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Elevated CO2 increases photosynthesis and, potentially, net ecosystem production 24 

(NEP) meaning greater CO2 uptake. Climate, nutrients, and ecosystem structure, 25 

however, influence the effect of increasing CO2. Here, we analysed global NEP from 26 

MACC-II and Jena CarboScope atmospheric-inversions and 10 dynamic global 27 

vegetation models (TRENDY), using statistical models to attribute the trends in NEP to 28 

its potential drivers: CO2, climatic variables and land-use change. We find that 29 

increasing CO2 was consistently associated with increased NEP (1995-2014). 30 

Conversely, increasing temperatures were negatively associated with NEP. Using the 31 

two atmospheric inversions and TRENDY, the estimated global sensitivities for CO2 32 

were 6.0 ± 0.1, 8.1 ± 0.3 and 3.1 ± 0.1 Pg C per 100 ppm (~1 ºC increase), and -0.5 ± 33 

0.2, -0.9 ± 0.4 and -1.1 ± 0.1 Pg C °C-1 for temperature. These results indicate a 34 

positive CO2 effect on terrestrial C sinks that is constrained by climate warming. 35 

  36 



In recent decades, terrestrial ecosystems have been absorbing 15–30% of all 37 

anthropogenic CO2 emissions1,2. Direct and indirect anthropogenic impacts on the 38 

biosphere, however, can alter terrestrial sinks in the short and long terms3–6. Identifying 39 

the factors that affect the capacity of the biosphere to absorb carbon (C) and 40 

quantifying the magnitude of the sensitivity of this C sink to its driving factors helps to 41 

increase confidence in future projections of the coupled C cycle/climate system. 42 

Increasing plant growth is a robust response to increasing CO2 concentrations under 43 

experimental conditions (CO2 fertilization effect)7,8. The extent to which  increases in 44 

CO2 can enhance large-scale photosynthesis and ultimately net ecosystem production 45 

(NEP) remains uncertain5,7. Detecting this effect in the real world is much more difficult 46 

than under controlled experiments. However, recent efforts using eddy-covariance-47 

based data and statistical models have been successful in detecting positive effects of 48 

CO2 on water-use efficiency (WUE)9, photosynthesis, and NEP5.  49 

The potential positive effect of elevated CO2 on productivity could be influenced by 50 

global warming6 and altered precipitation patterns10 since both water availability and 51 

temperature are strong drivers of photosynthesis and respiration worldwide11–13. Land-52 

use change also alters the capacity of the biosphere to sequester C because land use 53 

causes a drastic change in C turnover and productivity. Atmospheric deposition of 54 

nitrogen (N) and sulphur (S) from the use of fossil fuels and fertilisers may also alter 55 

ecosystem biodiversity, function, productivity and NEP5,14–17. N deposition is usually 56 

positively correlated with ecosystem productivity and NEP17–19. Conversely, S 57 

deposition may reduce ecosystem carbon sinks, this has rarely been investigated in 58 

field studies20,21 and absent from global models. Soil acidification, caused by acid 59 

deposition, of N and S, often decreases the availability of soil nutrients22 and potentially 60 

reduces NEP23.  61 

The observations underlying the driver analysis of NEP described above were largely 62 

limited to temperate and boreal study sites, making it difficult to assess global 63 

scalability. Additionally, until recently, the only way to assess terrestrial C sink was from 64 

ensembles of dynamic global vegetation models (DGVMs) or as a residual sink, by 65 

subtracting atmospheric and ocean sinks to the estimates of CO2 emissions. Currently, 66 

inversion models, as well as long-term remotely sensed data24, can be used to test the 67 

generality of the patterns derived from ground-based measurements. Inversion models 68 

provide continuous gridded estimates for the net flux of land-atmosphere CO2 69 

exchange (i.e. NEP) with global coverage25,26. The gridded NEP results from 70 

inversions, combined with CO2-concentration records, gridded fields for climate, land-71 



use change, and atmospheric deposition, are arguably the best observation-based data 72 

to attempt a first empirical study of the combined effects of CO2, changes in climate 73 

and land use, and atmospheric N and S deposition on terrestrial NEP patterns at the 74 

global scale. Given that previous site level studies revealed that increasing CO2 is a 75 

dominant driver of trends in NEP, we expect that it will also be the dominant driver at 76 

larger spatial scales and across the globe.  77 

Here we investigate if the trends of NEP from the two most widely used multi-decadal 78 

inversion models (MACC-II and Jena CarboScope) and DGVMs (TRENDY) from 1995 79 

to 2014 are related to increasing atmospheric CO2 and changing climate (temperature, 80 

precipitation, and drought). Additionally, the effect of land-use on NEP at the global 81 

scale was investigated using statistical models to assess the sensitivity of NEP to the 82 

abovementioned predictors. We also analysed the effect of changing rates of 83 

atmospheric deposition of oxidised and reduced N and S on NEP, combined with 84 

increasing CO2 and changing climate and land use, over Europe and the USA.  85 

CO2 and climate effects on global NEP 86 

Global land (excluding Antarctica) mean annual NEP was 2.3 ± 0.9, 2.3 ± 1.5 and 1.6 ± 87 

0.5 Pg C y-1 (mean ± 1σ), respectively, for MACC-II, Jena CarboScope and the 88 

TRENDY ensemble during the period 1995–2014, similar in magnitude to the recent 89 

global carbon budget2. Both inversions and the TRENDY ensemble showed an overall 90 

positive trend in NEP from 1995 to 2014. The estimated NEP increased by (mean ± 91 

1SE) 116.9 ± 6.1 Tg C y-1 for the MACC-II dataset, by 178.0 ± 8.1 Tg C y-1 for the Jena 92 

CarboScope dataset, and by 22.5 ± 3.1 Tg C y-1 for the TRENDY ensemble (Figure 1). 93 

This supports the increases in the global carbon budget2, with a lower increase of the 94 

DGVMs than those shown by the inversion models. The large differences between 95 

inversion models and DGVMs may arise because of the lack of information on river 96 

fluxes, inadequate parameterisations concerning land management and degradation in 97 

the process models or because of potential biases in inversion models. Both inversion 98 

model datasets produced similar trends for many parts of the world, an increasing NEP 99 

for Siberia, Asia, Oceania, and South America, and a decreasing NEP for the southern 100 

latitudes of Africa. Differences between inversions emerged for Europe and North 101 

America, possibly because Jena CarboScope inversion uses a larger spatial error 102 

correlation of prior fluxes than MACC-II or because of other inversion settings2. 103 

However, their different flux priors did not drive differences in the trends between both 104 

datasets, given that priors did not change over the studied period. Jena CarboScope 105 

showed largely positive trends for Europe and largely negative trends for North 106 



America; MACC II showed more variation in the trends for both continents. The trends 107 

identified by the TRENDY ensemble agreed with atmospheric inversions for the 108 

northernmost latitudes, indicating an increase in C-sink capacity, but differed from 109 

those in many other regions.  110 

Our analyses on temporal contributions, using the temporal anomalies of our 111 

predictors, attributed the increases in global NEP to increasing CO2 but found a 112 

consistent negative impact of temperature on NEP, which limited the positive effect of 113 

increasing CO2 (Figure 1). These results were consistent for both datasets and most of 114 

the DGVMs of the TRENDY ensemble. The predictors used in this study explained a 115 

modest proportion of the variance in NEP, in contrast to the variance explained by 116 

spatial variability (i.e., the pixel), which was rather high (Supplementary Information 117 

(SI), Section 2). Unknown contributions to trends in NEP, the difference between all 118 

contributions and the observed trend, were very close to zero for the analyses on 119 

inverse models and the TRENDY ensemble (Figure 1). This result suggests that trends 120 

were very well captured by our analyses, indicating that the methodology was able to 121 

disentangle spatial from temporal variability. The sensitivity of NEP to increasing CO2 122 

averaged 0.45 ± 0.01, 0.61 ± 0.03 and 0.23 ± 0.01 g C m-2 ppm-1 for MACC-II, Jena 123 

CarboScope and TRENDY, respectively (Table 1), representing sensitivities over the 124 

entire terrestrial surface of 60.4 ± 1.2, 81.4 ± 3.4 and 30.7 ± 1.2 Tg C ppm-1, 125 

respectively. Despite lower temporal attributions for temperature than CO2, the 126 

sensitivity of NEP to temperature was high, at -3.8 ± 1.1, -6.4 ± 2.9 and -8.1 ± 0.9 g C 127 

m-2 y-1 °C-1 for the MACC-II, Jena CarboScope and TRENDY models, respectively, 128 

equivalent to global sensitivities of -515.7 ± 152.4, -859.2 ± 386.3 and -1088.0 ± 118.1 129 

Tg C °C-1, respectively. Trends in NEP and the effect of CO2 and temperature on NEP 130 

significantly differed in magnitude amongst the datasets used, however, they all point 131 

towards the same conclusion: global NEP has increased during the study period and 132 

increasing CO2 has been the most likely driving factor despite increasing temperatures 133 

constraining this positive effect. The exact magnitude of the effect of increasing CO2 134 

and temperatures on global carbon cycle remains to be established 135 

Spatial variability on CO2 and climate change effects on NEP 136 

Our statistical models for the MACC-II and Jena CarboScope datasets indicated that 137 

the positive effect of CO2 on NEP was higher in regions with higher annual precipitation 138 

and that this positive effect increased with increasing temperatures (Figure 2, SI 139 

Section 1.1). In contrast, our analyses using the TRENDY ensemble did not show a 140 

significant interaction between CO2 and precipitation or with temperature, highlighting 141 



the different behaviour in the DGVMs compared to inversion models. We also found a 142 

significant positive interaction between mean annual temperature and CO2 for Jena 143 

CarboScope and TRENDY. However, the same interaction was negative for MACC-II. 144 

On the other hand, increasing temperatures reduced NEP in warm regions but 145 

increased NEP in cold regions (Figure 2).   146 

The analyses on temporal contributions performed for inversion and TRENDY NEP 147 

averaged over latitudinal bands (boreal, >55°; temperate, 35-55°; subtropical, 15-35°; 148 

and tropical, 15°N-15°S), further supported previous results obtained at the global 149 

scale (Table 2, SI Sections 2.2–2.7). Increasing CO2 was the main factor accounting 150 

for increasing trends in NEP, with a consistent positive temporal contribution for almost 151 

all latitudinal bands considered and for all three datasets. However, contributions 152 

estimated from the TRENDY ensemble were generally lower than those of the 153 

inversion models. Proportionally, increasing CO2 accounted for more than 90% of the 154 

trends in NEP in MACC-II and Jena CarboScope datasets. For the TRENDY ensemble, 155 

the estimated contribution of CO2 to the trends in global NEP was more than 2.7 times 156 

higher than the estimated trends. Increasing temperatures had a negative effect for all 157 

latitudinal bands for the inversion models, but most effects were not statistically 158 

significant and need to be interpreted as such. Instead, our analyses for the TRENDY 159 

ensemble indicated a significant negative effect for all latitudinal bands, except for the 160 

temperate southern hemisphere. Similarly, the proportional contribution of temperature 161 

to the trends in NEP was less than 10% for the inversion models, but accounted for 162 

almost 95% of the trends estimated using the TRENDY ensemble. These results 163 

suggest that the parameterisation of temperature in the DGVMs does not accurately 164 

reproduce the estimation of the inverse models.  165 

Despite all regions presented, on average, positive trends, the tropical regions clearly 166 

had the highest contribution, across all three datasets, to global NEP trends accounting 167 

for almost half of the increase (Table 2). Similarly, the tropical regions had the highest 168 

sensitivity to CO2 increase, accounting for more than half of the total global sensitivity 169 

(Table 1). A similar pattern was found for temperature, although the sign of the 170 

contribution was positive for MACC-II but negative for Jena CarboScope and TRENDY. 171 

The contribution of the southern hemisphere to the global trends was very modest 172 

compared to the contribution of the northern hemisphere using all datasets. Our results 173 

using the MACC-II dataset showed that subtropical, temperate and boreal regions of 174 

the northern hemisphere accounted for 44.2% of the global trends in NEP, while only 175 

9.5% was attributed to subtropical and temperate regions of the southern hemisphere. 176 

Using the Jena CarboScope dataset these regions accounted for 63.3% and 6.1%, 177 



respectively. Differences on the regional attributions between inversion models may 178 

emerge from the different interhemispheric transport models or other inversion 179 

settings2. Results from the TRENDY ensemble were more extreme, because they 180 

indicated a negative contribution of the subtropical and temperate regions to the global 181 

trends in NEP. Differences between the global estimates (trends and contributions of 182 

CO2 and temperature) and the sum of every region were low for all datasets. 183 

Contribution of other variables to the trends in NEP (precipitation, drought, land-use 184 

change, and unknown variables) were on average also low for most of the latitudinal 185 

bands, despite the variability amongst datasets (Table 2).  186 

Atmospheric deposition 187 

The MACC-II and Jena CarboScope datasets showed that NEP increased over Europe 188 

and the USA by 0.45 ± 0.13 and 0.68 ± 0.16 g C m-2 y-1, respectively (Figure S1). Our 189 

temporal contribution analyses suggested that increasing atmospheric CO2 in both 190 

datasets contributed significantly to increasing NEP. NEP sensitivity to CO2 was more 191 

than two-fold higher in the Jena CarboScope than the MACC-II dataset (Table S1), 192 

similar to the temporal contributions, at 0.22 ± 0.06 and 0.46 ± 0.07 g C m-2 y-1 ppm-1 193 

for the MACC-II and Jena CarboScope models, respectively. The temporal contribution 194 

of decreasing NOX deposition to NEP differed between the two datasets; the 195 

contribution was positive for MACC-II and negative for Jena CarboScope. Our analyses 196 

consequently estimated a negative sensitivity of NEP to NOX for the MACC-II dataset 197 

but a positive sensitivity for the Jena CarboScope dataset. Additionally, neither MACC-198 

II, nor Jena CarboScope indicated a strong impact of land use change.  199 

These statistical models indicated that, in both datasets, the positive effect of CO2 on 200 

NEP was higher in regions with higher NRED deposition but lower in regions with high S 201 

deposition (means for MACC-II and annual anomalies for Jena CarboScope; see SI 202 

section 2.8). The results for NOX deposition, however, differed between the models. 203 

The positive effect of CO2 on NEP for the MACC-II dataset was constrained by the 204 

annual anomalies of NOX but was higher for the Jena CarboScope dataset. We also 205 

estimated an overall negative but not significant sensitivity of NEP to S deposition for 206 

both inversion models.  207 

CO2 fertilisation and global NEP 208 

The positive effect of atmospheric CO2 on NEP must originate from a stronger positive 209 

effect on photosynthesis than on the sum of all respiratory processes. Increasing 210 

atmospheric CO2 concentrations have been widely reported to increase ecosystem 211 



photosynthesis, mainly by two mechanisms: i) increasing carboxylation rates and 212 

decreasing photorespiration27, and ii) decreasing stomatal conductance and therefore 213 

increasing WUE9,28, which would theoretically increase photosynthesis under water 214 

limitation. An increase in GPP by either mechanism may thus account for the higher 215 

NEP due to increasing atmospheric CO2. A recent global analysis suggested that most 216 

of the GPP gains from CO2 fertilization are associated with ecosystem WUE29. The 217 

positive interaction between CO2 and annual precipitation that we found may not 218 

support this hypothesis (Figure 2), given that plants living under wet conditions are 219 

usually less efficient in water use. However, plants having higher water availability may 220 

benefit from increasing CO2 more than those suffering drought because photosynthesis 221 

would not be water-limited. 222 

Our estimates of global NEP sensitivity to CO2 were 0.45 ± 0.01, 0.61 ± 0.03 and 0.23 223 

± 0.01 g C m-2 ppm-1 (globally 60.4 ± 1.2, 81.4 ± 3.4 and 30.7 ± 3.4 Tg C ppm-1) for the 224 

MACC-II, Jena CarboScope and TRENDY datasets, respectively, but these estimates 225 

varied amongst the latitudinal bands and were inconsistent between datasets (Table 226 

1). These estimates were similar to those reported in CO2-enrichment FACE 227 

experiments30, despite the fact that FACE values were calculated for a much higher 228 

CO2 range for which the effect of CO2 may saturate31. However, they were much lower 229 

than the 4.81 ± 0.52 g C m-2 ppm-1 reported in a study using eddy-covariance flux 230 

towers for a similar period5. The much larger areas analysed by the inverse models 231 

than the footprints covered by the eddy-covariance flux towers, and FACE 232 

experiments, may explain these differences between the estimates. Flux towers are 233 

usually located in relatively homogenous, undisturbed ecosystems, while each pixel in 234 

the inverse model aggregates information from several ecosystems (and even biomes), 235 

often including non-productive land such as bare soil or cities.  236 

Our results indicated that the variability of the estimates of NEP sensitivity to CO2 237 

amongst the latitudinal bands might be associated with differences in climate and 238 

atmospheric N and S deposition. The two atmospheric inversion models indicated that 239 

the effect of CO2 fertilisation was stronger in wet climates (high annual precipitation) 240 

(Figure 2), supporting the estimates provided by the latitudinal bands, with the highest 241 

sensitivity estimates for the tropical band (Table 1). However, analyses based on the 242 

TRENDY ensemble did not show the same results. The positive effect of CO2 tended to 243 

increase with temperature anomalies in both inversion models, but, again, the DGVMs 244 

did not show the same behaviour. These differences between inversion models and 245 

process-based models suggest that DGVMs still fail to capture some of the interactions 246 

occurring in nature. The MACC-II and Jena CarboScope datasets further agreed on a 247 



stronger positive effect of increasing CO2 in regions with higher NRED deposition, which 248 

confirms previous studies suggesting that the effect of CO2 fertilisation is stronger in 249 

nitrogen-rich sites32–34.  250 

Climate, land-use and C sinks 251 

Climatic warming clearly had a secondary effect on the trends in NEP from 1995 to 252 

2014. The MACC-II, Jena CarboScope and TRENDY datasets estimated that NEP 253 

decreased globally by around -0.5 ± 0.2, -0.9 ± 0.4 and -1.1 ± 0.1 Pg C for every 254 

degree of increase in the Earth’s temperature. Assuming that a CO2 increase of 100 255 

ppm is equivalent to an increase of global temperature of 1 ºC, the effect of the 256 

increasing CO2 concentrations largely outweighs the negative effect of increasing 257 

temperature on NEP (global estimates: 6.0 ± 0.1, 8.1 ± 0.3 and 3.1 ± 0.1 Pg C for a 258 

100 ppm of CO2 increase according to MACC-II, Jena CarboScope and TRENDY). The 259 

difference, though, is much lower for TRENDY than for the inversion models, having a 260 

higher negative impact of temperature and a lower positive effect of CO2. This 261 

difference in the effects of temperature and CO2 may explain the lower trends observed 262 

in TRENDY datasets compared to MACC-II and Jena CarboScope. It also suggests 263 

that a different parameterisation of temperature, CO2 and their interaction may be 264 

needed on DGVMs to capture the observed trends in the inversion models.  265 

The quasi monotonically increasing atmospheric CO2 concentrations have been more 266 

important than temperature in driving NEP trends. Increasing temperature, however, 267 

did not have the same effect on NEP around the world. The analyses of both inverse 268 

models indicated that increasing temperatures had a positive effect on NEP only in cold 269 

regions (when MAT ≤ 1.5, 9 and -5.9 ºC for MACC-II and Jena CarboScope and 270 

TRENDY respectively, when CO2 = 400 ppm, see SI section 2.1, and Figure 2). 271 

These findings support previous literature reporting a positive effect between 272 

temperature increase and NEP in temperate and boreal forests35. Instead, the general 273 

negative effect of temperature on NEP could be due to a greater stimulation of Re than 274 

photosynthesis by higher temperatures36,37. The potential benefit to C sequestration of 275 

increased photosynthesis would then be negated by a greater increase in Re. 276 

Increasing temperatures can also be linked to heat waves and drier conditions, which 277 

may decrease GPP more than Re38. 278 

The effects of land-use change on NEP trends differed greatly amongst the datasets, 279 

both at the global scale and when using latitudinal bands. Our statistical models 280 

identified several significant relationships between NEP and land-use change, but the 281 

large differences in effects (direction and magnitude) amongst the datasets preclude 282 



drawing firm conclusions. The coarse resolution of analysis likely blurred the effects of 283 

land-use change on the NEP trends.  284 

Our study highlights the dominant role of rising atmospheric CO2 concentrations 285 

triggering an increase in land C sinks over the entire planet from 1995 to 2014, with the 286 

tropics accounting for around half of this increase in NEP despite being only around 287 

22% of the global land (excluding Antarctica, Table 2). Therefore, preserving tropical 288 

ecosystems should be a global priority in order to mitigate anthropogenic CO2 289 

emissions. Temperature has diminished the capacity of terrestrial ecosystems to 290 

sequester C, which jeopardises future C sink capacity in light of global warming. So far, 291 

our results suggest that the benefit of increasing atmospheric concentrations of CO2 292 

are still compensating the negative ones of temperature rise, in terms of C 293 

sequestration. However, if it has not started to change already6, this pattern may 294 

eventually reverse with saturation of land C sinks5,31 or because warm ecosystems tend 295 

to decrease NEP as temperature rises (Figure 2). Additionally, the comparison 296 

between model results indicated that the DGVMs were unable to reproduce several 297 

features of the global land C sinks observed in inversion models. Process-based earth 298 

system models will need to improve their parameterisation to capture these features in 299 

order to better predict the future of land C sinks.  300 

  301 
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Figure captions 438 

Figure 1: Global trends in NEP and their contributing factors. Global temporal 439 

contributions of CO2, climate and land-use change to the trends in NEP (annual 440 

change) are shown on the right side of each panel. The difference between the 441 

modelled temporal contributions and the trends (shaded) has been treated as an 442 

unknown contribution to the temporal variation in NEP. Statistically significant (P < 443 

0.01) temporal variations of the predictors are shown in square brackets. Error bars 444 

indicate 95% confidence intervals. The boxplots in panel c indicate the estimated 445 

contributions of the 10 DVGMs used in the TRENDY ensemble. Units are ppm y-1 for 446 

CO2, °C y-1 for temperature, mm y-2 for precipitation, standard deviation for SPEI, and 447 

percentage of land-use cover per pixel for forests, crops, and urban areas. See the 448 

Materials and Methods section for information about the methodology used to calculate 449 

the contributions. Significance levels: *, P < 0.01; **, P < 0.005; ***, P < 0.001. 450 

Figure 2: Plots showing the estimated effects of the interactions of the statistical 451 

models. The graphs show interactions between CO2 and climate (mean annual 452 

precipitation [MAP] and temperature [MAT], and annual anomalies in temperature 453 

[MAT.an]) on NEP for the MACC-II and Jena CarboScope inversion models and the 454 

TRENDY ensemble. Shaded bands indicate the 95% confidence intervals of the 455 

slopes. Non-significant interactions are indicated by “n.s.”. 456 

Table 1: Global and latitudinal analyses of sensitivity of NEP to changes in 457 

atmospheric CO2 concentrations and mean annual temperature. The “%” columns 458 

indicate the contribution of the latitudinal band to the global estimate. Differences are 459 

calculated as the difference between the sum of all latitudinal bands and the global 460 

estimate. Bold coefficients differ significantly from 0 at the 0.01 level. Empty cells 461 

indicate that anomalies in temperature were not a significant predictor in the models 462 

predicting NEP. Units are Tg C y-1 ppm-1 for CO2 and Tg C y-1 C-1 for temperature. 463 

Table 2: Global and latitudinal trends and temporal contributions of changes in 464 

atmospheric CO2 concentrations and mean annual temperature to NEP trends. 465 

The “%” columns indicate the percentage of contribution of each latitudinal band to the 466 

global estimate. Columns “Cont.” show the percentage of contribution of CO2 and 467 

temperature to the trends in NEP. Column “Other” shows the difference between the 468 

NEP trend and the sum of contributions of CO2 and temperature. If different from zero, 469 

it indicates that other factors are contributing to the trends in NEP. The “differences” 470 

rows are calculated as the difference between the sum of all latitudinal bands and the 471 



global estimate. NH and SH indicate Northern and Southern Hemispheres, 472 

respectively. Bold coefficients differ significantly from 0 at the 0.01 level. Empty cells 473 

indicate that anomalies in temperature were not a significant predictor in the models 474 

predicting NEP. Units are Tg C y-1 for trends, Tg C y-1 ppm-1 for CO2 and Tg C y-1 C-1 475 

for temperature. Errors were calculated using the error propagation method. See the 476 

Materials and Methods section for information about the methods used to calculate the 477 

contributions. 478 
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Table 1 488 

 
CO2 % 

 
Temperature % 

 

MACC 
        

NH >55° 8.5 ± 0.4 14.1 
 

-35.3 ± 24.1 6.8 
 

NH 35-55° 14.7 ± 1.3 24.3 
 

-132.0 ± 259.9 25.6 
 

NH 15-35° -5.0 ± 1.4 -8.3 
     

NH 15-SH 15° 31.9 ± 0.7 52.9 
 

101.9 ± 216.6 -19.8 
 

SH 15-35° 2.2 ± 0.9 3.7 
 

-150.2 ± 131.3 29.1 
 

SH 35-55° 0.6 ± 0.3 1.0 
 

-13.4 ± 49.3 2.6 
 

Global 60.4 ± 1.2 
 

-515.7 ± 152.4 
  

Difference -7.4 ± 2.6 -12.3 
 

286.6 ± 397.4 -55.6 
 

         
JENA 

        
NH >55° -0.3 ± 1.0 -0.3 

 
-49.8 ± 48.2 5.8 

 
NH 35-55° 11.1 ± 3.9 13.6 

 
-213.6 ± 558.1 24.9 

 
NH 15-35° 26.3 ± 2.7 32.3 

 
-268.7 ± 400.0 31.3 

 
NH 15-SH 15° 54.2 ± 3.6 66.6 

 
-697.6 ± 1136.5 81.2 

 
SH 15-35° 5.4 ± 0.9 6.6 

 
-167.0 ± 133.9 19.4 

 
SH 35-55° 0.2 ± 0.0 0.3 

     
Global 81.4 ± 3.4 

  
-859.2 ± 386.3 

  
Difference 15.4 ± 6.9 19.0 

 
-537.4 ± 1390.2 62.5 

 

         
TRENDY 

        
NH >55° 2.8 ± 0.1 9.0 

 
17.3 ± 7.3 -1.6 

 
NH 35-55° 5.8 ± 0.5 19.0 

 
-251.1 ± 79.3 23.1 

 
NH 15-35° 5.9 ± 0.6 19.4 

 
-368.8 ± 51.9 33.9 

 
NH 15-SH 15° 16.6 ± 1.1 54.2 

 
-1612.2 ± 213.4 148.2 

 
SH 15-35° 4.6 ± 1.2 14.9 

 
-379.2 ± 141.1 34.9 

 
SH 35-55° 0.3 ± 0.2 1.0 

 
-36.8 ± 18.1 3.4 

 
Global 30.7 ± 1.2 

  
-1088.0 ± 118.1 

  
Difference 5.4 ± 2.1 17.5 

 
-1542.7 ± 298.0 141.8 

 
  489 



Table 2 490 

 
Trends % 

 
CO2 % Cont. 

 
Temp % Cont. Other 

MACC 
              

NH >55° 20.1 ± 1.2 17.2 
 

17.0 ± 0.8 14.1 84.4 
 

-1.2 ± 0.8 11.5 -5.9 4.3 ± 1.7 

NH 35-55° 17.5 ± 5.0 15.0 
 

29.2 ± 2.7 24.3 166.6 
 

-1.7 ± 3.2 16.1 -9.4 -10.0 ± 6.5 

NH 15-35° 14.0 ± 3.1 12.0 
 

-9.9 ± 2.8 -8.3 -71.0 
    

0.0 23.9 ± 4.1 

NH 15- 

SH 15° 
55.4 ± 2.7 47.4 

 
63.5 ± 1.5 52.9 114.6 

 
0.9 ± 1.9 -8.9 1.6 -9.0 ± 3.6 

SH 15-35° 7.6 ± 1.4 6.5 
 

4.4 ± 1.9 3.7 57.6 
 

-2.3 ± 2.0 22.2 -29.8 5.5 ± 3.1 

SH 35-55° 2.3 ± 0.6 2.0 
 

1.2 ± 0.7 1.0 49.9 
 

-0.3 ± 1.0 2.5 -11.2 1.4 ± 1.3 

Global 116.9 ± 6.1 
  

120.1 ± 2.3 
 

102.7 
 

-10.3 ± 3.0 
 

-8.8 7.1 ± 7.2 

Difference 0.0 ± 9.1 0.0 
 

-14.8 ± 5.2 -12.3 
  

5.8 ± 5.4 -56.6 
  

            

JENA 
              

NH >55° 13.8 ± 2.2 7.7 
 

-0.5 ± 2.1 -0.3 -3.8 
 

-1.7 ± 1.7 9.9 -12.4 16.0 ± 3.5 

NH 35-55° 49.8 ± 5.9 28.0 
 

22.0 ± 7.7 13.6 44.1 
 

-2.7 ± 6.9 15.4 -5.3 30.5 ± 11.9 

NH 15-35° 49.2 ± 4.0 27.6 
 

52.3 ± 5.3 32.3 106.2 
 

-5.0 ± 7.4 29.0 -10.2 1.9 ± 10.0 

NH 15- 

SH 15° 
80.4 ± 5.1 45.2 

 
107.7 ± 7.1 66.6 133.9 

 
-5.7 ± 9.2 32.9 -7.0 -21.6 ± 12.7 

SH 15-35° 10.4 ± 1.3 5.8 
 

10.7 ± 1.7 6.6 103.1 
 

-2.8 ± 2.2 16.2 -26.9 2.5 ± 3.1 

SH 35-55° 0.5 ± 0.1 0.3 
 

0.4 ± 0.1 0.3 87.2 
     

0.1 ± 0.1 

Global 178.0 ± 8.1 
  

161.8 ± 6.8 
 

90.9 
 

-17.2 ± 7.7 
 

-9.7 33.4 ± 13.1 

Difference 26.1 ± 12.2 14.7 
 

30.7 ± 13.8 19.0 
  

-0.6 ± 16.0 3.4 
  

            

TRENDY 
              

NH >55° 9.3 ± 0.6 41.4 
 

5.5 ± 0.3 9.0 59.0 
 

0.6 ± 0.2 -2.7 6.1 3.3 ± 0.7 

NH 35-55° 9.4 ± 1.3 41.5 
 

11.6 ± 0.9 19.0 124.0 
 

-3.0 ± 0.9 13.9 -31.6 0.7 ± 1.8 

NH 15-35° 3.3 ± 1.3 14.9 
 

11.8 ± 1.1 19.4 352.9 
 

-7.9 ± 1.0 36.9 -235.0 -0.6 ± 2.0 

NH 15- 

SH 15° 
10.1 ± 2.3 45.0 

 
33.0 ± 2.1 54.2 326.2 

 
-17.2 ± 1.8 80.8 -170.2 -5.7 ± 3.6 

SH 15-35° -13.7 ± 1.8 -60.9 
 

0.5 ± 0.1 0.9 -3.8 
 

-0.3 ± 0.1 1.6 2.5 -13.9 ± 1.8 

SH 35-55° -1.0 ± 0.4 -4.7 
 

0.6 ± 0.5 1.0 -55.4 
 

-0.7 ± 0.4 3.5 70.4 -0.9 ± 0.7 

Global 22.5 ± 3.1 
  

61.0 ± 2.5 
 

270.7 
 

-21.3 ± 2.2 
 

-94.7 -17.1 ± 4.5 

Difference -5.2 ± 4.7 -22.9 
 

2.1 ± 3.6 3.4 
  

-7.3 ± 3.2 34.0 
  

 491 

  492 



Methods 493 

Datasets 494 

NEP data 495 

We used gridded global monthly NEP data for 1995–2014 from two inversion models: i) 496 

the MACC (Monitoring Atmospheric Composition and Climate) CO2 (http://www.gmes-497 

atmosphere.eu/catalogue/) 25,39 database, version v14r2 and ii) the Jena CarboScope 498 

database version s93_v3.7 using a constant network of towers (http://www.bgc-499 

jena.mpg.de/CarboScope/) 26. The MACC CO2 atmospheric inversion system relies on 500 

the variational formulation of Bayes’ theorem to analyse direct measurements of CO2 501 

concentrations from 130 sites around the globe for 1979-2014. Optimised fluxes were 502 

calculated at a global horizontal resolution of 3.75 × 1.875° (longitude, latitude) and a 503 

temporal resolution of eight days, separately for daytime and night-time. The underlying 504 

transport model was run with interannually varying meteorological data from the 505 

ECMWF ERA-Interim reanalysis. The Jena inversion model estimates the interannual 506 

variability of CO2 fluxes based on raw CO2 concentration data from 50 sites. The model 507 

uses a variational approach with the TM3 transport model (4 × 5°, using interannually 508 

varying winds). Prior terrestrial fluxes were obtained from a modelled mean biospheric 509 

pattern and fossil-fuel emissions from the EDGAR emission database40. We also used 510 

NEP data from an ensemble of 10 dynamic global vegetation models (DGVMs) 511 

compiled by the TRENDY project (version 4, models CLM4.5, ISAM, JSBACH, JULES, 512 

LPJG, LPX, OCN, ORCHIDEE, VEGAS, and VISIT) to see if results obtained from 513 

atmospheric inversions data match those obtained with DGVMs simulations41. We used 514 

the output from simulation experiment S3, which was run with varying atmospheric CO2 515 

and changing land use and climate41.  516 

Meteorological, land-use change and atmospheric CO2  data 517 

We extracted gridded temperature and precipitation time series from the Climatic 518 

Research Unit TS3.23 dataset 42. We also used the SPEI (Standardised Precipitation-519 

Evapotranspiration Index) drought index43 from the global SPEI database 520 

(http://SPEI.csic.es/database.html) as a measure of drought intensity (positive values 521 

indicate wetter than average meteorological conditions, negative values indicate drier 522 

than average conditions). We used annual SPEI1 (monthly SPEI averaged over a 523 

year). Mean annual temperature (MAT) and precipitation (MAP) and SPEI were 524 

calculated for each year and pixel. We used land-use change maps from land-use 525 

harmonisation2 (LUH2, http://luh.umd.edu/data.shtml) and calculated the percent 526 

http://www.gmes-atmosphere.eu/catalogue/
http://www.gmes-atmosphere.eu/catalogue/
http://www.bgc-jena.mpg.de/CarboScope/
http://www.bgc-jena.mpg.de/CarboScope/


coverages of forests, croplands, and urban areas per pixel, so we could further 527 

estimate whether they increased or decreased from 1995 to 2014. We used the data 528 

for atmospheric CO2 concentration from Mauna Loa Observatory provided by the 529 

Scripps Institution of Oceanography (Scripps CO2 programme).  530 

Data for N and S deposition  531 

Annual data for N (oxidised N [NOX] from NO3
- and reduced N [NRED] from NH4

+) and S 532 

(SO4
-) wet deposition were extracted from: i) the European Monitoring and Evaluation 533 

Programme (EMEP) with a spatial resolution of 0.15 × 0.15° for longitude and latitude, 534 

ii) the MSC-W chemical-transport model developed to estimate regional atmospheric 535 

dispersion and deposition of acidifying and eutrophying N and S compounds over 536 

Europe, and iii) the National Atmospheric Deposition Program (NADP) covering the 537 

USA with a spatial resolution of 0.027 × 0.027° for longitude and latitude. We used only 538 

data for wet deposition because the NADP database only contained records for dry 539 

deposition for 2000. Analyses focused on atmospheric deposition and were restricted 540 

to Europe and the USA because temporal gridded maps of atmospheric deposition 541 

were not available for other regions. Maps of atmospheric deposition for the regional 542 

analyses were adjusted to the resolution of the C-flux maps (3.75 × 1.875° for the 543 

MACC-II model and 4 × 5° for the Jena CarboScope model for longitude and latitude). 544 

Statistical analyses 545 

Gridded, global and regional trend detection on NEP  546 

To determine how NEP has changed from 1995 to 2014, we first calculated the trends 547 

for each pixel in both inversion models and an average dataset of the TRENDY 548 

ensemble using linear regressions with an autoregressive and moving-average 549 

(ARMA) (autoregressive structure at lag p=1, and no moving average q=0) correlation 550 

structure to account for temporal autocorrelation. Trends over larger areas (e.g. the 551 

entire world, latitudinal bands), either for NEP or the predictor variables, were 552 

calculated using generalised linear mixed models (GLMMs) with random slopes, 553 

including also random intercepts44 (e.g. NEP ~ year). We used pixel as the random 554 

factor (affecting the intercepts and slopes of the year), and an ARMA (p=1, q=0) 555 

correlation structure. All average trends shown were calculated using this methodology.  556 

Calculation of temporal contributions on trends of NEP 557 

The temporal contributions of increasing CO2, climate (MAT, MAP, and SPEI), and 558 

land-use change (forests, croplands, and urban areas) to the observed trends in NEP 559 



were assessed for the MACC-II, Jena CarboScope, and TRENDY datasets for the 560 

entire world. We repeated the analysis for five latitudinal bands to determine if the 561 

contributions of CO2, climate, and land-use change were globally consistent using 562 

MACC-II, Jena CarboScope, and the mean ensemble of the TRENDY datasets. For the 563 

MACC-II and Jena CarboScope datasets, we also determined the temporal contribution 564 

of atmospheric deposition of N (NOX and NRED) and S to the trends in NEP in a 565 

combined analysis that also included CO2, climatic, and land-use trends. This latter 566 

analysis was restricted to Europe and the USA due to the lack of atmospheric-567 

deposition time series for the rest of the world.  568 

The temporal contributions of the predictor variables were calculated following the 569 

methodology established in references5,45, as follows:  570 

i) using a GLMM with an autocorrelation structure for lag 1 (AR1) and using the pixel as 571 

the random factor affecting only the intercept, we fitted full models for NEP as a 572 

function of CO2, mean MAT per pixel, annual anomaly of MAT, mean MAP per pixel, 573 

annual anomaly of MAP, the annual SPEI, and mean percentage of forested, cropped, 574 

and urban areas per pixel and their annual anomalies. We included the first-order 575 

interaction terms between CO2 and all predictors and between the mean values and 576 

the anomalies for all predictors (except SPEI, which interacted with mean MAT and 577 

MAP). When the interaction term between the means and the anomalies (e.g. MAT 578 

mean × MAT anomaly) was included, the model estimated the effect of the anomaly as 579 

a function of the average value. This implies a change in the effect of increasing or 580 

decreasing the anomalies, depending on the mean for the site (e.g. increasing 581 

temperature may have a positive effect in cold climates but a negative effect in warmer 582 

climates). For models including atmospheric deposition, we also included the 583 

interaction between climatic variables and CO2 and the interactions between the means 584 

and the annual anomalies of atmospheric deposition (NOX, NRED, and S). The models 585 

were fitted using maximum likelihood to allow the comparison of models with different 586 

fixed factors.  587 

ii) We used the stepwise backwards-forwards model selection (stepAIC function in R46) 588 

from the full models, using the lowest Bayesian information criterion (BIC), to obtain the 589 

best model. The amount of the variance explained by the models was assessed using 590 

the r.squaredGLMM function in R (MuMIn package: 47) following the method of 591 

Nakagawa and Schielzeth (2013). Model residuals met the assumptions required in all 592 

analyses (normality and homoscedasticity of residuals). 593 



iii) We then used the selected models to predict the changes of the response variables 594 

during the study period (1995–2014). We first extracted the observed trend (mean ± 595 

SEM, standard error of the mean) in NEP using raw data with GLMMs with an AR1 596 

autocorrelation structure. We then calculated the trend of NEP predicted by the final 597 

model and the trends of NEP predicted by the same model while maintaining the 598 

temporally varying predictors (i.e., anomalies) constant one at a time (e.g. MAT 599 

anomalies were held constant using the median per pixel, while all other predictors 600 

changed based on the observations). The difference between the predictions for the 601 

final model and when one predictor was controlled was assumed to be the contribution 602 

of that predictor variable to the change in NEP. The differences between all individual 603 

contributions and the observed trend in NEP were treated as unknown contributions.  604 

Calculation of sensitivities of NEP to temporal predictors 605 

Finally, we calculated the average sensitivities of NEP to the predictor changes by 606 

dividing the temporal contributions of each predictor of delta NEP by their temporal 607 

trends. Spatial variability on the effects of temporal predictors to NEP were assessed 608 

using the GLMMs fitted to estimate the temporal contributions of the predictors. To 609 

visualise the interactions we used the R package visreg49. All errors were calculated 610 

using the error-propagation method using the following two equations, for additions and 611 

subtractions: 𝜺𝑪 = √(𝜺𝑨)𝟐 + (𝜺𝑩)𝟐; and for multiplications and divisions: 𝜺𝑪 =612 

𝑪√(
𝜺𝑨

𝑨
)
𝟐
+ (

𝜺𝑩

𝑩
)
𝟐
; where ɛ indicates the error associated to each value (A, B or C). To 613 

calculate global and regional estimates we multiplied the model outputs, in units of gC 614 

m-2, times land area. We considered the land Earth surface area to be 134375000 km2 615 

excluding the Antarctic region. Land area for the different latitudinal bands used were: 616 

>55º N, 23818000 km2; 35 to 55º N, 31765000 km2; 15 to 35º N, 29213000 km2; 15º S 617 

to 15º N, 29926000 km2; 15 to 35º S, 17308000 km2; and 35 to 55º S, 2345600 km2.  618 
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