
HAL Id: hal-02895011
https://hal.science/hal-02895011v1

Submitted on 3 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agent-mediated application emergence through
reinforcement learning from user feedback

Walid Younes, Sylvie Trouilhet, Françoise Adreit, Jean-Paul Arcangeli

To cite this version:
Walid Younes, Sylvie Trouilhet, Françoise Adreit, Jean-Paul Arcangeli. Agent-mediated application
emergence through reinforcement learning from user feedback. 29th IEEE International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2020), Sep 2020,
Bayonne, France. �hal-02895011�

https://hal.science/hal-02895011v1
https://hal.archives-ouvertes.fr

Agent-mediated application emergence
through reinforcement learning from user feedback

Walid Younes
Institut de Recherche en Informatique de Toulouse

University of Toulouse, UPS
Toulouse, France

Walid.Younes@irit.fr

Sylvie Trouilhet
Institut de Recherche en Informatique de Toulouse

University of Toulouse, UPS
Toulouse, France

Sylvie.Trouilhet@irit.fr

Françoise Adreit
Institut de Recherche en Informatique de Toulouse

University of Toulouse, UT2J
Toulouse, France

Francoise.Adreit@irit.fr

Jean-Paul Arcangeli
Institut de Recherche en Informatique de Toulouse

University of Toulouse, UPS
Toulouse, France

Jean-Paul.Arcangeli@irit.fr

Abstract—Cyber-physical and ambient systems surround the
human user with applications that should be tailored as possible
to her/his preferences and the current situation. We propose
to build them automatically and on the fly by composition of
software components present at the time in the environment, but
without prior expression of the user’s needs or process specifica-
tion or composition model. In order to produce knowledge useful
for automatic composition in the absence of an initial guideline,
we have developed a generic solution based on lifelong online
reinforcement learning. It is decentralized within a multi-agent
system where agents learn incrementally from user feedback to
satisfy her/him. Different use cases have been experimented in
which applications, adapted to the user and the situation, are
composed and emerge automatically and continuously.

Index Terms—Agent, multi-agent system, online learning, re-
inforcement learning, user feedback, service discovery, selection
and composition, ambient intelligence

I. INTRODUCTION

Cyber-physical and ambient systems consist of fix or mobile
devices connected by one or several communication networks.
These devices host software components that provide services
and may require other services to operate. Components are
software building blocks that can be assembled by connecting
required services to provided ones to compose applications
[1]. For example, assembling a standard interaction component
present in a smartphone (e.g. a slider or a speech recognition
component), a software adapter and a connected lamp realizes
an application allowing a user to control the level of ambient
lighting.

Hardware and software components are generally multi-
tenant and independently managed: they are developed, in-
stalled and activated, independently of each other. Due to the
mobility of devices and users, they may appear or disappear
with unpredictable dynamics, giving to cyber-physical and
ambient systems an open and unstable nature. Besides, the

This work is partially supported by the region Occitanie, the program
FEDER-FSE Midi-Pyrénées et Garonne, and the University of Toulouse III.

number of components may be large. In such a context,
component assemblies are hard to design, maintain and adapt.

At the core of these systems, the human user can use
applications at her/his disposal. Ambient intelligence [2] aims
to offer a personalized environment adapted to the situation,
i.e. to provide the right service at the right time, by anticipating
user’s needs, which may change over time.

Our project aims to design and build a solution that auto-
matically and dynamically assembles software components in
order to build “composite” applications adapted to the ambient
environment and the user, i.e. operational, useful and usable.
Our approach breaks with the classic top-down mode for
application development: building an assembly is not driven by
explicit user’s needs or goals, nor by a predefined process or
model; on the contrary, composite applications are built on the
fly in bottom-up mode from the components available at the
time in the ambient environment. Thus, applications emerge
from the environment, taking advantage of opportunities [3].
In this context, the user does not request for a service or
an application: on the contrary, emerging applications are
provided in push mode.

The solution relies on a middleware, called Opportunistic
Composition Engine (OCE), that periodically detects the com-
ponents and their services present in the ambient environment,
designs assemblies of components by connecting services in
an opportunistic way, and proposes them to the user. In the
absence of prior explicit guidelines, OCE automatically learns
the user’s preferences according to the situation in order to
later maximize her/his satisfaction. Learning is achieved online
by reinforcement. It is decentralized within a multi-agent
system (MAS) in which agents interact via a protocol that
supports dynamic service discovery and selection. To learn
from the user and for the user, the latter is put in the loop.

This paper focuses on agent learning and decision making
within the MAS. Opportunistic composition raises other ques-
tions (related to heterogeneity, security, reliability, resource

limitation, etc.) that are out of the scope of this paper.
The paper is organized as follows. Section II presents the

main architectural principles. Agents’ behavior and coopera-
tion features are described in Section III. Section IV focuses
on the online reinforcement learning solution. Experimental
validation results are reported in Section V. Section VI ana-
lyzes the related work and positions our solution. Last, Section
VII summarizes the contribution and discusses open issues.

II. ARCHITECTURE OF THE COMPOSITION SYSTEM

The software architecture, which a simplified view is given
in Fig. 1, has been defined in order to meet the automation re-
quirements of opportunistic composition. This section presents
the main features of this architecture.

Fig. 1. Simplified architectural view

A. Overall architecture

The Opportunistic Composition Engine (OCE) is respon-
sible for designing applications for the user by assembling
available business and interaction components. To do this,
it senses the components and their services that are present
in the ambient environment, then manages the connections
and disconnections between required and provided services
without relying on prior explicit guidelines, thereby generating
on the fly composite applications.

As there is no guideline, unknown and surprising ap-
plications may emerge. Those should be presented to the
user. Indeed, we consider their deployment should remain
under human control whatever the engine’s choices are. This
point is particularly important in the field of human-machine
interaction, for which the control by the user of her/his
interaction environment is of the highest importance [4]. As a
consequence, the user must be put “in the loop”.

Therefore, OCE proposes the emergent applications to the
user and she/he decides at the end on their deployment: she/he
can accept or reject a proposed application, but also modify
it. After acceptance, the emergent application is automatically
deployed and so usable.

Nevertheless, even if the user shares responsibilities with the
engine, she/he should be involved as little as possible [4]. OCE
should therefore be as autonomous as possible. So, it complies
with the autonomic computing principles and the MAPE-K
model [5]: in a cyclic way, OCE monitors (M) the surrounding
environment including the user’s reaction to the presented
application (accept, reject, modify), analyzes (A) it, and plans
(P) assemblies based on its knowledge (K); execution (E) is
the presentation of the planned assembly to the user.

B. MAS-based decentralization

We have designed OCE as a multi-agent system (MAS)
since agents and MAS address major challenges raised by am-
bient and IoT systems [6]: decentralization, distribution, scal-
ability, dynamics and adaptiveness. Agents are autonomous
entities that cooperate to achieve a common mission. Here,
each provided or required service is separately managed by
a dedicated service agent, that is aimed at connecting (or
disconnecting) the service.

Decentralizing OCE architecture as a MAS leads to an addi-
tional requirement concerning inter-agent cooperation: to find
an adequate connection, a service agent has to communicate by
message with other agents to reach an agreement1. Thus, we
have designed ARSA [3], an advertisement-based interaction
protocol close to the Contrat Net Protocol [7]. ARSA relies on
asynchronous (non-blocking) messages, and supports cooper-
ation between agents in a context of dynamics and openness:
inter-agent cooperation goes on even if messages are lost or
services disappear with their agents; besides, agents associated
to appearing services are automatically integrated through
advertizing or receiving advertisements from the others.

Under ARSA, service agents may send 4 types of message:
(1) Advertize – the sender declares its service is available for
binding (this is close to publication of services in SOA but
concerns the required services in the same way) (2) Reply –
the sender answers positively to an advertizer agent (negative
answers are dropped) (3) Select – when receiving a Reply
message (it may receive none, one or several replies), an agent
can drop, memorize, or select it (it can also select a previously
memorized reply) then send a Select message to the replier (4)
Agree – the agent which has received a Select message finally
agrees (if so, the connection can be effectively made).

III. AGENT’S BEHAVIOR AND COOPERATION

Each OCE agent manages a software service and interacts
with other agents via the ARSA protocol in order to connect
its service2. Periodically, an agent perceives a set of ARSA
messages. Then it decides which one it is going to answer to.
For that, it first builds its own representation of the current
situation from the messages it received. Next, it compares this
current situation with the situations it has already encountered,
and scores it from similar ones. Lastly, it chooses the action
to be performed (i.e. the agent to answer to). This is repeated
along the message exchanges until the end of the current OCE
cycle (an OCE cycle consists in sensing the environment, plan-
ning an assembly, presenting it, and getting user feedback).

A. Construction of the current situation

A current situation is a local (individual) view of the
ambient environment, i.e. a set of agents with whom it is
possible to connect. The current situation Sit of an agent Ai

lists the service agents sensed by Ai (i.e. the ones from which
Ai has received a message) during the OCE cycle t, which

1In this paper, we disregard service description and matchmaking issues,
as well as efficiency of the routing of messages.

2To simplify, we improperly talk about connection between agents.

services are compatible3 with the one of Ai. It is a set of pairs
(Aj , ARSA Type) where Aj identifies the message sender
and ARSA Type is Advertize, Reply, Select or Agree. Sit is
incrementally built and updated throughout the OCE cycle t4.

B. Comparison with the reference situations

Over time, depending on the hardware and software com-
ponents in the varying ambient environment, an agent may
encounter various situations. A reference situation Ref ik is a
situation, numbered k, that an agent Ai has encountered in the
past (in a previous OCE cycle). Close to the current situation, it
is composed of a set of agents, which services are compatible
with the one of Ai, sensed by Ai in the environment at a
given time: Ref ik is a set of pairs (Aj , Scoreij), where Aj is
the identifier of a message sender, and Scoreij is a numerical
value that represents Ai’s interest in connecting its service to
the one of Aj in this situation (Sec. IV-B explains how this
knowledge is built and maintained through learning).
Ai memorizes a set of reference situations that constitutes

its knowledge base, noted Ref i. Comparison step aims to
select from Ref i the reference situations that are similar or
identical to Sit . The idea is to be able to repeat a decision
made in the past in identical or close situations.

Comparison between the current situation Sit and a reference
situation Ref ik is based on the identifiers of the agents present
in the situations, regardless of message types and scores.
The Similar S function returns a set of reference situations
with a real number for each of them, that measures the
degree of similarity dk =

|Si
t∩Ref

i
k|

|Si
t∪Refi

k|
(i.e. the proportion of

agents in common between Sit and Ref ik - known as the
Jaccard coefficient). In addition, the returned set contains only
reference situations with a dk greater than or equal to a
threshold ξ. If the current situation Sit already exists identically
in Ref i, only the latter is selected (the other similar situations
are overlooked).

Let Sit be the set of all possible current situations, and
Ref the set of all possible reference situations; thus, P(Ref)
is the set of all possible agents’ knowledge base. Similar S is
defined as follows:

Similar S : Sit× P(Ref)→ P(Ref × [0, 1])

(Sit , Ref
i) 7→ {(Ref ik, dk)}Refi

k∈Refi, ξ≤dk≤1
(1)

C. Scoring the current situation

The function Score Situation assigns a numerical value to
each agent Aj of Sit , in order to choose one of them later.
If Sit has been recognized as a reference situation, the scores
are replicated identically. Otherwise, the score Scoreij of Aj

is calculated from the scores of Aj in the selected reference
situations: it is the average score of Aj weighted by the
respective degrees of similarity.

3Two services are compatible if one of them, P , is provided and the other,
R, is required and if P includes R. If so, R and P may be connected.

4When updating the current situation with Aj , if Aj already exists in the
current situation with a different message type, the most recent one is retained.

An agent that Ai hasn’t met in the past may appear. It is
scored depending on a novelty sensitivity coefficient ν (0 ≤
ν ≤ 1), which reflects the user’s degree of acceptability of
novelty. With a probability equal to ν, it is assigned a higher
score than the better one in the situation; with a probability
(1− ν), it is assigned a medium score.

Last, if none reference situation similar to Sit exists, the
score of each agent of the current situation is set to 1

n , n
being the number of agents in Sit .

D. Choosing the agent to connect to

At this point, Ai chooses one agent from the scored current
situation. To do this, several strategies are possible depending
on the scores and the message types. Here, priority is given
to the agent with the best score. In case of equality, priority
depends on the received message type (choice is random if the
type is the same), ordered from highest to lowest as follows:
Agree, Select, Reply, Advertize5. When the decision is made,
Ai sends a message to the chosen agent Aj according to the
ARSA protocol.

Algorithm 1 summarizes the agent’s decision process.

Algorithm 1 Decision step of the agent Ai

Require: Sit : current situation, Ref i : knowledge base
1: Similarit ← Similar S(Sit , Ref

i);
2: Scored Situationit ← Score Situation(Sit , Similar

i
t);

3: Aj ← Choose Agent(Scored Situationit);

Inter-agent cooperation and connection agreements con-
tribute to the consistency of OCE global decision and the
emergence of cohesive composite applications. Section IV-B
points out the complementary contribution of the user to this
issue through her/his feedback.

IV. LEARNING PRINCIPLES

OCE cannot base its decision on guidelines specified in
advance: indeed, the user is not able to explicit a priori and
exhaustively her/his needs and preferences in any situation,
nor to translate them into assembly plans, because of the
dynamics and unpredictability of the surrounding environment,
the variability of her/his needs and the combinatorics generated
by the number of components. Thus, OCE has to learn what
the user prefers at a given moment in order to make decisions
in same or similar future situations.

A. How to learn?

The lack of initial data and solutions known in advance
makes supervised and unsupervised learning impossible. In
addition, environment dynamics, with services appearing and
disappearing unpredictably, makes very difficult or even im-
possible to build a static model of prediction or classification.
Hence, learning must be done online: OCE iteratively learns
by progressive adaptation of the agents’ knowledge. Agents

5In relation to the learning method, Sec. IV-C explains why and how the
chosen agent is not automatically the best scored.

increment and update their knowledge as the experience goes
along, according to the interactions with the user and the
feedback she/he provides.

According to the online learning model, OCE makes a
“prediction” (the assembly), and the “environment” (the user)
provides an answer about its correction depending on its
preferences and actual needs. However, the feedback given
in our case by the user does not have the accuracy of the
answer given by the environment in standard online learning:
in particular, it can evolve over time as the situations and
the user’s needs or preferences change. For this reason, we
hybridize the principles of online learning with those of
reinforcement learning [8]. Reinforcement learning aims at
learning what to do (mapping situations to actions) so as to
maximize a numerical reward. It allows the learner to adapt
over the long term by interacting with its environment. Here,
the user’s response helps to reinforce the agents’ knowledge.
Then, agent’s decisions at the OCE cycle t + 1 rely on the
knowledge that it has accumulated up to the cycle t.

Note that this approach does not exclude the use of a priori
knowledge (for example, general rules or patterns for assem-
bling business components, ergonomic rules for assembling
interaction components), that could be provided initially.

Finally, due to the dynamics of both the surrounding envi-
ronment and the user’s needs, learning must also be lifelong,
which does not exclude phases of knowledge stabilization.

B. Agent-level learning based on user feedback

Agents’ knowledge is created and updated at the end of
the OCE cycle, after the interaction with the user. At this
point, the user feedback (concerning the entire assembly) is
sent back to OCE and propagated to every agent Ai involved
in the assembly (connected to an agent Aj). Each Ai has to
build a new reference situation from both its scored current
situation and a reward derived from the feedback about its
connection choice. β being the reinforcement factor (β > 0),
this reward rij is computed as follows:

1) The user has entirely accepted the presented assembly.
Ai decision to connect to Aj is rewarded positively:

rij = β

2) The user has entirely rejected the presented assembly.
Ai decision to connect to Aj is penalized:

rij = −β
3) The user has modified the presented assembly

– If the user has replaced the connection between Ai

and Aj by one between Ai and Ah, the first connection
is penalized and the new one is positively rewarded:

rij = −β
rih = |Scoreij − Scoreih|+ β

– If the user has kept (respectively removed) a connec-
tion: the reward is computed as in the case of an accep-
tance (respectively rejection) of the whole assembly.
– If the connection between Ai and Aj didn’t exist
in the proposed assembly, and the user has added this
connection, rij must be such that, in the future, in the

same situation, Ai will prefer Aj to all the other agents.
Hence (Sit being the current situation of Ai):

rij = maxAk∈Si
t
Scoreik + β

The new reference situation is derived from the current
situation of Ai (a set of agents Aj with their scores Scoreij
on which Ai has made its decision, see Sec. III): in case of
reward, Scoreij is updated according to the formula (2) derived
from the one of the “bandit algorithm” [8], where α is the
learning factor (0 ≤ α ≤ 1). There, (1−α)Scoreij represents
the part of knowledge that Ai keeps from the past and α · rij
the part it learns in the current OCE cycle.

Scoreij = Scoreij + α(rij − Scoreij) (2)

Last, the reference situation is normalized so as the sum of
the scores equals 1, and stored in Ref i.

C. Exploitation vs exploration

When deciding of an action, reinforcement learning usually
supposes a balance between exploitation of learned data and
some exploration in order to build new data. This balance
is determined by a value ε, 0 ≤ ε ≤ 1: along the ARSA
exchanges, the chosen agent (see Sec. III-D) may be the “best”
with a probability (1 - ε) that promotes knowledge exploitation,
or another agent with a probability ε, promoting exploration.

V. PROTOTYPE AND EXPERIMENTATION

This section presents the current state of implementation,
and several experiments which show that construction of
current situations, creation and evolution of knowledge, and
its exploitation by the agents are carried out correctly.

A. Implementation

A prototype version of OCE has been implemented in Java
according to the principles presented above. It works in con-
junction with a user-dedicated Interactive Control Environment
(ICE) [9], and can be connected to real component platforms.
To experiment, we have developed an interface that simulates
the interaction between OCE and the ambient environment: it
allows to enter components by hand and run OCE (with ICE)
cycle by cycle and trace agents’ behaviors and knowledge.

B. Experimentation

Here is the use case. Mary is at work. The ambient space
holds components supplied by her company: a room Planner
providing the Book service, a booking Desk providing the
Order service and requiring both Book and Notify, and a
Tactile input device that requires Order. There also are Mary’s
personal components: Text and Voice input interfaces both
requiring Order, and Mary’s Calendar that provides Notify.

In what follows, we demonstrate OCE behavior with α =
0.4, β = 1, ε = 0.2, ν = 0.33 and ξ = 0.5. We focus on the
agent B that manages the provided Order service of Desk.
We show how it works and learns about the agents A1, A2,
and A3 that respectively manage the Order services required
by Text, Voice and Tactile. To experiment, we assume the
same environment (described above) in the first three cases and

we make agents’ knowledge vary. The experiences described
below can be viewed in a video6.

1) Composition without knowledge: OCE is started and
runs until an assembly emerges. Since B has no knowledge
yet, the same score of 1

3 is assigned to A1, A2 and A3, that
are the candidates for connection in the current situation of
B. Fig. 2 shows a screenshot of the ICE interface with the
resulting assembly (here, the random choice of B has been
A1): an application that allows Mary to book a room for a
meeting. Agents’ IDs have been added on the screenshot.

Fig. 2. Presentation of the emergent application (ICE screenshot)

As Mary prefers the Voice component, she modifies the
assembly using ICE functionalities. Fig. 3 shows the result.

Fig. 3. The application after Mary’s input (ICE screenshot)

Then, OCE learns from this modification: from the cur-
rent situation {(A1, 0.33); (A2, 0.33); (A3, 0.33)}, it builds the
reference situation RefB0 = {(A1, 0); (A2, 0.6); (A3, 0.4)}
by reinforcement and normalization, and stores it in the
knowledge base RefB of B.

2) Composition with exact knowledge: OCE has previously
run and RefB contains RefB0 (see above). As the current
situation exactly matches RefB0 , B chooses to connect to A2.
As a result, ICE displays the same assembly as in Fig. 3. In this
situation, OCE has therefore tailored to Mary’s preferences.
Since Mary accepts the OCE proposition, RefB0 is reinforced
and updated to {(A1, 0); (A2, 0.66); (A3, 0.34)}.

3) Composition with approximate knowledge: OCE has
previously run and, C1, C2, C3 being agents managing ser-
vices previously encountered, RefB contains

6https://www.irit.fr/∼Sylvie.Trouilhet/demo/wetice2020.mp4

• RefB1 = {(A1, 0.42); (A2, 0.58)}
• RefB2 = {(A1, 0.48); (C1, 0.26); (C2, 0.26)}
• RefB3 = {(A1, 0.19); (A2, 0.43); (A3, 0.19); (C3, 0.19)}

The respective degrees of similarity with the current situation
are d1 = 0.67, d2 = 0.2, d3 = 0.75. As d2 < ξ, only RefB1
and RefB3 are selected and combined to build the scored
current situation {(A1, 0.30); (A2, 0.50); (A3, 0.19)}. Then A2

is selected (4 times out of 5 due to possible exploration
as ε = 0.2). After Mary has accepted, then reinforcement
and normalization, the new reference situation RefB4 =
{(A1, 0.25); (A2, 0.59); (A3, 0.16)} is added to RefB .

4) Composition as the environment changes: In the next
OCE cycle, we have stopped Voice and added a novel com-
ponent requiring Order, managed by A4. In presence of A1,
A3 and A4, only RefB4 is selected (d4 = 0.5). So, the
scored situation is {(A1, 0.25); (A3, 0.16); (A4, 0.16)} two out
of three times as ν = 0.33, which leads B to choose A1,
{(A1, 0.25); (A3, 0.16); (A4, 0.26)} otherwise.

Experimentation on more complex real use cases is under-
way, as well as quantitative performance evaluation depending
on the number of services and the possible connections.

VI. RELATED WORK

Sheng et al. [10] survey standards and research work on
Web service composition. They identify automation of ser-
vice selection, composition adaptability, scalability, and cus-
tomization as major requirements, and state that adaptability
and autonomy of service composition and ubiquitous service
composition are issues that require significant research efforts.

The automatic composition problem differs on whether a
model of the composition is known in advance or not. In the
first case, the problem is to find the different services that make
possible the instantiation of the model while adapting it to the
context. For example, MUSIC [11] supports plan selection
at runtime and their implementation and adaptation to the
context to maximize application utility. In [12], a rule-based
engine builds applications at runtime and pushes them to the
user when particular contextual situations are detected. In the
second case, goals or pre- and/or post-conditions are specified,
and services are built to satisfy them. For example, MUSA
[13] supports service composition and adaptation in dynamic
and unpredictable environments based on user goals, which
may change dynamically. In [14], the surrounding environment
is automatically and dynamically configured based on goals
and the services present at the time. Solutions for service
composition in ambient systems, based on goals expressed
in different ways, are studied in [15]. Hence, in any slution,
service composition is made up top-down from a pre-declared
specification contrary to our bottom-up approach, which some-
how learns these specifications at runtime.

Ambient intelligence systems aim at minimizing user in-
volvement. In [16], the user can select, accept, reject, or
adjust applications, change her/his preference, even put off
automatic adaptation. In [17], the emphasis is put on feedback:
authors argue that user preferences and profile can be learned
(by semi-supervised reinforcement learning), and associated to

https://www.irit.fr/~Sylvie.Trouilhet/demo/wetice2020.mp4

activity recognition. Managing user attention and disturbance
is a major requirement. For us, it remains an open issue.

Service selection mainly aims at meeting quality of service
(QoS) requirements [10]. A composition algorithm based on
the clustering of services in relation to QoS is proposed in
[18]. In order to continuously adapt component-based software
systems and build “emergent software”, authors of [19] pro-
pose a learning system based on reinforcement learning that
monitors at runtime a set of known possible configuration for a
given goal, and choose the one that maximize extrafunctional
criteria. Here, the configuration emerge, not the functionality.
In [20], self-adaptive composition of Web services in dynamic
environments maximizes the global QoS of the composition:
service composition is modelled as a Markovian decision
process with several alternative processes, the best one being
chosen using a Q-learning algorithm (a sort of reinforcement
learning algorithm). Our solution doesn’t rely on specified QoS
attributes nor precisely optimize a particular QoS criterion: in
a way, the quality of a proposed assembly is set by the user
depending on her/his preferences, then provided to the engine
as feedback data that drive OCE future decisions.

Wang et al. propose a distributed algorithm to optimize
dynamically Web service compositions in a varying environ-
ment: within a MAS, agents learn by reinforcement using a
Q-learning algorithm and share their experience to improve
efficiency and speed up the learning rate [21]. In [22], agent
coordination supports choreography of services and relies on
dialogue and the history of conversations. These cooperative
approaches seem promising and could improve our solution
by adding coordination between agents.

VII. CONCLUSION

This paper presented the principles of a new solution
for user-oriented automated service composition in ambient
spaces. Based on online reinforcement learning from user
feedback, it makes new applications emerge in bottom-up
mode without prior expression of needs, goals, or composition
models. By not embedding any predefined QoS criteria nor
user-specific preferences, our solution is generic (regardless
of the user and the application area) and evolutive (the user’s
preferences may change over time).

Each service is managed by an agent which learns from the
user and makes local decisions about connection to maximize
user satisfaction while limiting her/his involvement. For that,
the agents observe partially the environment through the mes-
sages they receive, which avoids having to predefine then iden-
tify global situation. However, having only a local view might
not be enough for efficient learning and consistent decision
making. Here, the user “in the loop” has a major role in term
of decision consistency by giving a global feedback which
is dispatched to the agents and transformed into knowledge.
Driven by this common knowledge, the aggregation of the
agents’ local decisions makes sense from a global perspective.
However, for greater consistency, our solution should evolve
towards multi-agent learning [23] based on knowledge sharing
between agents and increased coordination.

REFERENCES

[1] I. Sommerville, “Component-based software engineering,” in Software
Engineering, 10th ed. Pearson Education, 2016, ch. 16, pp. 464–489.

[2] F. Sadri, “Ambient intelligence: A survey,” ACM Computing Surveys,
vol. 43, no. 4, pp. 1–66, Oct. 2011.

[3] W. Younes, S. Trouilhet, F. Adreit, and J.-P. Arcangeli, “Towards an
intelligent user-oriented middleware for opportunistic composition of
services in ambient spaces,” in Proc. of the 5th Workshop on Middleware
and Applications for the IoT. ACM, 2018, pp. 25–30.

[4] C. Bach and D. Scapin, “Adaptation of ergonomic criteria to human-
virtual environments interactions,” in Proc. of Interact’03. IOS Press,
2003, pp. 880–883.

[5] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[6] C. Savaglio, M. Ganzha, M. Paprzycki, C. Bădică, M. Ivanović, and
G. Fortino, “Agent-based Internet of Things: State-of-the-art and re-
search challenges,” Future Generation Computer Systems, vol. 102, pp.
1038–1053, 2020.

[7] Smith, R.G., “The contract net protocol: High-level communication
and control in a distributed problem solver,” IEEE Transactions on
Computers, vol. C-29, no. 12, pp. 1104–1113, Dec 1980.

[8] R. Sutton and A. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, 2018.

[9] M. Koussaifi, S. Trouilhet, J.-P. Arcangeli, and J.-M. Bruel, “Ambient
intelligence users in the loop: Towards a model-driven approach,” in
Software Technologies: Applications and Foundations. Springer, 2018,
pp. 558–572.

[10] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
“Web services composition: A decade’s overview,” Information Sciences,
vol. 280, pp. 218 – 238, 2014.

[11] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. O. Hallsteinsen,
J. Lorenzo, A. Mamelli, and U. Scholz, “MUSIC: middleware support
for self-adaptation in ubiquitous and service-oriented environments,” in
Software Engineering for Self-Adaptive Systems, ser. LNCS, vol. 5525.
Springer, 2009, pp. 164–182.

[12] R. Karchoud, A. Illarramendi, S. Ilarri, P. Roose, and M. Dalmau, “Long-
life application,” Personal and Ubiquitous Computing, vol. 21, no. 6, pp.
1025–1037, Dec 2017.

[13] M. Cossentino, C. Lodato, S. Lopes, and L. Sabatucci, “MUSA: a
Middleware for User-driven Service Adaptation,” in Proc. of the 16th
workshop “From Objects to Agents”. CEUR-WS, 2015.

[14] S. Mayer, R. Verborgh, M. Kovatsch, and F. Mattern, “Smart Configura-
tion of Smart Environments,” IEEE Trans. on Automation Science and
Engineering, vol. 13, no. 3, p. 1247–1255, Jul. 2016.

[15] T. G. Stavropoulos, D. Vrakas, and I. Vlahavas, “A survey of service
composition in ambient intelligence environments,” Artificial Intelli-
gence Review, vol. 40, no. 3, pp. 247–270, Sep. 2011.

[16] C. Evers, R. Kniewel, K. Geihs, and L. Schmidt, “The user in the
loop: Enabling user participation for self-adaptive applications,” Future
Generation Computer Systems, vol. 34, pp. 110–123, May 2014.

[17] A. B. Karami, A. Fleury, J. Boonaert, and S. Lecoeuche, “User in the
Loop: Adaptive Smart Homes Exploiting User Feedback—State of the
Art and Future Directions,” Information, vol. 7, no. 2, Jun. 2016.

[18] M. E. Khanouche, F. Attal, Y. Amirat, A. Chibani, and M. Kerkar,
“Clustering-based and QoS-aware services composition algorithm for
ambient intelligence,” Inform. Sciences, vol. 482, pp. 419–439, 2019.

[19] R. Rodrigues Filho and B. Porter, “Defining emergent software using
continuous self-assembly, perception, and learning,” ACM Trans. on
Autonomous and Adaptive Systems, vol. 12, no. 3, pp. 16:1–16:25, 2017.

[20] H. Wang, X. Zhou, X. Zhou, W. Liu, W. Li, and A. Bouguettaya,
“Adaptive service composition based on reinforcement learning,” in
Proc. of the 8th Int. Conf. on Service-Oriented Computing (ICSOC).
Springer, 2010, pp. 92–107.

[21] H. Wang, X. Wang, X. Hu, X. Zhang, and M. Gu, “A multi-agent
reinforcement learning approach to dynamic service composition,” In-
formation Sciences, vol. 363, pp. 96–119, 2016.

[22] Y. Charif and N. Sabouret, “Dynamic service composition enabled by
introspective agent coordination,” Autonomous Agents and Multi-Agent
Systems, vol. 26, no. 1, pp. 54–85, Jan 2013.

[23] S. Albrecht and P. Stone, “Autonomous Agents Modelling Other Agents:
A Comprehensive Survey and Open Problems,” Artificial Intelligence,
vol. 258, pp. 66–95, 2018.

