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ARTICLE

Controls of soil organic matter on soil thermal
dynamics in the northern high latitudes
Dan Zhu 1, Philippe Ciais 1, Gerhard Krinner 2, Fabienne Maignan 1, Albert Jornet Puig1 &

Gustaf Hugelius3,4

Permafrost warming and potential soil carbon (SOC) release after thawing may amplify

climate change, yet model estimates of present-day and future permafrost extent vary widely,

partly due to uncertainties in simulated soil temperature. Here, we derive thermal diffusivity,

a key parameter in the soil thermal regime, from depth-specific measurements of monthly

soil temperature at about 200 sites in the high latitude regions. We find that, among the

tested soil properties including SOC, soil texture, bulk density, and soil moisture, SOC is the

dominant factor controlling the variability of diffusivity among sites. Analysis of the CMIP5

model outputs reveals that the parameterization of thermal diffusivity drives the differences

in simulated present-day permafrost extent among these models. The strong SOC-thermics

coupling is crucial for projecting future permafrost dynamics, since the response of soil

temperature and permafrost area to a rising air temperature would be impacted by potential

changes in SOC.
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Soils in the northern permafrost region contain ~1300 ± 300
Pg of soil organic carbon (SOC)1–3, more than one-third of
the global total SOC4, formed under cold climates with

limited decomposition. Carbon release from this large pool due to
warming-induced thawing and acceleration of microbial decom-
position may act as an important positive feedback to climate
change, but the magnitude and timing of this carbon release
remains uncertain3,5–7. Model estimates of changes in permafrost
extent and carbon stocks vary widely for the recent decades8 as
well as for future scenarios9,10, partly because different repre-
sentations of soil thermodynamics lead to different soil tem-
perature responses to air temperature changes. For the ground
surface, the energy budget is composed of net radiation, sensible
heat, latent heat from evapotranspiration, and heat flux into and
out of the ground. On the other hand, below the surface, thermal
dynamics is dominated by heat conduction11 driven by surface
soil temperature variations, and also affected by latent heat
released or absorbed during soil water phase changes which can
be important for wet soils in permafrost regions12.

The heat conduction in the soil, assuming a uniform and
constant medium, can be described by the one-dimensional
Fourier’s Law (Eqs. [1] and (2) in “Methods” section)13,14, in
which thermal diffusivity, D, is the key parameter that describes
the rate at which soil temperature changes given a temperature
gradient. The value of D is determined by soil composition
(minerals, air, water/ice, organic matter) and soil structure11.
Among the different soil constituents, thermal diffusivity of soil
organic matter (SOM) is an order of magnitude smaller than that
of typical soil minerals, and slightly smaller than water11. Struc-
turally, a higher organic matter content in the soil increases soil
porosity15, which also decreases soil thermal conductivity and
D especially when the soil pores are filled with air. As a result,
SOM acts as an insulator and the presence of SOM cools the soil
during summer, while its warming effect during winter is less
important due to the insulating snow cover16,17. The summer-
time cooling effect of SOM in turn restrains microbial decom-
position5 and favours the accumulation of SOC. Given the high
SOC storage in permafrost soils and the high vulnerability and
sensitivity of these carbon stocks to projected warming6,18, it is
important to assess the quantitative impact of SOC on D and the
potential acceleration of soil warming due to the loss of SOC and
its insulating effect.

Considering a harmonic forcing as the upper boundary con-
dition (e.g., the seasonal cycle of surface soil temperature), the
solution of the heat conduction equation (Eq. [4]) gives an
exponential dampening of the temperature amplitude with
increasing depth, with its e-folding depth reflecting the
D value13,14 (Eq. [5]). Accordingly, D can be derived from tem-
perature amplitudes concurrently observed at two soil depths.
This equation has been used to calculate D and its influence
factors in in situ studies19–21, but these studies were limited to a
few sites. A large-scale application of this equation has been
applied by ref. 22 to study the snow insulation effect between air
and soil temperature at 20 cm depth, but did not touch the
research problem of heat conduction in sub-surface soils below
20 cm.

Here we infer D from two large data sets of depth-specific soil
temperature measurements, the Russian Historical Soil Tem-
perature Data23 (hereafter RHST) and the International Polar
Year Thermal State of Permafrost24 (hereafter IPY), at 274
locations that spread throughout Russia and North America
including permafrost and non-permafrost regions (Supplemen-
tary Fig. 1). A key requirement for Eqs. (4) and (5) to be valid for
inferring D using real-world soil temperature profiles is that non-
conductive processes, like the latent heat associated with soil
freezing, have minor impacts on the heat budget of soils at

seasonal-cycle time-scale. Therefore, we examined the shape of
temperature profiles at each site and selected only the sites where
monthly temperature oscillations conform to sinusoidal func-
tions, that is, to the solution (Eq. [4]) of heat conduction (see
detailed data processing and discussion in Methods). After this
data-filtering, 184 sites were retained. The calculated D value
using Eq. [5] can approximately represent the thermal diffusivity
for the bulk soil in the corresponding depth interval at those
selected sites. Then, we searched for emerging relationships
between the observation-derived D values and a suite of soil
properties extracted from broad-scale soil maps, in order to
identify the dominant factors that control D and subsequently the
propagation of temperature waves from ground surface to deeper
soils. We find that SOC is the strongest predictor to explain the
variability of D among sites. Using the same method to calculate
D from CMIP5 model outputs, we find that the different para-
meterization of D in these models dominates their large-scale
performance in simulating today’s permafrost extent. Further
with a land surface model, we show that the thermal insulation of
SOC increases modelled present-day permafrost carbon stock
(0–3 m depth) by 39% (+ 230 Pg C) and permafrost area by 33%
(+3.4 million km2), increasing agreement with broad-scale
observational data. These findings demonstrate the need to
explicitly represent the coupling between SOC and soil thermal
dynamics in models that are utilized to project future permafrost
changes.

Results
Organic matter content controls soil thermal diffusivity. We
find a significant negative correlation between soil thermal dif-
fusivity (log-transformed) and soil organic carbon density
(Fig. 1). This empirical result confirms that soils with more
organic materials have a lower thermal diffusivity. Among all the
tested soil characteristics including soil texture (fractions of sand,
silt and clay)25, bulk density25, organic carbon content per unit
dry weight25 (g kg−1), and soil volumetric moisture content26,27

(Supplementary Figs. 2 and 3), the SOC density shown in Fig. 1
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Fig. 1 Relationship between soil thermal diffusivity and soil organic carbon
(SOC). Thermal diffusivities (D) are derived from depth-specific
measurements of monthly soil temperature from two data sets, RHST23

(circles) and IPY24 (crosses), at 184 sites (Supplementary Fig. 1), grouped
into four depth intervals above 3 m (see Methods). The vertical error bars
indicate 25th–75th percentiles among the available years for each site-
depth. SOC densities (kg Cm−3) are derived from two databases, WISE25

(blue) and NCSCD28 (red), integrated into the same four depth intervals.
The blue and red solid lines indicate the linear regression lines of log10 (D)
vs. SOC from WISE (y=−0.012 ×−0.35) and from NCSCD (y=−0.016 ×
−0.30), respectively, with 95% confidence intervals shown in the
dashed lines
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has the strongest explanatory power for D variations among the
different site-depths. Considering the interrelation between these
soil properties, e.g., SOC density is negatively correlated with bulk
density (Supplementary Fig. 4), we conducted partial correlation
analysis to test if the D-SOC relationship persists after removing
the effect of other variables. The partial correlation between D
and SOC density remains significant after controlling the other
properties separately or combined (Supplementary Table 1). This
suggests that the impact of SOC on D is a composite result of soil
composition and structure alterations such that its correlation
with D cannot be fully accounted for by the variability in the
texture- and porosity-related properties.

Uncertainties in the results shown in Fig. 1 and Supplementary
Fig. 2 include a spatial-scale mismatch: the local soil temperature
observations are not accompanied by collocated records of soil
texture, moisture and organic carbon; we therefore resort to the
global (WISE25) and regional (NCSCD28) databases for these soil
properties, which are not fully representative for site-level
observations. In addition, even at broad-scale, soil inventories
bear substantial uncertainties29,30. The two databases used here
differ in total carbon stock by about 20% for their overlapping
areas (Supplementary Fig. 5ab, 690 Pg C in WISE vs. 825 Pg C in
NCSCD for 0–2 m depth). Both databases derive their spatial
distributions by linking field data of soil profiles to global/regional
soil classification maps, their accuracy depending on both the
accuracy of the up-scaling maps and the representativeness of
samples within each soil class. Thus, the high landscape
complexity in the northern permafrost zone and limited soil
profiles available from Siberia25,31 add to uncertainties in this
region. To partly reduce this uncertainty, we excluded the site-
depth data whose relative difference in SOC density between the
two databases is higher than 25% (see Methods and Supplemen-
tary Fig. 5c).

Apart from the predominant role of SOC, soil moisture also
affects D, especially in dry soils where an increased soil water act
as bridges to improve thermal contacts between soil particles11. A
laboratory experiment32 showed that for sandy soils, D increases
rapidly with moisture content when the water content is less than
0.1–0.2m3m−3, and then remains stable or slightly decreases;
while for cohesive soils of silty and clayey texture, the variation of
D with moisture is smaller. To investigate if soil moisture can
explain the spatial variability of D, we used two data sets, the

satellite-based surface soil moisture product (ESA-CCI-SM26) and
the depth-specific soil moisture simulated by a land surface model
(ERA-Interim/Land27). Neither of them shows significant correla-
tion with D, possibly because the annual mean moisture contents
at the sites are mostly higher than 0.2 m3 m−3, a saturation level
sufficient to bridge air gaps between soil grains (see Supplemen-
tary Fig. 3 and Supplementary Discussion). Apart from total
moisture content, its phase composition also affects D, since ice
has a much higher D than water (1.1 vs. 0.14 × 10−6 m2 s−1)11.
Soils in the northern permafrost region often contain abundant
ground ice33 that can exceed soil porosity, including segregated
ice and ice wedges34. These occurrences of excess ice beyond soil
pores modify soil thermal properties and add to the heterogeneity
of permafrost soils35, contributing to the scatter in observations
shown in Fig. 1 and Supplementary Figs. 2 and 3. Considering a
potential confounding effect of ground ice on the correlation
between SOC and D shown in Fig. 1 (as a deeper depth could
feature both lower SOC density and higher ice content, as well as
a higher D), we calculated the regression for the top depth
interval only (<0.4 m) (Supplementary Fig. 6), which is generally
above the permanently frozen layer and less affected by large ice
volumes. The similar results as Fig. 1 indicate that the observed
strong correlation between SOC and D is unlikely confounded by
ice content.

D is a strong predictor for simulated permafrost extent.
Thermal diffusivity (D) is a key feature in the soil thermal regime.
Its parameterization in land surface models may fundamentally
impact their broad-scale patterns of soil temperature and per-
mafrost distribution. Yet, this process has been given little
attention. To test this, we analyzed the outputs of the historical
experiment from a set of Earth System Models (ESMs) that
participated in the fifth phase of the Climate Model Inter-
comparison Project (CMIP5)36. As the simulated climate differs
among the models, the total area of grid cells with mean annual
air temperature (MAAT) less than 0 °C (AMAAT<0) ranges from
22 to 32 million km2, with a standard deviation of 2.7 million
km2 (Fig. 2a). As expected, simulated near-surface permafrost
area (Ap, defined as modelled active layer thickness less than 3 m
(ref. 37), see Methods) is significantly correlated with AMAAT<0,
with a slope slightly larger than 1, which might be related to the
continuity of permafrost (namely, in models with a warm bias,
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Fig. 2 Relationship between permafrost area and thermal diffusivity in the CMIP5 models. aModelled area of regions with surface mean annual air temperature
(MAAT) less than 0 °C (AMAAT<0) and area of near-surface permafrost (Ap, see “Methods” section) during the period 1961–1990, from the historical runs of
CMIP5 models. Models from the same institute are shown in the same color. The error bars indicate 25th–75th percentiles among the 30 years. The black star
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permafrost area is underestimated more strongly, as they miss the
sub-grid discontinuous permafrost in the southern grid cells).
However, the difference in MAAT among the models can only
partly explain the much wider variation in Ap across the models,
with a standard variation of 7.5 million km2 (Fig. 2a). The ratio
between the two areas (Ap/AMAAT<0) is determined by both air-
soil interface energy exchanges affected by vegetation and snow
covers, and sub-surface heat transfer in the soil column affected
by soil thermal properties. Here it appears to be the latter that
dominates Ap/AMAAT<0 in the CMIP5 models, since 69% of the
variation in Ap/AMAAT<0 can be explained simply by differences
in simulated D between models (Fig. 2b). Note that the D values
for each model are diagnosed from their outputted monthly soil
temperatures after excluding the pixels where non-conductive
processes are not negligible (the same treatment as the observa-
tions, see Methods).

To further analyze whether simulated snow depth also controls
Ap/AMAAT<0, we calculated the effective snow depth22 (the mean
snow depth for each month weighted by its duration, see
“Methods” section) for each model. In contrast to the strong
correlation between Ap/AMAAT<0 and D (Fig. 2b and Supplemen-
tary Fig. 7a), effective snow depth is not significantly correlated
with Ap/AMAAT<0 among the CMIP5 models (Supplementary
Fig. 7b). This is probably because of the following: (1) the
insulation of snow occurs during winter, thus its effect on the
maximum thaw depth is much smaller compared to the summer-
time insulation by SOM, although the winter soil warming can be
carried over to summer in regions with thick snow cover38; and
(2) the CMIP5 models did not represent snow thermodynamics
well (among these models, only CCSM4, MIROC and NorESM
families used an explicit multilayer snow scheme39).

Interestingly, in Fig. 2b, the observation lies near the linear
regression line of Ap/AMAAT<0 against D from the CMIP5 models,
implying that the models generally have a reasonable structure for
the soil thermal regime (most of the models adopt multilayer
finite difference heat conduction8), but individual models have
large biases of Ap/AMAAT<0 related to their biases of D. This
means that improving the parameterization of soil thermal
properties should be a priority in order to capture permafrost
distribution in these models. Note that most of the land models of
CMIP5 ESMs did not consider the impact of SOM on soil
physical properties37; nonetheless, modelled D differs greatly
among the models (Supplementary Fig. 8), possibly due to varied
parameters for soil properties, different soil texture maps, and
effects of different hydrological regimes.

Thermal effect of SOC enhances soil carbon accumulation. The
reduction of soil thermal diffusivity by the presence of organic
matter (Fig. 1) leads to a stronger dampening of the seasonal-
cycle amplitude along the soil depth, and thus cools the deeper
soils during summer, thins the active layer thickness (ALT), and
reduces microbial respiration of SOC during the thawing season.
To investigate the magnitude of this SOM effect on soil tem-
perature and SOC accumulation, we conducted two simulations
of the ORCHIDEE-MICT40 land surface model, with (hereafter
yesSOM) and without (hereafter noSOM) the impacts of SOM on
soil thermo- and hydrodynamics. The SOM insulation effect in
the model was implemented via SOM-dependent soil physical
parameters including thermal conductivity, heat capacity, por-
osity and available water capacity, with detailed descriptions in
ref. 40. The inclusion of SOM effect allows the model to reproduce
the relationship between SOC density and D, and to lower
D values which are more consistent with observations than the
results of noSOM (Supplementary Fig. 9). Peak summer-time
monthly mean soil temperature decreases by about 4 °C on

average at 0.8 and 1.6 m depths for the sites in permafrost region
in yesSOM compared to noSOM (Supplementary Fig. 10). Con-
sequently, ALT decreases by 0.6 m averagely across the region due
to the presence of SOM (Fig. 3a, b), and the permafrost area
(ALT < 3m) increases from 10.4 in noSOM to 13.8 million km2

in yesSOM, closer to the empirical estimate of 15.3 million km2

for the continuous and discontinuous categories33.
For SOC, modelled total carbon stock for 0–3 m depth in the

northern permafrost zones (22 million km2, according to IPA33

including all permafrost categories) increases by 39%, from
590 Pg C in noSOM to 820 Pg C in yesSOM (Fig. 3e, f and
Supplementary Fig. 11), which is still less than the estimate of
1030 Pg C in NCSCD database1 over the same region. This
discrepancy may in part be attributed to peat formation not being
included in the current model40. The accumulation of SOC
depends on both carbon input rate controlled by vegetation
productivity, and carbon decomposition rate regulated by many
abiotic (e.g., temperature, moisture, oxygen) and biotic factors41.
Modelled gross and net primary productivity (GPP and NPP) is
generally higher in yesSOM (Supplementary Fig. 12), since a
higher water holding capacity due to the existence of SOM42 can
alleviate plant water stress during growing season. The relative
increase of total primary productivities for the permafrost region
is 8% (9.5 vs. 8.8 Pg C per year for GPP; 5.3 vs. 4.9 Pg C per year
for NPP); thus, the 39% increase of SOC in yesSOM is mainly
driven by the cooler summer-time soil temperature that slows
down soil respiration in the model (Supplementary Discussion).

Discussion
The key finding of this study is the dominant (spatial) impact of
soil organic matter on soil thermal diffusivity (D) supported by
empirical evidence, which is shown in model simulations to affect
the broad-scale soil thermodynamics and in turn affects the soil
organic carbon (SOC) accumulation. Thermal mediation of soil
organic layer is known to stabilize the underlying permafrost in
relatively warm regions where the climate alone cannot sustain
the persistence of permafrost43. Here we provide a quantitative
empirical estimate for the insulation effect of SOC through its
impact on D. We recognize that, apart from heat conduction
controlled by D, the latent heat associated with soil water/ice
phase changes could be substantial in the soil energy budget,
especially on the border of permafrost zones (Supplementary
Fig. 1), which complicates the permafrost stability. This latent
heat could partly explain the slower warming rate of the mean
annual permafrost temperature in discontinuous zones during the
past decades24,44,45. However, this latent heat effect delays but
does not prevent the eventual permafrost thawing45. Under the
long-term climate warming, as permafrost might greatly retreat
poleward39, heat conduction would finally dominate, inferred
from the cold sites outside the permafrost regions today (Sup-
plementary Fig. 1); and the SOC-D relationship suggests a sig-
nificant impact of changes in SOC on soil temperature in the
former permafrost regions.

The implication of such SOC-D feedback for future permafrost
dynamics, therefore, depends on the direction and magnitude of
soil carbon changes in the future. Although enzyme kinetics
theory and short-term observations5,46 suggest an initially
increasing SOC decomposition rate with warming, large uncer-
tainties still remain in the long-term response of soil carbon to
climate change, due to uncertainties in the rate of SOC formation
(including changes of plant productivity, soil-aggregate forma-
tion, etc.)4,47 and in microbial physiological changes/adaptation
to warming48. A recent compilation of field warming studies49

showed diverging changes in SOC stock of top 10 cm depth after
warming, with statistically neutral change across all studies. These
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studies are, however, limited by a generally shallow depths of
warming treatment, which missed the response of subsoils50; as
well as a paucity of measurements for SOC stock changes at
deeper soil horizons6, especially for the formerly frozen soils.
Laboratory incubation experiments, though, have demonstrated a
high lability of permafrost soils under unfrozen conditions51,52.
On the other hand, modeling studies mostly projected carbon
losses in permafrost soils in the long run, albeit varying rates and
magnitudes3,53. The protection of permafrost by SOC is also
manifested in fire disturbances, where the combustion of surface
organic layer led to increased soil temperature and deeper thaw
depth54,55. Thus, the projected increase in fire activities in the
northern high latitudes56 might also be an important driver of
permafrost thaw through the impact of SOC on soil thermal
properties.

Apart from the dominant role of SOC in D, which controls the
temperature propagation below ground (in the case of minor

latent heat induced by freezing/thawing), the aboveground fea-
tures including vegetation and snow cover also impact the vul-
nerability of permafrost to a rising air temperature by controlling
heat exchanges between air and land surface57. Besides, degra-
dation of ice wedges may lead to land subsidence and thus
thermokarst formation, which is estimated to affect 20% of the
northern permafrost region58. Such abrupt changes in the land-
scape strongly alter micro-topography and thus local hydrological
and thermal regimes59. Meanwhile, the decadal trajectories after
initial thaw are closely linked to accumulation of organic matter
(itself related to vegetation succession) on the thermokarst
troughs, which helps to stabilize ice wedges and prevent further
thaw60. This mechanism, however, might be perturbed under
future warming and intensified fire activities61. Such complex
interactions call for models that quantitatively integrates thermo-
hydrological processes, their heterogeneity at small spatial scales,
vegetation dynamics and soil carbon cycle, thermal impacts of
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organic matter, and fires, in order to improve our understanding
and prediction of the overall vulnerability of permafrost.

The emergent slope of permafrost area versus D from
CMIP5 models (Fig. 2b) and the empirical relationship of D
versus SOC (Fig. 1) suggest a non-negligible sensitivity of per-
mafrost area to potential SOC changes (a loss of ca. 0.2 million
km−2 per 1 kg Cm−3 reduction of SOC on average). Without the
SOC-D coupling, CMIP5 models have projected a linear rela-
tionship between air temperature change and permafrost area
change39. The recent estimate62 for the sensitivity of permafrost
area to warming was also based on the assumption of an
unchanged present-day MAAT-permafrost relationship for future
scenarios. In contrast, the results shown here implies a non-linear
trajectory of permafrost area changes in response to warming,
highlighting a critical need to explicitly represent the coupling
between SOC and soil thermal dynamics in models that are uti-
lized to project the future of permafrost.

Methods
Calculation of D from soil temperature measurements. On the basis of Fourier’s
law, the one-dimensional heat conduction can be described by:

c
∂T
∂t

� ∂

∂z
λ
∂T
∂z

� �
¼ 0; ð1Þ

where T is temperature at time t and depth z; λ is thermal conductivity (J m−1 s−1 K−1);
c is volumetric heat capacity (J m−3 K−1).

If λ and c are constants, Eq. [1] can be re-written as:

∂T
∂t

� D
∂2T
∂z2

¼ 0; ð2Þ

where D is soil thermal diffusivity (m2 s−1), equalling to the quotient of λ and c.
To solve Eq. [2], we consider the case that the upper boundary condition is

given by a sine-wave temperature oscillation, which represents the diurnal or
seasonal cycle of surface soil temperature driven by air temperature fluctuations:

T 0; tð Þ ¼ T0 þ A0sinðωt þ φÞ; ð3Þ
where A0 is amplitude of the temperature oscillation at the surface, equaling to half
of the difference between warmest and coldest values; ω is its angular frequency,
equalling to 2π

86400 ´ 365 if we consider the seasonal cycle in a year; φ is its phase; T0 is
the mean surface temperature in a wave period.

In the solution of Eq. [2], after a sufficient long time, the term that describes the
transient disturbance since t= 0 becomes negligible (i.e., the effect of the initial
temperature function is lost)13. Thus, the solution of Eq. [2] for the periodic steady-
state is as follows13,14:

T z; tð Þ ¼ T0 þ A0e
�

ffiffiffi
ω
2D

p
z sin ωt þ φ�

ffiffiffiffiffiffi
ω

2D

r
z

� �
: ð4Þ

Equation (4) infers an exponential dampening of the temperature amplitude
with increasing depth19,63:

Az1

Az2
¼ eðz2�z1Þ

ffiffiffi
ω
2D

p
ð5Þ

where A is amplitude of the temperature wave at depth z1 or z2.
Therefore, D can be calculated from observed temperature amplitudes at two

soil depths during the same period.
Equation (4) is an idealized mathematical model to describe the real-world soil

thermal regime, its applicability requiring several necessary conditions: first, the
heat transfer in the soil is dominated by conduction, so that convection, radiation,
and particularly the latent heat release/absorption associated with phase transitions
are of minor importance at the seasonal-cycle time-scale; second, the soil thermal
properties are relatively constant over time and uniform along the considered
depth interval; and third, soil temperature at the upper boundary follows a
sinusoidal function. If the real soil thermodynamics at a site significantly violates
any of the above conditions, it is unlikely that the soil temperature function T(z,t)
would take the simple sinusoidal form as Eq. [4]. We therefore assume that, if the
measured soil monthly temperatures at two adjacent depths both conform to sine-
waves (with a small error), the soil thermodynamics in this interval can be
approximated by Eq. [2], and the calculated D using Eq. [5] is a valid value that
describes the thermal diffusivity for the bulk soil in this depth interval at the site.

In this study, we used two data sets of in-situ soil temperature measurements to
calculate D: the Russian Historical Soil Temperature Data23 (RHST), and the
International Polar Year Thermal State of Permafrost24 (IPY). RHST provides
monthly soil temperature records at 263 sites since the 1880s until 1990, but
the majority of data exist after 1960. Here we used the last ten years’ data, from
1981 to 1990. RHST contains measurements at multiple depths for near surface
(0.02–0.2 m) and deeper (mostly at 0.2, 0.4, 0.8, 1.2, 1.6, 2.4, and 3.2 m) soils, but

the near surface measurements were taken in bare areas whereas the deeper soil
measurements were taken under natural cover of grasses and snow64; so we only
used the data below 0.2 m in our analysis. The IPY soil temperatures were
measured at various depths dependent on the site, mostly for the years 2007–2013.
The daily observations in IPY dataset were aggregated to monthly means.

For both data sets, we conducted the following data processing:
First, only the sites with available monthly temperature records for at least two

nearby depths (depth difference less than 1 m) and for at least 12 consecutive
months were used (in total 274 sites, 219 from RHST and 55 from IPY,
Supplementary Fig. 1).

Second, to determine whether the monthly soil temperatures evolve as a
sinusoidal cycle, we first fitted the 12 months to a sine curve as Eq. [3] using non-
linear least squares regression, and then calculated the sum of square error (SSE)
after normalizing by amplitude such that the SSE for different depths are
comparable:

SSE ¼
X12
i¼1

ðTi � T̂i

Â
Þ2; ð6Þ

where Ti is the temperature for month i; T̂i is the predicted temperature with the
fitted sine curve; Â is the amplitude of the fitted curve.

To derive an SSE threshold, we assume that the fluctuations of monthly air
temperature, according to the CRU dataset65, generally approximate sine-waves,
and calculated their SSE values for the northern hemisphere (Supplementary
Fig. 13). The 75th percentile of the SSE values for air temperatures, 0.34, was
chosen to filter the soil temperature data: the observation for a site-depth-year is
removed if its SSE is higher than 0.34. After this filtering, 170 sites from RHST and
15 sites from IPY remained. Note that the retained sites do not necessarily fulfil the
SSE threshold for all years or depths; those depth-years that exceed the threshold
were also removed before the calculation of D.

Most of the high SSE situations are associated with the so-called zero curtain
effect, namely, the soil temperature stays near 0 °C during extended periods of
freezing/thawing, maintained by the release/absorption of latent heat and by other
non-conductive processes including vapor transport and evaporation/
condensation66. Supplementary Fig. 14 presents four examples from the IPY
dataset to illustrate the disparity or similarity between soil temperature
observations and the theoretical sine-waves. Whenever prominent zero curtain
occurs, the SSE value will be much higher than 0.34 (Supplementary Fig. 14ab).
Note that the presence of zero curtain effects, although of smaller impact on the
season cycle after the data screening by SSE threshold, may lead to an
underestimation in the derived D values.

In terms of the spatial distribution of removed sites, the sites located in warmer
permafrost regions (discontinuous, sporadic and isolated permafrost zones) have a
higher removal percentage (52%, 41 sites out of 79) than those in the continuous
permafrost zone (35%, 28 out of 80) and in non-permafrost regions (17%, 20 out of
115) (Supplementary Fig. 1). This could be plausibly explained by the near-0 °C of
the mean annual permafrost temperature in the relatively warmer permafrost
regions, where a partial freezing/thawing at upper permafrost and inter-annual
climate variability could induce significant amounts of latent heat24. A comparison
of MAAT of retained vs. removed sites also shows significant differences in both
permafrost regions (including continuous and discontinuous categories) and non-
permafrost region, with the removed sites having a closer-to-zero MAAT than
retained sites (Supplementary Fig. 15). We also compared the ground ice
abundance (extracted from the IPA map33, which gives three levels of abundance)
to test whether the filtering would preferentially remove the sites with high ground
ice contents. As shown in Supplementary Fig. 16, no such difference was found
between removed and retained sites. No significant difference in the surface soil
moisture (extracted from ESA-CCI-SM v02.2 product26) was found between the
removed and retained sites (not shown).

To further test if applying the SSE threshold can effectively filter out the cases
where the phase change-induced latent heat cannot be neglected at monthly time-
scales, we conducted analyses based on simulations of the ORCHIDEE-MICT land
surface model40 (see the last part of Methods).

Third, for the retained site-depth-year data after step ii), we calculated the
D value for each depth according to Eq. [5], using the observed temperature
amplitude of this layer and of the adjacent upper layer, only if the two depths are
nearby (<1 m). Since we try to correlate D with soil properties extracted from the
global/regional soil databases which have fixed/limited layers (see below), the
derived D values for different depths were integrated into four depth intervals:
0–0.4, 0.4–0.8, 0.8–2, and 2–3 m, taking the median D if multiple depths are
available within each interval. Finally, if multiple years of D are available for a site-
depth, their median value is used for the regression analysis against soil properties,
while their 25th–75th percentiles are shown in Fig. 1.

Soil databases. In order to identify the dominant influential factors on D, and
considering that the soil temperature data sets do not report collocated measure-
ments of soil properties at the Russian meteorological stations in the RHST dataset
or the boreholes in the IPY dataset, we seek to extract soil information for these
sites from the spatially explicit global/regional soil databases. To our knowledge,
there are four such soil databases that are recent and/or widely used: HWSD67;
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WISE30sec25 (hereafter WISE); SoilGrids250m68 (hereafter SoilGrids); and
NCSCD28. Among them, WISE is developed based on HWSD, but includes
updates on the mapping unit composition, adopts a consistent taxotransfer pro-
cedure, and provides information down to 2 m25. We therefore used WISE instead
of HWSD in this study. The SoilGrids product, unlike the other three databases
that rely on soil classification maps to derive spatially explicit information, predicts
soil properties using statistical methods from a list of covariates (climate, vegeta-
tion, topography, lithological units, etc), and thus can generate high-resolution
maps (250 m) dependent on the resolution of input covariates68. However, in a pre-
processing, we found that SoilGrids gives a much higher SOC stock (in kg Cm−2)
than other databases in most grid cells in the northern hemisphere, and gives a
global total SOC storage of 2757 Pg C for 0–1 m and 4570 Pg C for 0–2 m (cal-
culated using their 250 m resolution map). This total SOC storage is almost twice
the estimate by the majority of previous studies (see a short review in ref30.).
Therefore, we did not use SoilGrids in this study.

Compared to WISE, NCSCD provides SOC stock down to 3 m, and is based on
more soil samples in permafrost region than WISE25. However, NCSCD is a
regional database for the northern permafrost zones only, and does not provide
other properties like soil texture and bulk density. We therefore used both
databases for SOC and used WISE for other soil properties. At their highest
resolution (0.012° for NCSCD and 30 arc second for WISE), we took the grid cells
whose center is nearest to the coordinates of each observation site. The two
databases provide different depth intervals (4 intervals down to 3 m in NCSCD,
and 7 intervals down to 2 m in WISE), and we integrated their original layers into
the same four depth intervals as D values mentioned above (0–0.4, 0.4–0.8, 0.8–2,
and 2–3 m), using depth-weighted averages. WISE does not provide information
below 2 m, so its variables for the 4th depth interval are non-valid value in all the
regression analyses.

Using the large-scale soil databases to indicate local-scale observations
introduces uncertainties. To reduce this uncertainty, we compared the SOC density
for the available site-depths from the two databases (Supplementary Fig. 5c), and

excluded those with a relative difference (calculated as SOCNCSCD�SOCWISE
SOCNCSCDþSOCWISE

��� ���) larger
than 25%. This filtering process removes 105 site-depth SOC values, leaving 100
pairs of D-SOCNCSCD and 278 pairs of D-SOCWISE as shown in Fig. 1, spanning
184 sites (170 sites from RHST and 14 sites from IPY, Supplementary Fig. 1 red).
For consistency, the excluded site-depths were also removed from the analysis of
the other soil properties as shown in Supplementary Fig. 2.

A linear relationship was found between log-transformed D and SOC density
(Fig. 1); we therefore used log10(D) in all the correlation analyses. A log-
transformation of D also improves its normality. To explore the potential
multivariate relationships, we conducted a stepwise regression analysis using SOC
density (from WISE and NCSCD respectively) and all the other soil properties as
predictive variables. In the case of SOC from NCSCD, none of the other variables
are significant in the stepwise regression to explain D variations, namely, the
addition of other properties does not increase the explanatory power compared to
the log10(D)-SOCNCSCD regression model. In the case of SOC from WISE, only silt
fraction is significant, but R2 only marginally increases from 0.35 to 0.37, and the
slope of SOCWISE in the stepwise regression equation (−0.010) is only slightly
different from that in the single-variable regression (−0.012).

Treatment of CMIP5 models. We used all CMIP5 ESMs that provide access to
their historical simulation (r1i1p1) on the website https://esgf-node.ipsl.upmc.fr/
search/cmip5-ipsl/ (accessed in July 2017) and that provide surface air temperature
and vertically-resolved soil temperatures (in total 27 models). To calculate active
layer thickness (ALT) of each grid cell, we firstly calculated the maximum monthly
soil temperature (Ts,max) for each soil level, then took the deepest depth where Ts,max

was at or above 0 °C. If the depth of 0 °C was between two soil levels, a linear
interpolation was used to locate the depth. Permafrost is defined to be present in a
grid cell if ALT is less than 3 m or the deepest model soil level, following ref37.
which gives an approximation of near-surface permafrost.

For the simulated thermal diffusivity, the same procedure as the calculation of
D for the sites was carried out using the outputted monthly soil temperatures by
each model for all land grid cells and soil layers. Specifically, the same SSE
threshold of 0.34 was adopted to exclude the pixel-depth-years whose monthly soil
temperature oscillations do not conform to sine-waves. Since the CMIP5 models
have different (or a lack of) parameterizations for the soil freezing process37, their
SSE values differ (Supplementary Fig. 17). In general, the models that do not
consider the latent heat associated with water phase change (CMCC, IPSL, and
MPI families) produce sine wave-shaped monthly soil temperatures and thus have
smaller SSE values (Supplementary Fig. 17). Applying the SSE threshold before
calculating D values for each model could reduce the confounding effect of their
different parameterizations for the freezing-induces latent heat.

The CMIP5 models have different vertical soil layers (Supplementary Fig. 18),
and here we only calculated the D values for the upper 3 m, and integrated them
into the same four depth intervals as the observations. Then, to compare with the
observation-derived D values at the RHST and IPY sites, the same locations
(nearest grid cell center to the site coordinates) were selected for each model, thus
deriving the results shown in Fig. 2b and Supplementary Fig. 7.

For the simulated snow depth, in order to better describe its insulation effect, we
calculated the effective snow depth (Seff) defined as the mean snow depth weighted

by its duration, following ref. 22:

Seff ¼
P6

i¼1 SiwiP6
i¼1 wi

; ð7Þ

where i (1–6) represents the winter months from October to March; wi is a
weighting factor that equals to 6 for October and decreases to 1 for March; Si is the
mean snow depth for the month i. In this way, an earlier accumulation of snow,
with its longer time period to insulate the soil during the whole snow season, has a
larger weighting and yields a higher Seff than the case of a linearly accumulating
snowpack. Note that this calculation did not account for the compaction/
densification-induced increase in snow thermal conductivity that weakens its
insulating effect during the late snow season, as demonstrated by the observed
smaller temperature gradient (soil temperature at 20 cm depth minus air
temperature) under a certain snow depth during the late snow season than that
during the early season under the same snow depth40.

Only 21 models out of the 27 models provided outputs for snow depth (or snow
mass) at the time we accessed the CMIP5 repository. For the models that only
provided snow mass but not depth (the MPI and HadGEM families), a snow
density of 250 kg m−3 was used for conversion39.

Simulations of the ORCHIDEE-MICT land surface model. We incorporated the
impacts of organic carbon on soil thermal and hydrological properties in the
ORCHIDEE-MICT land surface model, assuming that soil physical properties are
weighted averages of mineral soil and pure organic soil. Detailed descriptions can
be found in ref. 40. One modification compared to ref. 40. is that the soil thermal
conductivity is calculated as geometric average of mineral and organic soils (instead
of arithmetic average in ref. 40), which is more consistent with the empirical linear
relationship between log10(D) and SOC density (Fig. 1). We conducted two
simulations for the northern hemisphere (>30°N) at 2° spatial resolution forced by
CRUNCEP v8 climate: yesSOM, in which an observation-based SOC map was used
in the thermal and hydrological modules to derive soil properties; and noSOM, in
which the thermal and hydrological modules see zero SOC, i.e., no impacts of SOC
on soil properties. For yesSOM, the observational SOC map was constructed from
NCSCD28 for permafrost regions and from WISE25 for non-permafrost regions,
using linear vertical interpolation to convert their original soil horizons into
ORCHIDEE-MICT vertical layers40. Here we did not use the prognostically
modelled SOC by the carbon module of ORCHIDEE-MICT, in order to exclude
bias of the carbon cycle module for the analysis of SOM effect. For both simula-
tions, spin-ups were first conducted forced by looped 1901–1920 climate and pre-
industrial CO2 level of 286 ppm, covering 200 years of the full model and 20,000
years of the soil carbon sub-model to reach equilibrium for the pre-industrial
period. Afterwards, transient runs for 1861–2010 were conducted forced by his-
torical climate and rising CO2 concentrations.

We also made use of the simulations to test the validity of the SSE threshold,
and to compare the temperature amplitude-derived diffusivity (D) against the real
diffusivity as used in the one-dimensional Fourier’s equation to solve for soil
temperatures in the model. ORCHIDEE-MICT includes a soil-freezing
parameterization, in which the latent heat of fusion is incorporated into an
apparent heat capacity, so that Eq. (1) writes 69:

capp
∂T
∂t

� ∂

∂z
λ
∂T
∂z

� �
¼ 0;

in which capp ¼ c� ρL
Δθ

ΔT
; ð8Þ

where ρ is ice density (kg m−3); L is latent heat of fusion (J kg−1); ΔT equals to 2 K,
corresponding to the freezing window between −1 °C and 1 °C in the model; Δθ
equals to the total water content (m3m−3) for the layer, providing the available
amount to freeze/thaw in the freezing window.

Then, thermal diffusivities:

Dwith�fusion ¼ λ

capp

Dno�fusion ¼ λ

c
ð9Þ

can be calculated for each time-step and averaged over the year to compare with
the amplitude-derived diffusivity (D). Detailed parameterizations of λ and c in
ORCHIDEE-MICT are given in ref. 40, which generally follows the empirical
equations of ref. 70 to account for the impact of soil moisture on thermal
conductivity λ.

As shown in Supplementary Fig. 19a, the relative difference of annual mean
Dwith-fusion and Dno-fusion (1� Dwith�fusion

Dno�fusion
, which ranges from 0 to 1) are generally

small (less than 30%) for those locations where modelled monthly soil
temperatures conform to sine-waves (SSE < 0.34). This suggests that applying the
SSE threshold can effectively exclude the cases in which the latent heat significantly
changes the apparent thermal diffusivity. Note that some site-depths have high SSE
values (and thus were excluded) even though they are less affected by soil freezing/
thawing (Supplementary Fig. 19a), probably because the other conditions for the
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validity of Eq. (4) are not met, e.g., the diffusivity varies too much over the year or
along the considered depth interval, or the surface soil temperature itself does not
conform to a sine-wave (due to, e.g., a non-sine shaped air temperature, or a strong
winter insulation of snow causing asymmetric effects on the seasonal-cycle).

Supplementary Fig. 19b compares the amplitude-derived diffusivity (D) with
Dwith-fusion, which shows a good correlation between them (R2= 0.85), although
D is generally smaller than Dwith-fusion when their values are low. This suggests that
the amplitude-derived diffusivities (after excluding high SSE values) are reasonable
indicators for the internal parameterization of soil thermal properties in land
surface models.

Data availability
The data sets analysed in this study are available online: Russian Historical Soil
Temperature Data: https://data.eol.ucar.edu/dataset/106.ARCSS078; borehole
temperature measurements during the International Polar Year (IPY): http://
gtnpdatabase.org/boreholes; WISE30sec v1.0 soil database: http://www.isric.org/explore/
wise-databases; NCSCD soil database: https://bolin.su.se/data/ncscd/tiff.php; ESA CCI
SM v02.2 product: http://esa-soilmoisture-cci.org/node/202; soil moisture from the ERA-
Interim/Land product: https://www.ecmwf.int/en/forecasts//archive-datasets/reanalysis-
datasets/era-interim-land; CMIP5 model outputs: https://esgf-node.ipsl.upmc.fr/search/
cmip5-ipsl/. Other data that support the findings of this study, such as the ORCHIDEE-
MICT model outputs, are available from the corresponding author on reasonable request.

Code availability
The python script to calculate thermal diffusivity from soil temperature measurements, as
well as the input data to run the script, are provided in a Supplementary zipped file. This
file contains the source data underlying Figs. 1 and 2 and Supplementary Figs. 2 and 7.
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