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ARTICLE

Vegetation structural change since
1981 significantly enhanced the terrestrial
carbon sink
Jing M. Chen1,2, Weimin Ju 2,3, Philippe Ciais 4, Nicolas Viovy4, Ronggao Liu 5, Yang Liu 5 &

Xuehe Lu 2

Satellite observations show that leaf area index (LAI) has increased globally since 1981, but

the impact of this vegetation structural change on the global terrestrial carbon cycle has not

been systematically evaluated. Through process-based diagnostic ecosystem modeling, we

find that the increase in LAI alone was responsible for 12.4% of the accumulated terrestrial

carbon sink (95 ± 5 Pg C) from 1981 to 2016, whereas other drivers of CO2 fertilization,

nitrogen deposition, and climate change (temperature, radiation, and precipitation) con-

tributed to 47.0%, 1.1%, and −28.6% of the sink, respectively. The legacy effects of past

changes in these drivers prior to 1981 are responsible for the remaining 65.5% of the

accumulated sink from 1981 to 2016. These results refine the attribution of the land sink to

the various drivers and would help constrain prognostic models that often have large

uncertainties in simulating changes in vegetation and their impacts on the global

carbon cycle.
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Terrestrial ecosystems are an important part of the climate
system and their effect on the global carbon cycle is one of
the largest uncertainties in the projection of future

climate1,2. The estimation of the terrestrial carbon cycle is com-
plicated by large spatial and temporal variability of the vegetation
cover, as well as complex biological, climate, and soil controls on
plant growth and organic matter decomposition3. Because of this
complexity, the estimates of the global terrestrial carbon sink
using prognostic models differ considerably with the residual of
the global carbon budget in terms of both the mean and inter-
annual variations4. The attribution of the global land carbon sink
to various drivers also differs greatly among models5. For the
purpose of projecting future climate, we need to better under-
stand the mechanisms controlling the terrestrial carbon cycle so
that we can reliably estimate the terrestrial carbon cycle under
future climatic and atmospheric conditions6,7.

With human’s perturbation to the climate system through
greenhouse gas emissions to the atmosphere and land-use change,
the terrestrial carbon cycle has been greatly altered since pre-
industrial time8,9. Studies have shown that increased atmospheric
CO2 concentration since 1850 has enhanced plant growth and
hence induced carbon sinks10, although the magnitudes of this
enhancement vary among model estimates, satellite-based
assessments, and Free Air Enrichment Experiments performed
at a limited number of sites3. Climate change and atmospheric
nitrogen deposition also played important roles in modulating the
terrestrial carbon sink11,12. In addition to direct effects of these
drivers on the carbon cycle, they have also induced changes in
vegetation structure, i.e., leaf area index (LAI), defined as one half
the total leaf area per unit ground surface area13–15, which in turn
also changes the carbon cycle. This feedback of vegetation LAI to
the carbon cycle has not yet been systematically studied, although
the increase in LAI over the last several decades has been found to
be significant and dubbed global greening.

Currently, prognostic models, which simulate vegetation
structure, growth, and carbon cycle under given climatic and
edaphic conditions, are used, e.g., by the Global Carbon Project
(GCP) as the main tools to estimate the terrestrial carbon sink4.
The simulated results vary among models due to different
assumptions and parameter settings, causing uncertainties3. One
of the largest variations among these models is the simulation of
vegetation structural change with time. Without accurate assess-
ment of this change, it is highly uncertain to attribute the land
sink to the various drivers, even if the total land sink is adjusted to
an appropriate range and constrained by measured atmospheric
CO2 concentration.

Reliable satellite measurements of LAI are available to assess
vegetation changes at the global scale since 1981. This source of
information is underutilized in constraining the estimation of the
terrestrial carbon sink and closing the global carbon budget,
although many studies showed the usefulness of LAI products in
optimizing several ecosystem parameters16. To use this infor-
mation beyond assessing vegetation greening/browning trend14,
diagnostic models that assimilate remotely sensed vegetation
structural information to simulate physical, biological, and eco-
logical processes in vegetation are effective tools to estimate the
impact of LAI changes on the carbon cycle. In this study, we use a
model of this type, which is named Boreal Ecosystem Productivity
Simulator (BEPS)17. This model was initially developed for boreal
ecosystems and has been adapted for all ecosystems over the
globe18. BEPS mechanistically includes the impacts of various
drivers on gross primary productivity (GPP) (climate, CO2 con-
centration, and nitrogen deposition) and assimilates vegetation
structure (LAI) satellite data. It differs from light-use efficiency
(LUE) models, which estimate GPP based on radiation absorbed
by the canopy and prescribed LUE functions that may or may not

include CO2 and nutrient effects3. BEPS also simulates the
dynamics of carbon pools beyond GPP and uses a spin-up pro-
cedure to prescribe soil carbon pools for estimating autotrophic
respiration (AR) and heterotrophic respiration (HR) (see Meth-
ods). It is therefore a diagnostic process model for estimating the
full carbon cycle using remote-sensing data and suitable for
ascribing land carbon sinks to the various drivers.

Based on three LAI time series derived from satellite data, we
find that vegetation structural change reflected by the trend of
LAI contributed 12.4% to the accumulated total terrestrial carbon
sink (95 ± 5 Pg C) from 1981 to 2016. This is small, but sig-
nificant, compared with the contributions of CO2 fertilization
(+47.0%) and climate change (−28.6%) in the same period. This
finding suggests the importance in tracking this vegetation
structural parameter using satellite data in global carbon cycle
research. Quantifying this separate effect of vegetation structural
change on the land sink helps attribute the sink to the various
drivers including CO2 fertilization, climate change, and nitrogen
deposition, and may also help rectify some differences among
prognostic models.

Results
LAI data analysis. A global LAI time series from 1981 to 2016 at 8
km resolution and 16-day (1981–2000) and 8-day (2001–2016)
intervals was produced using Advanced Very High Resolution
Radiometer (AVHRR) and Moderate Resolution Imaging Spec-
troradiometer (MODIS) satellite data with the GLOBMAP algo-
rithm19. The global distribution of the temporal trend of LAI over
this period is shown in Fig. 1. About 74.2% of the land surface
shows an increasing trend, among which 52.7% is significant at
p= 0.05 level (two-tailed). Globally, the increase in the maximum
LAI in the peak growing season is about twice as large as that in the
annual mean, suggesting that growing season lengthening is not the
main factor explaining the greening trend. This general increase in
LAI resulted from the combined effects of various drivers including
CO2, climate, and nitrogen deposition over the same period, and
therefore provides a new base for separating the effects of these
drivers on vegetation structure and growth. The focus of this study
is on the increase of LAI on plant growth and the land carbon sink.
Considering the uncertainty in the temporal trend of this LAI time
series, we used two other LAI products: GLASS LAI20 and GIMMS
LAI3g21 (Supplementary Fig. 1 and Table 1).

Analysis of the residual land sink. Driven by one of LAI time
series at a time as well as climate, CO2, soil, and nitrogen
deposition data, BEPS is used to simulate GPP, AR, and HR at
daily time intervals for each pixel. The sum of simulated net
ecosystem productivity (NEP), taken as GPP-AR-HR, for all land
areas is compared with the global residual land sink (RLS)
reported by the GCP4, which is computed as the sum of emissions
from fossil fuel consumption, cement production, and land-use
change minus the sum of CO2 accumulated each year in the
atmosphere and ocean. The modeled annual NEP as average from
the BEPS model forced by each of the three LAI products closely
follows the trend and interannual variability of the residual land
carbon sink (Fig. 2), although it does not capture well extremely
low and high values in some years, such as 1987, 1991, 2000,
2002, and 2009. Over the 1981–2016 period, the modeled accu-
mulated NEP is 95 ± 5 Pg C, whereas the accumulated RLS is
94 ± 5 Pg C.

In comparison with 15 prognostic models used by GCP4, BEPS
is among the best in terms of Pearson’s coefficient (R2), root
mean square error (RMSE) between simulated and the
observation-based annual RLS, and the accumulated sink from
1981 to 2016 in comparison with RLS (Supplementary Table 2).
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BEPS has an R2 value of 0.56 (Supplementary Fig. 2), which is
slightly lower than those of Community Atmosphere Biosphere
Land Exchange (CABLE) and Lund–Potsdam–Jena (LPJ), but
the RMSE of BEPS is lower than that of all prognostic models.
The modeled accumulated sink by BEPS is also very close to the
accumulated RLS, whereas estimates from the 15 prognostic
models differ by a wide range. The results of these comparisons
show that BEPS as a diagnostic model driven by remote-sensing
data can do a similar or better job than fully prognostic models in
simulating the past land sink, because vegetation structural
changes observed by satellites provide a critical constraint to the
sink estimation. We do not include other diagnostic models in
these comparisons22,23, because BEPS so far may be the only

process-based diagnostic model that calculates the full carbon
cycle at the global scale for multiple decades. With the
computation of the land sink close to the RLS, BEPS can then
be used to attribute the sink to the various drivers including
vegetation structural change.

The time-varying maps of satellite LAI constrain the effect of
vegetation structural change on the land sink since 1981.
However, the land sink in recent decades results from the
accumulated changes in climate, CO2 concentration, nitrogen
deposition, and land use since the preindustrial period that
occurred before 1981. From 1981 to 2016, global land ecosystems
absorbed 95 ± 5 Pg C from the atmosphere (i.e., accumulated
NEP), which is 32.8 Pg C larger than the baseline (62.1 Pg C)
defined by NEP simulated assuming without changes of these
drivers after 1981 (Supplementary Table 3). Several conditions
were set for simulating the baseline. First, CO2 concentration and
nitrogen deposition were kept at the 1981 levels; second, LAI was
taken as the mean value in 1982–1986; and third, meteorology in
a year between 1981 and 2016 is randomly taken from
meteorology in a year within the 1971–1979 period (Supplemen-
tary Table 3), so that no climate trend exists over the 1981–2016
period. Under the baseline conditions, the land sink over the
period from 1981 to 2016 is thus caused only by the legacy of
changes in the drivers prior to 1981, given the residence time of
carbon in ecosystems. The mean legacy effect over 1981–2016 was
larger in forests, especially in evergreen broadleaf forests over
tropical regions (Supplementary Fig. 3). We therefore refer to the
sink increase from the mean legacy effect as the sink enhance-
ment due to changes of the drivers after 1981.

Attribution of the land sink. The increase in atmospheric CO2

concentration is modeled to be the dominant diver for the land
sink enhancement during the 1981–2016 period. The CO2 con-
centration increase after 1981 alone enhanced the global land sink
by 44.6 Pg C accounting for 47.0% of the total accumulated sink
enhancement after 1981 (Fig. 3). The simulated global total net
primary productivity (NPP) increased by 11.6% with the increase
of CO2 concentration from 340.13 p.p.m. in 1981 to 404.20 p.p.m.
in 2016, whereas climate, LAI, and N deposition remain at
baseline values. The sensitivity of simulated total NPP in the
northern hemisphere to atmospheric CO2 concentration (β-fac-
tor3) was 18.6%/100 p.p.m. during 1981–2016. This β-factor is
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Fig. 2 Comparison of the simulated annual land sink (NEP) by BEPS and the
residual land sink (RLS) estimated by the Global Carbon Project. The pink
red error bars are the SDs of the annual land sink simulated using three
different LAI datasets. The solid red line indicates the accumulated carbon
sink simulated using three LAI datasets. For the accumulated simulated
land sink* (light solid blue line), pixels with >20% areal changes in short
vegetation or tree canopy are excluded in the accumulation. For the
accumulated simulated land sink** (dashed red line), pixels with >30%
changes are excluded. The solid dark line indicates the accumulated
residual land sink estimated by the Global Carbon Project. The solid blue
line is the mean of accumulated land sinks simulated by 15 TRENDY
models, and the shaded gray area represents its uncertainty (mean ± SD).
The shaded light yellow area represents the range of accumulated land
sinks simulated using three different LAI datasets
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about 6.1% smaller than the average value of prognostic models
participating in the Coupled Model Intercomparison Project 5
(CMIP5)3. Our β-factor excludes the effects of CO2 fertilization
on LAI, whereas CMIP5 models lump vegetation LAI responses
to CO2 increase into the β-factor. If the influence of LAI change is
included in our β-factor calculation, it would be 31.8%/100 p.p.m.
for the northern hemisphere, whereas the global average value is
27.0%, because LAI increased much less in the southern hemi-
sphere than in the northern hemisphere. Both BEPS and CMIP5
models include the influences of CO2 increase on stomatal con-
ductance affecting photosynthesis, transpiration, and soil moist-
ure. Our β-factor is considerably larger than the values inferred
from remote-sensing NPP models3, because these models are
mostly based on empirical LUEs that do not explicitly consider
enhanced LUE at higher CO2 levels24 (see Supplementary Fig. 4

for further comparisons). CO2 fertilization enhanced the carbon
sink in all regions (Fig. 4), especially in regions with high NPP
(15°S–30°N and 45°N–60°N) (Supplementary Fig. 5).

The impacts of other drivers on the accumulated sink shown in
Fig. 3 are also calculated by changing one driver at a time, while
holding other drivers at the baseline level. The accumulated global
sink enhancement due to vegetation structure (LAI) change over
the 1981–2016 period is 11.7 Pg C, which is 12.4% of the total sink
or 35.7% of the enhanced sink in the same period. Over this
period, global average LAI increased from 1.6 to 1.7, enhancing
GPP by 1.2% and NEP by 0.3% relative to GPP. The spatial
distribution of NEP enhancement (Supplementary Fig. 6) is
similar to that of the LAI trend shown in Fig. 1, where positive
trends of LAI induced sinks, whereas negative trends caused
sources, suggesting that LAI might have acted as a surrogate for
the impacts of changes in other factors such as soil moisture and
temperature. As most areas show positive trends, the overall effect
of the vegetation structural change is a large sink enhancement.
Changes in atmospheric nitrogen deposition made global land
ecosystems sequester 1.1 Pg C more carbon during the 1981–2016
period than the baseline (Fig. 3). Nitrogen deposition contributed
to 1.1% of the total accumulated sink since 1981. Based on global
nitrogen deposition data, global total nitrogen deposition
increased from 42.3 Tg N per year in 1981 to 58.9 Tg N per year
in 2016 (Supplementary Fig. 7), with a total additional cumulative
input of 0.30 Pg N into land ecosystems above the 1981 baseline.
Our simulated carbon sink enhancement per unit of deposited
nitrogen is 3.7 g C/g N, which is slightly lower than the range of
4.3–4.8 g C/g N by previous global simulations25,26. The NEP
enhancement during the 1981–2016 period by nitrogen deposition
mainly occurred in Asia and in part of Europe, where nitrogen
deposition continuously increased (Supplementary Fig. 8).

Globally, climate change weakened the land sink during the
1981–2016 period (Fig. 3), when it’s effect on LAI, such as longer
growing season, is excluded. Climate change induced an
accumulated GPP reduction of 37.6 Pg C, whereas the accumu-
lated decrease of ecosystem respiration was 10.5 Pg C during the
1981–2016 period. Consequently, the climate change caused a net
reduction of 27.1 Pg C (−28.6%) in the accumulated sink
enhancement since 1981. The decrease of the land sink due to
climate change occurred almost in all regions (Fig. 4, Supple-
mentary Fig. 9). The sum of the effects of changes in LAI, CO2,
nitrogen deposition, and climate mainly enhanced carbon sink in
Eurasia, southeastern China, eastern North America, central
Africa, and southeast Asia (Fig. 4, Supplementary Fig. 10). The
dominant driver affecting the land sink varies spatially (Supple-
mentary Fig. 11). Climate had the most dominant-negative
impact on the accumulated carbon sink in 14.2% of the total
vegetated area of the globe. LAI is the dominant-positive driver
for 43.6% of the area, whereas it is negative for 4.6% of the area.
CO2 and nitrogen deposition are both positive, dominant factors
over 36.4% and 0.2% of the area, respectively.

Discussion
In principle, NEP from BEPS should not equal the RLS, because
NEP excludes the net emission from anthropogenic and natural
disturbances (land cover and land-use change, harvest, planta-
tion, fires, and insects) (Supplementary Discussion). Those dis-
turbances can induce both immediate LAI reduction and
subsequent gradual LAI increase due to regrowth. In BEPS, a LAI
reduction induces additional transfer of the same portions of
biomass pools to soil organic matter, which is subsequently
respired as a source of carbon to the atmosphere. This
disturbance-enhanced carbon loss by respiration is mostly com-
pensated by regrowth, which is driven by observed LAI series in
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respectively. These sinks contribute 47.0%, 12.4%, 1.1%, and −28.6% to
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respectively. For example, the accumulated CO2 enhancement is calculated
by holding other drivers at the baseline, while changing CO2 according to
the global mean CO2 data
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the same period, whereas NEP equals RLS for undisturbed areas.
If the carbon gain through regrowth equaled the carbon loss due
to enhanced respiration, the simulated NEP would equal RLS for
disturbed areas. This would be true only if the disturbance and
recovery were historically maintained at constant rates. However,
there are considerable differences between NEP modeled by BEPS
and RLS for areas with large changes in short vegetation (SV),
tree cover (TC), and bare land. To assess these differences, we also
show in Fig. 2 the simulated accumulated NEP curves after
excluding pixels (8 km resolution) with changes in SV or TC
coverage over 20% and 30%, respectively, in the accumulation,
based on SV and TC high-resolution (30 m) map produced from
Landsat data27. Excluding these areas with large SV or TC
changes results in small decreases in accumulated NEP by 8.0%
and 2.5% for these two cases, respectively, suggesting that
cumulative NEP approximately equals cumulative RLS at the
global scale since 1981. These effects of disturbance on simulated
NEP are small, because pixels with 20% and 30% disturbance in
SV or TC are only 6.7% and 2.0% of the land area, respectively
(Supplementary Fig. 12), and the LAI observations used to drive
BEPS can capture a large portion of the impacts of disturbance on
photosynthesis and ecosystem respiration. These exclusions
always cause smaller NEP values, because the contributions from
undisturbed portions within the excluded pixels are discounted.
Changes from SV to TC or from bare land to SV or TC within the
excluded pixels are also discounted, although they may incur
small sinks (Supplementary Fig. 13), which are associated with
LAI changes (Supplementary Fig. 14). For simplicity, we do not
exclude disturbed pixels in the results shown in Figs. 2 and 3.

In conclusion, the results of this study show the value of
assimilating observed LAI over the last three decades to quantify
the land carbon sink and separate the effect of increasing LAI
alone vs. the effects of changes in environmental drivers alone. It
should be kept in mind, however, that the observed increase of
LAI also results from environmental drivers as well as of land use
and land management.

Methods
GPP modeling methods. The BEPS model17,18 used in this study is a process-
based diagnostic model driven by remotely sensed vegetation parameters, including
LAI, clumping index, and land cover type, as well as meteorological and soil data. It
simulates photosynthesis, energy balance, and hydrological and soil biogeochemical
processes at daily time steps17,28. For GPP simulation, BEPS uses the leaf-level
biochemical model29 with a two-leaf upscaling scheme from leaf to canopy:17

GPP ¼ GPPsunLAIsun þ GPPshadedLAIshaded ð1Þ
where GPPsun and GPPshaded are the GPP per unit area of sunlit and shaded leaves,
respectively. LAIsun and LAIshaded are the LAI of sunlit and shaded leaves,
respectively, and are estimated as:

LAIsun ¼ 2 ´ cos θ ´ 1� exp �0:5 ´Ω ´
LAI
cos θ

� �� �
ð2Þ

LAIshade ¼ LAI� LAIsun ð3Þ
where Ω is the clumping index derived from MODIS data at 500 m resolution30

and θ is the daily mean solar zenith angle.
GPP values of sunlit and shaded leaves are calculated using the Farquhar’s

model29 with consideration of the large difference in incident solar irradiance and
the small difference in the carboxylation rate between these two-leaf groups18.
Stomatal conductances of sunlit and shaded leaves are determined separately
according to photosynthesis rates of these leaves, atmospheric CO2 concentration,
and soil moisture28,31, and are used to estimate water consumption by
evapotranspiration. Although initially developed to simulate GPP in boreal
ecosystems in Canada, BEPS has been adopted and has been widely used to
estimate terrestrial carbon and water fluxes in China32,33, North America34,35,
Europe36, East Asia37, and the globe18.

Full carbon cycle modeling methods. BEPS includes modules to calculate HR and
NEP28. Based on a modified Century model38,39, it stratifies the biomass carbon
stock into four pools (leaf, stem, coarse root, and fine root pools) and the soil
carbon stock into nine pools (surface structural litter, surface metabolic litter, soil

structural litter, soil metabolic litter, coarse woody litter, surface microbe, soil
microbe, slow, and passive carbon pools). These carbon pools are initialized in the
following way. The model first calculates NPP in 1901 using N deposition and CO2

concentration in 1901, a random year of climate data selected in the period from
1901 to 1910, seasonally variable LAI averaged over the 1982–1986 period, and
default C:N ratios for all carbon pools. The nine soil and four biomass carbon pools
are then estimated under the assumption that the carbon cycle of terrestrial eco-
systems was in dynamic equilibrium in 1901. With this assumption, all carbon
pools are determined by solving a set of equations describing the dynamics of
carbon pools40. For the period from 1901 to 1980, the model is run using historical
data of N deposition, CO2 concentration, and climate, and the average LAI during
1982 to 1986. Due to lack of data, we assume that LAI in 1982–1986 represents that
in 1901–1981. If LAI increased in this period, NPP in 1901–1910 would be over-
estimated, leading to larger soil carbon pools in 1901 and smaller NEP in
1981–2016. To address this issue, we conducted a set of simulations by extending
the LAI time series to 1901 according to atmospheric CO2 concentration with the
rate of LAI change with CO2 determined using 1981–2016 data. We find that the
enhancement of the land sink due to LAI change in 1981–2016 decreases from
12.4% to 10.5% relative to the accumulated sink in the same period when the
possible LAI increase from 1901 to 1981 is considered. This decrease is due to
higher accumulated NEP by 6.8 Pg C during 1981–2016, resulting from lower
initial soil carbon pools at 1901 when LAI is smaller than our simulations without
considering LAI change over 1901–1981. This set of simulations suggests that the
impact of possible LAI changes prior to 1981 on the role of LAI after 1981 is within
a few percent and does not affect our conclusion on the significance of LAI increase
after 1981 in enhancing the land sink. Although extrapolating LAI according to
CO2 concentration is overly simplistic, it may be considered as setting the upper
bound of the possible error due to LAI changes prior to 1981, because climate
change could have been negative on plant growth and LAI.

The decomposition of soil carbon and mineralization of soil nitrogen are
regulated by soil temperature, moisture, texture, and chemical property of soil
carbon pools. Nitrogen available for vegetation growth consists of the total of
mineralized and deposited nitrogen. The uptake of nitrogen by vegetation is
simulated according to temperature, total amounts of soil carbon and nitrogen, and
vegetation demand. The absorbed nitrogen is allocated daily to different vegetation
carbon pools based on the C:N ratios and NPP allocation coefficients. The nitrogen
content of leaves is used to adjust the parameter Vcmax at 25 °C, which
consequently affects the photosynthesis rates of sunlit and shade leaves in the
Farqhuar model29. AR consists of maintenance and growth respiration, and
maintenance respiration depends on foliage, stem and root biomass, and
temperature, whereas growth respiration is taken as a fraction (25%) of GPP. NEP
of each modeling grid equals GPP-AR-HR.

LAI data. LAI is an input into the BEPS model for the simulation of the carbon
flux. Three LAI time series, GLOBMAP-V2, GLASS, and LAI3g are used in this
study and are shown in Supplementary Fig. 1 in comparison with other LAI time
series. The GLOBMAP _V2 product is the basis for our simulations, whereas
GLASS and LAI3g are used to assess uncertainties in carbon sink estimation due to
the choice of LAI products. GLOBMAP_v2 over the period from 1981 to 2016 was
generated through fusing LAI inverted from MODIS reflectance data with AVHRR
GIMMS NDVI data. LAI from 2001 to 2016 was first derived from the MOD09A1
C6 land surface reflectance and the associated illumination and view angles based
on the GLOBCARBON LAI algorithm19,41, which was developed on the basis of
the 4-Scale geometric optical model42. This algorithm explicitly considers the
effects of the bidirectional reflectance distribution function on reflectance over the
canopy as measured by the sensors41. For the fusion of MODIS and AVHRR
remote-sensing data, the relationships between GIMMS NDVI and MODIS LAI
were established pixel by pixel over a period (2001–2006)19 that they overlap. Then
the AVHRR LAI from 1981 to 2000 was generated using these relationships, to
ensure the temporal consistency between these two sensors. The spatial resolution
of the LAI series is 0.072727° × 0.072727° and temporal resolution varies from
16 days (1981 to 2000) to 8 days (2001 to 2016). In the simulation, these 16 days
and 8 days LAI values were interpolated into daily values. GLASS and LAI3g have
the similar temporal coverage. All three long-term LAI series used in this study
have similar magnitudes, because they have all considered the three-dimensional
canopy structure, as characterized by the clumping index, in their retrieval algo-
rithms43. Both GLOBMAP_V2 and GLASS used the same global clumping index
map30, whereas LAI3g considered clumping in a different way21. For accurate
simulation of sunlit and shaded leaf area and GPP, both LAI and clumping index
are needed.

All these three products used the processed AVHRR data (GIMMS). The issues
with possible artifacts and errors in the AVHRR data series (GIMMS), such as
sensor degradation, sensor intercalibration, orbital drift causing changes in sun-
target-view geometry, distortions by clouds, and abnormal aerosol absorption by
two major volcanic eruptions, have been fully considered and rectified to a large
extent, ensuring the useful signals in the trend being extracted44. The GIMMS time
series has quality flags with values from 0 to 6. GLOBMAP used only the top
quality 0 or 1. Depending on the strength of quality control, different LAI products
could show different interannual variations, although they are consistent in their
increasing trends (Supplementary Table 1).
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LAI data have been assimilated into diagnostic ecosystem models to optimize
plant carbon allocation, stock, and residence time, as well as carbon-use
efficiency16,45. In our study, we similarly optimized some of these parameters
through a spin-up procedure and also used LAI data to calculate the long-term
global carbon cycle.

Meteorological data. Meteorological data required to force the BEPS model
include daily maximum and minimum temperatures, downward solar radiation,
relative humidity, and precipitation. These data are interpolated from the 0.5° ×
0.5° CRUNCEP V8.0 dataset, which is a combination of CRU monthly climatology
and 6 hourly NCEP reanalysis meteorological data46. Daily maximum and mini-
mum temperatures, downward solar radiation, and precipitation are directly
retrieved from the CRUNCEP V8.0 dataset. Relative humidity is calculated from
temperatures, specific humidity, and pressure from the CRUNCEP V8.0 dataset.
The 0.5° × 0.5° meteorological data are interpolated into 0.072727° × 0.072727°
resolution using a bilinear interpolation method. These data are the same as those
used by the TRENDY models.

Soil data. Fractions of clay, silt, and sand are retrieved from the harmonized global
soil database (http://www.fao.org/nr/lman/abst/lman_080701_en.htm) and are
used to determine soil physical parameters, including wilting point, field capacity,
porosity, hydrological conductance, exponent of the moisture release equation,
and so on.

Nitrogen deposition data. The yearly global nitrogen deposition data at 0.5° × 0.5°
resolution over the period from 1960 to 2009 are estimated from tropospheric NO2

column density retrieved from Global Ozone Monitoring Experiment and Scan-
ning Imaging Absorption Spectrometer for Atmospheric Cartography sensors,
meteorological data, and NOx emission inventory data47. For the years from 2010
to 2016, nitrogen data are extrapolated using the estimated nitrogen data over the
period from 2000 to 2009. For the period from 1901 to 1959, nitrogen data are
extrapolated based on the change rates of nitrogen deposition over the period from
1960 to 1969. The 0.5° × 0.5° nitrogen deposition data are interpolated into the
0.072727° × 0.072727° resolution using a bilinear interpolation method.

The N deposition dataset used in this study is compared with that used by
TRENDY models (Supplementary Fig. 2). These two datasets are similar before
1990, as both are based on measurements, but the increasing trends after 1990 are
different, because the data used by the models are based on linear extrapolation
from 1990 to 2050, at which the nitrogen deposition is estimated based on
projected anthropogenic sources and other assumptions48, whereas satellite
measurements from 2000 to 2009 are used in our dataset47 and could follow the
realistic trend more closely than the linearly extrapolated trend used by the models.
Over the 1981–2016 period, the total N deposition is 301 Tg N in our study,
whereas it is 403 Tg N in TRENDY. The difference could be due to the overall
decrease in N deposition in North America and other regions in this period.

Uncertainty assessment. The uncertainty of model results shown in Figs. 2 and 3
is estimated based on differences among simulated results using the three LAI
products. This uncertainty is of a similar magnitude to those estimated from the
uncertainties of model parameters that influence the simulated temporal trends,
because bias errors are mostly constrained by the atmospheric CO2 concentration
and the main interest of this study is to attribute the land sink to the various drivers
through their influences on the temporal trend. The uncertainty for the CO2 fer-
tilization effect, e.g., is mostly caused by the uncertainties in the slope and intercept
of the linear relationship between stomatal conductance and photosynthesis rate.
The trend of NEP against climate is mostly controlled by the sensitivities of AR and
HR to temperature.

Data availability
The global clumping data are available at http://globalmapping.org/CI/. The global
GLOBMAPV3 LAI dataset for the period from 1981 to 2016 can be downloaded at
http://globalmapping.org/globalLAI/.

Code availability
The code used in this study is available from the corresponding author on request.
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