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Abstract  L-meta-tyrosine is a herbicidal non protein amino acid isolated some years ago from fine fescue 
grasses and characterized by its almost immediate microbial degradation in soil (half life less than 24 hours). 
Nine mono- or dihalogenated analogs of this allelochemical have been obtained through a seven-step 
stereoselective synthesis from commercial halogenated phenols. Bioassays showed a large range of biological 
responses, from a growth root inhibition of lettuce seedling similar to that noted with m-tyrosine [2-amino-3-(2-
chloro-5-hydroxyphenyl)propanoic acid or compound 8b] to an increase of the primary root growth concomitant 
with a delay of secondary root initiation [2-amino-3-[2-fluoro-5-hydroxy-3-(trifluoromethyl)phenyl]propanoic 
acid or compound 8h]. Compound 8b was slightly less degraded than m-tyrosine in the non-sterilized nutritive 
solution used for lettuce development while the concentration of compound 8h remained unchanged for at least 
two weeks. These data indicate that it is possible to manipulate both biological properties and degradation of m-
tyrosine by halogen addition. 
 

Keywords  Allelochemicals; Allelopathy; m-Tyrosine; Halogenated Analogues of L-meta-
tyrosine; Herbicide; Sustainable agriculture 
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Introduction 
Protection of crops against pests probably arose at the same time as agriculture itself. Modern 

crop protection developed quickly after the Second World War with the advent of organic 

chemistry and numerous active ingredients became available in various domains: 

organophosphate and organochlorine insecticides, dithiocarbamate fungicides or auxinic 

herbicides also called phytohormones. These compounds were widely used to meet the high 

demand for food after the war without adequate assessment of the risks that could result from 

the use of some molecules (Zadoks 1991). However, after many years, adverse effects on 

health or environment were often highlighted. Herbicides of the triazine family are leached 

and found in groundwater (Felding 1992b, a, Hall et al. 1991) while organochlorine 

insecticides may accumulate in the environment or in lipophilic parts of some organisms 

(Caro 1969, Mueller et al. 2008, Ntow et al. 2008, Smith &Gangolli 2002). Thus, intensive 

agriculture, as practiced for several decades in developed countries, is changing and in 

particular, the part concerning the protection of cultivated plants (Rabbinge &vanOijen 1997). 

Many phytopharmaceutical compounds were withdrawn from the market after adverse effects 

were demonstrated (Karabelas et al. 2009). The arsenal of agrochemical products is restricted 

and no major mode of herbicide action has been introduced to the market place for about two 

decades (Duke 2012). Therefore new strategies must emerge to meet the specific 

requirements for crop protection in a context of sustainable agriculture (Clark 2012, Dayan et 

al. 2012, Duke 2012, Epstein &Bassein 2003, Gosme et al. 2010, Jacobsen 1997, Tesio 

&Ferrero 2010, van Lenteren 2000). 

Thus, in order to identify new molecules able to control weed growth, allelopathy may be a 

promising way and in particular, to develop new synthetic herbicide families (Bais et al. 2006, 

Birkett et al. 2001, Duke &Abbas 1995, Duke et al. 2005, Duke &Lydon 1993, Farooq et al. 

2011, John et al. 2010, Macias 1995, Niemeyer 2009, Petroski &Stanley 2009, Vyvyan 2002). 

The definition of allelopathy has evolved over the years (Duke 2010, Molisch 1937, Rice 

1984, Whittaker &Feeny 1971) and currently, allelopathy is defined by the International 

Allelopathy Society as any process involving secondary metabolites produced by plants, 

algae, bacteria and fungi that influences the growth and development of agriculture and 

biological systems (Chou 2006). More restrictively, allelochemicals are substances that are 

produced by one plant. Phenolics compounds are an important and common family of plant 

allelochemicals in the ecosystem (Li et al. 2010, Wu et al. 2001). Recently, Bertin et al have 

isolated L-meta-tyrosine, a non protein amino acid exuded by the roots of fine fescue grasses, 
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especially Festuca rubra spp commutata (Bertin &Weston 2002, Bertin et al. 2007, Weston et 

al. 2006). This compound which is synthesized by hydroxylation of phenylalanine in F. rubra 

(Huang et al. 2012) exhibits herbicidal properties for a wide range of plant species (Bertin et 

al. 2007). More specifically m-tyrosine is a root growth inhibitor, contrary to its position 

isomers, tyrosine and ortho-tyrosine (Bertin et al. 2007). The mechanisms of m-tyrosine 

herbicidal activity are not known (Bertin et al. 2007). Furthermore, the concentrations 

required for significant root growth inhibition in the same plant species may vary 

considerably when filter paper bioassays are used (Bertin et al. 2007, Kaur et al. 2009) and 

may be higher than what would normally be found in Festuca rubra spp commutata 

rhizosphere (Kaur et al. 2009). This latter data and the rapid microbially loss of m-tyrosine in 

soil have raised a recent debate about the actual role of m-tyrosine in allelopathy (Bertin et al. 

2009, Duke 2010, Kaur et al. 2009). 

Here we report the synthesis in a stereo specific manner of nine mono- or polyhalogenated 

analogues of L-meta-tyrosine (Table 1). Using two bioassays methods, the phytotoxic activity 

of these compounds was then compared to that of m-tyrosine. Our data 1-support that m-

tyrosine is an efficient allelopathic compound, 2-demonstrate for the first time that 

manipulation of both biological properties and degradation of m-tyrosine by halogen addition 

is possible and 3-point out two derivatives that may be used as tools to elucidate the 

mechanisms of the biological activity of m-tyrosine. 

Material and methods 
Synthesis 
1H and 13C FT-NMR spectra were measured with a Varian Model XL 400-MHZ 

spectrometer. Chemical shifts are reported as δ  in units of parts per million (ppm) relative to 

chloroform (1H 7.26 ppm, 13C 77ppm) or water (1H 4.79 ppm). Multiplicities are reported as 

follows: s (singlet), d (doublet), t (triplet), qd (quadruplet), dd (doublet of doublets), m 

(multiplet). Coupling constants are reported as a J value in Hertz (Hz). The number of protons 

(n) for a given resonance is indicated as nH, and is based on spectral integration values. 

Melting points were determined on an Electrothermal IA9200 apparatus and are uncorrected. 

Mass spectra were recorded using a Waters 3100 spectrometer in electro spray mode. 

In vitro bioassays 

In a first approach, biological effect of each halogenated compound was assessed in 

comparison to m-tyrosine using filter paper bioassays with lettuce (Bertin et al. 2007). Ten 
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non-sterilized seeds (Lactuca sativa Var. Blonde de Paris) were placed in 9 cm Petri dishes on 

a filter paper impregnated with 1.5 mL of aqueous solutions of the tested compound at 0, 40, 

80, 160, 320 or 640 µM concentrations. To avoid evaporation, Petri dishes were sealed with 

Parafilm®. Two replicates of each assay were maintained under dim daylight conditions in a 

controlled environment (21 ± 0.5°C, HR 90% ± 5%). Radicle length was measured 4 days 

later. 

The biological activities of m-tyrosine, 8b and 8h were also studied under non-sterilized 

hydroponic conditions. Shortened Pasteur pipettes were immersed in 15 mL centrifuge tubes 

filled with a nutrient solution composed of 2 mmol.l−1 of KNO3, 1 mmol.l−1 of KH2PO4, 1 

mmol.l−1 of Ca(NO3)2, 1 mmol.l−1 of MgSO4.7H2O, 0.3 µmol.l-1 (molybdenum equivalent) of 

(NH4)6Mo7O24, 1 µmol.l-1 of H3BO3, 0.09 µmol.l-1 of MnSO4, H2O, 0.12 µmol.l-1 of NH4NO3, 

0.035 µmol.l-1 of ZnSO4.7H2O and 18 µmol.l-1 of iron-EDDHA chelate 6% Fe. In these 

experiments, germination of lettuce seeds (Lactuca sativa Var. Blonde de Paris) occurs on an 

agar layer (4 mm high) at the top of each Pasteur pipette. Under these conditions, the radicle 

had to cross this layer to reach the nutritive solution. Unless stated otherwise, plants were 

grown at 24 ± 0.5°C and 60 ± 5% RH during the photoperiod (14 h, 250 µmol 

photons.m−2.s−1). 

Results and discussion 
Synthesis of halogenated analogues of m-tyrosine 

Several methods of synthesis for halogenated meta-tyrosine or tyrosine were previously 

proposed (Bovonsombat et al. 2008, Drain &Howes 1967, Kirk et al. 1986, Konkel et al. 

2002). Fluorinated analogues and particularly 6-fluoro-meta-tyrosine (Table 1, 8d) was 

synthesized to use it as a tracer for medical imaging (Konkel et al. 2002, VanBrocklin et al. 

2004, Vasdev et al. 2001). Halogenated m-tyrosine derivatives were found to lower the blood 

pressure of mammals (Drain &Howes 1967). Finally, we chose the synthesis in seven steps 

proposed by Konkel et al (Kirk et al. 1986, Konkel et al. 2002) and among the nine products 

that were synthesized (Table 1), six were new (compounds 8a, 8b, 8e, 8f, 8h and 8i). The 

first six steps were performed with good to very good yields, whose median is between 65% 

(steps 2 and 4) and 95% (step 6). Only the last step (deprotection of the alpha-amino acid 

function) deserves to be optimized for some products, the yields ranging from 5% (8g) to 

64% (8c) (median 42%). An interesting aspect of the proposed method is also the possibility 

of using crude products obtained at the end of reaction for the next step without further 

purifications. 
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Protection of the hydroxyl group of the phenolic derivatives (Fig. 1, 2a-i) 

To a solution of 2-chlorophenol (1a, 6.43 g, 50 mmol) in dimethylformamide (25 mL), were 

added imidazole (3.75 g, 55 mmol) and ter-butyldimethylsilyl chloride (TBDMSCl, 8.29 g, 55 

mmol). The mildly exothermic reaction was placed in an iced-bath. After the solution was 

stirred overnight under nitrogen atmosphere, water (125 mL) was added and the mixture was 

extracted with pentane (3 x 50 mL). The organic layer was washed successively with water 

(50 mL), 10% sodium carbonate aqueous solution (3 x 50 mL), water (3 x 50 mL) and dried 

over anhydrous magnesium sulphate. Removal of solvent under reduced pressure gave 2a 

(9.04 g, 37 mmol) which was used without further purification. The products 2b-i were 

obtained following the same procedure. Yields and 1H NMR spectra for compounds 2a-i are 

given in the online resource 1 in the ESM. 

Preparation of aldehydes (Fig. 1, 3a-i) 

To a solution of tert-butyl(2-chlorophenoxy)dimethylsilane (2a, 8.9 g, 36.7 mmol) in dry 

THF (25 mL) stirred under argon atmosphere and cooled to -78°C, was added dropwise a 

solution of sec-butyllithium in hexane (1.4 M, 29 mL, 40 mmol). After stirring for 1 hour, an 

excess (3 mL, 40 mmol) of distillated DMF was added dropwise at -78 °C. After 30 min, 

tetrabutylammonium fluoride (TBAF, 1 M in THF, 44.5 mL, 44.5 mmol) was added dropwise 

at the same temperature. After 1.5 hour, the reaction was allowed to warm to room 

temperature, and water (50 mL) was added. After removal of most of the THF under reduced 

pressure, aqueous sodium hydroxide solution (1 N, 25 mL) was added and the basic solution 

was washed with diethyl ether (3 x 50 mL). The organic layer was washed 3 times with 

aqueous sodium hydroxide solution (1 N, 25 mL). The combined aqueous layers were 

acidified with hydrochloric acid solution (3 M), and the product was extracted with diethyl 

ether (4 x 50 mL). After drying over anhydrous magnesium sulphate, removal of solvent 

under reduced pressure gave 3a (2.25 g, 14.4 mmol) that was used without further 

purification. The products 3b-i were obtained following the same procedure. Yields and 1H 

NMR spectra for compounds 3a-i are given in the online resource 2 in the ESM. 

Benzylation of the hydroxyl group (Fig. 1, 4a-i) 

To a solution of 2-chloro-3-hydroxybenzaldehyde (3a, 2.25 g, 16 mmol) in DMF (20 mL), 

potassium carbonate was added (2.30 g, 23 mmol). After 5 minutes of stirring, benzyl 

bromide (2.15 mL, 18 mmol) was added dropwise. The reaction mixture was stirred at room 

temperature for 20 hours. Diethyl ether (30 mL) was added and the mixture was washed with 
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water (3 x 20 mL). The organic layer was dried over anhydrous magnesium sulphate and the 

removal of solvent under reduced pressure gave 4a (3.33 g, 13.5 mmol) that was used without 

further purification. The products 4b-i were obtained following the same procedure. Yields 

and 1H NMR spectra for compounds 4a-i are given in the online resource 3 in the ESM. 

Preparation of azalactones (Fig. 1, 5a-i) 

To a solution of 3-(benzyloxy)-2-chlorobenzaldehyde (4a, 3.2 g, 13 mmol) in acetic 

anhydride (25 mL) were added sodium acetate (1.23 g, 15 mmol) and hippuric acid (2.69 g, 

15 mmol). The reaction mixture was stirred at 80 °C for 2 hours and cooled at room 

temperature and with an iced-bath. Cold ethanol (30 mL) was added and after 15 min, iced 

water (15 mL) was added. The orange precipitate was collected by filtration on Büchner and 

dried under vacuum to give 5a (3.32 g, 8.53 mmol) that was used without further purification. 

The products 5b-i were obtained following the same procedure. Yields and 1H NMR spectra 

for compounds 5a-i are given in the online resource 4 in the ESM. 

Ring opening of the azalactones (Fig. 1, 6a-i) 

(Z)-4-(3-(benzyloxy)-2-chlorobenzylidene)-2-phenyloxazol-5(4H)-one (5a, 3.23 g, 8.3 mmol) 

and sodium acetate (730 mg, 8.9 mmol) in MeOH (400 mL) were stirred at room temperature. 

After 1 hour, the solvent was removed under reduced pressure. The residue was dissolved in 

ethylacetate (200 mL) and washed with water (3 x 50 mL). The organic phase was dried over 

anhydrous magnesium sulphate and the solvent was evaporated to give 6a (3.30 g, 7.82 

mmol) that was used without further purification. The products 6b-i were obtained following 

the same procedure. Yields and 1H NMR spectra for compounds 6a-i are given in the online 

resource 5 in the ESM. 

Debenzylation and double bond saturation (Fig. 1, 7a-i) 

A solution of (E)-methyl-2-benzamido-3-(3-(benzyloxy)-2-chlorophenyl) acrylate (6a, 1.0 g, 

2.37 mmol) in MeOH (100 mL) was hydrogenated over 10% Pd/C (205 mg) at 40 psi for 20 

h. The palladium was then filtered on celite and the methanol was evaporated to give 7a (0.79 

g, 2.37 mmol) which was used without further purification. The products 7b-e and 7g-i were 

obtained following the same procedure. 7f was obtained by hydrogenation at 60 °C under 80 

psi during 20 h. Yields and 1H NMR spectra for compounds 7a-i are given in the online 

resource 6 in the ESM. 
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Deprotection of the alpha-amino acid function to obtain L-m-tyrosine analogues 
(Table 1, Fig. 1, 8a-i) 

A solution of methyl 2-benzamido-3-(2-chloro-3-hydroxyphenyl) propanoate (7a, 2.89 g, 

8.66 mmol) in hydrochloric acid (3 M, 125 mL) was refluxed for 24 h. The solution was 

concentrated to dryness and the residue was dissolved in water (60 mL) and washed with 

diethyl ether (3 x 20 mL). The aqueous phase was then filtrated and neutralized to pH 6 with 

an aqueous solution of sodium hydroxide 1M. The water was evaporated until the formation 

of a precipitate. The precipitate was filtrated and product was dried under reduced pressure to 

give 8a (741 mg, 3.43 mmol). The products 8b-i were obtained following the same procedure. 

8a, 2-amino-3-(2-chloro-3-hydroxyphenyl)propanoic acid, yield: 40%; brown solid; 1H 

NMR δ (ppm): 3.27-3.56 (ABX system, JAB = 14 Hz, JAX = 9 Hz, JBX= 5.2 Hz, 2H, CH2), 4.44 

(m, 1H, CH), 6.97 (d, 3J = 7.5 Hz, 1H, ArH), 7.04 (d, 3J = 8.1 Hz, 1H, ArH), 7.33 (t, 3J = 7.7 

Hz, 1H, ArH); 13C NMR  δ (ppm): (D2O/DCl): 34.72 (CH2), 54.5 (CH), 116.1 (ArCH), 122.9 

(C-Cl), 127.9 (2 ArCH), 134.5 (ArCq), 173.7 (C-OH), 185.8 (COOH); Calculated [M]+ 

(C9H10ClNO3) m/z = 215.03. Found: ESI+: [M+H]+ m/z = 216.08 

8b, 2-amino-3-(2-chloro-5-hydroxyphenyl)propanoic acid; yield: 16%; grey solid; 1H NMR 

(D2O/DCl)  δ (ppm): 3.11 (m, 1H, CH2), 3.33 (ddd, J =19.7 Hz, J =14.7 Hz, J = 5.6 Hz, 1H, 

CH2), 4.04-4.06 (m, 1H, CH), 6.85-6.87 (m, 2H, ArH), 7.32 (dd, J = 17.6 Hz, J = 8.3 Hz, 1H, 

ArH); 13C NMR (D2O) δ (ppm): 33.6 (CH2), 53.7 (CH), 114.6 (ArCH), 116.1 (ArCH), 121.5 

(ArCH), 130.5 (ArCq), 150.2 (C-OH), 158.5 (C-Cl), 170.2 (COOH); Calculated [M]+ 

(C9H10ClNO3) m/z = 215.03. Found: ESI+: [M+H]+ m/z = 216.08 

8c, 2-amino-3-(2-fluoro-3-hydroxyphenyl)propanoic acid; yield: 64%; pink crystals; 1H NMR 

(D2O) δ (ppm): 3.15-3.36 (ABX syst., JAB = 14.4 Hz, JAX = 7.6 Hz, JBX = 4.8 Hz, 2H, CH2) , 

4.11 (t, 1H, 3J = 5.6 Hz, CH), 6.84 (t, 1H, 3J = 6.2 Hz, 1H, ArH), 6,98 (dt, 1H, 4J = 1.7 Hz, 3J 

= 8.3 Hz, 1H, ArH), 7.05 (t, 1H, 3J = 7.8 Hz, 1H, ArH); 13C NMR (D2O) δ (ppm): 33.1 (CH2), 

57.9 (CH), 120.1 (ArCH), 125.3 (ArCH), 126.4 (ArCq), 127.7 (ArCH), 146.2 (C-F), 146.3 (C-

OH), 176.4 (COOH); Calculated [M]+ (C9H10FNO3) m/z = 199.06. Found: ESI+: [M+H]+ m/z 

= 200.14 

8d, 2-amino-3-(2-fluoro-5-hydroxyphenyl)propanoic acid; yield: 63%; beige solid; 1H NMR 

(D2O) δ (ppm): 3.22 (ABX syst., JAB = 14.6 Hz, JAX = 7.2 Hz, JBX = 5.4 Hz, 2H, CH2), 4.42 

(m, 1H, CH), 6.86 (m, 2H, ArH), 7.07(m, 1H, ArH); 13C NMR (D2O) δ (ppm): 33.3 (CH2), 55 

(CH), 119.3 (ArCH), 120.7 (ArCH), 124.3 (ArCH), 124.4 (ArCq), 154.4 (C-OH), 157.1(C-F), 



 

- Page 9 - 

173.5 (COOH); Calculated [M]+ (C9H10FNO3) m/z = 199.06. Found: ESI+: [M+H]+ m/z = 

200.04 

8e, 2-amino-3-(2,4-dichloro-3-hydroxyphenyl)propanoic acid; yield: 45%; grey solid; 1H 

NMR (D2O) δ (ppm): 3.04-3.45 (ABX syst., JAB = 14 Hz, JAX = 7 Hz, JBX = 4.9 Hz, 2H, 

CH2), 4.7-5.1 (m, 1H, CH), 6.8-6.92 (m, 1H, ArH), 7.10-7.30 (m, 1H, ArH); Calculated [M]+ 

(C9H9Cl2NO3) m/z = 249.00. Found: ESI+: [M+H]+ m/z = 250.04 

8f, 2-amino-3-(2,6-dichloro-3-hydroxyphenyl)propanoic acid; yield: 10%; grey solid; 1H 

NMR (D2O) δ (ppm): 3.04-3.42 (ABX syst., JAB= 14 Hz, JAX = 6.9 Hz, JBX = 4.9 Hz, 2H, 

CH2), 5.09-5.12 (m, 1H, CH), 6.82 (d, 3J = 8.8 Hz, 1H, ArH), 6.93 (d, 3J = 8.8 Hz, 1H, ArH), 
13C NMR (D2O) δ (ppm): 36.2 (CH2), 55.9 (CH), 114.7 (ArCH), 121.49 (ArCH), 130.5 (ArCq), 

154.4 (C-OH), 158.0 (C-Cl), 173.5 (COOH); Calculated [M]+ (C9H9Cl2NO3) m/z = 249.00. 

Found: ESI+: [M+H]+ m/z = 250.04 

8g, 2-amino-3-(2,6-difluoro-3-hydroxyphenyl)propanoic acid; yield: 5%; grey solid; 1H NMR 

(D2O) δ (ppm): 3.21-3.33 (ABX syst., JAB = 14.5 Hz, JAX = 7.9 Hz, JBX = 5.9 Hz, 2H, CH2), 

3.93-3.95 (m, 1H, CH), 6.85-7.01 (m, 2H, ArH); Calculated [M]+ (C9H9F2NO3) m/z = 217.06. 

Found: ESI+: [M+H]+ m/z = 218.25 

8h, 2-amino-3-[2-fluoro-5-hydroxy-3-(trifluoromethyl)phenyl]propanoic acid; yield: 90%; 

white solid; 1H NMR (D20) δ (ppm): 3.19-3.42 (syst. ABX, JAB = 14.5 Hz, JAX = 7.9 Hz, JBX 

= 5.9 Hz, 2H, CH2), 4.06-4.09 (m, 1H, CH), 7.09-7.11 (m, 1H, ArH), 7.17-7.19 (m, 1H, ArH); 
13C NMR (D20) δ (ppm) : 31.5 (CH2), 55.9 (CH), 119.4 (ArCH), 122.5 (ArCH), 133.6 (ArCq), 

155.0 (C-OH), 149.1 (C-CF3), 157.2 (C-F), 173.5 (COOH); Calculated [M]+ (C10H9F4NO3) 

m/z = 267.05. Found: ESI+: [M+H]+ m/z = 268.18 

8i, 2-amino-3-(6-chloro-2-fluoro-3-hydroxyphenyl)propanoic acid; yield: 32%; grey solid; 1H 

NMR (D2O) δ (ppm): 2.67-2.73 (dd, 3J = 9.5 Hz, 4J = 9.45 Hz, 1H, CH), 3.21-3.25 (dd, 4J = 4 

Hz, 3J = 12.1 Hz, 2H, CH2), 6.68-6.72 (m, 1H, ArH), 6.81-7.01 (m, 2H, ArH, OH) ;. 13C NMR 

(D2O) δ (ppm): 30.55 (CH2), 54.19 (CH), 116.27(ArCH), 120.66 (ArCH), 123.70 (C-Cl), 125.18 

(d, 2JC-F = 12.6 Hz, ArCq), 145.05 (d, 2JC-F = 12.3 Hz, C-OH), 149.25 (d, 1JC-F = 240.7 Hz, C-

F), 170.08 (COOH); Calculated [M]+ (C9H9ClFNO3) m/z = 233.03 Found: ESI+: [M+H]+ m/z 

= 234.25 
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Biological activity of compounds 8a-i 

Filter paper bioassays 

After 4 days of treatment with m-tyrosine used at 640 µM concentration, the lettuce root 

length was reduced by about 75% (Table 2). Adding a chlorine atom in the para position with 

respect to the hydroxyl group (compound 8b) did not affect significantly this inhibition 

(Table 2). By contrast, addition of a fluorine atom on the same carbon (compounds 8d and 

8g) led to a lack of biological activity of these xenobiotics and further addition of a 

trifluoromethyl group on the free adjacent position (compound 8h) induced a clear increase of 

root growth under our experimental conditions (Table 2, Fig. 2). This increase was significant 

at concentrations ≥ 160 µM while the root growth inhibition induced by m-tyrosine and 

compound 8b were clearly significant at concentrations ≥ 40 and ≥ 80 µM respectively 

(Fig. 2). According to previous filter bioassays, the concentration of m-tyrosine required to 

achieve 50% reduction of lettuce root growth vary from 10 – 20 µM (Bertin et al. 2009, 

Bertin et al. 2007) to about 150 µM (Kaur et al. 2009). This variability may be due to the fact 

that m-tyrosine is not equally phytotoxic towards the cultivars used or / and to some microbial 

degradation of this molecule around the seeds when they are not sterilized. 

Hydroponic bioassays 

It is well known that m-tyrosine microbial degradation is high in soil, the half-life being 

estimated as less than 24 hours (Kaur et al. 2009). By contrast, in a medium unsuitable for 

bacterial growth such as ultrapure water, the degradation of m-tyrosine as well as compound 

8b was extremely low (21 and 17% respectively after 1.5 months in solution). In the nutritive 

medium used for lettuce growth, m-tyrosine and compound 8b concentrations remained 

unchanged during four days then they dropped sharply, especially one week after the 

beginning of the experiment (Fig. 3). m-tyrosine and compound 8b could not be detected at 

day 11 and day 14 respectively. If chloramphenicol – a broad spectrum antibiotic – was added 

at 0.25 g.L-1 to the medium, the degradation of both compounds was considerably reduced. At 

day 11, m-tyrosine was detected at 129 µM concentration (81% of the initial concentration) 

and 8b was detected at 144 µM concentration (90% of the initial concentration). These data 

indicate that bacterial degradation is slightly less efficient for compound 8b than for m-

tyrosine under our experimental conditions. Compound 8h concentration remained unchanged 

during the whole experiment (Fig. 3). This does not mean that the latter is not degraded in soil 

taking into account the diversity and the high content of microorganisms in this compartment. 



 

- Page 11 - 

Under our experimental conditions, the lettuce root growth was dramatically and similarly 

inhibited by both m-tyrosine and compound 8b at 40 µM (initial concentration) and was 

reduced by about 65% in presence of these two compounds at 10 µM (initial concentration) 

(Fig. 4). Our data support those of Bertin et al (2007) (Bertin et al. 2007), which clearly 

suggest that m-tyrosine is a potent inhibitor of plant development. In addition they show that 

compound 8b, a less soluble (Table 1) and less degradable molecule, can exhibit the same 

deleterious properties on root development at these two low concentrations. The root growth 

was not reduced by both m-tyrosine and compound 8b at the lowest concentration used (2.5 

µM) (Fig. 4). However, it is likely that this initial concentration dropped quickly due to root 

uptake in addition to microbial degradation, and this may concern all the experiments 

conducted with higher concentrations. By contrast, in soil, the m-tyrosine flux occurs in a 

dynamic system with exudation from fescue roots on the one hand, microbial degradation, 

adsorption on soil constituents and receiving plant uptake on the other hand (Duke 2010). The 

mechanism of m-tyrosine uptake by plant tissues is not known but it is possible that a pH-

dependent carrier system is involved in addition to diffusion taking into account the low 

specificity of several amino-acid carrier systems (Chen et al. 2001, Chollet et al. 1997, 

Deletage-Grandon et al. 2001, Fischer et al. 1995). 

Long-term experiments suggest that the deleterious effects induced by high concentrations of 

m-tyrosine and compound 8b are irreversible. After 14 days of post-germination, the growth 

of the roots exposed initially to 640 µM m-tyrosine or compound 8b remained completely 

inhibited despite the microbial degradation occurring in the nutritive solution (Fig. 5 A, B and 

C). The brownish coloration of root tips probably due to oxidation of phenolic compounds by 

extracellular peroxidases suggests a necrotic state of the apical meristem. Similarly, the shoot 

development was stopped. Such a herbicidal effect is not necessary in field. In this regard, the 

dwarf germinations, which are induced by concentrations as low as 10 µM (Fig. 4), are not 

competitive for light and must be dramatically affected by soil drought taking into account the 

poor development of their root system. The complementary data with compound 8h from 

these long-term experiments support and extend those from filter paper bioassays (Table 2, 

Fig. 2). Treatments with this moderate hydrophilic (Table 1) and stable analogue under our 

experimental conditions (Fig. 3) led to an increase of primary root growth (Fig. 5D). 

Furthermore, this response was concomitant with a clear delay of the secondary root 

emergence and a shoot growth inhibition (Fig. 5, compare A and D). By contrast, m-tyrosine 

promotes lateral root elongation in Arabidopsis and some lettuce isolates (Bertin et al. 2007). 
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Conclusion 
Nine halogenated m-tyrosine derivatives, among which six are new, have been obtained 

through a seven-step stereoselective synthesis from commercial halogenated phenol. Filter 

paper bioassays are an easy method to get preliminary information to evaluate the putative 

allelochemical properties of these compounds but they need to be completed by more suitable 

approaches such as hydroponic bioassays. Our experiments support previous data (Bertin et 

al. 2007). m-tyrosine is an efficient allelopathic agent but cannot be used in field because of 

its high microbial degradation (Bertin et al. 2009, Kaur et al. 2009). Our data indicate that it is 

possible, by halogen addition, to manipulate: i/ the biological properties of m-tyrosine, from 

similar (compound 8b) to contrary (compound 8h) properties on root growth, ii/ the stability 

of these compounds in non-sterilized conditions. Compound 8b is slightly less degraded than 

m-tyrosine while compound 8h remained stable for at least two weeks under our experimental 

conditions. Finally, these two halogenated derivatives, which induced deleterious but contrary 

effects on seedling development, may be tools to elucidate the mechanisms of the biological 

activity of m-tyrosine. Our investigation is a complementary approach to opposite strategies 

consisting to confer resistance to exogenously added m-tyrosine (Huang et al. 2010). 
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Figure legends 
Fig. 1 General reaction scheme 

Fig. 2 Effect of m-Tyr, 8b and 8h at various concentrations on lettuce (L. sativa var Bonde Parisienne) seedling 
root growth (filter paper bioassays). Radicle and shoot length were measured 4 days after sowing. The Kruskal-
Wallis test was used to assess statistically significant differences in comparison to control. (*** P < 0.001 ; ** P 
< 0.01 ; NS, not significant). For box plots, n = 20 

Fig. 3 Time-course changes over an-18-day period of m-Tyr, 8b and 8h concentrations in the nutrient solution 
used for lettuce growth. The initial concentration of the products was 160 µM. Dark conditions, temperature 20 
± 1°C. Mean of 3 assays 

Fig. 4 Effect of m-Tyr and 8b at various concentrations on lettuce (L. sativa var Bonde Parisienne) seedling root 
growth (hydroponic experiments). Radicle and shoot length were measured 6 days after sowing. The Kruskal-
Wallis test was used to assess statistically significant differences in comparison to control. (*** P < 0.001 ; NS, 
not significant). For box plots, n = 25 for control and n = 9 for the other experiments 

Fig. 5 Long-term effect (14 days) of m-tyrosine (B), 8b (C) and 8h (D) used at 640 µM concentration on lettuce 
seedling growth. Seedlings were grown under dim daylight conditions in a controlled environment (21±0.5°C, 
HR 90±5%) for the first week after sowing and then at 24 ± 0.5°C and 60% RH during the photoperiod (14 h, 
250 µmol photons.m-2.s-1). Two arrows localize each Pasteur pipette. A: control



Table 1. Structure and physicochemical properties of m-tyrosine and halogenated analogs. For all products, 2.1<pKa1<2.2, Polar Surface Area (PSA) = 83.55 Å2 and number of Hydogen 
Bond Donors (HBD) = 4. MW = Molecular Weight. Mp = Melting point, decomp. = decomposition. All properties were computed using ACD Log D Sol Suite v.12.02 software except 
melting points that were experimentally determined. 
 

Product Structure MW Mp (°C) Halogen 
ratio 

Log D Water solubility (mg.ml-1) 
pH 4.0 pH 6.0 pH 8.0 pH 4.0 pH 6.0 pH 8.0 

m-Tyr 

 

181.19 275-281 
decomp. 0.00 -2.95 -2.94 -2.97 10.65 10.5 11.35 

8a 

 

215.63 273-277 
decomp. 0.07 -2.16 -2.16 -2.33 1.21 1.2 1.86 

8b 

 

215.63 249-251 
decomp. 0.07 -1.96 -1.96 -2.02 1.08 1.07 1.25 

8c 

 

199.18 235-239 0.07 -2.76 -2.76 -2.88 31.19 30.89 42.31 

8d 

 

199.18 271-278 
decomp. 0.07 -2.75 -2.74 -2.79 30.39 30.03 33.82 

8e 
 

250.08 221-239 
decomp. 0.13 -1.56 -1.6 -2.38 0.15 0.17 2.15 

8f 

 

250.08 90-130 
decomp. 0.13 -1.18 -1.18 -1.51 0.12 0.12 0.29 

8g 
 

217.17 238-241 
decomp. 0.13 -2.61 -2.61 -2.76 27.07 26.88 39.09 

8h 
HO

F
NH2

O

OH

CF3  

267.18 248-255 
decomp. 0.22 -0.97 -0.97 -1.09 2.75 2.73 3.65 

8i 
 

233.62 264-271 
decomp. 0.13 -1.76 -1.76 -2.02 7.92 7.91 15.5 
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Table 2. Short time effect of halogenated products at 640 µM concentration on 
lettuce root elongation in filter paper bioassays. For each experiment (A-F), one or 
two halogenated compounds were tested simultaneously with m-Tyr and control 
(without any product). Root length of seedlings was measured 4 days after placing 
seeds in control, m-tyrosine and m-tyrosine derivatives treatments. Results are 
expressed as the percentage of root growth inhibition in comparison to the control of 
the same experiment (A,B,C,D,E or F), taking into account the median of the main 
root length of 20 seedlings. The Kruskal-Wallis test was used to assess statistically 
significant differences in comparison to control (*** p<0.001, ** p<0.01, * p<0.05, 
(NS) non significant). 
 

Product Experiment Inhibition of root growth (%) 
m-Tyr D 76.7 *** 

8a  34.9 ** 

m-Tyr A 82.9 *** 

8b  75.6 *** 

m-Tyr F 78.3 *** 

8b  65.2 *** 

m-Tyr A 82.9 *** 

8c  61.0 *** 

m-Tyr D 76.7 *** 

8d  2.3 (NS) 

m-Tyr C 75.8 *** 

8e  33.3 * 

m-Tyr E 70.5 *** 

8f  53.8 *** 

m-Tyr B 90.7 *** 

8g  7.0 (NS) 

m-Tyr C 75.8 *** 

8h  -51.5 ** 

m-Tyr F 78.3 *** 

8h  -58.7 *** 

m-Tyr E 70.5 *** 

8i  48.7 *** 
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Figure 2:  Effect of m-Tyr, 8b and 8h at various concentrations on lettuce 
(L. sativa var Bonde Parisienne) seedling root growth (filter paper biossays).
Radicle and shoot length were measured 4 days after sowing.The Kruskal-Wallis test 
was used to assess statistically significant differences in comparison to control. 
(*** P < 0.001 ; ** P < 0.01 ; NS, not significant). For box plots, n = 20.
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Figure 3 : Time-course changes over a 18 day-period of m-Tyr, 8b and 8h 
concentrations in the nutrient solution used for lettuce growth. The initial concentration 
of the products was 160 µM. Dark conditions, temperature 20 ± 1 °C. Mean of 3 
assays.
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Figure 4:  Effect of m-Tyr and 8b at various concentrations on lettuce 
(L. sativa var Bonde Parisienne) seedling root growth (hydroponic experiments).
Radicle and shoot length were measured 6 days after sowing.The Kruskal-Wallis 
test was used to assess statistically significant differences in comparison to control.
(*** P < 0.001 ; NS, not significant). 
For box plots, n = 25 for control and n = 9 for the other experiments.
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Figure 5: Long-term effect (14 days) of m-Tyrosine (B), 8b (C) and 8h (D) used at 640 µM concen-
tration on lettuce seedling growth. Seedlings were grown under dim daylight conditions in a control-
led environment (21±0.5°C, HR 90±5%) for the first week after sowing and then at 24 ± 0.5°C and
60% RH during the photoperiod (14 h, 250 µmol photons.m-2.s-1). Two arrows localize each Pasteur
pipette. A: control. 


