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ABSTRACT

The additional value derived from a regional climate model (RCM) nested within general circulation model

(GCM) seasonal simulations, over and above statistical methods of downscaling, is compared over the

Philippines for the April–June monsoon transition season. Spatial interpolation of RCM and GCM gridbox

values to station locations is compared with model output statistics (MOS) correction. The anomaly corre-

lation coefficient (ACC) skill at the station scale of seasonal total rainfall is somewhat higher in the RCM

compared to the GCM when using spatial interpolation. However, the ACC skills obtained using MOS of the

GCM or RCM wind fields are shown to be generally—and rather equally—superior. The ranked probability

skill scores (RPSS) are also generally much higher when using MOS, with slightly higher scores in the GCM

case. Very high skills were found for MOS correction of daily rainfall frequency as a function of GCM and

RCM seasonal-average low-level wind fields, but with no apparent advantage from the RCM. MOS-corrected

monsoon onset dates often showed skill values similar to those of seasonal rainfall total, with good skill over

the central Philippines. Finally, it is shown that the MOS skills decrease markedly and become inferior to

those of spatial interpolation when the length of the 28-yr training set is halved. The results may be region

dependent, and the excellent station data coverage and strong impact of ENSO on the Philippines may be

factors contributing to the good MOS performance when using the full-length dataset over the Philippines.

1. Introduction

In order for general circulation model (GCM) climate

forecasts to be of practical societal value, it has long

been recognized that it is essential for them to be issued

at spatial scales appropriate to the decision maker or at

the scale needed to exploit them further, such as using hy-

drologic or crop simulation models. Because the GCMs

used for seasonal forecasting are often run at coarse

spatial resolutions of say 300 km (Goddard et al. 2003),

some type of ‘‘downscaling’’ is usually performed using

either statistical methods or a nested high-resolution

regional climate model (RCM). The latter method is

often called ‘‘dynamical downscaling’’ (e.g., Sun et al.

2005) to distinguish it from the statistical variety, although

some statistical calibration of the RCM output may still

be required. Dynamical downscaling requires ensembles

of high-resolution limited area simulations, which are

much more labor and computationally intensive than

statistical methods; it also generally requires 6-hourly

full three-dimensional fields from the GCM to be archived,

which is highly storage intensive and often not done rou-

tinely. On the other hand, statistical methods require suf-

ficiently long records of observed high-resolution data
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in order to both train and validate them, which may be

unavailable in data-poor regions. Statistical methods may

also run into difficulties when applied to climate change

projections because of stationarity assumptions (Fowler

et al. 2007).

The goal of this paper is to compare statistical and

dynamical downscaling methods over the Philippines for

the April–June (AMJ) monsoon transition season, using

a high-quality 28-yr, 77-station daily rainfall dataset. The

Philippines is a region of complex island topography that

is very poorly (if at all; see Fig. 1b) represented by coarse

GCM seasonal forecast models. This, together with

the availability of high-quality station data, makes the

Philippines an ideal test bed for the intercomparison of

methods. On the seasonal time scale, the Philippines is

strongly impacted by the El Niño–Southern Oscillation

(ENSO), with El Niño events tending to be associated with

below-normal rainfall, except during July–September,

when the signal reverses (Lyon et al. 2006). The onset of

the summer monsoon in rainfall takes place during April–

June and has been shown to be strongly modulated by

ENSO, with delayed onset in El Niño years and vice versa

(Moron et al. 2009). Local rainfall is affected by moun-

tains and coastlines through physical processes of me-

chanical lifting of moist air on the windward side (more

rainfall) and the rain shadow on the leeward side, as well as

thermodynamical forcing of mountain–valley and land–

sea breezes. The Philippines contains many mountainous

islands and a sufficiently high-resolution representation of

mountains and coastlines is expected to be important in

order to capture these finescale forcings of mountains and

land–sea contrasts.

Statistical downscaling methods range from simple spa-

tial interpolation and corrections of local bias in the mean

and standard deviation (e.g., Wilby et al. 1998; Widmann

et al. 2003) to regression methods based on model output

and observed data that can also remove conditional biases,

often referred to as model output statistics (MOS) cor-

rection. Multiple linear regression models can be prone

to artificial skill through statistical overfitting, but robust

cross-validated multivariate methods based on principal

components (PCs) regression and canonical correlation

analysis (CCA) have been developed to overcome these

difficulties (e.g., Tippett et al. 2003; Verbist et al. 2010).

FIG. 1. (a) Location of the 76 stations with shadings representing altitudes 500–1000 m (light gray), 1000–2000 m

(medium gray), and .2000 m (black). The colors refer to the modified Coronas climate classification of the Phil-

ippines types I (red), II (blue), III (yellow), and IV (green). (b) RegCM3 25-km orography (m). The box indicates the

single GCM land grid point.
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The impact of seasonal climate anomalies on society,

such as through their effect on crop growth, is often felt

through changes in daily weather characteristics, such

as the frequency and length of dry spells or changes in

the onset date of the rainy season (e.g., Hansen et al.

2006), rather than changes in seasonal rainfall totals.

Regional climate models have been shown to be skill-

ful at capturing anomalies in daily weather statistics

(Sun et al. 2007), whereas statistical downscaling methods

have also claimed success, such as hidden Markov

models (HMMs) that generate stochastic daily sequences

of rainfall conditioned on GCM seasonal forecasts

(Robertson et al. 2009) or that reproduce daily statistics

directly, such as rainfall frequency (Verbist et al.

2010).

The focus of this paper is on the abilities of dynamical

and statistical downscaling methods to skillfully simulate

interannual anomalies of the seasonal total of precipita-

tion, the frequency of rainy days above different thresh-

olds, and the monsoon onset date for the April–June

season. The primary comparison will be between (i) the

GCM and RCM simulations of precipitation interpo-

lated linearly to the station locations and (ii) MOS

corrections of station values using CCA applied to the

GCM and RCM output, together with the station rainfall

data (section 2a). The ensemble of GCM simulations is

FIG. 2. April–June mean rainfall and 850-hPa wind climatologies from (a) CMORPH (2005–10) and 850-hPa

reanalysis winds, (b) PAGASA stations, (c) GCM, and (d) RCM. All fields are for the 1977–2004 period, except for

the CMORPH. Rainfall units are mm day21. Wind vectors are plotted every 10th RCM grid point in (d).
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driven with observed estimates of sea surface tempera-

tures (SSTs) (section 2c), within which the RCM is nested

(section 2d). The results are presented in section 3, with

a summary and conclusions given in section 4.

2. Models and data

a. Station rainfall data

The analysis of station rainfall is based on a 77-station

network of daily rainfall records from 1977–2004 com-

piled and quality controlled by the Philippine Atmospheric

Geophysical and Astronomical Services Administra-

tion (PAGASA). Daily rainfall amounts of less than

1 mm were set to zero before the analysis to reduce pos-

sible biases associated with very small rainfall amounts

(Moron et al. 2009). Missing entries (,3%) are typically

scattered in space and time, although one station (San

José, Mindoro) had four contiguous missing years (1977–

80). The missing data were filled as in Moron et al. (2009)

using a simple stochastic weather generator (SWG) ap-

plied at each station individually, with parameters esti-

mated separately for each calendar month (Wilks and

Wilby 1999). The sequence of dry and wet days is sim-

ulated using the Markov chain principle, with the dry-

to-dry and wet-to-dry persistence computed from the

available data. Rainfall amounts of wet days .1 mm are

sampled stochastically from a gamma distribution with

shape and scale parameters computed from the available

wet days.

The station locations are shown in Fig. 1a and are

color coded according to the four Philippines climate

FIG. 3. Climatological-mean monsoon onset date calculated at (a) PAGASA stations, (b) GCM grid points, (c) RCM

land points, and (d) RCM points closest to station locations. Units are days from 1 Apr.
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types employed by PAGASA, based on the classifi-

cation by Coronas (1920). Red dots represent type-I

climate (two pronounced seasons with a dry period

from November to April and a wet period from May to

October); blue dots represent type-II climate (no dry

season with a very pronounced maximum rainfall during

the months of November and December); yellow dots

represent type-III climate (seasons not very pronounced

with a relatively dry period from November to April, as

in type I); and green dots represents type-IV climate,

with rainfall more or less evenly distributed throughout

the year.

b. Gridded datasets

The National Centers for Environmental Prediction

(NCEP) Climate Prediction Center (CPC) morphing tech-

nique (CMORPH) uses precipitation estimates from

low-orbit satellite microwave observations, with fea-

tures that are evolved between observations via spatial

propagation information obtained from geostationary in-

frared satellite data (Joyce et al. 2004). We used the

version at 0.258 resolution from 7 December 2002 to 31

May 2007. This dataset is used as reference climatology

for the RCM simulations, which have similar horizontal

resolution (see below). The daily NCEP–National

Center for Atmospheric Research (NCAR) reanalysis

(Kalnay et al. 1996) on a 2.58 grid is used as an estimate

of observed winds.

c. GCM

The GCM is the ECHAM4.5 atmospheric general

circulation model (Roeckner et al. 1996), run at T42

resolution—which corresponds to a grid resolution of

approximately 2.88, or about 300 km—for which an en-

semble of 10 integrations is selected randomly from the

24-member ensemble made at the International Re-

search Institute for Climate and Society (IRI) with his-

torical monthly SSTs prescribed at the lower boundary

from the NCEP–NCAR reanalysis dataset. Each en-

semble member uses the identical version of the GCM

and differs only in its initial condition. The Philippines

is represented by a single land grid point (over Luzon)

in this GCM (Fig. 1b). The ECHAM4.5 datasets are

available via the IRI/Lamont-Doherty Earth Obser-

vatory (LDEO) climate data library (http://iridl.ldeo.

columbia.edu).

d. RCM

A set of regional model simulations was made over

the Philippines with a 25-km grid resolution, in order

to resolve the forcing by local mountains and coast-

lines, using the Abdus Salam International Centre for

Theoretical Physics (ICTP) Regional Climate Model

version 3 (RegCM3) (Pal et al. 2007; Qian 2008). Its

dynamical core is close to that of the hydrostatic version

of the fifth-generation Pennsylvania State University–

NCAR Mesoscale Model (MM5), a gridpoint mesoscale

model based on the primitive atmospheric equations.

Cumulus convection is parameterized using the Emanuel–

Massachusetts Institute of Technology (MIT) scheme

(Emanuel and Zivkovic-Rothman 1999). The vertical

resolution is based on a pressure-based terrain-following

sigma coordinate. There are 18 vertical levels with 6

levels in the lower atmosphere below 1.5-km height.

The model was driven with historical SST within the

model domain (approximately 48–218N, 1168–1298E) and

at the lateral boundaries using 6-hourly three-dimensional

fields from the GCM. Further details of the RegCM3

implementation are the same as those described in

Qian (2008).

The terrain and domain of the RegCM3 are shown in

Fig. 1b. The model roughly resolves the mountains over

northwestern Luzon in the north and northern Mindanao

in the south, but many of the details are missing com-

pared to digital elevation map in Fig. 1a. The maximum

model elevation is at 1147 m over Luzon, considerably

underestimating the actual mountain (volcano) heights,

which reach up to 2954 m (Mount Apo) in Mindanao and

2922 m (Mount Pulag) in Luzon. The complex Philippines

coastline is fairly well approximated by the RCM (espe-

cially or large islands such as Luzon in the north and

FIG. 4. Histograms of daily precipitation over (a) single GCM

land point vs PAGASA stations and (b) RCM vs PAGASA us-

ing closest RCM grid points to the PAGASA station locations.

Mean rainfall intensities on wet days ($1 mm) are 15.8, 6.8, and

8.5 mm day21 for PAGASA, RCM, and GCM respectively,

whereas these values are 50.0, 81.5, and 34.1 mm day21 for heavy

rainfall days (.25 mm day21).
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Mindanao in the south), although many of the small is-

lands (especially those in the central Philippines) are

missed. Despite its deficiencies, the RCM provides a

dramatically more realistic representation of the Phil-

ippines compared to the GCM, which represents it by

a single land point.

Ten RegCM3 simulations were made, driven by at the

lateral boundaries by the 10 members of the ECHAM4.5

GCM, over the period 1971–2007, from which the 1977–

2004 seasons were selected to match the availability of the

PAGASA station data, over the April–June season of

interest. The RegCM3 datasets are publicly available via

the IRI/LDEO climate data library (http://iridl.ldeo.

columbia.edu/SOURCES/.IRI/.MP/.RESEARCH/.

ATMOSPHERE/.REGIONAL/.RegCM3/.SEAsia/.

phil/.ECHAM/.HINDCAST/).

e. Definition of monsoon onset date

An agronomic definition of monsoon onset date is used,

based on local rainfall thresholds. The monsoon onset date

is defined to be the first wet day of the first 5-day wet

spell receiving at least the April–September climatolog-

ical mean wet-spell amount, without a 15-day dry spell

receiving less than 5 mm in the 30 days following the

start of that period. The second criterion helps to avoid

onset dates that represent ‘‘false starts.’’ The computa-

tion begins on 1 April, which is the driest month of the

year climatologically (averaged across all locations). This

approach follows Moron et al. (2009), whereas the use of

a climatological mean wet-spell amount in place of a

fixed threshold adjusts for biases in model rainfall (Moron

et al. 2010). Although the 75th percentile of the PAGASA

FIG. 5. ACC between AMJ seasonal-average PAGASA rainfall data and (a) GCM- and (b) RCM-simulated

precipitation interpolated to station locations. (c) The percentage of stations exceeding a given correlation value,

with the 95% one-tailed statistical significance value indicated as vertical line. Only positive values are plotted.
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station onset distribution falls within May for all four

climate types (see Table 5 of Moron et al. 2009), it was

found to be necessary to use the April–September pe-

riod in the onset calculation, in order to avoid numerous

undefined onset dates.

3. Results

a. Climatological averages

Maps of long-term-average precipitation and low-level

winds for the April–June season are shown in Fig. 2 from

the various datasets. Station rainfalls are largest toward

the north and south (Fig. 2b). This is reproduced to

some extent by the CMORPH dataset (Fig. 2a), as

well as by the RCM (Fig. 2d), whereas the GCM—not

surprisingly—fails to reproduce these regional variations

of rainfall. The orographic rainfall amplification over

Luzon and Mindanao seen in the CMORPH is captured

by the RCM, despite the underestimated topographic

heights, but the land–sea rainfall contrast is much larger

in the RCM as compared to the CMORPH. This charac-

teristic of the regional model is also seen over Indonesia,

and it is likely that the convective scheme underestimates

the strength of deep convection over oceans and/or over-

estimates it over topography (Qian 2008; Moron et al.

2010). The low-level southeasterly winds associated with

the subtropical anticyclone over the Pacific are fairly well

captured by the GCM. The RCM winds appear quite

tightly constrained by the GCM, with no visible orographic

channeling at this level (maximum model elevations are

about 1000 m).

The climatological mean monsoon onset dates are

plotted in Fig. 3, computed using the local precipitation

FIG. 6. RPSS for simulations of AMJ seasonal-average rainfall interpolated to station locations: (a) GCM, (b) RCM,

and (c) histograms of RPSS values. Only positive RPSS values are plotted.
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criteria as described in section 2e. Observed onset dates

(Fig. 3a) range from late April along the east coast and

over Mindanao, where the summer monsoon is less pro-

nounced (cf. Moron et al. 2009), to late May/early June

along the west coast. The GCM (Fig. 3b) is clearly too

coarse to capture the rainfall onset with regional speci-

ficity, while capturing a northward extension of the onsets

in April/May over Philippines longitudes, despite the lack

of land points in the GCM. Although the RCM resolves

much more detail, its mean onset dates are generally

premature over much of the central and northern areas,

perhaps due to the general overestimation of rainfall over

the topography. At the station locations, the RCM’s

onsets are about 8 days earlier than those of the PAGASA

data in the mean. Only over the western coast of Luzon

are the later mean onsets associated with the southwest

monsoon well captured.

Histograms of April–June daily precipitation values

are plotted in Fig. 4 pooled over the 77 PAGASA sta-

tion locations and nearest-neighbor RCM grid points;

the GCM distribution is shown for the single GCM

Philippines land point. In each case, a single model en-

semble member was used. The GCM’s distribution is

highly truncated, with no values greater than 61 mm,

whereas that of the RCM has the opposite problem,

tending to have unrealistically heavy rainfall events. The

shape of the RCM’s distribution is notably less expo-

nential than that of the PAGASA data, resembling

an inverse power law, and exhibits too few dry days

(,1 mm day21).

FIG. 7. ACC between AMJ seasonal-average PAGASA rainfall data and MOS-corrected simulations of (a) GCM-

and (b) RCM-simulated precipitation. (c) The percentage of stations exceeding a given correlation value, with the

95% one-tailed statistical significance value indicated as vertical line. Only positive values are plotted.
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b. Interannual variability

1) SPATIALLY INTERPOLATED AMJ
PRECIPITATION

The anomaly correlation coefficient (ACC) skill of the

ensemble-mean model simulations of April–June pre-

cipitation amount is shown in Fig. 5 interpolated bili-

nearly to the PAGASA station locations. Use of the

RCM’s nearest-neighbor grid point gave almost in-

distinguishable results. The figure shows maps of ACC

values, together with the percentage of stations that

exceed a given ACC value. Prior to calculating the ACC,

a leave-one-out ‘‘cross-validation’’ was used to standardize

the model and observation datasets, so as to mimic the

real-time forecasting situation where one would not have

the benefit of the observation in the current year when

calculating anomalies. Thus, for each year the mean and

standard deviation are computed for all the other years,

and these values are then used to standardize the left-out

year. This cross-validation step leads to small decreases in

ACC values. A positive ACC of 0.32 corresponds to the

95% significance level according to a one-sided Student’s

t test with N 2 2 5 26 degrees of freedom, which is in-

dicated by a green line in Fig. 5c.

Figure 5 can be interpreted as a comparison between

very crude statistical downscaling (i.e., interpolation from

GCM grid points; Fig. 5a) versus dynamical downscaling in

Fig. 5b. By this measure, the performance of the RCM is

slightly better than that of the GCM, with 13 stations

with correlations exceeding 0.4, compared to just 5 for

the GCM; however, even in the RCM case, the locations

with higher correlations are scattered throughout the

Philippines. The correlation values are not obviously de-

pendent on elevation, and the variability of precipitation

FIG. 8. RPSS for simulations of AMJ seasonal-average rainfall interpolated to station locations: (a) GCM, (b) RCM,

and (c) histograms of RPSS values. Only positive RPSS values are plotted.
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is likely to depend on complex interactions between

large-scale factors such as the monsoon circulation,

ENSO, and local factors including elevation.

For a measure of probabilistic forecast skill, the ranked

probability skill score (RPSS) (Epstein 1969), is shown

in Fig. 6 in a similar format to Fig. 5, computed using the

cross-validation procedure described in the previous par-

agraph. The RPSS is a squared error metric that mea-

sures the distance between the cumulative distribution

functions of the GCM-/RCM-interpolated simulations

and the verifying observations and is expressed with re-

spect to a baseline given by the climatological distribution.

A perfect simulation result would be represented by an

RPSS of 1, whereas negative values indicate that the sim-

ulation for a particular year is less skillful than the clima-

tological equal-odds guess. The RPSS was calculated here

using tercile categories, as is typical in seasonal forecast-

ing practice. These probabilities are estimated assuming

a normal form for the distribution (except in Fig. 9),

with mean given by the GCM or RCM ensemble mean

and spread estimated by the standard deviation of the

ensemble-mean simulation error residuals. This parametric

method for estimating the distribution of the simulations

was found to yield higher RPSS values than a simple

counting of the ensemble members falling into each ter-

cile category (Tippett et al. 2007) and to give slightly more

reliable results compared to the method of Kharin and

Zwiers (2003). (An example of the RPSS derived using

counting is shown in Fig. 9.)

The RPSS station values of the interpolated GCM and

RCM simulations in Fig. 6 are mostly negative—less

than 30% are positive—indicating that the spatially in-

terpolated simulations generally perform worse than

climatology (i.e., issuing 33% probabilities for each

category); the RCM scarcely performs better than the

GCM. Although RPSS values can be less easy to inter-

pret than ACC in Fig. 5, it can be shown that, in the

idealized case of well-calibrated normally distributed

simulations, RPSS ; 1 2
ffiffiffiffiffiffiffiffiffiffiffiffi

1 2 r2
p

, in which case an ACC

value of 0.4 equates to an RPSS of 0.083.

2) MOS OF AMJ PRECIPITATION FIELDS

Here we apply leave-one-out cross-validated CCA to

statistically downscale both the GCM and RCM simula-

tions. The seasonally averaged 850-hPa winds (s 5 0.85

in the RCM) were used as predictors of seasonal rainfall

total at the 77 station locations, selecting all model grid

points of the zonal and meridional wind components

within the domains (08–308N, 1108–1408E) and (48–208N,

1178–1298E) for the GCM and RCM, respectively. The

latter domain corresponds approximately to the entire

RCM domain, whereas the GCM domain was taken to

be larger to reflect the large-scale nature of the ENSO

teleconnection. Note that even with this larger domain

there are only 110 GCM grid points, as compared to the

3869 RCM ones. In each case the set of PCs accounting

for 90% of the variance was retained in the CCA, for both

predictor (i.e., winds) and predictand (i.e., 77 PAGASA

station rainfall field). Use of the GCM or RCM pre-

cipitation fields in place of the low-level winds was found

to degrade the results.

The resulting ACC scores are shown in Figs. 7 and 8.

The ACC values show a marked improvement over those

of the ‘‘raw’’ spatially interpolated simulations for both

the GCM and the RCM, with 27 and 23 values exceeding

0.4, respectively; the distributions of correlations are

quite similar, with no advantage seen in the RCM. The

improvements through MOS are largest over the

central Philippines, whereas Luzon and Mindanao see de-

creased ACC values, especially in the RCM. The MOS

RPSS values are greatly improved over the raw inter-

polated simulations, again especially over the central

Philippines. Use of the RCM’s near-surface wind field (s

5 0.995) in place of the s 5 0.85 level was found to

degrade the MOS results.

3) SUMMARIES BY CLIMATE TYPE

Interstation differences are clear in the above figures

of skill, but it is less obvious whether these are system-

atic or simply due to noise inherent in the small sample

sizes analyzed. An additional intercomparison of methods

is presented in Fig. 9, which shows the skill of the spatially

interpolated RCM simulations (dynamical downscaling)

versus MOS-corrected GCM simulations (statistical

downscaling), averaged according to each of the four cli-

mate types in Fig. 1a using a standardized anomaly index

FIG. 9. Anomaly correlation and RPSS averaged over stations

(SAI) in each climate type, for station-interpolated RCM (squares)

and MOS-corrected GCM (circles) simulations.
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(SAI; Katz and Glantz 1986). Here the RPSS is com-

puted parametrically as in section 3b(1) for the GCM,

whereas, for the RCM, the counting method is used: that

is, simply counting the number of RCM ensemble

members (out of 10) that fall into each tercile category

(cf. Robertson et al. 2004). A fairly linear relationship

between ACC and RPSS is evident in Fig. 9, whereas

GCM MOS skills always exceed those of the raw RCM.

Climate type III is well forecasted by both methods,

whereas types II and IV are only captured by the GCM

MOS; the skill for type I is poor in both methods. Taking

the entire Philippines (black symbols), the GCM MOS

greatly outperforms the raw RCM, consistent with Figs.

5–8. It is notable that the RCM RPSS values are all

negative (i.e., worse than climatology), except for type

III, whereas they are always positive for the GCM. This

difference may be attributed to the method used to

calculate the RPSS, with the counting method based on

the small 10-member RCM ensemble yielding very poor

results, essentially because of sampling variability.

4) DAILY PRECIPITATION FREQUENCY

Previous studies have shown that in many tropical re-

gions, seasonal anomalies of wet-day frequency are more

spatially coherent than those of seasonal rainfall total,

leading to higher seasonal predictability of the former at

local scale (Moron et al. 2006, 2007, 2008). Figure 10

shows the ACC skill of the MOS method applied to the

GCM and RCM, using the low-level seasonally averaged

wind anomalies as predictors, as before, together with the

observed rainfall frequency as the predictand. The skill in

both cases is clearly higher than that of seasonal amount

shown in Fig. 7, with fairly similar results in the GCM

and RCM. The higher skill for rainfall frequency is

FIG. 10. ACC between AMJ seasonal-average PAGASA rainfall frequency and MOS-corrected simulations of (a)

GCM- and (b) RCM-simulated winds. (c) The percentage of stations exceeding a given correlation value, with the

95% one-tailed statistical significance value indicated as vertical line. Only positive values are plotted.
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consistent with the less-noisy nature of this predictand,

whereas the use of a seasonal-average winds as the pre-

dictor (as opposed to a GCM daily statistic) is chosen in

keeping with the higher expected level of predictive in-

formation therein.

The role of the threshold used to define wet days is

illustrated in Fig. 11 in terms of the all-Philippines SAI

of model-simulated precipitation frequency, interpolated

to the PAGASA stations. Note that Fig. 11 shows the raw

interpolated ACC skill from the GCM and RCM daily

rainfall simulations themselves, without the use of MOS.

The skill is seen to decrease as the threshold increases,

consistent with the greater noisiness of large precipitation

intensities (Moron et al. 2007); the RCM always slightly

outperforms the GCM, though the difference becomes

small for high daily amount thresholds.

5) MONSOON ONSET DATE

For the case of monsoon onset date, the simulated daily

evolutions in the GCM and RCM daily precipitation

fields were found to yield poor skill when simply in-

terpolated to the station locations. However, as in the

case of the seasonal rainfall total and rainfall frequency,

a CCA MOS using the AMJ-averaged zonal and me-

ridional components of the low-level wind was found to

yield promising anomaly correlation skill, especially over

the central Philippines (Fig. 12); again, the RCM was not

found to improve the skill of the GCM.

6) ROLE OF RECORD LENGTH

Statistical downscaling via MOS requires training data

for which both model simulations and historical data are

available, in addition to independent data for forecast

verification. To assess the role of record length, the 28-yr

set of observations and simulations was divided into two

equal halves. The CCA MOS was then carried out using

leave-one-year-out cross-validation for each 14-yr set

and the anomaly correlation skills obtained from each

half averaged together. The median ACCs obtained are

(r 5 0.06, 0.01) for the GCM and RCM, respectively, as

compared to (r 5 0.32, 0.29) for the full 28-yr dataset.

Thus, the MOS skill decreases to near zero in both cases.

When the same procedure is repeated for the correlations

of spatially interpolated simulations shown in Fig. 5, the

scores are much more robust: the medians calculated over

the full 28-yr period (r 5 0.24, 0.23) become (r 5 0.25,

0.21) when computed for each half separately and then

averaged. This demonstrates the sensitivity of MOS to

the length of the training set.

4. Conclusions

a. Summary

This study has compared the performance of dynam-

ical downscaling of ECHAM4.5 T42 seasonal climate

simulations with the RegCM3 nested model at 25-km

resolution over the Philippines, against statistical down-

scaling using leave-one-out cross-validated canonical cor-

relation analysis. Models are built and tested using a

77-station daily precipitation dataset over the 28-yr pe-

riod of 1977–2004, for the AMJ monsoon onset season.

The statistical downscaling is compared against the GCM

and RegCM3 gridpoint values linearly interpolated to

the station locations. Besides AMJ-average precipitation,

daily rainfall frequency and the onset date of the summer

monsoon are also considered. Skill is quantified using

anomaly correlation and RPSS.

The anomaly correlation coefficient (ACC) skill at the

station scale for simulations of seasonal total rainfall is

generally somewhat higher in the RCM compared to the

GCM when using spatial interpolation (Fig. 5). However,

the ACC skill obtained using MOS of the GCM wind field

is shown to be generally superior (Fig. 7); the ranked

probability skill score (RPSS) is also much higher when

using MOS, especially over the central Philippines (Figs.

6,8). The application of MOS to the RCM output yiel-

ded similar results to that of the GCM. Very high skills

were found for MOS correction of seasonal-average daily

rainfall frequency as a function of seasonal-average low-

level wind fields, but with no apparent advantage from

the RCM (Fig. 10); MOS-corrected monsoon onset

dates often showed skill values similar to those of

seasonal rainfall total, with good skill over the central

Philippines (Fig. 12). Finally, it is shown that the MOS

skills decrease markedly and become inferior to those of

FIG. 11. ACC of AMJ station-averaged (SAI) rainfall frequency

interpolated to station locations, as a function of rainfall threshold.
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spatial interpolation when the length of the training set

is halved (Fig. 13).

b. Discussion

The results presented here demonstrate that there is

generally little advantage to the use of the RCM for

downscaling of seasonal GCM simulations of precipi-

tation to station locations over the Philippines, because

the seasonal anomalies associated with ENSO are strong

and the data records are sufficiently long to enable suc-

cessful MOS correction. There are three main caveats

that should be borne in mind when interpreting this

finding. First, it may be region specific; the Philippines has

good station records and is strongly impacted by ENSO,

allowing regression models to be built effectively. Sec-

ond, attention has been restricted to station locations; if

results are required on a high-resolution grid, such as to

drive a distributed hydrologic catchment model, then the

case for dynamical downscaling would be more compel-

ling. Third, the conclusions are likely only to be valid on

interannual time scales where MOS can be used ef-

fectively to match simulations or retrospective seasonal

forecasts to a set of historical observations. Although the

intercomparison was carried out in the simulation con-

text, we can expect that similar conclusions would be

reached in a two-tier retrospective seasonal forecast set-

ting with the sole difference being the use of predicted

SSTs and a concomitant decrease in skill levels overall.

This approach cannot generally be taken for climate

change projections, where a ‘‘perfect prognosis’’ method

must be used in which regression models are derived

using reanalysis data, and then the regression model is

assumed to be applicable to the GCM, as well as to hold

under future climates. Because nonstationarity is a fun-

damental characteristic of climate change, a physically

based RCM becomes much more attractive.

FIG. 12. ACC between observed station monsoon onset dates and MOS-corrected simulation from (a) GCM- and

(b) RCM-simulated winds. (c) The percentage of stations exceeding a given correlation value, with the 95% one-

tailed statistical significance value indicated as vertical line. Only positive values are plotted.
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In the seasonal prediction context, given the skill of

MOS techniques based on GCM wind fields, one might

ask whether a GCM is needed at all and if similar skills

could be obtained using antecedent SSTs, for example.

Indeed, Moron et al. (2009) found fairly comparable

skills for monsoon onset date over the Philippines when

using March SSTs in place of GCM-simulated fields.

Additional caveats of our RCM implementation are

the small domain and relatively coarse resolution used.

The RCM winds are largely a function of the driving

GCM winds, especially in a monsoon region such as the

Philippines; in addition, this large-scale wind venting effect

is stronger for smaller RCM domains. The under-

representation of small islands and topography, especially

in the central Philippines, with the 25-km resolution

used here will affect the RCM-simulated rainfall. Thus,

a larger spatial domain at even higher resolution is likely

to be needed for adequate dynamical downscaling of

rainfall over the Philippines. A larger domain might also

improve the representation of local rainfall associated

with regional synoptic systems, such as tropical cyclones.

Of course, a larger domain and high resolution would

make operational climate forecasting much more com-

putationally expensive. The lack of air–sea coupling and

imperfect model physics are also potential candidates for

the limitations of the RCM downscaling. In spite of such

limitations, the RegCM3 has been shown using a similar

resolution and configuration over Indonesia to produce

quite realistic simulation of ENSO anomalies during the

monsoon season, which contrast in polarity between high-

lands and lowlands because of differential ENSO impacts

on the land–sea breeze (Qian et al. 2010).

A drawback of dynamical downscaling for seasonal

forecasting is that multi-GCM ensembles have been found

to generally outperform individual GCMs (e.g., Robertson

et al. 2004). Thus multimodel ensembles are needed, but

FIG. 13. As in Fig. 7, but for the MOS performed on the 28-yr dataset split into two halves, with the corresponding two

correlation values averaged together.
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it is generally impractical to store all the needed 6-hourly

GCM fields, and to downscale several GCMs dynamically,

perhaps with multiple RCMs. Although some limited at-

tempts at such multimodel dynamical downscaling have

been made, statistical–dynamical ‘‘anomaly nesting’’ ap-

proaches may be fruitful, such as in Patricola and Cook

(2010), who have used monthly-mean lateral boundary

fields, or Beaulant et al. (2011), who have used a very-high-

resolution nonhydrostatic RCM to downscale daily

weather types, with the latter downscaled statistically.
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Meteor. Climatol., 46, 226–240.

Tippett, M. K., M. Barlow, and B. Lyon, 2003: Statistical correction

of central Southwest Asia winter precipitation simulations.

Int. J. Climatol., 23, 1421–1433.

——, A. G. Barnston, and A. W. Robertson, 2007: Estimation of

seasonal precipitation tercile-based categorical probabilities

from ensembles. J. Climate, 20, 2210–2228.

Verbist, K., A. W. Robertson, W. M. Cornelis, and D. Gabriels,

2010: Seasonal predictability of daily rainfall characteristics in

central northern Chile for dry-land management. J. Appl.

Meteor. Climatol., 49, 1938–1955.

Widmann, M., C. S. Bretherton, and E. P. Salathé, 2003: Statistical
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