1 + ε0 +µ0) (A3)

α is the leaking rate, ε0 = −1.154 is an offset optimized on
our set of data, µ0 is a random Gaussian variable of standard
deviation equal to 2.25×10−5, W is the system reservoir and
Win is the input weight matrix of the reservoir. The dimension
of Win is N× (3+3) the +3 term accounts for the bias added
to the input (see Fig. 12). The initialization consists in setting
x and y to zero.

There are several important parameters that must be ad-
justed depending on the problem we are studying if we want
our ESN to be able to predict our system. The first parameter
we can play on is the size of the reservoir itself. The more
complex the problem that we want to deal with, the more the

size of the reservoir will have an impact on the capacities of
the network. A large reservoir will generally give better re-
sults than a small reservoir. Once the size of our reservoir has
been chosen, we can play on the central parameter of an ESN:
the spectral radius of the reservoir. Often denoted by ρ(W),
this is the maximal absolute value of eigenvalues of the matrix
W . The spectral radius determines how quickly the influence
of an input data dissipates in the reservoir over time. If the
problem being treated has no long-term dependency, there is
no need to keep data sent far in advance. We can therefore
ensure that the spectral radius is unitary. In some cases, if our
problem has long-term dependencies, it is possible to have
ρ(W)> 1 to keep the data sent in the network longer. The last
parameter we can play on is the leaking rate α . It character-
izes the speed at which we come to update our reservoir with
the new data that we provide over time.

The matrices W and Win are initialized at the start but are
not modified during training. Only the output matrix Wout is
driven:

Wout = Y re f XT (XXT +β I)−1 (A4)

where, for our Lorenz problem, X = (x1, ...,xT) (dimension
N×T), Y re f = (yre f

1 , ...,yre f
T) (dimension 3×T) and I is the

N×N identity matrix. As a result, the dimension of Wout is
3×N +4.

The fact that connectivities from input to hidden layer and
from hidden to hidden layer are fixed and randomly assigned
from the beginning reduces considerably the number of pa-
rameters to be trained. As a result, the training speed of the
network is small compared to other networks specialized in
learning specific temporal patterns (see below). By increas-
ing the size of the training data, the network becomes more
sensitive to the small fluctuations that accumulate during Wout
calculation. The parameter β makes it possible to limit this
dependence by penalizing the too large values of Wout . This is
all the more true for a single precision network which is more
sensitive to these fluctuations and whose β must vary by sev-
eral orders of magnitude depending on the size of the training
data. In double precision (float64), β varies from 10−8 for
5000 training points to 10−7 for 5.105 training points against
10−4 to 10−1 in single precision (float32). As the reservoir
is not changed during training, one must choose the initial-
ization hyperparameters to ensure that one has a consistent
output with the expected results. This requires adjusting the
values of the leaking rate, spectral radius and input scaling as
a priority. The optimization of these parameters has been done
via a grid search where we decrease the search step as we find
good parameters.

The initialization parameters are for Win a density equal to
d = 0.464 with values randomly distributed from a Gaussian
function of standard deviation equal to σ = 3.352. For the
reservoir matrix W , we have chosen dW = 0.483, σW = 2.901,
and a spectral radius ρW = 0.625.

9

FIG. 13. General structure of Recurrent Neural Networks (RNN).

2. LSTM and TCN networks

The two other networks we use are based on Recurrent Neu-
ral Network architectures (RNN). RNNs can be represented as
a single module chain (see Fig. 13). The length of this chain
depends on the length of the sequence that is sent to the input.
The output of the previous module serves as input for the next
module in addition to the data on which we train our network.
This allows the network to keep in memory what has been sent
previously.

The major problem in this type of network is the exponen-
tial decrease of the gradient during the training of the network.
This is due to the nature of back-propagation of the error in
the network. The gradient is the value calculated to adjust the
weights in the network, allowing the network to learn. The
larger the gradient, the greater the adjustments in the weights,
and vice versa. When applying back-propagation to the net-
work, each layer calculates its gradient from the effect of the
gradient in the previous layer. If the gradient in the previous
layer is small, then the gradient in the current layer will be
even smaller. The first layers in the network therefore have
almost no de facto adjustment in their weight matrices for a
very small gradient.

FIG. 14. Schematic representation of a Long Short Term Memory
(LSTM) network: structure of one elementary cell.

To solve this problem of attenuation of the corrections, the
LSTM networks (Long Short Term Memory networks) have
been explicitly developed for this purpose. They can also be
represented as a module chain, but unlike conventional RNNs,
they have a more complex internal structure, composed of four
layers which interact with each other (see Fig. 14).

The first layer is called “input gate”, and is represented by a

horizontal line that runs through the entire cell. It allows data
to easily browse the entire network. This structure represents
the state of the cell over time. On this line there are other
structures which will be used to modify the data which go
through the cell.

The next step in our network is the forget gate structure. It
consists of a neural network with an activation function of the
sigmoid type and makes it possible to decide which part will
be kept in the cell:

ft = σ(Wf [ht−1,ut]+b f), (A5)

where Wf and b f are the weights and bias of the network for
the update gate layer, ut is the input data at time t and ht−1 is
the hidden state output by the previous cell.

The second step is to decide what to store. This structure
consists of two parts. The first part is a neural network with
an activation function of the sigmoid type, and will allow us
to choose which value will be updated in our structure:

it = σ(Wi[ht−1,ut]+bi), (A6)

where Wi and bi are the weights and bias of the sigmoid net-
work for the update gate layer. ut is the input data at time step
t and ht−1 is the hidden state output by the previous cell. The
second part is another neural network with this time an acti-
vation function of the hyperbolic tangent type and that allows
to create the new state candidate of our vector Ct as follows:

C̃t = tanh(Wc[ht−1,ut]+bc), (A7)

where Wc and bc are the weights and bias of the hyperbolic
tangent network for the update gate layer, ut is the input data
at time t and ht−1 is the hidden state output by the previous
cell. The new cell state Ct is then computed by adding the
different outputs from the input gate, the forget gate and the
update gate as follows:

Ct = ft ∗Ct−1 + it ∗C̃t , (A8)

where ft is the output of the forget gate layer, it is the input
layer choosing which values are going to be updated, C̃t is
the new cell state candidate, Ct−1 is the cell state of the pre-
vious cell and ∗ denote elementwise operation. The structure
described above is then repeated from cell to cell.

A final structure makes it possible to determine what will
be the output of the network. The output will be based on the
state of the cell to which we have applied a network with a
sigmoid activation function to choose which part will be re-
turned. Then we apply a hyberbolic tangent function to the
cell state and multiply it with the previous value to get the
new cell state output:

ot = σ(Wo[ht−1,ut]+bo), (A9)
ht = ot ∗ tanh(Ct). (A10)

ht is then sent into a linear layer for prediction of yt .
The third architecture we use consists in TCN networks22,

which use causal convolutions, meaning that at time step t, the
network can only access data points at time step t and earlier,

10

FIG. 15. Schematic representation of a Temporal Convolutional Net-
work (TCN).

ensuring no information leakage from future to past (see Fig.
15). The ability of causal convolution to keep previous data
points in memory depends linearly on the depth of the net-
work. This is why we are using dilated convolution to model
long term dependencies of our system as shown in24 as it en-
ables an exponentially large receptive field depending on the
depth of the network. This enables TCN to function in a way
similar to RNN. For an input sequence U of size T (with ele-
ments un), the dilated causal convolution H we use is defined
as

H(u)n = (U ∗d h)(u)n =
k−1

∑
i=0

h(i)un−d.i (A11)

where d is the dilatation factor, h is a filter ∈ Rk−1 where k is
the filter size and the indices n−d.i represents the direction of
the past. Using larger dilatation factor enables an output at the
top level to represent a wider range of inputs, thus effectively
expanding the receptive field of the network.

The LSTM and TCN networks are more complex networks
and more demanding in computation than ESN. We have set
up these networks with the Tensorflow library. For a trajectory
made of Ni time step iterations, we use 35 successive points
of the trajectory to predict the next step. In this way, we build
a predicting vector of dimension Ni− 35. We use batches of
32 successive values of this vector to update the network pa-
rameters with the gradient back propagation algorithm (using
the Adam optimizer with an exponential learning rate decay).
This process is performed over all the values of the predict-
ing vector, and repeated 10 times (number of epochs equal
to 10). One has indeed to make several passes on the train-
ing data to get good results. On average, an epoch takes 30
seconds. Testing the different possible architectures therefore
takes more time than for the ESN.
1D. Silver et al., Mastering the game of Go with deep neural networks and
tree search Nature 529, 484 (2016).

2G. Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups, IEEE Signal Pro-
cess. Mag. 29, 82 (2012).

3Y. Wu et al, Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation, preprint arXiv:1609.08144
(2016).

4A. Lichtenberg and M. Lieberman, Regular and Chaotic Dynamics,
Springer, New York, 1992.

5E. Ott, Chaos in dynamical systems, Cambridge University Press, Cam-
bridge, 1993.

6M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer,
New York, 1990.

7H. Jaeger and H. Haas, Harnessing Nonlinearity: Predicting Chaotic Sys-
tems and Saving Energy in Wireless Communication, Science 304, 78
(2004).

8J. Pathak, Z. Lu, B.R. Hunt, M. Girvan and E. Ott, Using machine learning
to replicate chaotic attractors and calculate Lyapunov exponents from data
Chaos 27, 121102 (2017).

9J. Pathak, B.R. Hunt, M. Girvan, Z. Lu and E. Ott, Model-Free Prediction
of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Com-
puting Approach Phys. Rev. Lett. 120, 024102 (2018).

10Z. Lu, B.R. Hunt and E. Ott, Attractor reconstruction by machine learning,
Chaos 28, 061104 (2018).

11M. Lukosevicius and H. Jaeger, Reservoir computing approaches to recur-
rent neural network training, Comput. Sci. Rev. 3, 127 (2009).

12Y. Tang, J. Kurths, W. Lin, E. Ott, and L. Kocarev, Introduction to Focus
Issue: When machine learning meets complex systems: Networks, chaos,
and nonlinear dynamics, Chaos 30, 063151 (2020).

13H. Kantz and T. Schreiber, Nonlinear Time Series Analysis Cambridge Uni-
versity Press, Cambridge, 2004.

14F. A. Gers, D. Eck and J. Schmidhuber, Applying LSTM to Time Series
Predictable Through Time-Window Approaches, Neural Nets WIRN Vietri-
01: Proceedings of the 12th Italian Workshop on Neural Nets. Springer,
London, 193 (2012).

15P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis and P. Koumoutsakos,
Data-driven forecasting of high-dimensional chaotic systems with long
short-term memory networks, Proc. R. Soc. A 474, 20170844 (2018).

16P. G. Breen, C. N. Foley, T. Boekholt and S. P. Zwart, Newton versus the ma-
chine: solving the chaotic three-body problem using deep neural networks
Monthly Notices of the Royal Astronomical Society 494, 2465 (2020)

17P.R. Vlachas, J. Pathak, B. R. Hunt, T.P. Sapsis, M. Girvan, E. Ott and P.
Koumoutsakos, Backpropagation Algorithms and Reservoir Computing in
Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal
Dynamics, Neural Networks 126, 191 (2020).

18A. Chattopadhyay, P. Hassanzadeh and D. Subramanian, Data-driven pre-
diction of a multi-scale Lorenz 96 chaotic system using deep learning meth-
ods: Reservoir computing, ANN, and RNN-LSTM Nonlin. Processes Geo-
phys. 27, 373 (2020).

19D.L. Shepelyansky, Some Statistical Properties of Simple Classically
Stochastic Quantum Systems, Physica D 8, 208 (1983).

20G. Casati, B.V. Chirikov, I.Guarneri and D.L. Shepelyansky, Dynamical
Stability of Quantum "Chaotic" Motion in Hydrogen Atom, Phys. Rev. Lett.
56, 2437 (1986).

21K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink and J. Schmid-
huber, LSTM: A Search Space Odyssey IEEE Transactions on Neural Net-
works and Learning Systems 28 , 10 (2017).

22S. Bai, J.Z. Kolter and V. Koltun, An Empirical Evaluation of Generic Con-
volutional and Recurrent Networks for Sequence Modeling arXiv preprint
arXiv:1803.01271 (2018).

23E. N. Lorenz, Deterministic Nonperiodic Flow, J. Atmos. Sci. 20, 130
(1963).

24A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior and K. Kavukcuoglu, WaveNet: A Generative
Model for Raw Audio preprint arXiv:1609.03499 (2016).

25O.E. Rössler, An equation for continuous chaos, Physics Letters A 57, 397
(1976).

