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Abstract9

We present a new asynchronous model of computation named Stellar Resolution based on first-10

order unification [30, 48]. This model of computation is obtained as a formalisation of Girard’s11

transcendental syntax programme, sketched in a series of three articles [29, 27, 28]. As such, it is12

the first step towards a proper formal treatment of Girard’s proposal to tackle first-order logic in13

a proofs-as-program approach [28]. After establishing formal definitions and basic properties of14

stellar resolution, we explain how it generalises traditional models of computation, such as logic15

programming and combinatorial models such as Wang tilings. We then explain how it can represent16

multiplicative proof-structures [18], their cut-elimination and the correctness criterion of Danos-17

Regnier [10]. Further use of realisability techniques lead to dynamic semantics for Multiplicative18

Linear Logic, following previous Geometry of Interaction models.19

2012 ACM Subject Classification Theory of computation → Interactive computation; Theory of20

computation → Linear logic; Theory of computation → Logic; Mathematics of computing → Graph21

theory; Theory of computation → Program semantics; Theory of computation → Constraint and22

logic programming23

Keywords and phrases Models of Computation, Linear Logic, Semantics, Geometry of Interaction24

Digital Object Identifier 10.4230/LIPIcs...25

1 Introduction26

We present a new asynchronous model of computation named Stellar Resolution based27

on first-order unification [30, 48]. This model arises from work in proof theory, and more28

precisely proof-theoretic semantics related to the Curry-Howard correspondence between29

proofs and programs [8, 31]. While Curry-Howard traditionally assimilates terms in the30

λ-calculus with proofs in intuitionnistic logic, stellar resolution terms – named constellations31

– will be assimilated with (generalisations of) proofs in linear logic.32

Linear Logic was introduced by Girard [18] as a refinement of intuitionnistic logic inspired33

from semantics of λ-calculus [20]. Soon after the introduction of linear logic, the geometry of34

interaction programme emerged [22], aiming at defining semantics of proofs and programs35

accounting for the dynamics of the cut-elimination procedure. This dynamic semantics36

approach, a major inspiration behind game semantics [32, 1], distinguishes itself from37

denotational semantics in which cut-elimination is represented as equality.38

However, the geometry of interaction ambition went beyond the dynamic semantics39

aspects. It also aimed to reconstruct logic – in particular linear logic – from what could be40

understood as an untyped model of computation by using realisability techniques. In some41

way, the idea is the same as the reconstruction of simple types from pure λ-calculus. In42

λ-calculus, one defines an orthogonality relation between terms t and contexts E(·) by letting43

t ⊥ E(·)⇔ E(t) is strongly normalising. A type A is then defined as a set of contexts TA –44

understood as tests –, and a term t is considered typable with the type A when t ∈ T⊥A , i.e.45
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XX:2 Stellar Resolution: Multiplicatives

∀E(·) ∈ TA, t ⊥ E(·). We refer the reader to, e.g., Riba’s work[47] for more details.46

In this aspect of reconstructing linear logic, several geometry of interaction models were47

defined using operators algebras [21, 19, 25], unification algebras [23], graphs [50, 52] and48

graphings [54, 56, 53]. Although all these models did define rich models, that were in49

particular used to study computational complexity [5, 2, 3, 55, 57], they failed with respect50

to two different aspects. Firstly, the objects used to interpret even the most basic proofs were51

most of the time infinite objects and even when they were not, types were defined through an52

infinite number of tests. Secondly, the obtained models did interpret soundly the fragments53

of linear logic considered, but no completeness results exist1.54

Recently, Girard published a series of articles [26, 29, 27, 28] sketching the main lines55

of a new kind of model that would have the qualities of geometry of interaction models,56

but improve on them at least concerning the first failure mentioned above. Those articles57

are interesting and claim great improvements, proposing in particular a Curry-Howard58

interpretation of first-order logic [28]. However, these articles are too inexact in form to59

serve satisfactorily as the basis of a mathematical theory2. The current work is the first step60

towards a proper formal account of the model, with underlying motivation the representation61

of first-order logic and its possible applications in relation with descriptive complexity results62

[35], such as the Immerman-Vardi theorem [59, 34].63

Contributions. We formally describe a model of computation named stellar resolution,64

which extends the model of computation vaguely described by Girard. We prove the main65

properties of the model. In particular, while Girard claimed the failure of the Church-Rosser66

property, we are able to prove it holds for stellar resolution (Theorem 29). We also relate67

it to standard models of computation such as Wang tilings [60] and abstract tiles assembly68

models [61, 45], which have applications in bio-computing [49, 62]. We then explain how69

this model captures the dynamics of cut-elimination for MLL, the multiplicative fragment of70

linear logic (Theorem 47), and the correctness criterion for proof-structures – a syntax for71

MLL (Theorem 54). Lastly, we explain how realisability techniques similar to those used72

in λ-calculus can be used to define types that organise into a denotational semantics for73

MLL (a ∗-autonomous category), and prove soundness and completeness of the model w.r.t.74

MLL+MIX, an extension of MLL with the so-called MIX rule (Theorems 72 & 74).75

2 Stellar Resolution76

2.1 First-order Terms and Unification77

Stellar resolution is based on the theory of unification. We here recall basic definitions and78

refer the reader to the article of Lassez et al. [38] for more details.79

I Definition 1 (Signature). A signature S = (V,F , ar) consists of an infinite countable set80

V of variables, a countable set F of function symbols whose arities are given by ar : F → N.81

I Definition 2 (First-order term). Let S = (V,F , ar) be a signature. The set of terms TS is82

inductively defined by the grammar t, u ::= x | f(t1, ..., tn) with x ∈ V, f ∈ F , ar(f) = n.83

We now fix a signature S = (V,F , ar) until the end of this section.84

1 While this aspect is a failure somehow, it is also a feature as the models are very rich and open other
paths of reflexion.

2 The formulation is borrowed from Church’s critic of von Mises notion of kollektiv [7].
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I Definition 3 (Substitution). A substitution is a function θ : V → TS extended from variables85

to terms by θ(f(u1, ..., uk)) = f(θu1, ..., θuk).86

A renaming is a substitution α such that α(x) ∈ V for all x ∈ V.87

I Definition 4 (Unification problem). An equation is an unordered pair t .= u of terms in TS.88

A unification problem is a set P = {t1
.= u1, ..., tn

.= un} of equations.89

A solution for P is a substitution θ such that for all equations ti
.= ui in P , θti = θui.90

I Definition 5 (Matching). Two terms t and u are matchable if there exists a renaming α91

such that {αt .= u} has a solution.92

I Theorem 6 (Unification algorithm). The problem of deciding if a solution to a given unific-93

ation problem P exists is decidable. Moreover, there exists a minimal solution Solution(P )94

w.r.t the preorder θ � ψ ⇔ ∃θ′.ψ = θ′ ◦ θ, unique up to renaming.95

Let us note that several algorithms were designed to compute the unique solution when96

it exists, such that the Martelli-Montanari unification algorithm [40].97

2.2 Stars and Constellations98

The stellar resolution model is based on first-order unification but extends it the notions of99

polarities and colours. Intuitively, polarised terms are prefixed with either a + or − sign100

indicating their ability to be composed (with a term of opposite polarity). Colours allow for101

the consideration of various types of composition. We define the core objects of our model.102

I Definition 7 (Coloured Signature). A coloured signature is a 4-tuple S = (V,F , C, ar)103

where (V,F , ar) is a signature and C ⊆ F is a specified set of colours. The set of terms TS104

is defined as the set of terms over the signature (V,F , ar).105

We will now work with the coloured signature S = (V,F , C, ar) unless specified otherwise.106

I Definition 8 (Ray). A ray is a term in the grammar r ::= +c(t1, ..., tn) | −c(t1, ..., tn) | t,107

where {t1, ..., tn} ⊆ TS and c ∈ C with ar(c) = n. The underlying term of a ray is defined by108

b+c(t1, ..., tn)c = b−c(t1, ..., tn)c = c(t1, ..., tn) and btc = t.109

I Notation 9. We will sometimes write +c.t (resp. −c.t) instead of +c(t) (resp. −c(t)) for110

unary colours when it is convenient.111

I Definition 10 (Star). A star σ over a coloured signature S is a finite and non-empty112

multiset of rays, i.e. a finite set |σ| together with a map ρσ : |σ| → rays(S). The set of113

variables appearing in σ is written vars(σ). Stars are written as multisets σ = [r1, ..., rn].114

I Definition 11 (Substitutions and α-equivalence). Given a substitution θ, its action extends115

to rays by letting θ(±c(t1, ..., tn)) = ±θ(c(t1, ..., tn)) with ± ∈ {+,−}. It also extends to116

stars: θ[r1, ..., rn] = [θr1, ..., θrn].117

We say that two stars σ1, σ2 are α-equivalent, written σ1 ≈α σ2, when there exists a118

renaming α such that ασ1 = σ2.119

I Notation 12. In this work, stars will be considered up to α-equivalence. We therefore120

define Stars(S) as the set of all stars over a coloured signature S, quotiented by ≈α.121

I Definition 13 (Constellation). A constellation Σ is a (countable) multiset of stars, i.e.122

a countable (possibly infinite) set |Σ| together with a map αΣ : |Σ| → Stars(S). The123

variables appearing in Σ are considered (sometimes implicitly) bound to their star i.e124 ⋂
e∈|Σ| vars(αΣ(e)) = ∅. The set of rays of Σ is defined as rays(Σ) = {(s, r) | s ∈ |Σ|, r ∈125

|αΣ(s)|}. A finite constellation will sometimes be written Σ = a1σ1 + ...+ anσn (ai ∈ N).126
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I Example 14. Here is an example of two finite and an infinite constellation:127

Σex = [g(x), f(x),+a(f(x))] + [−a(y),+b(y)] + [x,−b(g(x))] + [+b(x), x]128

Σa = [−a(x),+a(x),−b(x)]129

ΣN is defined by |ΣN| = N and αΣN(n) = [−nat.sn(0),+nat.sn+1(0)]130

where s0(t) = t and sn+1(t) = s(sn(t)), nat is a colour and s and 0 are function symbols.131

2.3 Diagrams and Reduction132

Constellations are gatherings of stars destined to be connected together through their rays of133

opposite polarities. We define the unification graph of a constellation which is a multigraph134

specifying which stars can be connected together through the unification of their rays.135

I Definition 15 (Unification graph). The unification graph Σ[A] of a constellation Σ w.r.t.136

a set of colours A ⊆ C is the undirected multigraph (V Σ[A], EΣ[A], sΣ[A]) where V Σ[A] = |Σ|,137

EΣ[A] is the set of unordered pairs {((s, r), (s′, r′)) ∈ rays(Σ) | r and r′ are matchable}, and138

sΣ[A] is the function defined by sΣ[A]((s, r), (s′, r′)) = {s, s′}.139

I Example 16. If we take the constellations from example 14, the unification graph ΣN[nat]140

is an infinite linear graph and Σex[b, c, d, e] is a linear graph of 4 vertices. The141

graph Σa[a, b] is a vertex with a loop.142

The unification graph is used to define diagrams, which are graphs obtained by composing143

occurrences of stars in a constellation along dual rays. They represent actual connexions144

between the stars of a constellation, following the connexions allowed by the unification145

graph.146

I Definition 17 (Diagram). Let A be a set of colours A ⊆ C. An A-diagram δ over a147

constellation Σ is a finite connected graph3 Dδ and a graph homomorphism δ : Dδ → Σ[A]148

which is ray injective, i.e. for all v ∈ V Dδ the function {e ∈ EDδ | v ∈ sDδ(e)} →149

|δ(v)|; {(δ(v), r), (s′, r′)} 7→ r is injective. If Dδ is a tree, we say δ is tree-like.150

I Notation 18. Given an A-diagram δ, we define its set of paired rays as the set paired(δ) =151

{(v, r) | ∃e ∈ EDδ , v ∈ sDδ(e), (δ(v), r) ∈ rays(Σ)} and its set of free rays as free(δ) =152

{(v, r) | v ∈ V Dδ , (δ(v), r) ∈ rays(Σ), (v, r) 6∈ paired(δ)}.153

I Example 19. If we take the constellations from example 14 together with their unfication154

graph in example 16, any subchain of ΣN[nat] and Σex[b, c, d, e] can give rise to a diagram.155

As for, Σa[a, b], we can make a diagram be connecting as many occurrences of the star156

[−a(x),+a(x),−b(x)] as we want.157

I Remark 20. The notion of diagram suggested by Girard [29] coincides with the notion of158

tree-like diagram in this work. However, as we will explain below, the more general notion of159

diagram considered here allows for the representation of interesting models of computation,160

such as Wang tilings [60].161

As mentioned above, we consider the underlying graphs of diagrams to have natural162

numbers as vertices. This is used here to produce a family of substitutions (θ(v,_))v∈N of163

pairwise disjoint codomains. This is used in the following definition to rename all occurrences164

of stars in diagrams with pairwise disjoint sets of free variables.165

3 The underlying graph is considered up to renaming of the vertices and edges. For practical purpose and
without loss of generality, we will consider that vertices are natural numbers.
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I Definition 21 (Underlying unification problem). The underlying unification problem of an166

A-diagram δ over a constellation Σ is defined as167

P(δ) = {θ(v, brc) .= θ(v′, br′c) | f ∈ EDδ , sDδ(f) = {v, v′}∧ δ(f) = ((δ(v), r), (δ(v′), r′))}.168

In some ways, diagrams generalise trails in a graph. Where paths describe a possible169

trajectory for a particle, diagrams describe the possible trajectories of a wave that can170

simultaneously spread in several directions when encountering forks. We now introduce the171

notion of saturated diagrams, which correspond to maximal paths.172

I Definition 22 (Saturated Diagram). We define a preorder v on A-diagrams over a con-173

stellation Σ by: δ v δ′ if there exists an isomorphism ϕ from a graph D of Dδ′ to Dδ such174

that δ = δ′ ◦ ϕ.175

A maximal A-diagram w.r.t. v is called saturated.176

I Example 23. For the constellations from example 14 and their unfication graph in177

example 16, ΣN has no saturated diagram since it is always possible to extend any star178

[−nat.sn(0),+nat.sn+1(0)] by connecting it to [−nat.sn+1(0),+nat.sn+2(0)] ∈ ΣN. Similarly,179

Σa can always connect any star with a new copy of itself so no saturated diagram can be180

constructed. The star [x,−b(g(x))] ∈ Σex can be connected to either [g(x), f(x),+a(f(x))] +181

[−a(y),+b(y)] or just [+b(x), x] and these two connexions can’t be extended. Therefore, they182

form saturated diagrams.183

2.4 Evaluation and Normal form184

Diagrams can be evaluated by confronting and annihilating the rays connected together185

similarly to a chemical reaction between molecules which will have an effect on the remaining186

free rays. This reaction defines a unification problem. When a solution (a substitution) to187

this problem exists, one can apply it to all the free rays involved in the diagram. Edges in188

the diagram then represent equalities and the diagram can be contracted into a single star.189

This operation is called actualisation.190

I Definition 24 (Correct diagram and actualisation). Consider a constellation Σ and a set191

of colours A ⊆ C. An A-diagram δ is correct if free(δ) 6= ∅ and the associated unification192

problem P(δ) has a solution.193

The actualisation of a correct diagram δ is the star ⇓ δ defined as |⇓ δ| = free(δ) and194

ρ⇓ δ : (e, r) ∈ free(δ) 7→ ψ(θ(e, r)), where ψ = Solution(P(δ)) and θ(e,_) is the renaming195

used in Definition 21.196

I Notation 25. We write CorrectkA(Σ) (resp. CorrectkA,tree(Σ)) for the set of correct A-197

diagrams (resp. correct tree-like A-diagrams) over Σ with k vertices, and SatkA(Σ) (resp.198

SatkA,tree(Σ)) the set of saturated A-diagrams in CorrectkA(Σ) (resp. in CorrectkA,tree(Σ)).199

Note that the approach proposed by Girard used a step-by-step procedure merging two200

adjacent stars in a diagram. It is possible to prove that his approach and our lead to the201

same result, and more precisely that a sequence of merging coincides with a step-by-step202

execution of the Martelli-Montanari unification algorithm [40]. Stating and proving this203

refined result is however outside of the scope of this paper.204

I Definition 26 (Normalisation). The normalisation or execution (resp. tree-like norm-205

alisation) of a constellation Σ w.r.t. a set of colours A ⊆ C is defined by Ex∗A(Σ) =206 ⋃∞
k=0 ⇓ SatkA,∗(Σ) (∗ ∈ {∅, tree}), where ⇓ SatkA,∗(δ) denotes the set {⇓ δ | δ ∈ SatkA,∗(δ)}.207
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I Example 27. The constellation Σex is the only constellation from example 14 which has208

saturated diagrams. The only correct diagram δ connects [x,−b(g(x))] and [+b(y), y]. We209

have to solve the problem P(δ) = {b(g(x)) .= b(y)} producing θ = {y 7→ g(x)} and we finally210

obtain Ex(Σex) = θ[x, y] = [x, g(x)] since Σex has only two diagrams. One can check that211

the other diagram fails.212

I Definition 28 (Strong normalisation). A constellation Σ is strongly normalising w.r.t. a213

set of colours A ⊆ C if and only if Ex(Σ) is a finite constellation. When A = C, we simply214

say that Σ is strongly normalising.215

I Theorem 29 (Associativity / Church-Rosser). Let Σ be a constellation, and A,B be two216

disjoint sets of colours, i.e. A ⊆ C, B ⊆ C, and A ∩ B = ∅. Then:217

Ex∗B(Ex∗A(Σ)) = Ex∗A∪B(Σ) = Ex∗A(Ex∗B(Σ)), (∗ ∈ {∅, tree})218

Proof (Sketch). We establish the first isomorphism, which is enough by symmetry. First219

note that the disjointness of the sets of colours implies that the set of edges in Σ[A ∪ B] is220

the disjoint union of the sets of edges in Σ[A] and those in Σ[B]. As a consequence, any221

diagram on Σ[A] (resp. Σ[B]) can be thought of as a diagram on Σ[A ∪ B].222

Let δ : Dδ → Ex∗A(Σ)[B] be a correct saturated B-diagram of Ex∗A(Σ). For each s ∈223

|Ex∗A(Σ)|, the star Ex∗A(Σ)(s), which we will write σs, corresponds to a diagram δs : Ds → Σ[A].224

We can therefore build a diagram δ̄ over Σ[A ∪ B] by blowing up δ along the diagrams δs.225

More precisely, we construct the graph D̄δ obtained by replacing each vertex s by the graph226

Ds; this is well-defined as each ray in δ(s) comes from a unique ray from a star δs(s′) for some227

s′ ∈ V Ds , and therefore each edge e in Dδ of source s becomes an edge of source the unique228

star s′ ∈ V Ds . The morphism δ then extends uniquely to a morphism δ̄ : D̄δ → Σ[A ∪ B]229

whose action on the subgraphs Ds coincides with that of δs (as a morphism into Σ[A ∪ B]).230

To check that this mapping from B-diagrams on Ex∗A(Σ) to (A ∪ B)-diagrams on Σ is231

indeed an isomorphism, one can directly define an inverse mapping. For this purpose, the232

essential remark is that given a (A ∪ B)-diagram δ̄ on Σ, one can recover the underlying233

B-diagrams on Ex∗A(Σ) as the restriction of δ̄ to the connected components of the graph234

obtained from Dδ̄ by removing the edges mapped to A-coloured edges in Σ[A ∪ B]. The235

underlying graph of the corresponding B-diagram on Ex∗A(Σ) is then defined from Dδ̄ by236

contracting each of these connected components to a single vertex. J237

I Remark 30. In Girard’s first paper on Transcendental Syntax [29], the constellation238

Σ = [+a.x,−a.x,+b.x] is mentioned as a counter-example for the Church-Rosser property.239

Here, we have Extree
{a} (Extree

{b} (Σ)) = Extree
{b} (Extree

{a} (Σ)) = ∅ (because no saturated diagram on a240

nor on b can be constructed). Our understanding of Girard’s failure comes from his limitation241

to strongly normalising constellations, so that Extree
{a} (Σ) was not defined.242

2.5 Remarkable examples of constellations243

We now explain how the stellar resolution model generalises several established frameworks244

from the literature.245

2.5.1 (Hyper)graphs246

As a first example, we detail how graphs (and more generally hypergraphs) can be encoded,247

and how the execution coincides with the computation of paths. A consequence of this result248

is that models of computation such as Interaction Graphs [50, 52] are special cases of our249

construction.250
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I Definition 31 (Encoding of hypergraphs). Let G = (V,E, s, t) be a directed hypergraph,251

i.e. s, t are maps E → ℘(V ). We suppose given a signature in which there exists distinct252

unary function symbols to represent the elements of V and E. Then, for each e ∈ E with253

s(e) = {v1, . . . , vn} and t(e) = {w1, . . . , wm}, we define the star254

ē = [−v1(x),−v2(x), · · · − vn(x),+w1(e(x)),+w2(e(x)), . . . ,+wm(e(x))].255

The graph G is then represented by the constellation Ḡ defined as the multiset α : E → ē.256

One can check that this encoding has the property that diagrams ρ : T → U(Ḡ) in which T257

is a linear graph (i.e. a graph • → • → · · · → •) are in bijection with walks in G; moreover258

the diagram is saturated if and only if the walk is maximal.259

2.5.2 Logic programming260

The stellar resolution is very close to concepts coming from logic programming since they all261

use first-order terms to do computations. The main difference is that logic programming262

has practical motivations and enjoy logical interpretations through model theory while our263

approach is purely computational and doesn’t obey logic. We choose to encode first-order264

disjunctive clauses [48].265

I Definition 32 (Encoding of first-order disjunctive clauses). We have the following encoding266

for first-order atoms: P (t1, ..., tn)F = +P (t1, ..., tn) and (¬P (t1, ..., tn))F = −P (t1, ..., tn)267

where P is a colour. A clause is encoded as {A1, ..., An}F = [AF
1 , ..., A

F
n ] where A1, ..., An are268

first-order atoms. A set of clauses is translated into {C1, ..., Cn}F = CF
1 + ...+CF

n . Clauses269

are connected through the resolution rule: from Γ ∪ {P (t1, ..., tn)} and ∆ ∪ {¬P (u1, ..., un)},270

we infer θ(Γ ∪∆) where θ = Solution({ti
.= ui}1≤i≤n).271

The actualisation of a diagram corresponds to several applications of the resolution rule.272

In particular, a saturated diagram is a full computation (instead of a partial/unfinished273

computation). The unification graph we use is reminiscent of dependency graphs [44, 12]274

and the normalisation of the computation of answer sets [14, 13]. Although not described275

here, it may also be possible to simulate goal-directed inferences (such as SLD [36] or SLO276

[39] resolution) by using unpolarised rays.277

Another close model is the model of flows [23, 4] made of couples of terms t ↼ u where t278

and u have exactly the same variables.279

I Definition 33 (Encoding of flows). Let f = t ↼ u be a flow. We define its encoding280

as fF = [+t,−u]. A wiring F = f1 + ... + fn is a set of flows and it is encoded into281

FF = fF1 + ...+ fFn .282

A wiring will describe a graph where flows represent edges. Matching (definition 5) decides283

which vertices the edges connect. The execution of a wiring Ex(F ) computing maximal paths284

in corresponding graph corresponds to Ex(FF).285

2.5.3 Wang tiles and abstract tile assembly models286

Wang tiles [60] are square tiles with a colour on each side. For instance: W =
{ }

. We287

are interested in the possible tilings made by putting copies of the tiles side by side such288

that two adjacent sides have the same colour. Our setting naturally generalises the structure289

and behaviour of Wang tiles in N2.290
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I Definition 34 (Encoding of Wang tiles). Let ti = (ciw, cie, cis, cin), i = 1, . . . , k, be a set of291

Wang tile characterised by west, east, south and north colours. We encode each Wang tile in292

N2 by the star (ti)F = [−h(ciw(x), x, y),−v(cis(y), x, y),+h(cie(s(x)), x, y),+v(cin(s(y)), x, y)]293

This supposes the signature to contain a unary function symbol for each colour used in the294

Wang tiles set considered. We use two additional ternary colours h (for horizontal axis) and295

v (for vertical axis) for the rays. The terms sn(x), sn(y) for n ≤ 0 represent coordinates on296

the horizontal and vertical axis encoded as natural numbers, and forbids geometric patterns297

that would be impossible in the original Wang tile framework (e.g. a tile connected to itself).298

A (possibly cyclic) diagram will correspond to a finite tiling.299

Wang tilings are a Turing-complete model of computation [6]. As the simulation works300

by representing the space-time diagram of the execution, it is enough to restrict to Wang301

tiles over N2 by considering machines with a single right-infinite tape (i.e. Turing’s original302

a-machine model [58]). As a consequence, we obtain the following theorem.303

I Theorem 35 (Turing-completeness). Stellar resolution can simulate Turing machines.304

Wang tiles are very close to the abstract tile assembly models (aTAM) [61, 45] which can305

be used as a model of computation with applications in DNA computing [49]. Our model is306

able to represent aTAM, and even generalise it.307

A tile t = (gw, ge, gs, gn) in the aTAM is a Wang tile where the sides g ∈ G (called308

glues types instead of colours) are associated to an integer str(g) ≥ 0 called their strength.309

An additional model parameter is called the temperature, which we write t. A tile can be310

attached to an assembly (i.e. a diagram in the stellar resolution terminology) if adjacent311

sides have matching glue type and strength, and the total strength of its connections is312

at least4 t. To encode those we use colours h, v of arity 3 as above but decline them in313

pairs h−, h+ and v−, v+, together with a binary symbol G, and define for all glue type314

g ∈ G the term gl(g)(x) = G(g(x), sstr(g)(0)). Temperature is dealt with by adding ambiance315

stars that are required to connect between tile encodings. Ambiance stars connect to a tile316

translation on several sides and force the sum of forces to be larger than the temperature.317

Ambiance stars are defined as Aa,b,c,d = [−v−(G(xa, sa(ya)), z, w), +v+(G(xb, sb(yb)), z, w),318

−h−(G(xc, sc(yc)), z, w), +h+(G(xd, sd(yd)), z, w), +v+(G(xa, sa(ya), z1, w1)),319

−v−(G(xb, sb(yb), z2, w2)), +h+(G(xc, sc(yc)), z3, w3), −h−(G(xd, sd(yd)), z4, w4)] for all 0 6320

a, b, c, d 6 t such that a+ b+ c+ d = t. We also require the addition of stars [−v+], [+v−],321

[−h+], [+v−] to plug connexions where no tiles can be added.322

I Definition 36 (Encoding of self-assembling tiles). Let ti = (giw, gie, gis, gin), i ∈ I (countable323

but possibly infinite) be a set of self-assembling tiles. The tile ti is encoded as the star (ti)F =324

[−h+(gl(giw)(x), x, y),−v+(gl(gis)(y), x, y),+h−(gl(gie)(s(x)), x, y), +v−(gl(gin)(s(y)), x, y)].325

The aTAM model with tiles (ti)i∈I and temperature t is encoded as
∑
a+b+c+d=t A

a,b,c,d +326 ∑
i∈I(ti)F + [−v+] + [+v−] + [−h+] + [+v−].327

3 Interpreting the computational content of MLL328

In this section, we restrict the definitions to the tree-like normalisation i.e Ex(Σ) will be a329

shortcut for Extree
A (Σ) where A is a set of colour left implicit.330

4 As a consequence, a tile can connect to an assembly in temperature 2 through two faces of strength 1,
but cannot connect through a single of those faces.
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A,B = Xi | X⊥i | A⊗B | A`B where i ∈ N

(a) MLL Formulas

` A,A⊥
` Γ, A ` ∆, B
` Γ,∆, A⊗B

` Γ, A ` ∆, A⊥

` Γ,∆
` Γ, A,B
` Γ, A`B

(b) Sequent calculus rules

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

(c) Proof-structures

A
A⊥

ax

cut

A
 A

A B

⊗

A⊗B

A⊥ B⊥

`
A⊥ `B⊥

cut

 
A B A⊥ B⊥

cut
cut

(d) Cut-elimination reductions: axiomatic cut (left), multiplicative cut (right)

Figure 1 Syntax of Multiplicative Linear Logic (MLL)

3.1 Multiplicative Linear Logic331

Multiplicative linear logic (MLL) is a fragment of linear logic [18] restricted to the tensor ⊗332

and par ` connectives. The set FMLL of MLL formulas is defined by the grammar of the333

figure 1a. Linear negation (·)⊥ is extended to formulas by involution and de Morgan laws:334

X⊥⊥ = X, (A⊗B)⊥ = A⊥ ⊗B⊥, and (A`B)⊥ = A⊥ `B⊥.335

Proofs of MLL can be written in the traditional sequent calculus fashion [15, 16] using the336

set of rules shown in figure 1b. In his seminal paper [18], Girard introduced an alternative337

syntax, akin to natural deduction, based on a graph-theoretic representation of proofs. In this338

syntax, one considers the notion of proof-structure, i.e. an directed hypergraph with vertices339

labelled by formulas and constructed from hyperedges5 labelled within {ax, cut,⊗,`} and340

satisfying the arities and labelling constraints shown in figure 1c. A proof-structure also341

satisfies the additional constraint that each vertex must be (1) the target of exactly one342

hyperedge, and (2) the source of at most one hyperedge. When needed, a proof-structure343

will be defined as a 6-tuple (V,E, s, t, `V , `E), where (V,E, s, t) is a directed hypergraph (see344

Definition 31) and `V : V → FMLL, `E : E → {⊗,`, ax, cut} are labelling maps.345

The cut-elimination procedure, which is defined in the natural way for MLL sequent346

calculus, becomes a graph-rewriting system on proof-structures, defined by the two rewriting347

rules (figure 1d). The following definition explains how sequent calculus proofs can be348

represented as proof-structures.349

I Definition 37 (Translation of MLL sequent calculus). We define a translation J·K from MLL350

sequent calculus derivations to proof-structures. The proof-structures of the domain of J·K are351

called the proof-nets.352

` A,A⊥  J·K

A A⊥

ax
π1...
` Γ, A

π2...
` ∆, A⊥

` Γ,∆

 J·K

Jπ1K Jπ2K

Γ ∆A A⊥

cut

353

5 For practical purposes, the source edges are ordered, and we will talk about the "left" and "right" sources
since there never are more than two; illustrations implicitly represent the left (resp. right) source on the
left (resp. right).
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π...
` Γ, A,B
` Γ, A`B

 J·K

JπK

ΓA B

`
A`B

π1...
` Γ, A

π2...
` ∆, B

` Γ,∆, A⊗B

 J·K

Jπ1K Jπ1K

Γ ∆A B

⊗

A⊗B

354

Note that this translation is not surjective, and some proof-structures do not represent355

sequent calculus proofs. This is tackled by the correctness criterion which characterises those356

proof-structures that do translate sequent calculus proofs through topological properties.357

This is discussed in the next section but for the time being we define the notion of proof-net.358

I Definition 38 (Proof-nets). A proof-net is a proof-structure S such that there exists a359

MLL sequent calculus proof π with S = JπK.360

3.2 Reconstruction of proof-structures and their dynamics361

Let us note that proof-structures can be defined inductively. A proof-structure with only362

one hyperedge is necessarily an axiom with two conclusions. Then a proof-structure with n363

hyperedges is either built from the union of two proof-structures with respectively k and364

n− k hyperedges, or from a proof-structure with n− 1 hyperedges extended by either a ⊗, `,365

or cut hyperedge on two of its conclusions. In the following we use this inductive definition366

to define the address of occurrences of atoms in a proof-structure.367

I Definition 39. A vertex v is above another vertex u in a proof-structure if there exists a368

directed path from v to u going through only ⊗ and ` hyperedges.369

I Definition 40 (Address). We now consider a signature in which there exists at least two370

unary function symbols r, l and unary functions symbols pA for all occurrences6 of MLL371

formulas A. We define the partial address pAddrS(d, x) of an occurrence of atom d in a MLL372

proof-structure S, with respect to the variable x, inductively:373

pAddrS(d, x) = x when S consists only of an axiom hyperedge;374

pAddrS(d, x) = pAddrSi(d, x) if S is the union of two smaller proof-structures S1,S2 and375

d appears in Si;376

pAddrS(d, x) = l(pAddrS′(d, x) (resp. pAddrS(d, x) = r(pAddrS′(d, x)) if S is obtained377

from S ′ by adding a ⊗ or ` hyperedge e, and if d is above the left source (resp. the right378

source) of e.379

pAddrS(d, x) = pAddrS′(d, x) otherwise.380

The partial address of d is defined with respect to either a conclusion of the structure of the381

source of a cut hyperedge, which is uniquely defined as the occurrence of formula c such that382

d is above c and c is not source of either a ⊗ or a `; the address of d is then defined as the383

term AddrS(d, x) = pc(pAddrS(d, x)).384

I Notation 41. Let S be a proof-structure. We write Ax(S) (resp. Cut(S)) the set of axioms385

(resp. cut) hyperedges in S. Given e ∈ Ax(S) (e ∈ Cut(S)), we write Cle and Cre the left and386

right conclusions (resp. sources) of e respectively.387

I Definition 42 (Vehicle). The vehicle of proof-structure S is the constellation Sax defined388

by: |Sax| = Ax(S) and αSax(e) = [AddrS(Cle), AddrS(Cre )].389

6 The set of formulas F is countable, and there are only finite numbers of occurrences of a given formula
in a given proof-structure, hence the set F ×N suffices and is still countable.
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I Definition 43 (Colouration of constellation). The colouration ±c.Σ of Σ with a colour c ∈ C390

and a polarity ± ∈ {+,−} changes all the rays of its stars by the following functions φ±c391

defined by: φ±c (+d.t) = ±c.t φ±c (−d.t) = ±c.t φ±c (t) = ±c.t.392

I Notation 44. Let Σ1,Σ2 be two constellations. We write Σ1 · Σ2 their multiset union, i.e.393

the coproduct ρΣ1 + ρΣ2 : |Σ1|+ |Σ2| → Stars(S).394

I Definition 45 (Translation of proof-structures). The translation of a proof-structure S into395

a constellation is defined as SF = (Sax,Scut) where Scut is the constellation defined by396

|Scut| = Cut(S) and αScut(e) = [pCle(x), pCre (x)]. Execution is extended to the translation of397

proof-structures: Ex(S?) = Ex(+c.Σax · −c.Σcut).398

I Lemma 46. Let R be a MLL proof-structure reducing in one step to another proof-structure399

S. Ex(RF) = Ex(SF).400

Proof. Since each stars are unique by definition of Addr the connexions are never am-401

biguous in the proof. We have two cases of reduction. If we have a cut on an ax-402

iom, the corresponding execution will be Ex(RF) = Ex(ΣR + [+c.pA1(t),+c.pA⊥2 (x)] +403

[−c.pA⊥2 (x),−c.pA3(x)]). The cut [−c.pA⊥2 (x),−c.pA3(x)] connects [+c.pA1(t),+c.pA⊥2 (x)]404

and another axiom [+c.pA3(u),+c.pA⊥4 (v)]. We can connect them all to produce the star405

θ[+c.pA1(t),+c.pA⊥4 (v)] where θ = {x 7→ u}. We identified A1 and A3 two occurrences of A.406

This is exactly how S is translated thus Ex(RF) = Ex(SF). If we have a `/⊗ cut, the cor-407

responding executions are Ex(RF) = Ex(ΣR + [−c.pA⊗B(x),−c.pA⊥`B⊥(x)]) and Ex(SF) =408

Ex(ΣS + [−c.pA(x),−c.pA⊥(x)] + [−c.pB(x),−c.pB⊥(x)]). The ` and ⊗ vertices have both409

two premises translated into rays +c.pA⊥`B⊥(l · u),+c.pA⊥`B⊥(r · u′),+c.pA⊗B(l · t) and410

+c.pA⊗B(r · t′) of axiom stars in ΣR. In order to construct a diagram, the cut has to be411

duplicated twice to saturate these rays. Since a ` and ⊗ vertex disappear after the reduc-412

tion, the previous axioms are relocalised into +c.pA⊥(u),+c.pB⊥(u′),+c.pA(t) and +c.pB(t′)413

in ΣS . The cuts [−c.pA(x),−c.pA⊥(x)] and [−c.pB(x),−c.pB⊥(x)] connect these rays in414

the same way as in ΣR. Since ΣS is ΣR with a relocalisation of axioms they both have415

the same free rays. Moreover, all connexions with cuts does not involve free rays, hence416

Ex(RF) = Ex(SF). J417

I Theorem 47 (Dynamics). For a proof-net R of normal form S, we have Ex(RF) = SF.418

Proof. This result is a consequence of lemma 46 by induction of the number of cut-elimination419

steps from R to S, as well as the fact that Ex(SF) = SF since S does not contain cuts. J420

I Example 48. Take the following reduction S  S ′ of proof-structure:421

A⊥1 A1

`
A⊥1 `A1

A2 A⊥3

⊗

A2 ⊗A⊥3
cut

ax
ax

 A⊥1 A1 A2 A⊥3

cut
cut

ax
ax

,422

then Ex(SF) = Ex([+c.pA⊥1 `A1(l · x),+c.pA2⊗A⊥3 (r · x)]+ [−c.pA⊥1 `A1(x),−c.pA2⊗A⊥3 (x)] +423

[+c.pA2⊗A⊥2 (l · x),+c.pA⊥1 `A1(r · x)]) and Ex(SF) = ∅. This is equal to Ex(S ′F) as the only424

correct saturated diagram for SF (made by duplicating the star representing the cut) has no425

free rays. If we look at the following reduction S  ∗ S ′ instead:426
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A⊥1 A1

`
A⊥1 `A1

A⊥2 A3A2 A⊥3

⊗

A2 ⊗A⊥3
cut

ax ax ax

 
A⊥1 A1 A⊥2 A3A2 A⊥2

cut

cut

ax ax ax

 ∗
A⊥2 A3

ax
427

Then Ex(SF) = [+c.pA⊥1 `A1(l · x),+c.pA⊥1 `A1(r · x)] + [+c.pA⊥2 (x),+c.pA2⊗A⊥3 (l · x)]+428

[+c.pA2⊗A⊥3 (r · x),+c.pA3(x)] + [−c.pA⊥1 `A1(x),−c.pA2⊗A⊥3 (x)]). Computing the executions,429

one obtains Ex(SF) = [+c.pA⊥2 (x),+c.pA3(x)] = S ′F.430

4 Interpreting the logical content of MLL431

4.1 Correctness of proof-structures432

As mentioned above, proof-structures are more permissive than sequent calculus proofs.433

In other words, some proof-structures do not represent proofs, and the syntax of MLL is434

therefore restricted to proof-nets, i.e. proof-structures that do represent sequent calculus435

proofs. A beautiful result of Girard, analysed by many subsequent works [10, 9, 37, 41, 11], is436

that those proof-structures that are proof-nets can be characterised by a topological property437

called a correctness criterion. While Girard’s original criterion, called the long-trip criterion438

[18], is about the set of walks in a proof-structure, we will here work with Danos and Regnier’s439

simplified criterion [10].440

I Notation 49. Given a proof-structure S = (V,E, s, t, `V , `E), we write `(S) the subset441

P ⊆ E of `-labelled edges, i.e. `(S) = {e ∈ E | `E(e) = `}.442

We now define correction graphs, which are the undirected hypergraphs obtained by443

removing one source of each `-labelled edge. The Danos-Regnier criterion then states that a444

proof-structure is a proof-net if and only if all correction graphs are trees.445

I Definition 50 (Correction Graph). Let S = (V,E, s, t, `V , `E) be a proof-structure. A446

switching is a map σ : `(S) → {l, r}. The correction hypergraph Sσ is the undirected447

hypergraph (V,E, s′) induced by the switching σ is defined by letting s′(e) = {v} ∪ t(e) where448

v is the left (resp. right) source of v in S when e ∈ `(S) and σ(e) = l (resp. σ(e) = r), and449

s′(e) = s(e) ∪ t(e) for e 6∈ `(S).450

I Theorem 51 (Danos-Regnier correctness criterion [10]). A proof-structure S is a proof-net451

if and only if Sσ is a tree for all switching σ.452

I Remark 52. Each correction graphs can be defined as the union of two graphs: one which453

comes from the axioms and is uniquely defined by the proof-structure, and one which is454

obtained from edges that are not axioms and is dependent on the switching. This point of455

view allows for an interactive formulation of the correctness criterion in which the set of456

axioms is tested against graphs corresponding to switchings [42].457

4.2 Reconstruction of correctness458

We have already seen in the previous section how constellations can represent proofs. We459

now explain how to define tests to allow for an interactive, internal, representation of the460

correctness criterion. This is done by translating the Danos-Regnier criterion within the461

framework of stellar resolution.462

We now use two colours c (computation) and t (testing). A vehicle will be coloured with463

the colour c when we want its execution by connecting it with cuts and it will be coloured464

with the colour t when being subject to tests against ordeals.465
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I Definition 53 (Ordeal). Let S be a MLL proof-structure and σ one of its switchings. The466

ordeal SFσ associated to Sσ is the constellation obtained by translating all the vertices of SFσ467

in the following way:468

(Cde )F = [−t.AddrS(Cde ),+c.qCde (x)] for e ∈ Ax(S),469

(A`L B)F = [−c.qA(x)] + [−c.qB(x),+c.qA`B(x)],470

(A`R B)F = [−c.qA(x),+c.qA`B(x)] + [−c.qB(x)],471

(A⊗B)F = [−c.qA(x),−c.qB(x),+c.qA⊗B(x)],472

We add [−c.qA(x), pA(x)] for each conclusion A473

We define qA(t) as a shortcut for pA(g · t) with g a constant only used for that definition.474

I Theorem 54 (Stellar correctness criterion). A proof-structure S is a proof-net if and only if475

for all switching σ, we have Ex(+t.Sax · −c.Scut · SFσ ) = [pA1(x), ..., pAn(x)] where A1, ..., An476

are the conclusions of S.477

Proof (Sketch). (⇒) One can observe that an ordeal SFσ perfectly reproduces the structure of478

Sub = (V Sσ , ESσ−Ax(S), s′) which is always a forest (because it is made of the syntactic tree479

of A1, ..., An) and so is (−c.Scut ·SFσ )[c, t]. We can construct a saturated diagram of −c.Scut ·480

SFσ by connecting all its stars and by cancelling the free rays not corresponding to conclusions481

thanks to the cuts in −c.Scut. This connexion corresponds to the contraction of a forest and we482

end up with the constellation Σord = σA1 +...+σAn where pAi(x),−t.B1(t1), ...,−t.Bm(tm) ∈483

σAi for each B1, ..., Bm subformulas of Ai which are conclusions of axioms. If S is a proof-net484

then Sσ must be tree. In this case, (+t.Sax · Σord)[c, t] must by acyclic (otherwise, we would485

have a cycle in Sσ). Since all matchings are exact (i.e produce equations t .= t), we have a486

unique correct saturated diagram with free rays pA1 , ..., pAn . (⇐) If Ex(+t.Sax·−c.Scut·SFσ ) =487

[pA1(x), ..., pAn(x)], it means that (+t.Sax · −c.Scut · SFσ )[c, t] is acyclic (otherwise we would488

have infinitely many correct saturated diagrams because only axioms cause cycles). Since489

the ordeal together with the translation of axioms are designed to reproduce the structure490

of Sσ, then Sσ must by acyclic. Since the normalisation produces only one unique star, Sσ491

must be connected. Therefore, Sσ is a tree and S is a proof-net. J492

I Corollary 55 (Corollary of the proof of Theorem 54). All correction graphs of a proof-structure493

S are acyclic if and only if +t.Sax · −c.Scut · SFσ is strongly normalising.494

I Example 56. We have two proof-structures for a chosen switching together with their495

corresponding ordeal7:496

A B

⊗

A⊗B

A⊥ B⊥

`L
A⊥ `B⊥

ax
ax

[−t.pA⊗B(l·x)
+c.qA(x) ] + [−t.pA`B(l·x)

+c.qB(x) ] + [−t.pA⊗B(r·x)
+c.q

A⊥ (x) ] + [−t.pA`B(r·x)
+c.q

B⊥ (x) ]+

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x) ] + [−c.qA⊥ (x) ] + [ −c.q

B⊥ (x)
+c.q

A⊥`B⊥ (x) ]+

[−c.qA⊗B(x)
pA⊗B(x) ] + [−c.qA⊥`B⊥ (x)

p
A⊥`B⊥ (x) ]

497

A A⊥

⊗

A⊗A⊥

ax

[−t.pA⊗A⊥ (l·x)
+c.qA(x) ] + [−t.pA⊗A⊥ (r·x)

+c.q
A⊥ (x) ] + [−c.qA(x) −c.q

A⊥ (x)
+c.q

A⊗A⊥ (x) ] +

[−c.qA⊗A⊥ (x)
p
A⊗A⊥ (x) ]

498

The first one will be connected with the axioms [+t.pA⊗B(l · x),+t.pA⊥`B⊥(l · x)] +499

[+t.pA⊗B(r · x),+t.pA⊥`B⊥(r · x)]. By connecting all stars of the ordeal, we will form a500

unique correct tree-like saturated diagram normalising into the conclusion stars [pA⊗B(x)] +501

7 The purely esthetical use of the fractional notation is used to ease the reading of the stars.
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[pA⊥`B⊥(x)] since they are the only free rays. From the second ordeal, when connected502

to [+t.pA⊗A⊥(l · x),+t.pA⊗A⊥(r · x)], we can construct infinitely many correct saturated503

diagrams because of the cycle. So the vehicle does not satisfy the stellar correctness criterion.504

4.3 Reconstruction of formulas505

We here follow standard realisability constructions for linear logic [24, 33, 50]. Note that we506

explicit the trefoil property [52] instead of the special case that is usually called adjunction.507

I Definition 57 (Orthogonality). We say that two constellations Σ1,Σ2 are orthogonal w.r.t.508

a set of colours A ⊆ C, written Σ1 ⊥A Σ2, when ExA(Σ1 · Σ2) is strongly normalising. The509

orthogonal of a set of constellations is defined by A⊥A = {Σ | ∀Σ′ ∈ A,Σ ⊥A Σ′}.510

I Notation 58. Let (P,�) be a partially ordered set, and A ⊆ P . We write prefix(A) the511

set of prefixes in A i.e prefix(A) = {a ∈ A | ∀b ∈ A,¬(b � a)}.512

I Definition 59 (Order on rays). We define the following partial order on the set of rays:513

given r, r′ two rays, r � r′ if and only there exists a substitution θ such that θr = r′.514

We leave the verification that this defines a partial order to the reader. More intuitively,515

we have r � r′ when r is less specialized (thus more general) than r′. For instance,516

±f(x) � ±f(g(y)) because for θ = {x 7→ g(y)}, we have θ(±f(x)) = ±f(g(y)).517

I Definition 60 (Location). We define:518

the location ] σ of a star ρσ : |σ| → rays(S) as the set prefix({ρσ(s) | s ∈ |σ|});519

the location ]Σ of a constellation αΣ : |Σ| → Stars(S) as the set prefix(∪σ∈|Σ| ] αΣ(σ));520

the location ]A of a set A of constellations as the set prefix(∪Σ∈A ]Σ).521

I Definition 61 (Conduct). A set of constellation A is a conduct w.r.t. a set of colours522

A ⊆ C if there exists a set of constellation B such that A = B⊥A .523

I Proposition 62 (Biorthogonal closure). A set of constellations A is a conduct w.r.t. a set524

of colours A ⊆ C if and only if A = (A⊥A)⊥A .525

I Definition 63 (Intersection up to unification). Let R and Q be sets of rays. We define their526

intersection up to unification as the set:527

R eQ = prefix({m ∈ rays(S) | ∃r ∈ R, q ∈ Q, r � m and q � m}).528

We say that R and Q are disjoint when R e Q = ∅; by extension, we say that two sets of529

constellations A,B are disjoint when ]A e ]B = ∅.530

I Definition 64 (Tensor). Let A,B be disjoint conducts. We define their tensor by531

A⊗A B = ({Σ1 · Σ2 | Σ1 ∈ A,Σ2 ∈ B}⊥A)⊥A .532

I Proposition 65 (Associativity/commutativity). Given A,B,C pairwise disjoint conducts533

w.r.t. a set of colours A ⊆ C, we have A⊗AB = B⊗AA and A⊗A(B⊗AC) = (A⊗AB)⊗AC.534

I Definition 66 (Par and linear implication). Let A,B be conducts w.r.t. a set of colours535

A ⊆ C. We define: A `A B = (A⊥A ⊗A B⊥A)⊥A and A(A B = A⊥A `A B.536

I Theorem 67 (Associativity of execution). Choose a set of colours A ⊆ C. For constellations537

Σ1,Σ2,Σ3 such that ]Σ1 e ]Σ2 e ]Σ3 = ∅, we have538

ExA(Σ1 · ExA(Σ2 · Σ3)) = ExA(ExA(Σ1 · Σ2) · Σ3)539
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Proof. Since all constellations have disjoint locations, their stars cannot be connected540

together and we have SatA,∗(Σ2 · Σ3) = SatA,∗(Σ2) ] SatA,∗(Σ3). These diagrams can’t541

be connected to the ones of Σ1 which has its own saturated diagrams. Hence, SatA,∗(Σ1 ·542

ExA(Σ2 · Σ3)) = SatA,∗(Σ1) ] SatA,∗(Σ2) ] SatA,∗(Σ3). With the same reasoning, we obtain543

SatA,∗(Σ1 · ExA(Σ2 · Σ3)) = SatA,∗(ExA(Σ1 · Σ2) · Σ3). Therefore, ExA(Σ1 · ExA(Σ2 · Σ3)) =544

ExA(ExA(Σ1 · Σ2) · Σ3). J545

I Theorem 68 (Trefoil Property). Choose a set of colours A ⊆ C. For all constellations546

Σ1,Σ2,Σ3 s.t. ]Σ1 e ]Σ2 e ]Σ3 = ∅:547 (
Σ2 ⊥A Σ3 and Σ1 ⊥A ExA(Σ2 ·Σ3)

)
if and only if

(
Σ1 ⊥A Σ2 and ExA(Σ1 ·Σ2) ⊥A Σ3

)
548

I Theorem 69 (Alternative linear disjunction). Let A,B be two conducts w.r.t. a set of549

colours A ⊆ C. Then: A(A B = {Σf | ∀ Σa ∈ A, ExA(Σf · Σa) ∈ B and Σf ⊥A Σa}.550

As described in several work by the second author [50, 51, 52], the trefoil property and the551

associativity of execution ensure that one can define a ∗-autonomous category with conducts552

as objects and vehicles as morphisms. Due to the lack of space, we chose to omit this result553

which do not require new proof techniques and involves lots of bureaucratic definitions to554

deal with locations. We instead prove full soundness and completeness results.555

4.4 Truth and Soundness556

We will now define the interpretation of MLL formulas, which depends on a basis of557

interpretation, and then prove full soundness and full completeness for MLL+MIX, that is558

the system obtained by adding to MLL sequent calculus the MIX rule, corresponding to the559

axiom scheme A`B( A⊗B. It is known that the correctness criterion for the MIX rule560

consists in taking the Danos-Regnier correction graphs and checking for acyclicity (but not561

connectedness). The proof of Theorem 54 shows how the orthogonality of a vehicle w.r.t.562

the ordeal coincides with MLL+MIX correction, since the constellation +t.Sax · −c.Scut · SFσ563

is strongly normalisable if and only if the structure S is acyclic. This is the key ingredient in564

the proof of full completeness. We are still working on obtaining similar results for MLL565

without MIX, using the results of Section 4.2.566

We chose to fix the set of colours used, and omit the subscript that appeared in the567

constructions of the previous section. We also use a notion of localised formulas, following568

previous work of the second author [50, 51, 52]: it is defined using the same grammar as MLL569

formulas, except that variables are of the form Xi(j), where j is a term (here constructed from570

unary symbols r, l and pA for all occurrences of formulas A) used to distinguish occurrences,571

and one expect each occurrence to appear at most once in a formula.572

A basis of interpretation is a function Φ associating to each integer i ∈ N a conduct573

Φ(i) in such a way that the conducts (Φ(i))i∈N are pairwise disjoint. We moreover fix a574

bijection ϕ : Addrx(S)×N→ N, where Addrx(S) is the set of addresses AddrS(_, x) – i.e.575

the countable set of all terms of the form pA(t(x)) where A ranges over conclusions of S and576

t is a term constructed from the unary symbols l and r. While the interpretation depends577

on the choice of ϕ, we will not indicate it in the notation for the sake of clarity.578

In the next definition, we use the substitutions θr and θl which are defined as the identity579

for all variables except for x, and are defined respectively by θr(x) = r(x) and θl(x) = l(x).580

I Definition 70 (Interpretation of formulas in proof-structures). Given Φ a basis of interpret-581

ation, and A a MLL formula occurrence identified by a unique unary function symbol pA(cf.582

Definition 40). We define the interpretation IΦ(A, t) along Φ and a term t inductively:583
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IΦ(A, t) = Φ(ϕ(t, i)) when A = Xi;584

IΦ(A, t) = Φ(ϕ(t, i))⊥ when A = X⊥i ;585

IΦ(A⊗B, t) = IΦ(A, u)⊗ IΦ(B, v) where u = θl(t) and v = θr(t);586

IΦ(A`B, t) = IΦ(A, u) ` IΦ(B, v) where u = θl(t) and v = θr(t).587

We then define IΦ(A) as IΦ(A, pA(x)). We extend the interpretation to sequents by letting588

IΦ(` A1, ..., An) = IΦ(A1) ` ...`Φ (An).589

I Definition 71 (Proof-like constellations). A constellation Σ is proof-like w.r.t. a set of590

addresses A = {l1, . . . , lk} if ]Σ = A and Σ consists of binary stars only.591

The proof of the following result is a simple induction, combined with Theorem 47 to592

ensure that Ex(SF) is proof-like w.r.t. the set ]S of addresses of conclusions of axions in S.593

I Theorem 72 (Full soundness). Let S be a MLL+MIX proof-net of conclusion ` Γ and Φ a594

basis of interpretation. We have Ex(SF) ∈ IΦ(` Γ), and Ex(SF) is proof-like w.r.t. ]S.595

We now consider syntax trees of formulas as incomplete proof-structures, where axioms596

are missing. We can extend the notion of switching to those pre-proof-structures, and define597

their ordeal (as ordeals are defined without considering axioms hyperedges8). This is extended598

to sequents and used in the next lemma: given a sequent ` Γ one can consider switchings σ599

of ` Γ and ordeals (` Γ)?σ. We also define ]Γ as the set of addresses of occurrences of atoms600

of Γ seen as a pre-proof-structure.601

I Lemma 73. Let Φ be a basis of interpretation, ` Γ a sequent, and σ a switching of ` Γ.602

Then Ex{c}((` Γ)?σ) ∈ (IΦ(` Γ))⊥.603

Proof sketch. The proof is done by induction.604

If ` Γ has only formulas Xi or X⊥i , then there is a single switching (there are no `), and605

Ex{c}((` Γ)?σ) =
∑

[−t.pXi , pXi ]. Since an element Σ ∈ IΦ(` Γ) is necessarily strongly606

normalisable and this implies that Σ · Ex{c}((` Γ)?σ) is strongly normalisable, this shows607

the result.608

If ` Γ =` ∆, A`B, then a switching σ of ` Γ is a switching σ̄ of ` ∆, A,B extended to the609

additional ` connective linking A and B. It should be clear that Ex{c}((` ∆, A`B)?σ) =610

Ex{c}((` ∆, A,B)?σ̄). This shows the result, since IΦ(` ∆, A`B) = IΦ(` ∆, A,B).611

If ` Γ =` ∆, A ⊗ B, a switching of ` Γ is a switching of ` ∆, A,B, and Ex{c}((`612

∆, A ⊗ B)?σ) can be defined from Ex{c}((` ∆, A,B)?σ) by colouring the terms starting613

by pA and pB with a fresh colour +u to obtain a constellation Θ and considering614

Ex{u}(Θ · [−u.pA(x),−u.pB(x), pA⊗B(x)]). Moreover, one can show that IΦ(` ∆, A⊗B)615

is generated (in the sense of bi-orthogonal closure) by a set of constellations E in which616

no star connects locations of A with locations of B. This shows the result since this617

implies that Ex{c}((` ∆, A⊗B)?σ) ∈ E⊥ and it is known that E⊥ = E⊥⊥ in general. J618

I Theorem 74 (Full completeness). If a constellation Σ ∈ IΦ(` Γ) is proof-like w.r.t. ]Γ,619

there exists a MLL+MIX proof-net S of conclusion ` Γ such that Σ = Sax.620

Proof. A proof-like constellation Σ ∈ IΦ(` Γ) w.r.t to ]Γ can always be considered as the621

interpretation of a proof-structure with only axioms; we can then construct a proof-structure622

S by considering the union of the latter with the syntax forest of ` Γ. Since Σ belongs623

8 We adapt the first case of Definition 53 and introduce the stars for atoms, i.e. for vertices that are not
the target of an hyperedge.
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to IΦ(` Γ), and for all switching σ of ` Γ (equivalently, of S) the ordeal (` Γ)?σ = S?σ is624

orthogonal to Σ, Corollary 55 shows that S is acyclic, i.e. satisfies the correctness criterion625

for MLL+MIX. J626

5 Perspectives and future works627

While we have shown here how to reconstruct the multiplicative fragment of linear logic,628

an interpretation of exponential connectives should also be possible using stellar resolution.629

Extension to the MELL fragment will be particularly interesting since it allows for the630

interpretation of System F [17] and pure λ-calculus [9, 46]. In fact, Girard’s first article on631

Transcendental Syntax [29] sketches some reconstruction of the exponentials, but relies on632

constructions from later articles.633

To interpret the additive connectives ⊕,&, a way to exclude or force some choices in634

the construction of diagrams. For this purpose, Girard third article on Transcendental635

Syntax [27] mentions some involved coherence relations between stars that is not completely636

satisfying. This idea was already properly developed in Seiller’s PhD thesis [51] in the637

setting of interaction graphs; an improved and extended account can be found in a recent638

article by Nguyen and Seiller [43]. We can expect to build on the latter to interpret additive639

connectives.640

Last, but not the least, the third article on Transcendental Syntax [28] suggests to641

interpret the terms of first-order logic as multiplicative propositions and the equality as642

the linear equivalence. This extension to first-order logic is the initial motivation behind643

the present work, and the authors expect to provide a formal account of these ideas. This644

would provide computational content for first-order logic in the sense of the Curry-Howard645

correspondence, something new and fascinating that would open numerous applications.646
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