
HAL Id: hal-02895111
https://hal.science/hal-02895111v3

Preprint submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiplicative Linear Logic from Logic Programs and
Tilings

Boris Eng, Thomas Seiller

To cite this version:
Boris Eng, Thomas Seiller. Multiplicative Linear Logic from Logic Programs and Tilings. 2021.
�hal-02895111v3�

https://hal.science/hal-02895111v3
https://hal.archives-ouvertes.fr

Multiplicative Linear Logic from Logic Programs

and Tilings

Boris Eng
LIPN – UMR 7030

Université Sorbonne Paris Nord, France

https://www.engboris.fr

engboris@hotmail.fr

Thomas Seiller
CNRS, LIPN – UMR 7030

Université Sorbonne Paris Nord, France

https://www.seiller.org

seiller@lipn.fr

Abstract—We present a non-deterministic model of compu-
tation related to Robinson’s first-order resolution. This model
formalises and extends ideas sketched by Girard in his Tran-
scendental Syntax programme. After establishing formal defini-
tions and basic properties, we show its Turing-completeness by
exhibiting how it naturally models logic programs as well as
non-deterministic tiling constructions such as those defining the
abstract tile assembly model, recently used in DNA computing. In
a second part, we explain how this model of computation yields,
using realisability techniques, a dynamic semantics of proofs in
the multiplicative fragment of linear logic (MLL), for which we
obtain full-completeness results for both MLL and MLL extended
with the so-called MIX rule.

I. INTRODUCTION

The study of logic traditionally begins from a presupposed

definition of logic. Typical examples are Gentzen’s natural

deduction and sequent calculus [1], [2] which are attempts

at representing mathematical reasoning by means of logical

rules one applies successively in order to construct proofs.

Several discoveries emerged from this starting point. The

Curry-Howard correspondence between proofs and programs

[3], [4] somehow freed logic from its isolation, as it then

appears as a part of a bigger picture. For instance, the simply

typed λ-calculus (isomorphic to natural deduction restricted

to implication) exists within a larger realm: the untyped λ-

calculus, a Turing-complete model of computation at the core

of functional programming.

Inspired by the semantics of the λ-calculus [5], linear logic

was introduced by Girard [6] as a refinement of intuition-

istic logic (the logic behind natural deduction). Apart from

defining a sequent calculus, Girard was led to introduce an

alternative syntax for linear logic: proof-nets, which exhibit

a non-sequential structure [7]. Intuitively, proof-nets can be

understood as part of a more general model of computation,

that of proof-structures which do not necessarily hold a

logical meaning. It is then possible to characterise those being

logically correct, namely proof-nets, as the proof-structures

satisfying a specific correctness criterion. Although many such

criteria were defined [8], [9], [10], [11], we will consider here

the standard Danos-Regnier criterion [8].

Following this new understanding of proofs, Girard in-

troduced his geometry of interaction (GoI) programme [12]

aiming at defining a semantics of proofs accounting for their

dynamics, inspired by the dynamics of the execution of pro-

grams. This dynamic semantics approach, a major inspiration

behind game semantics [13], [14], distinguishes itself from

denotational semantics which consider proofs as static objects.

Nowadays, the term ”geometry of interaction” usually refers

to a static execution of λ-terms by a token machine [15],

[16], inspired by a simplification of Girard’s first geometry

of interaction [17]. It may also refer to GoI-based categorical

semantics [18], [19]. In this paper, however, we refer to

Girard’s original programme [20], [21], [22], [23], [24], [25].

Girard’s initial programme went beyond this idea of dy-

namic semantics. It can be understood as a sort of reverse

engineering reconstructing logic – in particular linear logic –

from very general computational objects by using realisability

techniques. In some way, the idea is the same as the recon-

struction of simple types from the untyped λ-calculus. We

refer the reader to Riba’s work [26] for more details.

In this aspect of reconstructing linear logic, several geome-

try of interaction models were defined using operator algebras

[20], [21], [23], [24], unification algebras [22], graphs [27],

[28] and graphings [29], [30], [31]. Although all these models

did define rich models, that were in particular used to study

computational complexity [32], [33], [34], [35], [36], they

had two main drawbacks. First, the objects used to interpret

even the most basic proofs were most of the time infinite

objects whereas we expect reasoning to be finite. Secondly,

the obtained models did interpret soundly the fragments of

linear logic considered, but no completeness results exist1.

Recently, Girard published a series of articles [37], [38],

[39], [40], [41] sketching the main lines of a new kind of

model that would have the qualities of geometry of interaction

models, but improve on them at least concerning the first

failure mentioned above. Those articles claim great improve-

ments, proposing in particular a Curry-Howard interpretation

of first-order logic [40]. However, they are too inexact in

form to serve satisfactorily as the basis of a mathematical

theory2. The current work is the first step towards a proper

formal account of the model, with underlying motivation the

1While this aspect is a failure somehow, it is also a feature as the models
are very rich and open other paths of reflexion.

2The formulation is borrowed from Church’s criticism of von Mises’ notion
of kollektiv [42].

representation of first-order logic and its possible applications

in relation with descriptive complexity results [43], such as

the Immerman-Vardi theorem [44], [45].

A. Contributions and Plan of the paper

The main contributions of this paper are the following:

• In the first section, we formally describe a model of com-

putation named stellar resolution, based on Robinson’s

first-order resolution [46], which extends the model of

computation vaguely described by Girard. We define two

alternative executions. The first one (Definition 22) closer

to usual logic programming and the second one (Defini-

tion 26) based on the combinatorics of geometric tiling. In

Section III-C, we prove the main properties of the model

and state the Turing-completeness (Proposition 28) for

the two executions. In particular, while Girard claimed

the failure of the Church-Rosser property, we are able to

prove it holds for stellar resolution (Theorem 30).

• In Section III-B, we relate our formalism to well-known

models of computation which however are rather unex-

pected in a proof-theoretic context: Wang tilings [47] and

the abstract tile assembly model [48], [49], which has

applications in DNA computing [50], [51].

• We explain how our model captures the dynamics of the

cut-elimination procedure for the multiplicative fragment

of linear logic (MLL) (Section IV, Theorem 41), and

the correctness criterion for proof-structures (Section V,

Theorem 48). This implicitly leads to a model which

can express both MLL proofs (hence the linear simply

typed λ-calculus) and logic programs (through disjunctive

first-order clauses) with objects of the same kind. We

also remark that it is possible to consider an alternative

model of MLL which can cohabit with tilings models

(Remark 52). This shows that proof-structures and tiling-

based models share a similar dynamics.

• Finally, in Section V-C, we explain how realisability

techniques similar to those used in λ-calculus can be

used to define types that organise into a denotational

semantics for MLL (a ∗-autonomous category), and prove

soundness and completeness of the model w.r.t. both MLL

(Section V-E, Theorem 74) and MLL+MIX (Section V-D,

Theorem 70 & Theorem 72), an extension of MLL with

the so-called MIX rule [52]. The construction of types

suggests the possibility of speaking about types and

describing computational behaviours in the context of

atypical models in type theory such as logic programs,

tiling-based computation, or structure-based computation

(e.g boolean circuits and automata).

II. STELLAR RESOLUTION

The stellar resolution model is basically a graph-theoretic

reformulation of Robinson’s first-order clausal resolution [46]

used as a model of computation for different purposes. Instead

of reaching an empty clause (a contradiction) or considering

goals/queries, we are interested in the set of all maximal

graphs of connexions between the atoms (which is reminiscent

of the resolution operator and its refinements [53]). This

is also very similar resolution-based graph models such as

Kowalski’s connection graphs [54], Sickel’s clause intercon-

nectivity graphs [55] or more generally logic programming

[56] except that we only keep the computational content of

resolution without any reference to logic. We will then show

how multiplicative linear logic proofs can naturally emerge

from this model.

As first-order resolution is based on the theory of unification

[57], [46], we here recall basic definitions and refer the reader

to the article of Lassez et al. [58] for more details which are

often omitted in the literature or Baader et al. [59] for a broader

view.

A. First-order term unification

A signature S = (Vars, Func, arity) consists of an infinite

countable set Vars of variables, a countable set Func of func-

tion symbols whose arities are given by arity : Func → N.

We set a signature for this section. The set of terms

Terms(S) is inductively defined by the following grammar:

t, u ::= x | f(t1, . . . , tn) (Terms)

with x ∈ Vars, f ∈ Func, arity(f) = n.

A substitution is a function θ : Vars → Terms(S).
We extend substitutions from variables to terms by

θ(f(u1, ..., uk)) = f(θu1, ..., θuk).
A renaming is a substitution α such that α(x) ∈ Vars for

all x ∈ Vars.

An equation is an unordered pair t
?
= u of terms in

Terms(S). A unification problem is a set of equations.

A solution for a unification problem is a substitution θ such

that for all equations t
?
= u ∈ P , θt = θu.

Two terms t and u are matchable if there exists a renaming

α such that {αt
?
= u} has a solution called matching. A

matching between two terms is exact when it is a renaming.

The problem of deciding if a solution to a given unification

problem P exists is decidable [60]. Moreover, there exists a

minimal solution Solution(P) w.r.t. the preorder θ � ψ ⇔
∃θ′.ψ = θ′ ◦ θ, unique up to renaming.

Let us note that several algorithms were designed to com-

pute the unique solution when it exists, such that the Martelli-

Montanari unification algorithm [60].

We define a notation for the unary encoding of natural

numbers which will be useful through the article.

Notation 1 (Natural number). The encoding of a natural

number n ∈ N is defined by n := sn(0) where sn represents

n applications of the unary symbol s.

B. Stars and Constellations

We work with collections of first-order terms called stars

meant to be connected to each other along their components

called rays. These terms can be prefixed by function symbol

called a colour allowing for the consideration of various types

of composition, together with a + or − sign indicating their

ability to be composed with a term of opposite polarity.

If we bear first-order resolution in mind, stars are exactly

disjunctive clauses (or disjunctive logic programs [61]) where

colours are predicates. However, unlike usual resolution, we

allow unpolarised atoms which cannot be connected. We

define the core objects of our model and later define their

dynamics/evaluation.

Definition 2 (Coloured Signature). A coloured signature is

a 4-tuple C = (Vars, Colours ⊆ Func, Func, arity) such

that (Vars, Func, arity) is a signature. Any c ∈ Colours is

called a colour.

We will now work with the coloured signature C =
(Vars, Colours, Func, arity) unless specified otherwise.

Definition 3 (Ray). A ray is a term in the grammar

r ::= +c(t1, ..., tn) | −c(t1, ..., tn) | t (Rays)

where t1, ..., tn ∈ Terms(C) and c ∈ Colours with

arity(c) = n. The underlying term of a ray is defined by

⌊+c(t1, ..., tn)⌋ = ⌊−c(t1, ..., tn)⌋ = c(t1, ..., tn) and ⌊t⌋ = t.
The define Rays(C) as the set of all rays over a coloured

signature C.

Although we allow colours to appear inside the underlying

term of a ray, we do not use this feature in this paper and will

only consider that colours are prefixes, similarly to predicates

in first-order logic. This additional feature will be considered

in future works.

Definition 4 (Star). A star φ over a coloured signature C

is a finite and non-empty multiset of rays, i.e. a finite set

|φ| together with a map genφ : |φ| → Rays(C). The set of

variables appearing in φ is written vars(φ). Stars are written

as multisets φ = [r1, ..., rn].

Definition 5 (Substitutions and α-equivalence). Given a

substitution θ, its action extends to rays by letting

θ(±c(t1, ..., tn)) = ±θ(c(t1, ..., tn)) with ± ∈ {+,−}. It also

extends to stars: θ[r1, ..., rn] = [θr1, ..., θrn].
We say that two stars φ1, φ2 are α-equivalent, written φ1 ≈α

φ2, when there exists a renaming α such that αφ1 = φ2.

Notation 6. In this work, stars will be considered up to α-

equivalence. We therefore define Stars(S) as the set of all

stars over a coloured signature C, quotiented by ≈α.

Definition 7 (Constellation). A constellation Φ is a (count-

able) multiset of stars, i.e. a countable (possibly infinite) set

|Φ| together with a map genΦ : |Φ| → Stars(S). The

variables appearing in Φ are considered bound to their star

i.e
⋂

e∈|Φ| vars(genΦ(e)) = ∅. The set of rays of Φ is

defined as Rays(Φ) = {(s, r) | s ∈ |Φ|, r ∈ |genΦ(s)|}.

A finite constellation will sometimes be written as a sum

Φ = φ1 + ...+ φn.

Example 8. Here are examples of a finite and an infinite

constellation:

• Φn+m
N

= [−add(n,m, r), r] + [+add(0, y, y)] +
[+add(s(x), y, s(z)),−add(x, y, z)];

n1 ?
=

n2 ?
=

. . . ?
=

nk . . .

−nat(0)

+nat(1)

−nat(1)

+nat(2)

−nat(k)

−nat(k + 1)

(a) Dependency graph of ΦN.

e1 ?
= e2

?
=

?
= e3

−add(0, w, w)

+add(x, y, z)

+add(x, y, z) −add(s(x), y, s(z))

−add(s(x), y, z)

+add(n,m, r) r

(b) Dependency graph of Φn+m

N
.

Fig. 1: Examples of dependency graphs.

• ΦN is defined by |ΦN| = N and genΦN
(n) =

[−nat(n),+nat(n+ 1)]

where nat is a colour and s and 0 are function symbols. The

constellation Φn+m
N

is a logic program computing n+m.

Notation 9. Let Φ1,Φ2 be two constellations. We write Φ1⊎Φ2

their multiset union, i.e. the coproduct genΦ1
⊎genΦ2

: |Φ1|⊎
|Φ2| → Stars(S).

C. Diagrams: non-deterministic computation graphs

The stars of a constellation are meant to be connected

together along their rays of opposite polarities. We define the

dependency graph of a constellation which is a multigraph

specifying which stars can be connected together: it is a finite

description of all the allowed connexions. This multigraph

corresponds to Kowalski’s connection graphs [54] and Sickel’s

clause interconnectivity graphs [55]. This is also very close

to the dependency graphs used in logic programming for the

analysis of termination [62].

Definition 10 (Duality). Two rays r, r′ are dual w.r.t. a set of

colours A ⊆ Colours, written r ⊲⊳A r′, when r and r′ are of

the same colour, have a different polarity and when ⌊r⌋ and

⌊r′⌋ are matchable.

Definition 11 (Dependency graph). The dependency

graph D[Φ;A] of a constellation Φ w.r.t. a set of

colours A ⊆ Colours is the undirected multigraph

(V D[Φ;A], ED[Φ;A], extractD[Φ;A]) where V D[Φ;A] = |Φ|,
ED[Φ;A] = {((s, r), (s′, r′)) ∈ Rays(Φ) | r ⊲⊳A r′},

and extractD[Φ;A] is the function defined by

extractD[Φ;A]((s, r), (s′, r′)) = {s, s′}. We write D[Φ;−]
when we connect all the colours of Φ.

Example 12. We illustrate the dependency graphs of Exam-

ple 8 in Figure 1.

From a dependency graph, we extract graphs by composing

occurrences of stars in a constellation along dual rays. They

represent actual connexions between the stars of a constel-

lation, following the connexions allowed by the dependency

graph. In presence of cycle in the dependency graph, there

may be infinitely many ones.

It is similar to extracting execution flow graphs from a

program and computing all the possible unfolding of loops. In

e1
add(0, w, w)

?
= add(x1, y1, z1)

e2
add(s(x1), y1, s(z1))

?
= add(2, 2, r)

e2
r

(a) Incorrect diagram (0 recursion)

e1
add(0, w, w)

?
= add(x1, y1, z1) e2

e2
add(s(x2), y2, s(z2))

?
= add(2, 2, r)

e3
r

add(s(x1), y1, s(z1))
?
= add(x2, y2, z2)

(b) Correct diagram computing 2 + 2 (1 recursion)

e1
add(0, w, w)

?
= add(x1, y1, z1) e2

e2

e2
add(s(x2), y2, s(z2))

?
= add(2, 2, r)

e3
r

add(s(x1), y1, s(z1))
?
= add(x2, y2, z2)

add(s(x1), y1, s(z1))
?
= add(x2, y2, z2)

(c) Incorrect diagram (2 recursions)

Fig. 2: Examples of diagrams.

e1
add(0, w, w)

?
= add(x1, y1, z1) e2

e2
add(s(x2), y2, s(z2))

?
= add(2, 2, r)

e3
r

add(s(x1), y1, s(z1))
?
= add(x2, y2, z2)

(a) Correct diagram computing 2 + 2 (1 recursion)
e2

e2
add(s(x2), y2, s(z2))

?
= add(2, 2, r)

e3
r

add(1, w, s(w))
?
= add(x2, y2, z2)

(b) After 1 step of resolution

e2
add(2, w, s(s(w)))

?
= add(2, 2, r)

e3
r

(c) After 2 steps of resolution

e3
4

(d) After 3 steps of resolution

Fig. 3: Example of diagram evaluation by the resolution rule.

the context of resolution, Sickel [55] used such graphs called

solutions for different purposes.

Definition 13 (Diagram). An A-diagram δ on a set of colour

A ⊆ Colours over a constellation Φ is a finite connected

graph Dδ and a graph homomorphism δ : Dδ → D[Φ;A]
such that rays are uniquely connected, i.e. for all v ∈
V Dδ the function {e ∈ EDδ | v ∈ extractDδ (e)} →
|δ(v)|; {(δ(v), r), (s′, r′)} 7→ r is injective. The graph Dδ

is considered up to renaming of the vertices and edges. For

practical purpose and without loss of generality, we will

consider that V Dδ = N.

Notation 14. Given an A-diagram δ, we define its set of

links as the set links(δ) = {(v, r) | ∃e ∈ EDδ , v ∈
extractDδ (e), (δ(v), r) ∈ Rays(Φ)} and its set of free

rays as free(δ) = {(v, r) | v ∈ V Dδ , (δ(v), r) ∈
Rays(Φ), (v, r) 6∈ links(δ)}. If free(δ) = ∅, we say that δ is

closed. A diagram is exact if all the solutions of its equations

are exact matchings (c.f Section II-A).

Example 15. In the Figure 2, we illustrate three diagrams

for the constellation Φ2+2
N

coming from the constellation

Φn+m
N

of Example 8. What we did is basically unfolding

loops of the dependency graph D[Φ2+2
N

;−] (Figure 1). There

exists infinitely many diagrams by only one is a complete

computation.

A diagram links occurrences of stars along rays. These

rays induce equations between terms i.e a unification problem.

However, since these occurrences of stars have to be consid-

ered distinct in order to connect a star to itself to represent a

loop in a computation, we have to rename the variables. Since

we consider that V Dδ = N, we obtain a family of renamings

αk(x) = xk for n ∈ N used to make the occurrences of star

different and to make explicit the source of their variables.

Definition 16 (Underlying unification problem). The underly-

ing unification problem of an A-diagram δ over a constellation

Φ is defined as

P(δ) = {αv⌊r⌋
?
= αv′⌊r′⌋ | e ∈ EDδ ,

extractDδ (e) = {v, v′}, δ(e) = ((δ(v), r), (δ(v′), r′))}.

In some ways, diagrams generalise trails in a graph. Where

paths describe a possible trajectory for a particle, diagrams

describe the possible trajectories of a wave that can simulta-

neously spread in several directions when encountering forks,

similarly to the run on a non-deterministic state machine.

We now introduce the notion of saturated diagrams, which

corresponds to maximal paths.

Definition 17 (Saturated diagram). We define a preorder ⊑ on

A-diagrams over a constellation Φ by: δ ⊑ δ′ if there exists

an isomorphism ϕ from a graph D of Dδ′ to Dδ such that

δ = δ′ ◦ϕ. A maximal A-diagram w.r.t. ⊑ is called saturated.

In a saturated diagram, we cannot add and connect further

occurrences of stars from the original constellation.

Example 18. For the constellation Φ2+2
N

from Example 15,

all the diagrams presented in Figure 2 are saturated. There

are infinitely many saturated diagrams formed by unfolding

the loop. Any subtree of these diagrams constitutes a partial

(non-saturated diagram).

III. EXECUTION OF CONSTELLATIONS

We consider two alternative ways of evaluating diagrams

and more generally constellations. The first one reduces tree-

shaped diagrams with Robinson’s resolution and the second

one constructs tilings by connecting stars to each other,

possibly forming cycles or grids.

A. Evaluation by resolution

In this section, as in usual resolution, we restrict diagrams

to trees. A diagram δ represents a scheme of computation

to be done. We reduce it by a linear contraction of the

edges of its underlying graph Dδ using Robinson’s first-order

resolution rule. This rule, we call fusion, merges two stars

φ1 ∪ {r1}, φ2 ∪ {r2} connected along r1 and r2 into a new

star φ1 ∪ φ2 and apply Solution({⌊r1⌋
?
= ⌊r2⌋}) on it.

Diagrams are reduced until reaching a single star (ensured

N2

W 2

O1

W 2W 2

O1

W 2W 2

N2

O1

N2

. . .

...Z1

O1Z1

O1

O1

glue type strength

Fig. 4: Illustration of an assembly in an aTAM. Assume we

are at temperature τ = 2. We can connect a new tile to an

assembly because the glue types match and the sum of the

strengths of the connexions is 1 + 1 ≥ τ .

because diagrams are trees). It is the reduction used in Girard’s

original paper.

For convenience we use here an equivalent formulation we

call actualisation which solves P(δ) and applies the solution

θ on the star induced by the free rays free(δ). The fact that

this approach leads to the same result, and more precisely that

a sequence of fusions coincides step-by-step to an execution

of the Martelli-Montanari unification algorithm [60] has a

straightforward proof by induction on the number of links in

the diagram. However, the proof is omitted in this paper.

Definition 19 (Correct diagram and actualisation). Consider

a constellation Φ and a set of colours A ⊆ Colours. An

A-diagram δ is correct if free(δ) 6= ∅ and the associated

unification problem P(δ) has a solution.

The actualisation of a correct diagram δ is the star ⇓ δ
defined as |⇓ δ| = free(δ) and gen⇓ δ : (e, r) ∈ free(δ) 7→
ψ(θ(e, r)), where ψ = Solution(P(δ)) and θ(e,) is the

renaming used in Definition 16.

Example 20. Since it is more intuitive, we illustrate the reduc-

tion by fusion of the diagram of Figure 2b. The actualisation

produce exactly the same result. In case of possible unification

failure, the diagram is not correct and cannot be actualised.

Notation 21. We write CSatkA(Φ) for the set of correct and

saturated A-diagrams over Φ with k vertices and CSatkA(Φ).
We write CSatkA,tree(Φ) if we restrict the shape of diagrams

to be trees.

Definition 22 (Resolution). The resolution of a constellation Φ
w.r.t. a set of colours A ⊆ Colours is defined by ResA(Φ) =
⋃∞

k=0 ⇓ CSatkA,tree(Φ), where ⇓ CSatkA,tree(δ) := {⇓ δ | δ ∈
CSatkA,tree(δ)} (we restrict the diagrams to trees). We simply

write Res(Φ) when considering all the colours appearing in

Φ.

Example 23. We have Res(Φ2+2
N

) = [4] since the only correct

and saturated diagram is the diagram of Figure 2b and that it

evaluates to [4] according to Example 20. All other diagrams

will fail. More generally, Res(Φn+m
N

) = [n+m]. Even more

generally, if ΦP is a logic program and φQ a query, then

Res(ΦP + φQ) is the set of answers of the query.

B. Evaluation as tiling construction

In another point of view, the stellar resolution can be seen

as a non-deterministic annihilating interaction between kind of

molecules (stars) through matching atoms (rays) of opposite

polarities, triggering the propagation of a reaction (principal

unifier). Our dependency graphs may also be seen as directed

hypergraphs of (un)polarised objects. This is very similar to

chemical reactions networks [63].

We here focus on a simulation of the abstract tile assembly

model (aTAM) [48], [49] used in DNA computing [50]. This is

the generalisation of a combinatorial model known as Wang

tiles [47] in which one constructs tilings from basic square

tiles (e.g ,) in Z
2 by connecting the sides of matching

colours. They both can be seen as strong geometric restrictions

on stellar resolution (diagrams represent a tiling on a grid).

The elementary objects of the aTAM are tiles from a set T ,

which are squares with each sides associated to a glue type

g ∈ G and a natural number str(g) called its strength. An

assembly is a partial function a : Z2 → T . If a(x, y) = ti
then we can have a(x′, y′) = ti adjacent to ti (i.e (x′, y′) ∈
{(x−1, y), (x+1, y), (x, y−1), (x, y+1)}) through the sides

gid and gjd′ if d, d′ ∈ {n, s, w, e} are opposite directions (w.r.t.

n/s and w/e) and both their colour and strength match (i.e

gid = gjd′ and str(gid) = str(gjd′)).
The computation starts with an initial assembly s called

the seed and a non-negative natural number τ called the

temperature. If a tile t can be connected to sides of glue types

g1, ..., gn in s then t can be added to a if
∑n

i=0 str(gi) ≥ τ .

We are then interested in all the saturated assemblies (which

cannot be extended). The temperature acts as a threshold for

a degree of cooperation. If we have τ = 1, the model is said

to be non-cooperative [64]. We illustrate an example in the

Figure 4 with a tile connecting to an assembly.

Definition 24 (Encoding of tiles). Let ti = (giw, g
i
e, g

i
s, g

i
n) be

a tile with i ∈ I , a countable but potentially infinite set. We

define gl(g)(x) := g(x) · str(g) with str(g) ∈ N. We define

the encoding t⋆i of ti by:

[−
•

h(gl(giw)(x), x, y),−
•
v(gl(gis)(y), x, y),

+
◦

h(gl(gie)(s(x)), s(x), y),+
◦
v(gl(gin)(s(y)), x, s(y))].

Definition 25 (Environment constellation). The environment

constellation for a temperature τ ∈ N\{0} is defined by

Φτ
env :=

[+temp(τ)]+





















+
•
v(g1(x1) · n1, x1, y1), −

◦
v(g2(x3) · n2, x3, y3),

+
•

h(g3(x5) · n3, x5, y5), −
◦

h(g4(x7) · n4, x7, y7),

−
◦
v(g1(x2) · n1, x2, y2), +

•
v(g2(x4) · n2, x4, y4),

−
◦

h(g3(x6) · n3, x6, y6), +
•

h(g4(x8) · n4, x8, y8),
−add(n1, n2, r1), −add(n3, n4, r2),

−add(r1, r2, r),−geq(r, t, 1),−temp(t)





















+[−
•
v(g(x) ·0, x, y)]+[+

◦
v(g(x) ·0, x, y)]+[−

•

h(g(x) ·0, x, y)]

+[+
◦

h(g(x) ·0, x, y)]+[+
◦
v(g(x) ·0, x, y)]+[−

•
v(g(x) ·0, x, y)]

+[+
◦

h(g(x) · 0, x, y)] + [−
•

h(g(x) · 0, x, y)]

+[+geq(0, 0, 1)] + [+geq(s(x), s(y), r),−geq(x, y, r)]

+[+geq(s(x), 0, 0)] + [+geq(0, s(y), 0)]

+[+add(0, y, y)] + [+add(s(x), y, s(z)),−add(x, y, z)]

The representation of a tile t⋆ is connected to a tiling

through auxiliary ports of the environment in order to ensure

that the sum of strengths of the connexions is a least τ .

We stress how the additions are performed within the model:

the attentive reader will recognise part of the constellation

Φn+m
N

implementing addition. We need several unary stars in

order to plug the remaining unconnected auxiliary ports of the

environment.

Definition 26 (Connections). The set of connections of a

constellation Φ w.r.t. a set of colours A ⊆ Colours is

defined by ConnectA(Φ) =
⋃∞

k=0 CSat
k
A(Φ). We simply

write Connect(Φ) when considering all the colours appearing

in Φ.

Theorem 27 (Simulation of finite aTAM). Let T be a set of

tiles. The set of non-empty finite assemblies constructible from

T at temperature τ is bijective to Connect(T⋆ ⊎Φτ
env).

C. Properties of the two models

Proposition 28 (Turing-completeness). The stellar resolution

can simulate non-deterministic Turing machines.

Proof. The stellar resolution with Res is Turing-complete by

reduction to Horn clauses [65], [66]. As for Connect, it is by

simulation of aTAM, since aTAM [48], [67].

We fix a generic execution ExA(Φ) which can coincide with

either ResA(Φ) or ⇓ ConnectA(Φ).

Definition 29 (Strong normalisation). A constellation Φ is

strongly normalising w.r.t. a set of colours A ⊆ Colours

if and only if Ex(Φ) is a finite constellation. When A =
Colours, we simply say that Φ is strongly normalising.

Theorem 30 (Confluence). Let Φ be a constellation, and A,B
be two disjoint sets of colours, i.e. A,B ⊆ Colours and A∩
B = ∅. We have:

ExB(ExA(Φ)) = ExA∪B(Φ) = ExA(ExB(Φ)).

Remark 31. In Girard’s first paper on Transcendental Syntax

[38], the constellation Φ = [+a.x,−a.x,+b.x] is mentioned

as a counter-example for the confluence of Res(). Here, we

have Res{a}(Res{b}(Φ)) = Res{b}(Res{a}(Φ)) = ∅ (because

no saturated diagram on a nor on b can be constructed). Our

understanding of Girard’s failure comes from his limitation to

strongly normalising constellations, so that Res{a}(Φ) was not

defined.

IV. INTERPRETING THE DYNAMICS OF PROOFS

Mathematical proofs, despite their static appearance, have a

dynamic side. The cut rule of mathematical logic:

Γ ⊢ A Γ′, A ⊢ C
cut

Γ,Γ′ ⊢ C

represents the use of lemma or auxiliary theorems in a proof:

to prove a statement, we may prove a formula A and show

that A leads to the conclusion we want. As stated by the cut-

elimination theorem (the so-called Hauptsatz [1], [2]), this

rule is not necessary. Similarly to the fact that imperative

programs do not need functions, one can choose to remove cuts

by proving the lemmas each time they are needed. This cut-

elimination procedure is defined concretely and corresponds

to the execution of programs, leading to an idea of execution

of proof which ”unfolds” the use of lemmas.

While this can be expressed in a sequent calculus, Linear

logic [6] possesses an alternative syntax for proofs: proof-

nets, a hypergraph linking occurrences of formulas. Proof nets

identify some sequent calculus proofs modulo commutation

of rules, and is therefore closer to program execution. More

than a mere syntactical convenience, proof-nets reveal the ge-

ometric mechanisms of cut-elimination: the cut rule becomes

a simple bridge (hyperedge) between two formulas and the

bureaucratic cut-elimination procedure from sequent calculus

becomes simple graph-rewriting rules.

A. Multiplicative Linear Logic

Multiplicative linear logic (MLL) is a fragment of linear

logic [6] restricted to the tensor ⊗ and par ` connectives.

The set FMLL of MLL formulas is defined by the grammar

of the Figure 5a. Linear negation (·)⊥ is extended to formulas

by involution and de Morgan laws: X⊥⊥ = X , (A ⊗B)⊥ =
A⊥ ⊗B⊥, and (A`B)⊥ = A⊥ `B⊥.

Proofs of MLL can be written in the traditional sequent

calculus fashion [1], [2] using the set of rules shown in

Figure 5b. However, we choose to work with Girard’s proof-

structures [6], an alternative and more general syntax, akin to

natural deduction, based on a graph-theoretic representation

of proofs. In this syntax, we consider directed hypergraph

with vertices labelled by formulas and constructed from hy-

peredges3 labelled within {ax, cut,⊗,`} and satisfying the

arities and labelling constraints shown in Figure 5c. A proof-

structure also satisfies the additional constraint that each vertex

must be (1) the target of exactly one hyperedge, and (2) the

source of at most one hyperedge. When needed, a proof-

structure will be defined as a 6-tuple (V,E, s, t, ℓV , ℓE), where

(V,E, s, t) is a directed hypergraph and ℓV : V → FMLL,

ℓE : E → {⊗,`, ax, cut} are labelling maps.

The cut-elimination procedure, which is defined in the natu-

ral way for MLL sequent calculus, becomes a graph-rewriting

system on proof-structures, defined by the two rewriting rules

3For practical purposes, the source edges are ordered, and we will talk
about the ”left” and ”right” sources since there never are more than two;
illustrations implicitly represent the left (resp. right) source on the left (resp.
right).

A,B = Xi | X
⊥
i | A⊗B | A`B i ∈ N (FMLL)

(a) MLL Formulas

ax
⊢ A,A⊥

⊢ Γ, A ⊢ ∆, B
⊗

⊢ Γ,∆, A⊗B

⊢ Γ, A ⊢ ∆, A⊥

cut
⊢ Γ,∆

⊢ Γ, A,B
`

⊢ Γ, A`B

(b) MLL sequent calculus rules

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

(c) MLL proof-structures

A A⊥

ax

cut

A A

A B

⊗

A⊗B

A⊥ B⊥

`

A⊥ `B⊥

cut

A B A⊥ B⊥

cut

cut

(d) Cut-elimination reductions

Fig. 5: Syntax of Multiplicative Linear Logic (MLL)

(Figure 5d). The following definition explains how sequent

calculus proofs can be represented as proof-structures.

Definition 32 (Translation of MLL sequent calculus). In

Figure 6, we define a translation J·K from MLL sequent

calculus derivations to proof-structures.

Note that this translation is not surjective, and some proof-

structures do not represent sequent calculus proofs. This

is tackled by the correctness criterion which characterises

those proof-structures that do translate sequent calculus proofs

through topological properties. This is discussed in the next

section but for the time being we give a preliminary definition

of proof-net, the proof-structures coming from sequent proofs.

Definition 33 (Proof-nets). A proof-net is a proof-structure S
such that there exists a MLL sequent calculus proof π with

S = JπK.

In the next two sections, we reconstruct proof-structures

within the stellar resolution. This interpretation is based on

the execution Ex(Φ). We implicitly assume that Ex(Φ) :=
Res(Φ) but later observe (see Remark 52) that Ex(Φ) :=
⇓ Connect(Φ) can also be considered, thus leading to two

alternative interpretation of multiplicative linear logic.

⊢ A,A⊥ →J·K

A A⊥

ax

π1
...

⊢ Γ, A

π2
...

⊢ ∆, A⊥

⊢ Γ,∆

→J·K

Jπ1K Jπ2K

Γ ∆A A⊥

cut

π
...

⊢ Γ, A,B

⊢ Γ, A`B

→J·K

JπK

ΓA B

`

A`B

π1
...

⊢ Γ, A

π2
...

⊢ ∆, B

⊢ Γ,∆, A⊗B

→J·K

Jπ1K Jπ1K

Γ ∆A B

⊗

A⊗B

Fig. 6: Translation of sequent proofs into proof-structures.

B. Reconstruction of cut-elimination

In order to encode proof-structures, we set a basis of

representation, which is a coloured signature defined by

B = ({x}, {c, t}, {c, t, l, r, ·, pA, qA}, arity) for A ∈ FMLL,

c, t, pA, qA, l, r with arity 1, arity(·) with arity 2 and g with

arity 0.

Notation 34. Let S be a proof-structure. We write Ax(S) (resp.

Cut(S)) the set of axioms (resp. cut) hyperedges in S. Given

e ∈ Ax(S) (e ∈ Cut(S)), we write Al
e and Ar

e the left and

right conclusions (resp. sources) of e respectively.

Let us remark that proof-structures can be defined induc-

tively. A proof-structure with only one hyperedge is neces-

sarily an axiom with two conclusions. Then a proof-structure

with n hyperedges is either built from the union of two proof-

structures with respectively k and n− k hyperedges, or from

a proof-structure with n − 1 hyperedges extended by either

a ⊗, `, or cut hyperedge on two of its conclusions. In the

following, we use this inductive definition to define the address

of occurrences of atoms in a proof-structure.

Definition 35. A vertex v is above another vertex u in a proof-

structure if there exists a directed path from v to u going

through only ⊗ and ` hyperedges.

We would like to localise the atoms inside a proof-structure

and associate them uniquely with an address encoded in B.

Definition 36 (Address). We define the partial address

pAddrS(d, x) of an occurrence of atom d in a MLL proof-

structure S, with respect to the variable x, inductively4:

4The set of formulas FMLL is countable, and there are only finite numbers
of occurrences of a given formula in a given proof-structure, hence the set
FMLL ×N suffices and is still countable.

• pAddrS(d, x) = x when S consists only of an axiom

hyperedge;

• pAddrS(d, x) = pAddrSi
(d, x) if S is the union of two

smaller proof-structures S1,S2 and d appears in Si;

• pAddrS(d, x) = l(pAddrS′(d, x) (resp. pAddrS(d, x) =
r(pAddrS′(d, x)) if S is obtained from S ′ by adding a ⊗
or ` hyperedge e, and if d is above the left source (resp.

the right source) of e.
• pAddrS(d, x) = pAddrS′(d, x) otherwise.

The partial address of d is defined with respect to either a

conclusion of the structure of the source of a cut hyperedge,

which is uniquely defined as the occurrence of formula c such

that d is above c and c is not source of either a ⊗ or a `;

the address of d is then defined as the term addrS(d, x) =
pc(pAddrS(d, x)).

We define Addrx(S) as the set of addresses addrS(, x),
i.e the countable set of all terms of the form pA(t(x)) where

A ranges over conclusions of S and t(x) is a term constructed

from the unary symbols l and r.

Definition 37 (Vehicle and cuts). The vehicle and the cuts of

a proof-structure S are respectively defined by the following

constellations:

Φax
S :=

∑

e∈Ax(S)

[addrS(A
l
e), addrS(A

r
e)];

Φcut
S :=

∑

e∈Cut(S)

[pAl
e
(x), pAr

e
(x)].

We define a function of colouration in order to enable an

interaction between the uncoloured rays of two constellations.

We also use a function of discolouration in order to keep a

canonical representation of proofs.

Definition 38 (Colouration of constellation). The colouration

±c.Φ of a constellation Φ with a colour c ∈ C and a polarity

± ∈ {+,−} updates all the uncoloured rays of its stars by the

function: ϕ±
c (t) = ±c(t) when t is uncoloured and ϕ±

c (r) = r
otherwise.

Definition 39 (Discolouration of constellation). The dis-

colouration ♮Φ of a constellation Φ updates all the rays of

its stars by the function: ♮(+c(t)) = ♮(−c(t)) = ♮(t) = t.

Lemma 40. Let R be a MLL proof-structure such that R
S. We have Ex(+c.Φax

R ⊎−c.Φcut
R) = Ex(+c.Φax

S ⊎−c.Φcut
S).

Theorem 41 (Dynamics). For a proof-net R of normal form

S, we have ♮Ex(+c.Φax
R ⊎ −c.Φcut

R) = S⋆.

Proof. This result is a consequence of Lemma 40 by induction

of the number of cut-elimination steps from R to S, as well as

the fact that ♮Ex(+c.Φax
S ⊎ −c.Φcut

S) = Ex(S⋆) = S⋆ since

S does not contain cuts.

Example 42. Take the following reduction S S ′ of proof-

structure:

A⊥
1 A1

`

A⊥
1 `A1

A2 A⊥
3

⊗

A2 ⊗A⊥
3

cut

ax
ax

A⊥

1 A1 A2 A⊥
3

cut

cut

ax
ax

Then, we have:

+c.Φax
S ⊎ −c.Φcut

S = [+c.pA⊥

1 `A1
(lx),+c.pA2⊗A⊥

3
(lx)]

+ [+c.pA2⊗A⊥

2
(rx),+c.pA⊥

1 `A1
(rx)]

+ [−c.pA⊥

1
`A1

(x),−c.pA2⊗A⊥

3
(x)]

and ♮Ex(+c.Φax
S ⊎ −c.Φcut

S) = ∅ because the diagrams we

would like to construct, by duplicating the cut, are closed (c.f

Notation 14). If we look at the following reduction S ∗ S ′

instead:

A⊥
1 A1

`

A⊥
1 `A1

A⊥
2 A3A2 A⊥

3

⊗

A2 ⊗A⊥
3

cut

ax ax ax

∗

A⊥
2 A3

ax

we have:

+c.Φax
S ⊎ −c.Φcut

S = [+c.pA⊥

1 `A1
(lx),+c.pA⊥

1 `A1
(rx)]

+ [+c.pA⊥

2
(x),+c.pA2⊗A⊥

3
(lx)]

+ [+c.pA2⊗A⊥

3
(rx),+c.pA3

(x)]

+ [−c.pA⊥

1 `A1
(x),−c.pA2⊗A⊥

3
(x)]),

and ♮Ex(+c.Φax
S ⊎−c.Φcut

S) = [pA⊥

2
(x), pA3

(x)] = S ′⋆.

V. INTERPRETING THE LOGICAL CONTENT

A. Correctness of proof-structures

As mentioned above, proof-structures are more permissive

than sequent calculus proofs. In other words, some proof-

structures do not represent proofs, and the syntax of MLL

is therefore restricted to proof-nets, i.e. proof-structures that

do represent sequent calculus proofs. A beautiful result of

Girard, analysed by many subsequent works [8], [68], [69],

[70], [9], [71], [72], is that those proof-structures that are

proof-nets can be characterised by a topological/combinatorial

property called a correctness criterion. While Girard’s original

criterion, called the long-trip criterion [6], is about the set of

walks in a proof-structure, we will here work with Danos and

Regnier’s simplified criterion [8] which is the most standard.

Notation 43. Given a proof-structure S = (V,E, s, t, ℓV , ℓE),
we write `(S) the subset P ⊆ E of `-labelled edges, i.e.

`(S) = {e ∈ E | ℓE(e) = `}.

We now define correctness graphs, which are the undirected

hypergraphs obtained by removing one source of each `-

labelled edge. The Danos-Regnier criterion then states that

a proof-structure is a proof-net if and only if all correctness

graphs are trees.

Definition 44 (Correctness graph). Let S =
(V,E, s, t, ℓV , ℓE) be a proof-structure. A switching is

a map ϕ : `(S) → {l, r}. The correctness hypergraph Sϕ is

the undirected hypergraph (V,E, s′) induced by the switching

ϕ is defined by letting s′(e) = {v} ∪ t(e) where v is the left

(resp. right) source of v in S when e ∈ `(S) and ϕ(e) = l
(resp. ϕ(e) = r), and s′(e) = s(e) ∪ t(e) for e 6∈ `(S).

Theorem 45 (Danos-Regnier correctness criterion [8]). A

proof-structure S is a proof-net if and only if Sϕ is a tree

for all switching ϕ.

Remark 46. Each correctness graph can be defined as the

union of two graphs: one which comes from the axioms and

is uniquely defined by the proof-structure, and one which is

obtained from edges that are not axioms and is dependent on

the switching. This point of view allows for an interactive

formulation of the correctness criterion in which the set of

axioms is tested against graphs corresponding to switchings

[73] in order to certify that the proof-structure is a proof-net.

B. Reconstruction of correctness

We have already seen in the previous section how constel-

lations can represent proofs. We now explain how to define

tests to allow for an interactive, internal, representation of the

correctness criterion. This is done by translating the Danos-

Regnier criterion within the framework of stellar resolution.

We translate the lower part of switching graphs and consider

their connexion with a vehicle.

We now use three colours: c (computation), t (testing) and

f (format). A vehicle will be coloured with the colour c when

we want its execution by connecting it with cuts and it will be

coloured with the colour t when being subject to tests against

ordeals. The colour f corresponds to the internal connexions

of an ordeal.

Definition 47 (Ordeal). Let S be a MLL proof-structure and

ϕ one of its switchings. The ordeal S⋆
ϕ associated to Sϕ is

the constellation obtained by translating all the vertices of Sϕ

in the following way:

• (Ad
e)

⋆ = [−t.addrS(Ad
e),+f.qAd

e
(x)] for e ∈ Ax(S),

• (A`L B)⋆ = [−f.qA(x)] + [−f.qB(x),+f.qA`B(x)],
• (A`R B)⋆ = [−f.qA(x),+f.qA`B(x)] + [−f.qB(x)],
• (A⊗B)⋆ = [−f.qA(x),−f.qB(x),+f.qA⊗B(x)],
• We add [−f.qA(x), pA(x)] for each conclusion A.

We define qA(t) as a shortcut for pA(g · t) with g a constant

only used for that definition so that the cut can act on the

ordeals while being disjoints to vehicles.

Theorem 48 (Stellar correctness criterion). A proof-structure

S is a proof-net if and only if for all switchings ϕ, we have

♮Ex(+t.Φax
S ⊎−c.Φcut

S ⊎+c.S⋆
ϕ) = [pA1

(x), ..., pAn
(x)] where

A1, ..., An are the conclusions of S.

Corollary 49 (Corollary of Theorem 48). All correctness

graphs of a proof-structure S are:

• acyclic if and only if D[+t.Φax
S ⊎ −c.Φcut

S ⊎ +c.S⋆
ϕ ;−]

is acyclic, hence +t.Φax
S ⊎−c.Φcut

S ⊎+c.S⋆
ϕ is strongly

normalising and

• trees if and only if D[+t.Φax
S ⊎ −c.Φcut

S ⊎+c.S⋆
ϕ ;−] is

a tree, hence +t.Φax
S ⊎−c.Φcut

S ⊎+c.S⋆
ϕ normalises into

a single star.

Example 50. We translate an ordeal and show how it behaves

when connected with a right vehicle.
A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

[

−t.pA⊗B(lx)
+f.qA(x)

]

+

[

−t.pA⊗B(rx)
+f.qB(x)

]

+

[

−t.pA⊥`B⊥(lx)
+f.qA⊥(x)

]

+

[

−t.pA⊥`B⊥(rx)
+f.qB⊥(x)

]

+

[

−f.qA(x) −f.qB(x)
+f.qA⊗B(x)

]

+
[

−f.qA⊥(x)
]

+

[

−f.qB⊥(x)
+f.qA⊥`B⊥(x)

]

+

[

−f.qA⊗B(x)
pA⊗B(x)

]

+

[

−f.qA⊥`B⊥(x)
pA⊥`B⊥(x)

]

Remark that the matchability of rays exactly reproduces the

structure of the lower part of the proof-structure. Thanks to

the confluence of execution, we can focus the execution on

the ordeal. We obtain the following constellation:




−t.pA⊗B(lx) −t.pA⊗B(rx) −t.pA⊥`B⊥(lx)
pA⊗B(x)



+





−t.pA⊥`B⊥(rx)
pA⊥`B⊥(x)





This contracted ordeal corresponds to a gen-

eralisation of the pointed partitions presented by

Acclavio and Maieli [74]. When connected to

the vehicle [+t.pA⊗B(lx),+t.pA⊥`B⊥(lx)] +
[+t.pA⊗B(rx),+t.pA⊥`B⊥(rx)], it normalises into

[pA⊗B(x), pA⊥`B⊥(x)] by forming a tree using all coloured

rays.

We now consider the following incorrect proof-structure:

A A⊥

⊗

A⊗A⊥

[

−t.pA⊗A⊥(lx)
+f.qA(x)

]

+

[

−t.pA⊗A⊥(rx)
+f.qA⊥(x)

]

+

[

−f.qA(x) −f.qA⊥(x)
+f.qA⊗A⊥(x)

]

+

[

−f.qA⊗A⊥(x)
pA⊗A⊥(x)

]

It normalises into

[−t.A⊗A⊥(lx),−t.A⊗A⊥(rx), pA⊗A⊥(x)]

When we connect the ordeal to the vehicle

[+t.pA⊗A⊥(lx),+t.pA⊗A⊥(rx)], we can construct infinitely

many correct saturated diagrams because of the cycle of the

dependency graph. So the vehicle does not satisfy the stellar

correctness criterion.

We can finally translate a whole proof-structure into a con-

stellation made of three components. These components allow

us to study both the computational and the logical aspects

of a proof by using adequate colourings. This decomposition

renders explicit the fact that proof-structures come with a kind

of pre-made type.

Definition 51 (Translation of proof-structures). The transla-

tion of a proof-structure S is defined as the constellation

S⋆ = Φax
S ⊎ Φcut

S ⊎ Φformat
S where

Φformat
S := {S⋆

ϕ | ϕ is a switching of S}

is called the format of S (gabarit in Girard’s original papers).

In this work, we will only consider connexions between a

vehicle and a single element of Φformat
S (an ordeal) at once. In

order to consider a simultaneous connexion between a vehicle

and the set of all elements of Φformat
S , one needs to use a

coherence relation on constellations [39].

Remark 52 (Connections as an alternative model). Remark

that our results do not change whether we consider Ex(Φ) :=
Res(Φ) or Ex(Φ) := ⇓ Connect(Φ). In the usual theory of

linear logic, or in Girard’s transcendental syntax, only tree-

like connexions are considered, corresponding to Res(Φ).
However, we also consider the less standard case of cyclic

diagrams, corresponding to ⇓ Connect(Φ). Let us explain why

the above results are still correct in this generalised setting.

In the case of cut-elimination for a constellation Φ, any

cycle is closed since the stars induced by axioms are binary.

Closed diagrams are not correct, hence the only correct

diagrams are tree-like and ⇓ Connect(Φ) = Res(Φ).

As for the correctness, cycles are created by connecting

the vehicle to an ordeal, each one being a forest. Notice

that only exact diagrams are considered (c.f Notation 14)

because the axioms match exactly by design, and only the

variable x is used, forcing equal connexions everywhere.

It follows that if a cycle passes through a conclusion, one

can construct infinitely many correct and saturated diagrams

by duplicating stars and construct arbitrarily large cycles.

Otherwise, the cycle is necessarily closed since the conclusion

are the only free rays, hence not correct. Therefore, we also

have ⇓ Connect(Φ) = Res(Φ) for the correctness criterion.

This shows that Connect(Φ) which is expressive enough

for tiling-based computation is as valid as Res(Φ) as a model

of multiplicative linear logic.

C. Reconstruction of connectives

We are now interested in the construction of formulas/types.

For that purpose, we follow standard realisability constructions

for linear logic [75], [76], [77]. Note that we explicit the

trefoil property [28] instead of the special case that is usually

called adjunction. The definition of formula is based on a

notion of orthogonality which opposes constellations w.r.t. a

specific point of view. The choice of orthogonality influences

the notion of formula we obtain.

Definition 53. A pre-type is a non-empty set of constellations.

Definition 54 (Orthogonality). We define two notions of

orthogonality:

• Two constellations Φ1,Φ2 are finitely orthogonal w.r.t. a

set of colours A ⊆ Colours, written Φ1 ⊥fin
A Φ2, when

|ExA(Φ1 ⊎Φ2)| is finite. The orthogonal of a pre-type is

defined by:

A
⊥fin

A = {Φ | ∀Φ′ ∈ A,Φ ⊥fin
A Φ′};

• Similarly, Φ1,Φ2 are 1-orthogonal w.r.t. A ⊆ Colours,

written Φ1 ⊥1
A Φ2, when |ExA(Φ1 ⊎ Φ2)| = 1, and we

define:

A
⊥1

A = {Φ | ∀Φ′ ∈ A,Φ ⊥1
A Φ′}.

The orthogonality ⊥fin will define a fully complete model

of MLL+MIX, while ⊥1, will define a fully complete model

of MLL. However, those two notions of orthogonality share

most of the properties needed, and we therefore use the generic

notation ⊥ in the following to state results valid for both.

In order to allow partial evaluation, the orthogonality rela-

tion ⊥A is parametrised by a set of colours A. We omit this

parameter when considering all colours in Colours.

We now define the locations to which a ray (and more

generally a star, a constellation and a pre-type) refers to.

The idea is that a term f(x) is a finite representation of

{f(t) | t ∈ Terms(S)} for a given signature S. Hence,

f(t), f(u) and f(x) refer to the same general location f(x).

Notation 55. Let (P,�) be a partially ordered set, and X ⊆ P .

We write prefix(X) the set of prefixes in X i.e prefix(X) =
{x ∈ X | ∀y ∈ X, x 6= y ⇒ ¬(y ≺ x)}.

Definition 56 (Order on rays). We define the following partial

order: given r, r′ two rays, r � r′ if and only if there exists

a substitution θ such that θr = r′. We consider the order up-

to-renaming i.e r = r′ when r ≈α r
′.

We leave the verification that this defines a partial order to

the reader. More intuitively, we have r � r′ when r is less

specialised (thus more general) than r′.

Definition 57 (Location). We define:

• the location of a star genφ : |φ| → Rays(C) as the set

♯ φ := prefix({genφ(s) | s ∈ |φ|});

• the location of a constellation genΦ : |Φ| → Stars(S)
as the set

♯Φ := prefix(∪φ∈|Φ| ♯ genΦ(φ));

• the location of a set A of constellations as the set

♯A := prefix(∪Φ∈A ♯Φ).

Definition 58 (Type). A pre-type A is a type w.r.t. a set of

colours A ⊆ Colours if there exists a pre-type B such that

A = B
⊥A .

Proposition 59 (Bi-orthogonal closure). A pre-type A is a

type w.r.t. a set of colours A ⊆ Colours if and only if A =
(A⊥A)⊥A .

Definition 60 (Intersection up to unification). Let R and Q
be sets of rays. We define their intersection up to unification

as the set:

R ⋓Q = prefix({m ∈ Rays(C) | ∃r ∈ R, q ∈ Q,

r � m and q � m}).

We say that R and Q are disjoint when R ⋓ Q = ∅; by

extension, we say that two pre-types A,B are disjoint when

♯A ⋓ ♯B = ∅.

Definition 61 (Tensor). Let A,B be disjoint types. We define

their tensor by

A⊗A B = ({Φ1 ⊎ Φ2 | Φ1 ∈ A,Φ2 ∈ B}⊥A)⊥A .

Proposition 62 (Associativity/commutativity). Given A,B,C
pairwise disjoint types w.r.t. a set of colours A ⊆ Colours,

we have A⊗A B = B⊗A A and A⊗A (B⊗A C) = (A⊗A

B)⊗A C.

Proof. By definition, we have Φ ∈ A⊗AB if and only if Φ ∈
({Φ1 ⊎ Φ2 | Φ1 ∈ A,Φ2 ∈ B}⊥A)⊥A . By the commutativity

of ⊎, we have Φ ∈ ({Φ2 ⊎ Φ1 | Φ1 ∈ A,Φ2 ∈ B}⊥A)⊥A

which corresponds to B ⊗A A. It follows that A ⊗A B =
B⊗AA. The same argument can be used for the associativity

since the multiset union ⊎ is associative.

Definition 63 (Par and linear implication). Let A,B be types

w.r.t. a set of colours A ⊆ Colours. We define: A `A B =
(A⊥A ⊗A B

⊥A)⊥A and A⊸A B = A
⊥A `A B.

As described in several works by Seiller [27], [77], [28],

the associativity of execution and the trefoil property, which

are stated below, ensure that one can define a ∗-autonomous

category with types as objects and vehicles as morphisms.

Theorem 64 (Associativity of execution). Choose a set of

colours A ⊆ Colours. For constellations Φ1,Φ2,Φ3 such

that ♯Φ1 ⋓ ♯Φ2 ⋓ ♯Φ3 = ∅, we have

ExA(Φ1 ⊎ ExA(Φ2 ⊎Φ3)) = ExA(ExA(Φ1 ⊎Φ2) ⊎ Φ3).

Proof. Since all constellations have disjoint locations, their

stars cannot be connected together and we have CSatA(Φ2 ⊎
Φ3) = CSatA(Φ2) ⊎ CSatA(Φ3). These diagrams cannot be

connected to the ones of Φ1 which has its own saturated

diagrams. Hence, CSatA(Φ1⊎ExA(Φ2⊎Φ3)) = CSatA(Φ1)⊎
CSatA(Φ2)⊎CSatA(Φ3). With the same reasoning, we obtain

CSatA(Φ1 ⊎ ExA(Φ2 ⊎ Φ3)) = CSatA(ExA(Φ1 ⊎ Φ2) ⊎ Φ3).
Hence the result.

As a consequence of associativity, we obtain the trefoil

property [28].

Theorem 65 (Trefoil Property). Choose a set of colours A ⊆
Colours. For all constellations Φ1,Φ2,Φ3 s.t. ♯Φ1 ⋓ ♯Φ2 ⋓

♯Φ3 = ∅:

Φ1 ⊥A ExA(Φ2 ⊎ Φ3) iff ExA(Φ1 ⊎Φ2) ⊥A Φ3.

The trefoil property implies that for all Φf , Φa ∈ A, and

Φb ∈ B
⊥A :

ExA(Φf ⊎ Φa) ⊥A Φb iff Φf ⊥A Φa ⊎ Φb,

which proves the following standard result.

Theorem 66 (Alternative linear disjunction). Let A,B be two

types w.r.t. a set of colours A ⊆ Colours. We have: A ⊸A

B = {Φf | ∀ Φa ∈ A, ExA(Φf ⊎ Φa) ∈ B}.

Due to the lack of space, we chose to omit the construction

of a ∗-autonomous category, which do not require new proof

techniques and involves lots of bureaucratic definitions to

deal with locations. We instead prove full soundness and

completeness results.

D. A fully complete model of MLL+MIX

We will now define the interpretation of MLL formulas,

which depends on a basis of interpretation, and then prove

full soundness and full completeness for MLL extended by

the MIX rule, corresponding to the axiom scheme A`B ⊸
A⊗B. It is known that the correctness criterion for MLL+MIX

consists in taking the Danos-Regnier correctness graphs and

checking for acyclicity (but not connectedness) [52].

Theorem 48 shows that asking for a strongly normalising

union vehicle/ordeal corresponds to MLL+MIX correctness.

This is the key ingredient in the proof of full completeness. In

this section, we consider the orthogonality ⊥fin exclusively.

We use a notion of localised formulas, following previous

works of Seiller [27], [77], [28]: it is defined using the same

grammar as MLL formulas, except that variables are of the

form Xi(j), where j is a term (here constructed from unary

symbols l, r and pA for all occurrences of formulas A) used

to distinguish occurrences, and one expect each occurrence to

appear at most once in a formula.

Definition 67. A basis of interpretation is a function Ω
associating to each integer i ∈ N a type Ω(i) in such a way

that the types (Ω(i))i∈N are pairwise disjoint.

In the next definition, we use the substitutions θr and θl
which are defined as the identity for all variables except for

x, and are defined respectively by θr(x) = r(x) and θl(x) =
l(x). We also fix a bijection σ : Addrx(S)×N → N, where

Addrx(S) is the set of addresses (c.f Definition 36).

Definition 68 (Interpretation of formulas in proof-structures).

Given a basis of interpretation Ω, and a MLL formula occur-

rence A identified by a unique unary function symbol pA (cf.

Definition 36). We define the interpretation IΩ(A, t) along Ω
and a term t inductively:

• IΩ(A, t) = Ω(σ(t, i)) when A = Xi;

• IΩ(A, t) = Ω(σ(t, i))⊥
fin

when A = X⊥
i ;

• IΩ(A ⊗ B, t) = IΩ(A, u) ⊗ IΩ(B, v) where u = θl(t)
and v = θr(t);

• IΩ(A ` B, t) = IΩ(A, u) ` IΩ(B, v) where u = θl(t)
and v = θr(t).

We then define IΩ(A) as IΩ(A, pA(x)). We extend the inter-

pretation to sequents by letting IΩ(⊢ A1, ..., An) = IΩ(A1)`
...`Ω (An).

Definition 69 (Proof-like constellations). A constellation Φ is

proof-like w.r.t. a set of locations A if ♯Φ = A and Φ consists

of binary stars only.

Theorem 70 (Full soundness). Let S be a MLL+MIX proof-

net of conclusion ⊢ Γ and Ω a basis of interpretation. We have

Ex(+c.Φax
S ⊎−c.Φcut

S) ∈ IΩ(⊢ Γ), and Ex(+c.Φax
S ⊎−c.Φcut

S)
is proof-like w.r.t. ♯S.

Proof. Proved by simple induction, combined with Theo-

rem 41 to ensure that Ex(+c.Φax
S ⊎−c.Φcut

S) is proof-like w.r.t.

the set ♯S of locations of conclusions of axioms in S.

We now consider syntax trees of formulas as incomplete

proof-structures, where axioms are missing. We can extend the

notion of switching to those pre-proof-structures, and define

their ordeal (as ordeals are defined without considering axioms

hyperedges5). This is extended to sequents and used in the next

lemma: given a sequent ⊢ Γ, one can consider switchings ϕ
of ⊢ Γ and ordeals (⊢ Γ)⋆ϕ. We also define ♯Γ as the set of

locations of occurrences of atoms of Γ seen as a pre-proof-

structure.

Lemma 71. Let Ω be a basis of interpretation, ⊢ Γ a sequent

of MLL+MIX, and ϕ a switching of ⊢ Γ. Then (⊢ Γ)⋆ϕ ∈

(IΩ(⊢ Γ))⊥
fin

.

Proof sketch.. The proof is done by induction:

• If ⊢ Γ has only formulas Xi or X⊥
i , then there is

a single switching (there are no `), and (⊢ Γ)⋆ϕ =
∑

[−t.pXi
(x), pXi

(x)]. Since an element Φ ∈ IΩ(⊢ Γ)
is necessarily strongly normalisable and this implies that

Φ⊎(⊢ Γ)⋆ϕ is strongly normalisable, this shows the result.

• If ⊢ Γ is ⊢ ∆, A ` B, then a switching ϕ of ⊢ Γ is

a switching ϕ̄ of ⊢ ∆, A,B extended to the additional

` connective linking A and B. It should be clear that

(⊢ ∆, A ` B)⋆ϕ = (⊢ ∆, A,B)⋆ϕ̄. This shows the result,

since IΩ(⊢ ∆, A`B) = IΩ(⊢ ∆, A,B).
• If ⊢ Γ is ⊢ ∆, A⊗B, a switching of ⊢ Γ is a switching

of ⊢ ∆, A,B extended to the additional ⊗ connective

linking A and B, and (⊢ ∆, A ⊗ B)⋆ϕ can be defined

from (⊢ ∆, A,B)⋆ϕ by colouring the terms starting by pA
and pB with a fresh colour +u to obtain a constellation

Θ and considering Θ⊎ [−u.pA(x),−u.pB(x), pA⊗B(x)].
Moreover, one can show that IΩ(⊢ ∆, A⊗B) is generated

(in the sense of bi-orthogonal closure) by a pre-type E in

which no star connects locations of A with locations of

B. This shows the result since this implies that (⊢ ∆, A⊗
B)⋆ϕ ∈ E⊥fin

and it is known that E⊥fin

= E⊥fin⊥fin⊥fin

in general.

Theorem 72 (Full completeness). If a constellation Φ ∈ IΩ(⊢
Γ) is proof-like w.r.t. ♯Γ, there exists a MLL+MIX proof-net

S of conclusion ⊢ Γ such that ♮Φ = Φax
S .

Proof. A proof-like constellation Φ ∈ IΩ(⊢ Γ) w.r.t. to ♯Γ can

always be considered as the interpretation of a proof-structure

with only axioms; we can then construct a proof-structure S
by considering the union of the latter with the syntax forest of

⊢ Γ. Since Φ belongs to IΩ(⊢ Γ), and for all switchings ϕ of

5We adapt the first case of Definition 47 and introduce the stars for atoms,
i.e. for vertices that are not the target of an hyperedge.

⊢ Γ (equivalently, of S) the ordeal (⊢ Γ)⋆ϕ = S⋆
ϕ is orthogonal

to Φ, Corollary 49 shows that S is acyclic, i.e. satisfies the

correctness criterion for MLL+MIX.

E. Full completeness for MLL

Now, Corollary 49 also characterises the correctness cri-

terion for MLL, and we wish to use that to define a fully

complete model for MLL (without MIX). The issue here is

that the proof of Lemma 71 uses the orthogonality ⊥fin in

an essential way (in the base case), and is no longer true for

general interpretations of MLL formulas. We therefore restrict

our attention to those interpretations that are defined by the

ordeals.

Definition 73. Given a basis of interpretation Ω, and a MLL

sequent ⊢ Γ. We define the strict interpretation I1Ω(⊢ Γ) along

Ω as the 1-orthogonal of the set of ordeals for ⊢ Γ. In other

words, if S(⊢ Γ) denotes the set of switchings of ⊢ Γ:

I1Ω(⊢ Γ) = {(⊢ Γ)⋆ϕ | φ ∈ S(⊢ Γ)}⊥
1

.

We then obtain the following theorem as a consequence of

Corollary 49.

Theorem 74 (Full soundness and completeness for MLL). Let

⊢ Γ be a MLL sequent, and Ω a basis of interpretation. Then

Φ ∈ I1Ω(⊢ Γ) is proof-like w.r.t. ♯Γ if and only if there exists

a MLL proof-net S of conclusion ⊢ Γ such that ♮Φ = Φax
S .

Proof. A proof-like constellation Φ ∈ IΩ(⊢ Γ) w.r.t. to ♯Γ can

always be considered as the interpretation of a proof-structure

with only axioms; we can then construct a proof-structure S
by considering the union of the latter with the syntax forest of

⊢ Γ. But Φ belongs to I1Ω(⊢ Γ) if and only if for all switchings

ϕ of ⊢ Γ the ordeal (⊢ Γ)⋆ϕ = S⋆
ϕ is 1-orthogonal to Φ. By

Corollary 49 shows that this is equivalent to saying that S is

a tree, i.e. it satisfies the correctness criterion for MLL.

VI. PERSPECTIVES AND FUTURE WORKS

While we have shown here how to reconstruct the multi-

plicative fragment of linear logic, an interpretation of additive

and exponential connectives should also be possible using

stellar resolution. To interpret the additive connectives ⊕,&,

we need a way to exclude or force some choices in the con-

struction of diagrams. For this purpose, Girard’s second article

on Transcendental Syntax [39] mentions some involved coher-

ence relations between stars that is not completely satisfying.

This idea was already properly developed in Seiller’s PhD

thesis [77] in the setting of interaction graphs; an improved

and extended account can be found in a recent article by

Nguyen and Seiller [80]. We can expect to build on the latter

to interpret additive connectives.

This idea of coherence can also be useful for an extension

to the MELL fragment, which will be particularly interesting

since it allows for the interpretation of System F [78] and

pure λ-calculus [68], [79]. In fact, Girard’s first article on

Transcendental Syntax [38] sketches some reconstruction of

the exponentials but limited to the intuitionistic implication.

Last, but not the least, the third article on Transcendental

Syntax [40] suggests to interpret the terms of first-order logic

as multiplicative propositions and the equality as the linear

equivalence. Thanks to the expressivity of stellar resolution, it

is possible to construct objects living outside the usual theory

of linear logic, which will be useful in this interpretation

of first-order logic. For instance, we can mention Girard’s

logical constant フ [41] corresponding to a self-dual type for

atomic proof-nets. This extension to first-order logic is the

initial motivation behind the present work, and the authors

expect to provide a formal account of these ideas in the near

future. While Girard introduces yet another version of his

model for this purpose to allow the use of colours in rays,

Stellar resolution already captures that distinctive feature. This

would provide computational content for first-order logic in

the sense of the Curry-Howard correspondence, something

new and fascinating that would open numerous applications.

REFERENCES

[1] G. Gentzen, “Untersuchungen über das logische schließen. i,” Mathe-
matische zeitschrift, vol. 39, no. 1, pp. 176–210, 1935.

[2] ——, “Untersuchungen über das logische schließen. ii,” Mathematische
Zeitschrift, vol. 39, no. 1, pp. 405–431, 1935.

[3] H. B. Curry, “Functionality in combinatory logic,” Proceedings of the

National Academy of Sciences of the United States of America, vol. 20,
no. 11, p. 584, 1934.

[4] W. A. Howard, “The formulae-as-types notion of construction,” To HB

Curry: essays on combinatory logic, lambda calculus and formalism,
vol. 44, pp. 479–490, 1980.

[5] J.-Y. Girard, “Normal functors, power series and λ-calculus,” Annals of
pure and applied logic, vol. 37, no. 2, pp. 129–177, 1988.

[6] ——, “Linear logic,” Theoretical computer science, vol. 50, no. 1, pp.
1–101, 1987.

[7] ——, “Proof-nets: the parallel syntax for proof-theory,” Lecture Notes

in Pure and Applied Mathematics, pp. 97–124, 1996.
[8] V. Danos and L. Regnier, “The structure of multiplicatives,” Archive for

Mathematical logic, vol. 28, no. 3, pp. 181–203, 1989.
[9] P. J. De Naurois and V. Mogbil, “Correctness of linear logic proof

structures is nl-complete,” Theoretical Computer Science, vol. 412,
no. 20, pp. 1941–1957, 2011.

[10] S. Guerrini, “A linear algorithm for mll proof net correctness and
sequentialization,” Theoretical Computer Science, vol. 412, no. 20, pp.
1958–1978, 2011.

[11] T. Ehrhard, “A new correctness criterion for mll proof nets,” in Pro-

ceedings of the Joint Meeting of the Twenty-Third EACSL Annual

Conference on Computer Science Logic (CSL) and the Twenty-Ninth

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
2014, pp. 1–10.

[12] J.-Y. Girard, “Towards a geometry of interaction,” Contemporary Math-
ematics, vol. 92, no. 69-108, p. 6, 1989.

[13] J. M. E. Hyland and C.-H. Ong, “On full abstraction for pcf: I, ii, and
iii,” Information and computation, vol. 163, no. 2, 2000.

[14] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full abstraction for pcf,”
Information and Computation, vol. 163, no. 2, pp. 409–470, 2000.

[15] V. Danos and L. Regnier, “Reversible, irreversible and optimal λ-
machines,” Theoretical Computer Science, vol. 227, no. 1-2, pp. 79–97,
1999.

[16] A. Asperti and C. Laneve, “Paths, computations and labels in the λ-
calculus,” Theoretical Computer Science, vol. 142, no. 2, pp. 277–297,
1995.

[17] V. Danos and L. Regnier, “Proof-nets and the hilbert space,” London

Mathematical Society Lecture Note Series, pp. 307–328, 1995.
[18] S. Abramsky, E. Haghverdi, and P. Scott, “Geometry of interaction

and linear combinatory algebras,” Mathematical Structures in Computer

Science, vol. 12, no. 5, pp. 625–665, 2002.
[19] E. Haghverdi and P. Scott, “A categorical model for the geometry of

interaction,” Theoretical Computer Science, vol. 350, no. 2-3, pp. 252–
274, 2006.

[20] J.-Y. Girard, “Geometry of interaction I: interpretation of system f,” in
Studies in Logic and the Foundations of Mathematics. Elsevier, 1989,
vol. 127, pp. 221–260.

[21] ——, “Geometry of interaction II: deadlock-free algorithms,” in Inter-

national Conference on Computer Logic. Springer, 1988, pp. 76–93.

[22] ——, “Geometry of interaction III: accommodating the additives,”
London Mathematical Society Lecture Note Series, pp. 329–389, 1995.

[23] ——, “Geometry of interaction IV: the feedback equation,” in Logic

Colloquium, vol. 3, 2006, pp. 76–117.
[24] ——, “Geometry of interaction V: logic in the hyperfinite factor,”

Theoretical Computer Science, vol. 412, no. 20, pp. 1860–1883, 2011.

[25] ——, “Geometry of interaction VI: a blueprint for transcendental
syntax,” preprint, 2013.

[26] C. Riba, “Strong normalization as safe interaction,” in 22nd Annual

IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE,
2007, pp. 13–22.

[27] T. Seiller, “Interaction graphs: multiplicatives,” Annals of Pure and
Applied Logic, vol. 163, no. 12, pp. 1808–1837, 2012.

[28] ——, “Interaction graphs: additives,” Annals of Pure and Applied Logic,
vol. 167, no. 2, pp. 95–154, 2016.

[29] ——, “Interaction graphs: Graphings,” Annals of Pure and Applied

Logic, vol. 168, no. 2, pp. 278–320, 2017.

[30] ——, “Interaction graphs: Exponentials,” Logical Methods in Computer

Science, vol. 15, 2019.
[31] ——, “Interaction graphs: Full linear logic,” in 2016 31st Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE,
2016, pp. 1–10.

[32] P. Baillot and M. Pedicini, “Elementary complexity and geometry of
interaction,” Fundamenta Informaticae, vol. 45, no. 1-2, pp. 1–31, 2001.

[33] C. Aubert and T. Seiller, “Characterizing co-nl by a group action,”
Mathematical Structures in Computer Science, vol. 26, no. 4, pp. 606–
638, 2016.

[34] ——, “Logarithmic space and permutations,” Information and Compu-

tation, vol. 248, pp. 2–21, 2016.

[35] T. Seiller, “Interaction graphs: Non-deterministic automata,” ACM Trans-
actions on Computational Logic (TOCL), vol. 19, no. 3, pp. 1–24, 2018.

[36] ——, “Probabilistic complexity classes through semantics,” arXiv

preprint arXiv:2002.00009, 2020.

[37] J.-Y. Girard, “Three lightings of logic (invited talk),” in Computer
Science Logic 2013 (CSL 2013). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2013.

[38] ——, “Transcendental syntax I: deterministic case,” Mathematical Struc-
tures in Computer Science, vol. 27, no. 5, pp. 827–849, 2017.

[39] ——, “Transcendental syntax II: non-deterministic case,” 2016.

[40] ——, “Transcendental syntax III: equality,” 2016.

[41] ——, “Transcendental syntax IV: logic without systems,” 2020.
[42] A. Church, “On the concept of a random sequence,” Bulletin of the

American Mathematical Society, vol. 46, no. 2, pp. 130–135, 1940.

[43] N. Immerman, Descriptive complexity. Springer Science & Business
Media, 2012.

[44] M. Y. Vardi, “The complexity of relational query languages,” in Proceed-

ings of the fourteenth annual ACM symposium on Theory of computing,
1982, pp. 137–146.

[45] N. Immerman, “Relational queries computable in polynomial time,”
Information and Control, vol. 68, no. 1, pp. 86 – 104, 1986.

[46] J. A. Robinson et al., “A machine-oriented logic based on the resolution
principle,” Journal of the ACM, vol. 12, no. 1, pp. 23–41, 1965.

[47] H. Wang, “Proving theorems by pattern recognition —II,” Bell system

technical journal, vol. 40, no. 1, pp. 1–41, 1961.

[48] E. Winfree, “Algorithmic self-assembly of dna,” Ph.D. dissertation,
Citeseer, 1998.

[49] M. J. Patitz, “An introduction to tile-based self-assembly and a survey of
recent results,” Natural Computing, vol. 13, no. 2, pp. 195–224, 2014.

[50] N. C. Seeman, “Nucleic acid junctions and lattices,” Journal of theoret-

ical biology, vol. 99, no. 2, pp. 237–247, 1982.
[51] D. Woods, D. Doty, C. Myhrvold, J. Hui, F. Zhou, P. Yin, and E. Winfree,

“Diverse and robust molecular algorithms using reprogrammable dna
self-assembly,” Nature, vol. 567, no. 7748, pp. 366–372, 2019. [Online].
Available: https://doi.org/10.1038/s41586-019-1014-9

[52] A. Fleury and C. Retoré, “The mix rule,” Mathematical Structures in

Computer Science, vol. 4, no. 2, pp. 273–285, 1994.

[53] A. Leitsch, The resolution calculus. Springer Science & Business
Media, 2012.

https://doi.org/10.1038/s41586-019-1014-9

[54] R. Kowalski, “A proof procedure using connection graphs,” Journal of

the ACM (JACM), vol. 22, no. 4, pp. 572–595, 1975.

[55] S. Sickel, “A search technique for clause interconnectivity graphs,” IEEE

Transactions on Computers, no. 8, pp. 823–835, 1976.

[56] R. Kowalski, “Predicate logic as programming language,” in IFIP

congress, vol. 74, 1974, pp. 569–544.

[57] J. Herbrand, “Recherches sur la théorie de la démonstration,” Ph.D.
dissertation, Université de Paris, 1930.

[58] J.-L. Lassez, M. J. Maher, and K. Marriott, “Unification revisited,” in
Foundations of logic and functional programming. Springer, 1988, pp.
67–113.

[59] F. Baader and T. Nipkow, Term rewriting and all that. Cambridge
university press, 1999.

[60] A. Martelli and U. Montanari, “An efficient unification algorithm,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 4, no. 2, pp. 258–282, 1982.

[61] J. Minker, “Overview of disjunctive logic programming,” Annals of

Mathematics and Artificial Intelligence, vol. 12, no. 1-2, pp. 1–24, 1994.

[62] M. T. Nguyen, J. Giesl, P. Schneider-Kamp, and D. De Schreye,
“Termination analysis of logic programs based on dependency graphs,”
in International Symposium on Logic-based Program Synthesis and

Transformation. Springer, 2007, pp. 8–22.

[63] J. Jost and R. Mulas, “Hypergraph laplace operators for chemical
reaction networks,” Advances in mathematics, vol. 351, pp. 870–896,
2019.

[64] P.-É. Meunier and D. Woods, “The non-cooperative tile assembly model
is not intrinsically universal or capable of bounded turing machine sim-
ulation,” in Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, 2017, pp. 328–341.

[65] A. Horn, “On sentences which are true of direct unions of algebras,”
The Journal of Symbolic Logic, vol. 16, no. 1, pp. 14–21, 1951.

[66] S.-Å. Tärnlund, “Horn clause computability,” BIT Numerical Mathemat-

ics, vol. 17, no. 2, pp. 215–226, 1977.

[67] D. Woods, “Intrinsic universality and the computational power of self-
assembly,” Philosophical Transactions of the Royal Society A: Math-

ematical, Physical and Engineering Sciences, vol. 373, no. 2046, p.
20140214, 2015.

[68] V. Danos, “La logique linéaire appliquée à l’étude de divers processus
de normalisation (principalement du lambda-calcul),” Ph.D. dissertation,
Paris 7, 1990.

[69] Y. Lafont, “From proof nets to interaction nets,” London Mathematical

Society Lecture Note Series, pp. 225–248, 1995.

[70] A. S. Murawski and C.-H. Ong, “Dominator trees and fast verification
of proof nets,” in Proceedings Fifteenth Annual IEEE Symposium on

Logic in Computer Science (Cat. No. 99CB36332). IEEE, 2000, pp.
181–191.

[71] C. Retoré, “Handsome proof-nets: perfect matchings and cographs,”
Theoretical Computer Science, vol. 294, no. 3, pp. 473–488, 2003.

[72] M. Bagnol, A. Doumane, and A. Saurin, “On the dependencies of logical
rules,” in International Conference on Foundations of Software Science

and Computation Structures. Springer, 2015, pp. 436–450.

[73] A. Naibo, M. Petrolo, and T. Seiller, “On the computational meaning
of axioms,” in Epistemology, Knowledge and the Impact of Interaction.
Springer, 2016, pp. 141–184.

[74] M. Acclavio and R. Maieli, “Generalized connectives for multiplicative
linear logic,” in 28th EACSL Annual Conference on Computer Science

Logic (CSL 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020.

[75] J.-Y. Girard, “Locus solum: From the rules of logic to the logic of
rules,” Mathematical structures in computer science, vol. 11, no. 3, p.
301, 2001.

[76] M. Hyland and A. Schalk, “Glueing and orthogonality for models of
linear logic,” Theoretical computer science, vol. 294, no. 1-2, pp. 183–
231, 2003.

[77] T. Seiller, “Logique dans le facteur hyperfini: géometrie de l’interaction
et complexité,” Ph.D. dissertation, Aix-Marseille Université, 2012.

[78] J.-Y. Girard, “Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur,” Ph.D. dissertation, Éditeur inconnu,
1972.

[79] L. Regnier, “Lambda-calcul et réseaux,” Ph.D. dissertation, Paris 7,
1992.

[80] L. T. D. Nguyen and T. Seiller, “Coherent interaction graphs,” arXiv
preprint arXiv:1904.06849, 2019.

PROOF OF THEOREMS

Equivalence between fusion and actualisation

Definition 75 (Solved form). A unification problem P =

{x1
?
= t1, ..., xn

?
= tn} is in solved form if {x1, ..., xn} ∩

⋃n
j=1 fv(tj) = ∅. Its associated substitution is defined by

→

P = {|x1 7→ t1, ..., xn 7→ tn|}.

Definition 76 (Unification algorithm). We use the unification

algorithm from Martelli and Montanari [60] with a presenta-

tion as inference rules read from top to bottom:

P ∪ {t
?
= t}

clear
P

P ∪ {f(t1, ..., tn)
?
= f(u1, ..., un)}

open

P ∪ {t1
?
= u1, ..., tn

?
= un}

P ∪ {t
?
= x} with t 6∈ vars

direct

P ∪ {x
?
= t}

P ∪ {x
?
= t} with x ∈ vars(P) and x 6∈ fv(t)

replace

{|x 7→ t|}P ∪ {x
?
= t}

P (in solved form)
success

P (not in solved form)
fail

⊥

A tree constructed by these rules and ending with a success

or fail rule when no other rule can be used is called an

execution of the unification algorithm. The last step of the

tree is written Solution(P) for a problem P . If we can apply

more rules, it is called a partial execution.

Theorem 77 (Confluence of the unification algorithm). Two

orders of successful partial executions of the unification al-

gorithm on a problem P induce the same solution up to

renaming.

Proof. Assume two arbitrary partial orders of execution on P

producing the solutions
→

S and
→

S′. Since the solution of the

unification algorithm is unique up to renaming, we have
→

S

equivalent to
→

S′ up to renaming.

Definition 78 (Fusion). Let δ be a diagram. The reduction

by fusion is a graph contraction of Dδ. A link between x, y

associated to the equation t
?
= u is contracted in the following

way:

1) We compute θ := Solution(t
?
= u).

2) We delete the rays t and u and get two stars φ1 :=
δ(x)\{t} and φ2 := δ(y)\{u}.

3) The two stars merge in order to form θφ1 ∪ θφ2.

We use the notation δ δ′ for a step of this procedure.

Lemma 79 (Simulation of fusion). For all diagram δ, there

exists δ′ such that δ δ′ with a reduction of a link of equation

t
?
= t′ then there exists a partial execution

links(δ)

...

links(δ′) ∪ {x1
?
= t1, ..., xk

?
= tk}

with {x1, ..., xk} ∩
⋃k

j=1 fv(tj) = ∅ and free(δ′) = {|x1 7→
t1, ..., xk 7→ tk|}free(δ).

Proof. If the fusion succeed then the equation {t
?
= t′} linking

the two stars φ and φ′ has a solution. By the confluence of

the unification algorithm, we can focus on the equation t
?
= t′

to obtain P ∪ {x1
?
= t1, ..., xk

?
= tk} with {x1

?
= t1, ..., xk

?
=

tk} in solved form, i.e {x1, ..., xk} ∩
⋃k

j=1 fv(tj) = ∅ for

P = links(δ)\{t
?
= t′}. Then we have {|x1 7→ t1, ..., xk 7→

tk|}P ∪{x1
?
= t1, ..., xk

?
= tk} because {x1

?
= t1, ..., xk

?
= tk}

is in solved form (we can postpone the ”replace” steps) with

{x1, ..., xk} ∩
⋃k

j=1 fv(tj) = ∅.

When we do a fusion of φ and φ′, the other rays of φ

and φ′ are updated with Solution(t
?
= t′) = {|x1 7→

t1, ..., xk 7→ tk|}. Therefore, we have links(δ′) = {|x1 7→

t1, ..., xk 7→ tk|}P . After the application of Solution(t
?
= t′)

on P , the variables x1, ..., xk are ”fixed” i.e they appear

nowhere else, which prevents them to be altered during the

execution of the algorithm and hence the substitutions of

{|x1 7→ t1, ..., xk 7→ tk|} will appear in the last substitution

applied on the free rays. We finally obtain free(δ′) = {|x1 7→
t1, ..., xk 7→ tk|}free(δ).

Theorem 80 (Equivalence between fusion and actualisation).

For all diagram δ, we have δ |links(δ)| (⇓ δ).

Proof. By induction on |links(δ)| :

• Base case. We have 0 links, hence δ does not reduce.

Since the diagrams are trees and the only tree without

edge is a vertex Dδ representing the star ⇓ δ.

• Induction. We show that there exists a diagram δ′ such

that δ δ′ |links(δ′)| (⇓ δ) knowing δ′ |links(δ′)|

(⇓ δ) (induction hypothesis). The simulation of fusion

tells us that we can simulate a step of fusion by a prefix

partial execution on δ. By the confluence of the algorithm,

we can reorganise the computation of ⇓D such that it

simulates a step of fusion on δ ot obtain a certain δ′ such

that links(δ′) := θlinks(δ) and free(δ′) := θfree(δ)
where θ is the substitution obtained by the partial execu-

tion.

Confluence

Theorem 30 (Confluence). Let Φ be a constellation, and A,B
be two disjoint sets of colours, i.e. A,B ⊆ Colours and A∩
B = ∅. We have:

ExB(ExA(Φ)) = ExA∪B(Φ) = ExA(ExB(Φ)).

Proof (Sketch). The proof is similar for Res and

⇓ ConnectA(Φ). We establish the first isomorphism, which

is enough by symmetry. First note that the disjointness of the

sets of colours implies that the set of edges in D[Φ;A∪B] is

the disjoint union of the sets of edges in D[Φ;A] and those in

D[Φ;B]. As a consequence, any diagram on D[Φ;A] (resp.

D[Φ;B]) can be thought of as a diagram on D[Φ;A ∪B].
Let δ : Dδ → D[ExA(Φ);B] be a correct saturated

B-diagram of ExA(Φ). For each s ∈ |ExA(Φ)|, the star

ExA(Φ)(s), which we will write φs, corresponds to a diagram

δs : Ds → D[Φ;A]. We can therefore build a diagram

δ̄ over D[Φ;A ∪ B] by blowing up δ along the diagrams

δs. More precisely, we construct the graph D̄δ obtained by

replacing each vertex s by the graph Ds; this is well-defined

as each ray in δ(s) comes from a unique ray from a star

δs(s
′) for some s′ ∈ V Ds , and therefore each edge e in

Dδ of source s becomes an edge of source the unique star

s′ ∈ V Ds . The morphism δ then extends uniquely to a

morphism δ̄ : D̄δ → D[Φ;A ∪ B] whose action on the

subgraphs Ds coincides with that of δs (as a morphism into

D[Φ;A ∪B]).
To check that this mapping from B-diagrams on ExA(Φ)

to (A ∪ B)-diagrams on Φ is indeed an isomorphism, one

can directly define an inverse mapping. For this purpose,

the essential remark is that given a (A ∪ B)-diagram δ̄ on

Φ, one can recover the underlying A-diagrams on ExA(Φ)
as the restriction of δ̄ to the connected components of the

graph obtained from Dδ̄ by removing the edges mapped to

A-coloured edges in D[Φ;A ∪ B]. The underlying graph of

the corresponding B-diagram on ExA(Φ) is then defined from

Dδ̄ by contracting each of these connected components to a

single vertex.

Intepretation of multiplicative linear logic

Lemma 40. Let R be a MLL proof-structure such that R
S. We have Ex(+c.Φax

R ⊎−c.Φcut
R) = Ex(+c.Φax

S ⊎−c.Φcut
S).

Proof. We remark that all rays are unique so the connexions

are always non-ambiguous. Moreover, only the cuts cause the

interaction/execution and they only connect identical addresses

because of the share variable x. Hence, the diagrams are

always exact (c.f Notation 14) and if for two constellations Φ1,

Φ2 corresponding to proofs, we have D[Φ1;−] ∼= D[Φ2;−]
(isomorphic as graphs with same free rays) then Ex(Φ1) =
Ex(Φ2). We have two cases of reduction.

• If we have a cut/axiom cut between two proofs ⊢ π1 :
Γ, A⊥

2 and ⊢ π2 : ∆, A3 with A1, A2, A3 ∈ FMLL

where A1 := Al
e, A

⊥
2 := Ar

e and e ∈ Ax(π1), then

we have +c.Φax
R ⊎ −c.Φcut

R = Γ⋆ ⊎ π⋆

1 ⊎ π⋆

2 +
[−c.pA⊥

2
(x),−c.pA3

(x)] and +c.Φax
S ⊎−c.Φcut

S = ∆⋆ ⊎

π′⋆
1 ⊎π′⋆

2 where π′⋆
1 = (π1\{e})⋆ and π′⋆

2 is a relocal-

isation of π⋆

2 relatively to Γ (we update the C in pC(t)),
and its conclusion becomes Al

e. The axiom e is translated

into a star [+c.pA1
(u),+c.pA⊥

2
(x)] for some u. The cut

and axiom stars will merge into [+c.pA1
(u),−c.pA3

(x)].
The ray −c.pA3

(x) will be connected to the pA3
(u) for

some u in π⋆

2 as if π2 had Al
e as conclusion. Only the cuts

in Γ⋆⊎π⋆

1 ⊎π⋆

2 remain. The induction hypothesis tells us

that Ex(Γ⋆⊎π⋆

1 ⊎π⋆

2) = Ex(∆⋆⊎π′⋆
1 ⊎π′⋆

2), therefore

Ex(+c.Φax
R ⊎ −c.Φcut

R) = Ex(+c.Φax
S ⊎−c.Φcut

S).
• If we have a `/⊗ cut between two proofs ⊢ π1 :

Γ, A ⊗ B and ⊢ π2 : ∆, A⊥ ` B⊥ with A,B ∈
FMLL, then we have +c.Φax

R ⊎ −c.Φcut
R = Γ⋆ ⊎

π⋆

1 ⊎π⋆

2 +[−c.pA⊗B(x),−c.pA⊥`B⊥(x)] and +c.Φax
S ⊎

−c.Φcut
S = ∆⋆ ⊎ π′⋆

1 ⊎ π′⋆
2 + [−c.pA(x),−c.pA⊥(x)] +

[−c.pB(x),−c.pB⊥(x)] where π′⋆
1 is π1 with all

pA⊗B(lt1) replaced by pA(t1) and π′⋆
2 is π2 with all

pA⊗B(rt2) replaced by pB(t2) (a relocalisation of atoms

occurs because two conclusions disappeared). Since all

formulas are unique, the cut star will be duplicated in

order to connect (uniquely) to the rays of the shape

pA⊗B(t) and pA⊥`B⊥(t) (they subsume the pC(t) for

C ∈ {A,B,A⊥, B⊥}). The cut necessarily connects two

identical addresses (because of its shared variable x).

The address of the left premises begins with l and by r

therefore, the cut will connect the pairs pA(lt)/pA⊥(lt)
and pB(rt)/pB⊥(rt). The cuts connect exactly the same

pairs of atoms as S⋆. Since the induction hypothesis tells

us that Ex(Γ⋆ ⊎ π⋆

1 ⊎ π⋆

2) = Ex(∆⋆ ⊎ π′⋆
1 ⊎ π′⋆

2), we

have Ex(+c.Φax
R ⊎ −c.Φcut

R) = Ex(+c.Φax
S ⊎ −c.Φcut

S).

Theorem 48 (Stellar correctness criterion). A proof-structure

S is a proof-net if and only if for all switching ϕ, we have

♮Ex(+t.Φax
S ⊎ −c.Φcut

S ⊎ +c.+c.S⋆
ϕ) = [pA1

(x), ..., pAn
(x)]

where A1, ..., An are the conclusions of S.

Proof. We unfold the definition of proof-net: all correctness

graphs have to be trees. It is easy to show that for an ordeal

+c.S⋆
ϕ , two rays are matchable from two stars φ, φ′ if and

only if their corresponding vertices are adjacent w.r.t. to the

hyperedges corresponding to φ, φ′. Hence, we can say that, by

design, +c.S⋆
ϕ reproduces the structure of the lower part of

Sϕ, i.e F := (V Sϕ , ESϕ − Ax(S), s′). We can also remark

that the vehicle is isomorphic to its corresponding set of

axioms and so is the correctness graph w.r.t. to the connexion

vehicle/ordeal.

(⇒) The hypergraph F is always a forest (because it

is made of the syntactic tree of A1, ..., An) and so is

D[(−c.Scut ⊎ +c.S⋆
ϕ);−]. If we connect F to Ax(S) (in

order to retrieve Sϕ), we get a tree since all correctness graphs

are trees. The same happens when we connect +t.Φax
S with

−c.Φcut
S ⊎ +c.S⋆

ϕ . The cuts will only cancel some conclu-

sions. Since the diagrams are always exact (c.f Notation 14)

(because of the shared variable x forcing equal adresses and

because the rays coloured by t exactly match by design) and

D[+t.Φax
S ⊎ −c.Φcut

S ⊎ +c.S⋆
ϕ ;−] is connected, we obtain

only one unique star containing its free rays. Since it is also

acyclic, each conclusion appears only one time. Therefore,

Ex(+t.Φax
S ⊎−c.Φcut

S ⊎+c.S⋆
ϕ) = [pA1

(x), ..., pAn
(x)].

(⇐) Following the previous context, if Ex(+t.Φax
S ⊎

−c.Φcut
S ⊎ +c.S⋆

ϕ) = [pA1
(x), ..., pAn

(x)], D[+t.Φax
S ⊎

−c.Φcut
S ⊎ +c.S⋆

ϕ ;−] necessarily is connected, otherwise we

would get several stars. It is also must be acyclic, otherwise,

+t.Φax
S ⊎−c.Φcut

S ⊎+c.S⋆
ϕ would not be strongly normalising

because the diagrams are exact and hence, all cycle yield

infinitely many correct saturated diagrams.

Corollary 49 (Corollary of Theorem 48). All correctness

graphs of a proof-structure S are:

• acyclic if and only if D[+t.Φax
S ⊎ −c.Φcut

S ⊎ +c.S⋆
ϕ ;−]

is acyclic, hence +t.Φax
S ⊎ −c.Φcut

S ⊎+c.S⋆
ϕ is strongly

normalising and

• trees if and only if D[+t.Φax
S ⊎ −c.Φcut

S ⊎+c.S⋆
ϕ ;−] is

a tree, hence +t.Φax
S ⊎−c.Φcut

S ⊎+c.S⋆
ϕ normalises into

a single star.

Proof. The proof of Theorem 48 states that a correctness graph

has exactly the same structure as the dependency graph of its

translation.

• if D[+t.Φax
S ⊎ −c.Φcut

S ⊎ +c.S⋆
ϕ ;−] is acyclic, stars

cannot be repeated, hence +t.Φax
S ⊎ −c.Φcut

S ⊎ +c.S⋆
ϕ

is trivially strongly normalising. If it is strongly normal-

ising, the dependency graph must be acyclic because,

in the context of proofs, a cycle always yield infinitely

many correct saturated diagrams and if it is the case, the

constellation cannot be strongly normalising.

• if D[+t.Φax
S ⊎ −c.Φcut

S ⊎ +c.S⋆
ϕ ;−] is also connected,

since the diagrams are exact and that there is no branching

possible, there is at most one diagram, hence a single

star in the normal form. If +t.Φax
S ⊎ −c.Φcut

S ⊎ +c.S⋆
ϕ

normalises into a single star, its dependency graph must

be both connected and acyclic, otherwise we would end

up with several stars or infinitely many correct saturated

diagrams.

Simulation of the abstract tile assembly model

Theorem 27 (Simulation of finite aTAM). Let T be a set of

tiles. The set of non-empty finite assemblies constructible from

T at temperature τ is bijective to Connect(T⋆ ⊎ Φτ
env).

Proof. Assume we have n adjacent tiles in a. For each tile in

a, the sum of its connexions with its adjacent tiles is at least

τ . We now try to reproduce an isomorphic diagram with T⋆.

Direct connexions without using Φτ
env is forbidden because of

the symbols ◦ and •.

Assume the absence of these symbols. By design, it is

obvious that the side-matchability of tiles corresponds to the

ray-matchability of star. Moreover, the colours v and h force

the connexions to be on the same axis in order to follow the

geometric restriction of tiling in a plane. The tiles are designed

so that a plugging increment a coordinate x or y depending

on the position/axis of the side. This purpose of this feature

is to simulate a shifting of tile on a plane so that two tiles

cannot connect on two sides at the same time.

Now, assume the have the symbols ◦ and • and that we

have to use the constellation Φτ
env as an intermediate for the

connexion of two tile sides. We show that dynamics of tiling

construction corresponds to the dynamics of the construction

of correct saturated diagram. We consider a tile ti ∈ dom(a).
We starts with t⋆i . If n = 1 then the corresponce with the

singleton assembly is trivial. If n > 1, ti can be connected to

k other tiles in dom(a). They can only be connected through

Φτ
env by their connectable sides. Their glue type and strength

for the connected sides have to match because of the shared

variables for opposite sides in Φτ
env . All other sides of Φτ

env

will be plugged by the unary stars used as fillers. By using

principles of logic programming, the diagram can only be

correct and saturated if the sum of connected sides of ti is

greater or equal to τ (note that the filled unused sides add 0 to

the sum). The stars coming from logic programs are common

logic programs. Their correctness can be simply proved by

induction as stated in Theorem 82 and Theorem 81.

Since all ti ∈ dom(a) satisfy the above property, the

two operations have the same dynamics. Moreover, each tile

corresponds exactly to a star and each of its sides corresponds

to a ray and we have a structural isomorphism between tiles

and their translation. It follows that we have a bijection

between the set of non-empty finite assemblies constructible

from T at temperature τ and Connect(T⋆ ⊎ Φτ
env).

Lemma 79 (Recursion lemma). Let δ be a correct diagram

such that δ(Dδ) is a cycle in D[Φ;−]. We can duplicate n
times δ to form a greater correct diagram δ+ such that δ(Dδ+)
is a cycle in D[Φ;−]. If θ = Solution(P(δ)), then ⇓ δ+ =
θnθfree(δ).

Proof. By induction on n. If n = 0, we have δ+ = δ and

⇓ δ+ = ⇓ δ = θfree(δ). For the inductive case, by the

induction hypothesis, ⇓ δ+ = θnθfree(δ) for n duplications

of δ. We would like to show that we add a duplication, we

can construct a diagram δ′+ such that ⇓ δ′+ = θn+1θfree(δ).
By the confluence of the actualisation, we can start from δ+.

Since δ(Dδ) is a cycle in D[Φ;−] and that δ(Dδ+) is also

a cycle in D[Φ;−], the diagram δ+ can be extended δ. This

give rises to a bigger diagram δ′+. In P(δ′+) we can focus on

the equations of δ. As in the proof of simulation of fusion

(Lemma 79), we have n+2 times the equations of δ (because

we have δ and its n+1 duplications), therefore, it corresponds

to n + 2 applications of θ = Solution(P(δ)). Therefore,

⇓ δ′+ = θn+1θfree(δ).

Lemma 80 (Simple recursion lemma). Let φ = [r, r′] be a

star such that r ⊲⊳ r′. We can construct a diagram δ : Dδ →
D[Φ;−] such that for all x, δ(x) = φ. Moreover, if we have

θ = Solution(P(δ)), then ⇓ δ = θnφ.

Proof. This is a special case of Lemma 79. When connecting

the star θ to itself n times to form a diagram δ, we have

free(δ) = φ (the borders of δ). This diagram corresponds to

a loop in D[Φ;−]. If we have θ = Solution(P(δ′)) where

δ is the connexion of two occurrences of φ, we have ⇓ δ =
θnφ.

Theorem 81 (Correctness of addition). Let Φ+
N

be the con-

stellation

[+add(0, y, y)] + [+add(s(x), y, s(z)),−add(x, y, z)].

We have Res(Φ+
N
+ [−add(n,m, r), r]) = [n+m].

Proof. By induction on n. If n = 0, then the query

[−add(n,m, r), r] only matches with [+add(0, y, y)], forming

a saturated diagram actualising into {r 7→ m}[r] = [m] =
[n+m].

We now consider the case where we have n = n′ + 1
such that Res(Φ+

N
+ [−add(n′,m, r), r]) = [n′ +m] and we

would like to show Res(Φ+
N

+ [−add(n′ + 1,m, r), r]) =
[(n′ + 1) +m]. The diagram for n′ + m in the induction

hypothesis must come from a unique correct and satu-

rated diagram. By analysis of the possibilities of match-

ing, this diagram necessarily have n′ repetitions of the

star [+add(s(x), y, s(z)),−add(x, y, z)] connected in a lin-

ear diagram. By the confluence of the unification algo-

rithm behind the actualisation, we can focus on this sub-

diagram. By the simple recursion lemma (Lemma 80),

this linear diagram actualises into {x 7→ sn
′

(x), y 7→
y, z 7→ sn

′

(z)}[+add(s(x), y, s(z)),−add(x, y, z)] =
[+add(sn

′

(x), y, sn
′

(z)),−add(x, y, z)].
We can add an occurrence of this star in order

to construct a new saturated diagram. We would

like to actualises the linear diagram composed

of [+add(sn
′

(x), y, sn
′

(z)),−add(x, y, z)] and

[+add(s(x), y, s(z)),−add(x, y, z)]. It actualises

into [+add(sn
′+1(x), y, sn

′+1(z)),−add(x, y, z)].
When connected to [+add(0, y, y)], it actualises into

{x 7→ 0, y 7→ z}[+add(sn
′+1(x), y, sn

′+1(z))] =
[+add(n′ + 1, z, sn

′+1(z))]. We finally connect it to the

query [−add(n,m, r), r], forming a diagram actualising into

{z 7→ m, r 7→ sn
′+1(z)}[r] = {r 7→ (n′ + 1) +m}[r] =

[(n′ + 1) +m] = [n+m]. A simple matchability analysis

shows that no other correct saturated diagram is possible.

Theorem 82 (Correctness of greater or equal). Let Φ≥
N

be the

constellation

[+geq(0, 0, 1)] + [+geq(s(x), s(y), r),−geq(x, y, r)]

+[+geq(s(x), 0, 1)] + [+geq(0, s(y), 0)].

If n ≥ m then

Res(Φ≥
N
+ [−geq(n,m, r), r]) = [1],

otherwise

Res(Φ≥
N
+ [−geq(n,m, r), r]) = [0].

The converse implications of the two cases are also true.

Proof. By induction on n. If n = 0, then we must have m = 0.

The query [−geq(0, 0, r), r] only matches with [+geq(0, 0, 1)].
They form a saturated diagram actualising into {r 7→ 1}[r] =
[1]. We now consider the inductive case n = n′ + 1 such that

n′ ≥ m if and only if Res(Φ≥
N

+ [−geq(n′,m, r), r]) = [1].

If m = 0 then, the query form a saturated diagram with

[+geq(s(x), 0, 1)] which actualises into 1. Otherwise, it is

connected to the star [+geq(s(x), s(y), r),−geq(x, y, r)] and

we complete with the induction hypothesis. We use the same

reasoning for the case where n ≥ m is false and for the con-

verse implications, similarly to the proof of Theorem 81.

	Introduction
	Contributions and Plan of the paper

	Stellar Resolution
	First-order term unification
	Stars and Constellations
	Diagrams: non-deterministic computation graphs

	Execution of constellations
	Evaluation by resolution
	Evaluation as tiling construction
	Properties of the two models

	Interpreting the dynamics of proofs
	Multiplicative Linear Logic
	Reconstruction of cut-elimination

	Interpreting the logical content
	Correctness of proof-structures
	Reconstruction of correctness
	Reconstruction of connectives
	A fully complete model of MLL+MIX
	Full completeness for MLL

	Perspectives and future works
	References

