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Abstract For over 30 years, the sources and the transfer dynamics of
micropollutants have been investigated in the PIREN-Seine programme. Recent
works included a wide range of chemicals and biological contaminants of emerging
concern (i.e. contaminants whose occurrence, fate and impact are scarcely
documented). This chapter presents a brief overview of research recently conducted
on contaminants as diverse as macro- and microplastics, poly- and perfluoroalkyl
substances (PFASs), pathogenic protozoa, antibiotics and the associated antibiotic
resistance. The multiscalar study of plastics and PFASs at a large spatial scale is rare;
the results produced in recent years on the Seine River catchment have provided an
original contribution to the investigation of the dynamics of these contaminants in
urban environments. The results also highlighted that pathogenic protozoa are
ubiquitous in the Seine River basin and that the contamination of bivalves such as
Dreissena polymorpha could reflect the ambient biological contamination of water-
courses. The widespread occurrence of antibiotics in the Seine River was demon-
strated, and it was shown that the resistome of biofilms in highly urbanised rivers
constitutes a microenvironment where genetic support for antibiotic resistance
(clinical integrons) and resistance genes for trace metals are concentrated.

Keywords Antibiotic resistance, Antibiotics, Bioaccumulation, Contaminants of
emerging concern, Macro- and microplastics, Pathogenic protozoa, PIREN-Seine,
Poly- and perfluoroalkyl substances, Sediment, Water, Zone Atelier Seine

1 Introduction

The Seine River basin is under severe anthropogenic pressure for a number of
reasons, including the emission of micropollutants by industrial, agricultural and
urban activities in combination with relatively low river water flow per capita
(cf. [1]). Thus, the sources and the transfer dynamics of both organic micropollutants
and trace metals have been investigated over several decades within the PIREN-
Seine programme. As regards organics, previous studies addressed this issue at
different temporal and spatial scales, focusing, for instance, on polycyclic aromatic
hydrocarbons (PAHs) (see [2]) or legacy organohalogens [3, 4]. However, due to
evolving chemical regulations, improved analytical capabilities and progress in
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ecotoxicological assessment, recent studies have included a wide range of chemicals
and biological contaminants of emerging concern. A small selection of studies
conducted since the 2010s is presented hereafter to illustrate this work, with a
brief overview of recent studies on macro- and microplastics, fluoroalkyl substances,
pathogenic protozoa as well as antibiotics and antibiotic resistance.

2 Macro- and Microplastics

2.1 Context

Water pollution by plastics and microplastics is often described as an emerging
concern. However, in the Seine River basin, boatmen have been complaining since
the 1990s about the presence of plastic bags blocking the cooling circuits of barges.
Prior to 1994, SIAAP (Greater Paris Sanitation Authority) had installed floating
booms to trap macro-waste, including plastics floating on the water surface. How-
ever, this highly visible pollution did not attract the attention of public authorities or
aquatic environment managers (e.g. it was not mentioned in the 2000 European
Water Framework Directive) or even environmental protection organisations. How-
ever, within the EU Marine Strategy Framework Directive released in 2008, litter
was listed as one of the descriptors of good ecological status. Following observations
in the ocean environment (e.g. “great garbage patch” in 1997), this issue, both
abroad and in France, has become a social issue and a research subject for scientists.

Plastics observed in freshwater reach several orders of magnitude in size and a
wide spectrum of shapes. Microplastics were brought to light in 2004 [5] and were
defined as plastic particles whose longest dimension is less than 5 mm [6]. As a
consequence, macroplastics have their longest dimension greater than 5 mm.
Macroplastics are either manufactured plastic items (primary plastics) or fragments
(secondary plastics), and microplastics are mostly secondary plastics categorised
depending on their dimensions: fibres (length�diameter) and fragments (character-
istic length�thickness) composed of different irregular shapes and spheres
[6]. More generally, anthropogenic particles (APs) cover a very broad category of
particles produced directly or indirectly by human activities. In the case of the Seine
River, APs are mostly small pieces, fragments or fibres and, regardless of their size,
originating from plastics, dyed particles or textile fibres. Special attention is being
paid to plastic fibres whose production increases by approximately 4% per year
(60,000 tons in 2016, 20% of the world plastic production [7]). Although fibres are
often not included in the key figures concerning plastic materials, they are used in
several industrial sectors including the textile industry. Plastic synthetic fibres
represent the main fraction of the world fibre production, which also includes
other artificial fibres made from natural raw material (e.g. rayon made from cellu-
lose) and natural fibres (e.g. cotton and wool). Fibres are present in the environment
and are produced by the wear and tear of larger items.
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2.2 Objectives

Since the beginning of the 2010s, research on plastic litter in continental environ-
ments has developed, even if it remains limited compared to work on the marine
environment. This research has revealed the widespread occurrence of plastic debris
in environmental compartments including the atmosphere [8] and food: salt [9],
possibly honey [10], mussels [11, 12] and also bottled water [13, 14]. These findings
have raised concerns about the human health effects of plastics [15] but also
receiving systems [16] and aquatic ecosystems [17, 18].

In 2013, the Leesu research unit launched a research project on microplastics in
urban hydrosystems, in partnership with the PIREN-Seine programme and the
Observatoire des Polluants Urbains en Ile-de-France (OPUR), which has expanded
to include the issue of macro-pollution by plastics. This project had several objec-
tives, including (1) the estimation of macroplastic mass fluxes from Paris to the
mouth of the Seine and their dynamics and (2) the identification of the sources and
fluxes of microplastics at the scale of the Parisian Metropolis, from the atmosphere to
the Seine River and the assessment of its plastic contamination from the Paris
conurbation to its mouth.

2.3 Macroplastics in the Seine River

In contrast to microplastics, macroplastic pollution is highly visible. There is a need
to investigate the occurrence and dynamics of macroplastics, in order to implement
efficient multiscale reduction policies in the Marine Strategy Framework Directive
[19]. Various methods have been proposed recently [20, 21], based on waste
production and different leakage rates into the environment; these approaches have
the major interest to allow, relatively easily, for the estimation of estimating
macroplastic flux to the ocean at the global scale.

The evaluation of these methods on data collected in watersheds is obviously the
next step and is currently underway in the Seine River basin. A first rough attempt
estimated the yearly macroplastic mass fluxes between 1,000 and 10,000 metric tons
[22]. More recently, two conceptual modelling approaches, based on the data
available in the Seine catchment, have been implemented [23]. The first one
(CM1) was based on the extrapolation of the retention efficiency of a network of
floating booms installed by the Greater Paris Sanitation Authority since 1994, which
removes 27 tons of plastics yearly [24], accounting for 0.9–6.3% of the total mass of
debris. A significant proportion of these macroplastics consists of food wrappers and
containers and plastic cutlery, most likely associated with recreational activities.
The second approach (CM2), based on the Jambeck and Lebreton methodologies
[20, 21], has calculated the amount of mismanaged plastic waste (MMPW) at the
basin scale, of which 15% and 40% are assumed to be transferred to the English
Channel. MMPW is based on (1) the population (GIS data), (2) the economic level of
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the territory considered (World Bank data), (3) per capita plastic waste production
(ADEME and ORDIF reports) and (4) an estimated 2% of littering [20].

The corresponding estimates (Table 1) were compared to the Lebreton theoretical
estimate [21]. Despite their simplicity, these methods yielded similar results, espe-
cially the two conceptual models, based on completely different conceptual repre-
sentations, i.e. between 1,800 and 5,900 metric tons a year.

At the same time, non-governmental organisations that harvest plastic litter on
river banks in the estuary only collect up to 88–128 metric tons per year [23]. The
discrepancy between these values raises new questions: does the fraction stranded on
river banks really account for such a small fraction of the total flux transported by the
river? Is the harvested fraction only a very small fraction of the stranded fraction?
Are the two conceptual models and the Lebreton approach totally erroneous?

To provide preliminary answers to these fundamental questions, these annual
fluxes were first converted to per capita fluxes. Over 1 year, plastic leakage into the
Seine River reached 0.01–0.4 kg of plastic per capita, which is far less than
estimations for the Nhieu Loc–Thi Nghe River, a tributary of the Saigon River in
Vietnam, with a median load equal to 1.6 kg per capita. It is also lower than the
average annual input of plastic for the coastal population worldwide, which reaches
0.7–2 kg per capita, with the highest values observed in South-East Asia. These
values only confirm the fact that plastic leakage in Western countries is small
compared to that reported for other parts of the world, Asia especially [20]; they
do not, however, provide any relevant information to solve the questions mentioned
above.

Other approaches are presently under investigation, which aim to understand
more precisely the dynamics and the trajectories of macroplastics in the Seine River
and especially in the Seine estuary. Such approaches might help in the implemen-
tation of new plastic harvesting strategies as well as new stringent regulations
regarding plastic litter to drastically reduce ocean plastic pollution. Pathways and
routes relevant to plastic debris remain partially unknown; in particular, the role of
floods, runoff, combined sewer overflows (CSO) and bypass of wastewater treat-
ment plants (WWTP) in plastic leakage must be investigated.

Table 1 Annual plastic mass flux to the English Channel from the Seine catchment areas

Dris [22] CM1 CM2
Lebreton et al.
[21]

Annual flux estimate (metric ton
year�1)

1,000–10,000 1,800–5,400 1,800–5,900 ~20
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2.4 Microplastic Sources and Fluxes in Greater Paris
and the Seine River

Between 2014 and 2016, an investigation of sources and fluxes of microplastics was
carried out on the Paris megacity. The following sources were investigated: atmo-
spheric fallout, runoff water, grey water, wastewater outfall and CSO. Moreover,
from April 2014 to December 2015, monthly monitoring was carried out at four
sampling stations (P2–P5) on the Seine River from upstream to downstream of Paris
plus one station on the Marne River (P1) [11] (Fig. 1).

This survey aimed at (1) estimating the various annual fluxes of microplastics in a
large urban area and (2) linking the urban fluxes to the microplastic concentration in
the Seine River and estimating the annual flux transported by this river.

Various sampling techniques (using nets or bulk water samples) were used. All
analytical details are provided elsewhere [22]. The results are summarised in Fig. 2,
which presents a first attempt at a mass balance of microplastics at the Greater Paris
scale. Concentrations of fibres and fragments (in items L�1) are provided, as well as
plastic fluxes (metric tons year�1).

Fig. 1 Map of Paris megacity and location of the various sampling sites
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Unexpected results were obtained. First of all, the number of plastic fibres (30%
of the total number of fibres) exceeded the number of fragments by several orders of
magnitude. The atmospheric fibre fallout represents a significant flux of plastic,
around 10 metric tons per year at the Greater Paris scale. Fibres are also mainly
present in grey and wastewater, and the input to WWTPs is estimated at several
hundred tons per year. WWTPs contribute significantly to the reduction of plastic
fluxes from the urban hydrosystem, and only 10% of the incoming flux is released
into the receiving system (i.e. the Seine River). During wet weather periods, CSOs
discharge huge fluxes of plastic fibre, which, based on a yearly average, are greater
than the fluxes associated with treated wastewater discharge. In separate sewer
system sectors, runoff exhibits concentration similar to those observed in WWTP
effluents, but the corresponding flux is smaller by several orders of magnitude.

Microplastic fragment concentrations are small compared to fibre concentrations
in the various compartments sampled, except in CSOs where the highest fragment
concentration is observed: their concentration reaches 50% of the plastic fibre
concentration. Thus, concerning the microplastic concentration and flux in the
Seine River, two main conclusions can be drawn:

• There is no significative difference between the upstream and downstream con-
centration or flux.

• The flux observed in the Seine River is much smaller than the sum of urban
incoming fluxes for fibres and much larger for fragments.

Fig. 2 Mass balance of microplastics at the Greater Paris scale (fibres and fragments)
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Additional surveys are necessary to decrease the uncertainties in the concentration
and flux estimates. However, these results clearly show that additional significant
sources of plastic fragments occur within the urban area, such as the inputs linked to
storm water or the fragmentation of plastic litter on the river banks. Their relative
contributions are undetermined so far.

This type of multiscalar study of plastics at the catchment scale is rare, and the
results produced in recent years in the Seine catchment are therefore original.
However, additional studies are clearly required to achieve a more comprehensive
overview of the dynamics of both micro- and macroplastics in the environment and
further insight into the ecotoxicological consequences of their presence in freshwater
ecosystems. From a water quality management point of view, the relevant figures
and numbers necessary to engage efficient actions are still missing.

3 Poly- and Perfluoroalkyl Substances (PFASs)

3.1 Context

Poly- and Perfluoroalkyl Substances (PFASs) constitute a vast family of molecules
bearing a fluorinated aliphatic chain (CnF2n+1) [25]. The industrial synthesis of these
compounds began around 1950, and world production exceeded three million tons in
2000. The numerous applications of PFASs include additives in the synthesis of
fluoropolymers, water and oil repellents for textiles, firefighting foams, lubricants,
coatings and food packaging [25]. Less than 20 years ago, perfluorooctane sulfonate
(PFOS) was found to be globally distributed in wildlife [26] and humans [27], while
concerns were raised about its adverse effects [28] before it was officially classified
as a Persistent Organic Pollutant in 2009 [29]. Since then, a large number of studies
have addressed the issues of PFAS sources and environmental fate [30]. Besides
airports and military bases, industrial sites such as fluorochemical facilities, metal
plating industries, textile mills and power plants, urban areas are also considered as
key sources of PFASs to hydrosystems [31, 32], due to either point source contam-
ination (e.g. wastewater discharge) or diffuse contamination (e.g. urban runoff).
However, the dynamics of these chemicals in urban rivers still remain poorly
understood. In this context, the aims of the studies conducted within the PIREN-
Seine programme since 2010 were twofold: (1) investigate the occurrence and the
spatio-temporal dynamics of PFASs in the Seine River under contrasted hydrolog-
ical conditions and (2) investigate the transfer of these chemicals to biota in urban
rivers.
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3.2 Dynamics of PFASs in the Seine River

A longitudinal upstream–downstream concentration gradient was previously
observed for various contaminants (e.g. PAHs, organohalogens, phthalates) in
relation to the impact of the Greater Paris conurbation [33]. The dynamics of selected
PFASs in the Seine River were investigated using a dual strategy: (1) the time trends
and mass flows were determined for a single study site during a flood cycle, and
(2) both the seasonal and spatial fluctuations at the water year scale were studied at
the regional scale.

Changes in river flow may have a large impact on the concentration of chemical
point sources, and coordinating water quality monitoring with the analysis of
hydrological conditions is essential to understand the fate and transport of trace
organics in surface waters [34]. Thus, water samples were first collected weekly over
a 4-month period in 2011 (January–May), in the centre of Paris (Quai d’Austerlitz),
right at the heart of the conurbation. This sampling site was deemed representative of
the impact on water bodies of urban inputs. Selected PFASs, including C4–C14

carboxylates (PFCAs) and C4–C10 sulfonates (PFSAs), were analysed in both the
particulate and dissolved phases of water samples using liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS) [32].

Over the period considered, the river flow rate ranged between 150 and
640 m3 s�1, and several spate events were recorded. Suspended solid (SS) levels
were generally low, in good agreement with previous reports [4]; these levels
exhibited large variations (3–60 mg L�1) and were strongly correlated with the
river flow rate [32]. Among the targeted PFASs, perfluorooctane sulfonate (PFOS)
and perfluorohexane sulfonate (PFHxS) were the dominant compounds. ∑PFASs
varied between 30 and 90 ng L�1 (average, 55 ng L�1), and PFASs were mainly
found in the dissolved phase due to the relatively low SS levels. These PFAS
concentrations were in good agreement with those determined in the Seine down-
stream of Paris during low-flow periods [35] and were close to the average value
determined for 122 watercourses at the European level (59 ng L�1) [36], which
suggests that the Seine River in Paris is not a hotspot of contamination of PFASs by
European standards. However, the median ∑PFASs for this site was approximately
three times higher than that determined at a nationwide level in France
(i.e. 7.8 ng L�1) [31]. In addition, PFOS levels (10–40 ng L�1) were lower than
the maximum allowable concentration (EQS-MAC, 35 μg L�1) but consistently
above the environmental quality standard expressed as an annual average value
(EQS-MA) of 0.65 ng L�1 in Directive 2013/39/EU.

∑PFASs and the river flow rate were negatively correlated, which suggests a
dilution of the contributions from point sources when flow increases. However, the
selected linear model explained only 25% of the observed variation of concentration.
Other contributions via the sewerage network or urban runoff are therefore likely to
influence the levels observed in the Seine River. In addition, the PFHpA to PFOA
concentration ratio, indicative of the contribution of direct (i.e. non-atmospheric)
inputs [37], was also positively correlated with flow rate. This suggests an increase
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of indirect inputs such as atmospheric deposition and subsequent urban runoff
during high-flow events, which also correspond to periods of heavier rainfall. The
cumulative PFAS mass flow was estimated based on the relationship between PFAS
concentrations and the river flow rate. The weekly PFAS mass flow ranged between
4 and 15 kg, and the total flow over the 15-week study period was estimated at about
140 kg (i.e. approximately 500 kg year�1). Such figures are in reasonable agreement
with previous estimates for the Seine River, but nearly 200 times lower than for the
Po River (Italy) [35].

To achieve further insight into the dynamics of PFASs in this system, PFAS
concentrations were monitored at the regional scale over a longer time period
[38]. For sample collection, three sites previously used as pilot sites for nearly two
decades were selected (Marnay, Bougival and Triel, from upstream to downstream;
see [1] for site location). A wider range of chemicals was analysed: 11 PFCAs,
5 PFSAs, FOSA and its N-alkylated derivatives (MeFOSA, EtFOSA) and
1 fluorotelomer sulfonate (6:2 FTSA). Four 1-month campaigns were undertaken
over a 1-year period (September 2011 to December 2012), and the results based on
grab samples (2–4 per campaign) confirmed the ubiquitous character of PFASs,
since they were detected in all samples.

In the water column, total PFAS levels ranged from 2 to 90 ng L�1. A significant
upstream–downstream gradient was observed, associated with the increase in
anthropogenic pressure on the fluvial ecosystem (Fig. 3). The levels observed at
Triel were on average ten times higher than those observed at Marnay, with
intermediate levels being observed at Bougival. In accordance with previous obser-
vations, PFOS, PFHxS and PFOA were the dominant compounds at Marnay and
Bougival, but a non-negligible contribution of the shorter-chain (C5–C7) carboxylic
acids was also reported. A notable feature was the sharp increase in the relative
abundance of 6:2 FTSA at Triel. This compound has been used as an alternative to
PFOS (metal plating), but it may also result from the degradation of more complex
fluorotelomer-based compounds used in firefighting foams or food packaging
[25]. The high levels of 6:2-FTSA observed at Triel, on average nine times higher
than those observed at Bougival, could also result from the influence of an industrial
source located in the nearby Oise basin. The hypothesis of the existence of distinct

Fig. 3 Correlation between PFOS levels and river flow rate in the Seine River
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sources for this compound downstream of the basin is reinforced by the lack of
correlation between its levels and those of major PFASs (e.g. PFOS).

During this monitoring study, the river flow rate was in the range 30–100 m3 s�1

at Marnay and 170–500 m3 s�1 at Triel. At each site, PFAS levels appeared constant
under stable hydrological conditions over short monitoring periods (e.g. 4 weeks),
while the molecular pattern remained unchanged for a given site. Seasonal variations
were examined at the water year scale, and the highest PFAS concentrations
appeared to be associated with low-flow conditions. At the downstream sites
(e.g. under the influence of the Paris conurbation), all major PFASs displayed
negative correlations with flow rate, strongly suggesting that point sources were
predominant. However, at the farthest upstream site, a few compounds only were
negatively correlated with flow rate (e.g. PFOS; see Fig. 3), and no significant trend
was found between ΣPFASs and flow rate. Thus, the upstream site (Marnay), located
in a rural area between the urban centres of Troyes and Paris, appeared to be rather
under the combined influence of point and diffuse PFAS sources.

The average PFAS daily flow in the Seine River increased by a factor of about
80 between Marnay (upstream) and Triel (downstream), thereby providing evidence
of the major contribution of the Paris conurbation. The order of magnitude of the
annual total PFAS mass flow estimate was 10 and 800 kg year�1 at Marnay and
Triel, respectively. These figures are in good agreement with those previously
determined in the centre of Paris (around 500 kg year�1), especially considering
the methodological differences between the two studies (e.g. sampling frequency).

3.3 Transfer of PFASs to Biota in the Seine River Basin

Considering the current mechanistic understanding of PFAS bioaccumulation,
experimental studies are still needed to characterise the transfer of these chemicals
within food webs. In the PIREN-Seine programme, the bioaccumulation of PFASs
was investigated through several field studies that addressed this issue at different
levels of biological organisation. In particular, two model organisms were selected,
namely, (1) common chub, Leuciscus cephalus, a fish species widely used for water
quality monitoring, and (2) periphytic biofilm. Note that only the results obtained
with the latter are shown below.

Periphytic biofilms are mainly composed of both heterotrophic and autotrophic
microbial cells embedded in an exopolymer matrix comprising polysaccharides and
proteins [39]. At the interface of the water column and solid substrates such as bed
sediment, they may play a central role in controlling contaminant bioavailability and
transfer to consumers such as invertebrates or fish that graze on it.

Biofilm samples (3–4 per site, n ¼ 11) were collected on artificial support
(low-density polyethylene) colonised in situ. High detection frequencies
(80–100%) were observed for C8–C12 PFCAs, PFHxS and PFOS. ∑PFASs were
in the range 4.3–33 ng g�1 dw, and concentrations in biofilm samples largely
exceeded those of sediment samples [38]. The linear isomer of PFOS dominated
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the molecular pattern (>50% of ∑PFASs), in agreement with profiles commonly
reported for aquatic wildlife [40]. It can be speculated that PFASs were not only
absorbed at the biofilm cell surface, but that they may also have been incorporated
within the extracellular polymeric matrix or undergo intracellular accumulation
[41]. These results imply that periphyton may constitute a key entry point for
PFASs at the base of riverine food webs and a major source of PFASs for grazers.

The bioconcentration factor (BCF) is a useful metric to assess the
bioaccumulation potential of a chemical. BCFs were calculated for PFASs detected
in both dissolved phase and biofilm samples. The log BCF values ranged between
1.0 and 4.1 (Table 2), which is consistent with observations for other trace organics,
e.g. pesticides [42].

Moderate BCFbiofilm was reported for PFNA, PFDA and linear PFOS, larger than
those of shorter-chain compounds such as PFHxS (Table 2). This highlights the
importance of perfluoroalkyl chain length and functional group on PFAS
bioaccumulation potential; the influence of such structural features on PFAS
bioaccumulation in fish, as well as on the sediment–water partitioning, was exten-
sively investigated in a tributary of the Seine River and is discussed in detail
elsewhere [43]. The upstream–downstream gradient of PFAS levels in biofilm was
comparable to the contamination gradient observed for water samples, i.e. displaying
maximum values downstream of Paris. However, BCFs were significantly higher at
the upstream sites than at the downstream sites (Table 2). Principal component
analysis revealed the dependence of BCF on the dissolved phase concentration,
which would be consistent with the conceptual model developed by Liu et al. [44]
(i.e. adsorption-like process or PFAS–protein interaction). In addition, negative
correlations were also observed between BCF and major cations (except for Ca2+,
unaffected by the longitudinal gradient), as observed for another model organism,
the planktonic crustacean Daphnia magna [45]. However, this does not provide
evidence of a causal relationship, and this result may be coincidental due to the
collinearity between PFAS levels and major cations. Finally, the organic C/N ratio
(i.e. proxy of bacteria/algae relative abundance) [46] was the only descriptor of
biofilm characteristics positively correlated with BCF. Altogether, these results
suggest that biofilm community characteristics may also be a determinant of PFAS
bioaccumulation in periphyton.

Table 2 Log BCF (mean � SD) calculated for compounds detected in both water (dissolved
phase) and biofilm [38]

Log BCF PFOA PFNA PFDA PFHxS PFUnDA PFOS 6:2 FTSA

Marnay 2.9 � 0.1 4.0 3.6 � 0.6 2.0 � 0.2 _ 3.8 � 0.1 3.6

Bougival 2.3 � 0.1 3.5 � 0.4 3.0 � 0.6 1.4 � 0.2 _ 3.1 � 0.2 1.5

Triel 2.3 � 0.1 3.6 � 0.6 3.2 � 0.1 1.6 � 0.1 3.9 3.2 � 0.1 1.4 � 0.2
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4 Pathogenic Protozoa

4.1 Context

The increase of anthropogenic pressures on ecosystems has led to the increased
frequency of pollution episodes by biological agents. Among these pollutions, the
faecal contamination of aquatic environments affects numerous regions of the world,
with proven risks to human health [47].

Three protozoan parasites are clearly identified as public health priorities: Cryp-
tosporidium spp., Giardia duodenalis and Toxoplasma gondii. Cryptosporidium and
Giardia are responsible for cryptosporidiosis and giardiasis, respectively. They can
cause significant morbidity in immunocompetent patients, and Cryptosporidium can
lead to death in immunocompromised patients [48]. T. gondii is responsible for
toxoplasmosis, and 30% of the entire human population is chronically infected. An
infection during pregnancy may lead to serious malformations of the foetus. In
humans, the main vector of these biological agents is water contaminated by
human or animal faeces, subsequently used for drinking or irrigating crops
[49]. Their parasitic stages of transmission, i.e. oocysts and cysts, are very robust
under environmental conditions, and they are ubiquitous in aquatic habitats. Cryp-
tosporidium spp. and G. duodenalis are the protozoan parasites most often involved
in water-related epidemics (i.e. due to the ingestion of drinking water or the
accidental ingestion of contaminated water during recreational activities).

The assessment of the microbiological water quality is based on the monitoring of
the occurrence of two bacterial indicators of faecal contamination – Escherichia coli
and Enterococcus – according to the World Health Organization and European
regulations (2006/7/EC) [50]. However, they can be quickly removed from the
environment and are more sensitive than protozoa to environmental stresses
(e.g. temperature variations, pollutants) and disinfection treatments [51]. Conse-
quently, the abundance of these bacterial indicators does not reflect, or very little,
the overall sanitary quality [52, 53]. Indeed, previous studies conducted on the Seine
River demonstrated the lack of correlation between Cryptosporidium and Giardia
concentrations and bacterial indicators in wastewater and river water [54, 55]. The
authors suggest that viral and bacterial indicators are not appropriate to predict
parasite loads in surface waters.

To investigate the occurrence of Cryptosporidium and Giardia in filtered water
samples, the AFNOR NF T 90-455 standard (July 2001) proposes a detection
technique based on both immunocapture on beads and immunofluorescence revela-
tion. This detection is therefore highly specific, but it has not been applied yet to the
detection of T. gondii. Other limitations have been identified: this method requires
large volumes of water and high concentrations of parasites; it is expensive, and it
does not allow for the rapid routine detection of parasites. It is therefore urgent to
improve analytical tools for the detection of these biological contaminants for the
purpose of monitoring water masses, thereby improving the assessment and man-
agement of health risks.
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In this context, numerous studies have highlighted the value of bivalves for
aquatic environment monitoring. These organisms are sedentary, have a high filtra-
tion rate and are characterised by their ability to accumulate environmental contam-
inants. For example, the use of bivalves revealed the contamination with pathogens,
while direct measurements on water samples were negative [56]. In addition,
oocysts of Cryptosporidium parvum have been detected in mussels (Mytilus
galloprovincialis) and cockles (Cerastoderma edule) from a shellfish-producing
region in Spain. The authors counted up to 5 � 103 oocysts in the tissues of bivalves
[52]. The bioaccumulation of protozoa in bivalves is fairly well documented in
marine environments; in contrast, few studies have been conducted on continental
aquatic environments, despite their direct connections to pollutant sources
(e.g. discharge of effluents from water treatment plants, direct discharge of livestock
effluents, runoff or leaching from contaminated soil). The need for a better under-
standing of the protozoa ecology in freshwater ecosystems is increasingly
spotlighted. Therefore, particular interest was focused on the freshwater bivalve
Dreissena polymorpha (zebra mussel). Laboratory exposures have shown that
D. polymorpha was capable of (1) bioaccumulating cysts of G. duodenalis and
oocysts of C. parvum and T. gondii and (2) retaining T. gondii oocysts in its tissues
in amounts close to those found in tanks after 14 days of exposure [57, 58].

4.2 Occurrence of Pathogenic Parasites in the Seine River

In a previous study, Mons et al. [54] assessed the protozoan contamination in the
Seine River at sampling points located near the entry of drinking water plants (Ivry
and Orly) or farther downstream in Paris (Tolbiac, Alma, Garigliano) and its
periphery (Suresnes and Clichy). Cryptosporidium and Giardia were detected in
filtered water in 45% (67/149 samples) and 94% (140/149 samples) of samples,
respectively. Giardia was found more frequently and in larger quantities than
Cryptosporidium. Thus, downstream of Paris, maximum concentrations reached
245 Cryptosporidium oocysts 10 L�1 and 512 Giardia cysts 10 L�1. These authors
suggested that protozoan contamination in the Seine River was not linked to urban
runoff but to land application of cattle manure and heavy rainfalls, which contribute
to protozoan runoff from contaminated soils. Thus, Cryptosporidium and Giardia
probably originate from rural areas, not from the Paris conurbation itself.

In this context, a field study was conducted within the PIREN-Seine programme,
to further investigate the occurrence and sources of pathogenic protozoa in the Seine
River using active biomonitoring with D. polymorpha. This field survey was carried
out on three sites along the Seine River, following an upstream–downstream gradi-
ent: Marnay-sur-Seine (rural site), Bougival and Triel-sur-Seine (urban sites) (see
[1]). Zebra mussels were collected in April 2016 at the Lac du Der-Chantecoq
(N 48�36010.072800 E 4�44057.40800). Mussels measuring 2 � 0.2 cm were accli-
mated in the dark in mineral water at 12�C for 2 weeks with two water changes a
week to ensure that they were protozoan-free. Bivalves were caged in May 2016 for
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3 and 13 weeks, and three protozoa were quantified in the tissues of bivalves using
molecular biology techniques. After 3 weeks of exposure, biological contamination
by the three protozoa was observed at Marnay-sur-Seine and Bougival; T. gondii and
G. duodenalis were detected in bivalves caged in Triel (Fig. 4). Thus, these results
suggested that a 3-week caging period was sufficient to demonstrate the water
contamination by protozoa. After 13 weeks, no protozoa were detected in zebra
mussels caged at Bougival, and only T. gondii was detected in tissues of mussels
caged at Marnay and Triel.

Bougival and Triel-sur-Seine are urban sites, and the biological contamination
could be related to the high population density in this part of the Seine River basin.
Prevalence rates of cryptosporidiosis in humans range from 1% to 20%; giardiasis is
endemic in humans, and the prevalence of Giardia ranged from 1 to 5%
[59]. Concerning T. gondii, felids are the definitive hosts, and toxoplasmosis is
present in every country, with human seropositivity rates ranging from less than 10%
to over 90% [48].

The biological contamination in Marnay-sur-Seine can be related to substantial
agricultural and farming activities in this area. Livestock, particularly cattle, are an
important source of C. parvum. In a Canadian farm animal analysis, the presence of
Cryptosporidium was detected in faeces samples of cattle (20%), sheep (24%), pigs
(11%) and horses (17%) [60]. Infected calves can excrete up to 107 oocysts per
gramme of faeces [61].

These different studies highlighted the fact that protozoan parasites are ubiquitous
in the Seine River and that bivalves, as sedentary organisms, could reflect ambient
biological contaminations of watercourses. More specifically, D. polymorpha could
be used as a new bioindicator in sanitary biomonitoring of freshwater bodies.
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5 Antibiotics and Bacterial Antibiotic Resistance

5.1 Context

Since the first synthesis of antibiotics in 1940s, numerous molecules have been
discovered, and nowadays there are about 10,000 antibiotics on the market
[62]. Although these molecules have reduced mortality from infectious diseases
and thus increased life expectancy, the use of these molecules has also induced
environmental contamination. The first detection of pharmaceuticals in surface
waters occurred in 1976 with the detection of clofibric acid and salicylic acid in a
lake in Nevada. Since then, almost all categories of pharmaceutical substances have
been found in surface waters [63].

The actual impact of antibiotic discharge on ecosystem functioning is still
unknown. For instance, the concentrations of antibiotics observed in water (on the
order of ng L�1) are too low to affect the growth of fish such as Japanese medaka
(EC50 100 mg L�1 for sulfonamides) or algae (in the range of 0.1–1 mg L�1). At the
microbial community level, concentrations measured in situ are below the minimum
inhibitory concentration required to exert selection pressure on environmental
microorganisms (on the order of mg L�1); however, subinhibitory concentrations
may promote mutagenesis or modify gene expression and may significantly influ-
ence bacterial physiology [64–67].

Since 2003, several studies of the PIREN-Seine programme have targeted phar-
maceutical residues, particularly antibiotics. The main objectives of these studies are
to determine the pathways of contamination in the natural environment, the envi-
ronmental behaviour of these substances and the potential risk to ecosystems.

5.2 Sources of Antibiotics in the Seine Watershed

In rural areas, no contamination by antibiotics is observed in forest streams, but the
contamination appears when streams flow through agricultural or breeding areas.
Tamtam et al. [68] measured a concentration of 20 ng L�1 of enrofloxacin in a small
river (the Blaise). This compound is exclusively used in veterinary medicine, and
therefore the finding shows the contribution of this use to river contamination.

Antibiotic inputs to rivers in agricultural/rural areas may also come from their use
in fish farming [69]: in such farms, antibiotics may be mixed with fish food and
dispersed directly into the breeding ponds. Thus, the presence of fish farms may
generate the discharge of antibiotics into rivers. During antibiotic treatment in fish
farms, flumequine was quantified as high as 7 μg L�1 in the effluent of the treatment
pond, and 2 days after the end of the treatment, flumequine concentrations were
below the limits of quantification. However, 20 days later, this molecule was still
measurable in the sediments of the river downstream of the fish farm discharge [68].
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Antibiotics in rivers also have an urban origin, associated with urban or hospital
wastewater treatment plants (WWTPs). Hospital effluents may contain numerous
compounds, with individual concentrations ranging from a few 100 ng L�1 up to
47 μg L�1 (norfloxacin), and specific antibiotics such as vancomycin that are used
exclusively in hospital facilities [70]. These concentrations are very high compared
to those observed in the domestic effluents of residential areas. The mean hospital
effluent concentration was 90-fold higher than that of the domestic effluent. How-
ever, since the volumes of hospital effluents are about six times lower than those of
domestic effluents, the mass flow of antibiotics from domestic wastewater was
approximately 1.5 times higher at the inlets of WWTPs [71].

WWTPs therefore play an important role in the life cycle of pharmaceutical
products. Since these molecules are not completely eliminated by WWTPs, urban
effluent outfalls are considered as point sources of antibiotics into the environment
[63]. In WWTPs located in a small catchment in the Seine River basin, the antibi-
otics more frequently detected in influents were sulfamethoxazole, norfloxacin,
ofloxacin and trimethoprim [71]. These compounds have different behaviours in
WWTPs: fluoroquinolones (norfloxacin and ofloxacin) are mainly eliminated by
adsorption onto sludge. Sulfamethoxazole and trimethoprim are, respectively,
poorly or not adsorbed on particles, and their elimination through sorption is less
efficient [72]. Thus, WWTPs only partly remove antibiotics, and the discharge of
treated water into rivers can lead to increased concentrations downstream of the
discharge, depending on river flow. Dinh et al. [70] observed the occurrence of
fluoroquinolones and sulfonamides (sulfamethoxazole) in water downstream of
WWTP discharge outlet. Fluoroquinolones are gradually adsorbed into the sedi-
ments, and only sulfonamides are detected far away from the discharge point.
Therefore, fluoroquinolones accounted for up to 90% of antibiotics in the
sediment [71].

5.3 Antibiotic Contamination in the Seine River

The main antibiotics quantified in the Seine River are sulfonamides, fluoro-
quinolones, macrolides and diaminopyrimidines [68]. These compounds are used
in human as well as veterinary medicine. For example, sulfamethoxazole is the main
sulfonamide, with concentrations ranging from 6 to 544 ng L�1 throughout the year.
Their concentrations of sulfonamide increase from upstream to downstream with a
maximum observed downstream of the main WWTP discharge outfalls of the Paris
conurbation (Poissy) (Fig. 5). Besides sulfamethoxazole, fluoroquinolones are the
main family of antibiotics measured in the Seine. Norfloxacin shows the same
pattern as sulfamethoxazole, and ofloxacin is only detected at the farthest down-
stream site.

Trimethoprim (diaminopyrimidines) is often quantified in the Seine with a back-
ground level around 10 ng L�1 and is mainly present downstream of WWTP
discharges because of its low elimination by WWTPs [72]. The decrease of these

Contaminants of Emerging Concern in the Seine River Basin: Overview of. . .



antibiotic concentrations during high-flow events seems to confirm that the intake is
mainly related to medical uses and the origin of contamination is point sources.
Overall, antibiotic concentrations measured in the Seine River are similar to those
measured in Europe [73].

5.4 The Resistome and Antimicrobial Resistance

The contamination of water with antibiotics, which results from their prescription in
human or veterinary medicine, is accompanied by a contamination of waterbodies by
antibiotic-resistant bacteria. The occurrence of such resistant strains may be
explained by the selection pressure exerted on the gut microbiota of humans and
animals receiving antibiotic therapy. In the Seine River, Servais and Passerat
demonstrated the presence of antibiotic-resistant faecal bacteria, the abundance of
which reflects the level of anthropisation of the watershed [74].

In this context, particular attention is focused on biofilms or periphyton, which
are microenvironments likely to concentrate chemical and microbiological contam-
inants [75–77]. In the aquatic environment, biofilms are ecological niches, where
microbial communities experience chronic multiexposure to chemical contaminants
(organic or metallic) including antibiotics. To this exposure is added a continuous
supply of antibiotic-resistant bacteria of human or animal origin and therefore of
genetic support involved in the dissemination of antibiotic resistance, such as
clinical integrons [78]. Today, clinical integrons, considered as xenogeneic contam-
inants, are believed to be bioindicators of the risk of dissemination of antimicrobial

Fig. 5 Antibiotic concentrations (ng L�1) in September 2009 in the Seine River: upstream of Paris
(Port à l’anglais), downstream of Paris (Bougival) and downstream of the main WWTP discharge
outfalls of the Paris conurbation (Poissy)
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resistance in the environment [79, 80]. Moreover, within these biofilms, the presence
of metallic contaminants has been shown to be favourable for the spread of antimi-
crobial resistance [81, 82].

Within the PIREN-Seine programme, the resistome (genes conferring antibiotic
and/or trace metal resistance) of microbial communities in biofilms has been studied
as an indicator of vulnerability or environmental resilience to chemical or microbi-
ological contaminants. In the Seine River, observations in situ and in the laboratory
have shown that the acquisition of a trace metal tolerance of microbial biofilm
communities depends on several factors. At the cellular level, the increase of
genes encoding resistance to heavy metals, such as silver (silA gene) or cadmium/
zinc/cobalt (czcA gene), suggests a selection of resistant bacteria in response to
chronic exposure to toxic thresholds in Ag+, Zn2+, Co2+ or Cd2+. At the microbial
community level, the resistance to antibiotics may be related to a change in
microbial diversity, with an increase in the abundance of bacterial genera able to
grow in contaminated environments, such as Burkholderiales, Cytophagales and
Sphingobacteriales [83]. Within these phyla, there are autochthonous bacterial
genera but also bacteria that could be opportunistic pathogens such Burkholderia.
Moreover, there is a permanent presence of antibiotic resistance genetic supports
(class 1 clinical integron), whose abundance increases with the degree of
anthropisation of the watershed, the maximum values being observed downstream
from Paris and the discharge of the main treatment plant in the Paris region (Triel),
regardless of the season (Fig. 6).
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These results show that the resistome of biofilms in highly urbanised rivers, such
as the Seine River, constitutes a microenvironment where genetic support for
antibiotic resistance (i.e. clinical integrons) is concentrated. It would be advanta-
geous to determine whether antibiotic concentrations within these biofilms are
consistent with increased mutagenesis and genetic transposition events. Biofilms
would then constitute micro-niches or “hotspots” that are favourable for the transfer
of genes and thus for the dissemination of the genes involved in antimicrobial
resistance, within indigenous communities.

6 Conclusions and Perspectives

Research undertaken within the PIREN-Seine programme over 30 years has consid-
erably improved the understanding of the sources and dynamics of a wide range of
chemical and biological contaminants in the Seine River basin. A few examples of
recent research were briefly exposed in this chapter.

In the near future, research prospects should include the investigation of addi-
tional contaminants of emerging concern or recently regulated chemicals; upon
prioritisation, the list of newly targeted chemicals could encompass, for instance,
chlorinated paraffins, novel flame retardants, biocides, antimony, manufactured
nanoparticles and nanoplastics, etc. Further studies should better investigate the
fate (i.e. transfer processes and fluxes) of micropollutants in relation to the hydro-
dynamic conditions, especially during extreme events related to climate change,
such as floods or low flow/drought. To this end, it is anticipated that modelling
approaches (1) would greatly improve the quantitation of gross fluxes transported by
the Seine River, (2) could prove useful to better assess future contamination trends
based on contaminant emission and hydrological scenarios and (3) would help
estimate the exposure of biota and humans while enabling the investigation of key
factors controlling this exposure.

Whenever possible, a more systemic approach should be implemented at the river
basin scale, including various environmental compartments, to achieve a more
holistic view of contaminant fate. In particular, the atmosphere–soil–river–estuarine
continuum should be taken into consideration. The global impact of this chronic
multi-contamination should be assessed at different levels of biological organisation,
and human and social science should also be considered to address such issues in a
more holistic way. An original approach, derived from territorial ecology, would
consist in interpreting chemical fluxes at the basin scale by considering the connec-
tions between material production, trade or consumption of agricultural and house-
hold goods, emissions, stocks constituted in environmental compartments and
transfers between compartments.

New methodological approaches should also be implemented. Suspect or nontarget
screening using high-resolution mass spectrometry would greatly help characterise the
chemical fingerprints of diverse environmental compartments and their temporal and
spatial variability, thereby contributing to a better understanding of the human and biota
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exposome. Using passive sampling, in combination with both target and nontarget
methods, would allow for the acquisition of time-averaged, low-frequency data to build
up long-term data sets (plurennial or even decadal scale). This approach provides data
that are complementary to high-frequency sampling and that are needed to help
estimate the efficiency of regulations on the occurrence and dynamics of chemicals
of interest. Biota could also be used to this end, provided well-known sentinel organ-
isms are used (e.g. gammarids or freshwater mussels).

Finally, future research should also address emerging issues regarding biological
contaminants, especially those that are not or are poorly related to the abundance of
faecal bacterial indicator. The study of pathogenic protozoa transfer in freshwater
ecosystems, or the emerging pathogens such Leptospira, is fundamental to improve
the microbial risk assessment of surface waters. In addition, protozoa may lead to the
modulation of physiological responses in sentinel organisms (e.g. bivalves), thereby
potentially leading to erroneous interpretations in environmental monitoring studies.
Thus, the influence of confounding factors such as the infection by protozoa
represents a major issue as regards the use of biomarkers for environmental quality
assessment (for further details regarding this issue, see [84]). Furthermore, the
transfer of genetic element encoding resistance to antibiotics (1) from environmental
microbial communities to strains that are pathogenic for humans or (2) from genes of
clinical origin to environmental pathogenic bacteria that are opportunistic for
humans (e.g. Pseudomonas, Aeromonas or Burkholderia) is identified as a major
risk to public health related to the environment. The assessment of such a transfer of
environmental resistance to humans (retro-transfer) is crucial to evaluate; it is,
however, challenging because it involves rare events occurring on a time scale that
remains difficult to determine.

Acknowledgments The authors would like to acknowledge the support of EPHE and R2DS Ile-
de-France (i.e. Paris regional research network on sustainable development), which both provided a
PhD grant. The authors would also like to thank the Aquitaine Region and the European Union
(CPER A2E project) for their financial support, as well as the French National Research Agency
(ANR) for its funding through IdEx Bordeaux (ANR-10-IDEX-03-02, PhD grant), the Investments
for the Future Program (Cluster of Excellence COTE, ANR-10-LABX-45) and the SEQUADAPT
project (headed by L. Fechner). The authors wish to thank Marie Cécile Ploy (UMR INSERM
1092) for the molecular quantification of clinical integron. This work was conducted in the
framework of the PIREN-Seine research programme (www.piren-seine.fr), a component of the
Zone Atelier Seine within the International Long-Term Socio Ecological Research (LTSER)
network.

References

1. Flipo N, Lestel L, Labadie P et al (2020) Trajectories of the Seine River basin. In: Flipo N,
Labadie P, Lestel L (eds) The Seine River basin. Handbook of environmental chemistry.
Springer, Cham. https://doi.org/10.1007/698_2019_437

Contaminants of Emerging Concern in the Seine River Basin: Overview of. . .

http://www.piren-seine.fr
https://doi.org/10.1007/698_2019_437


2. Gateuille D, Gaspery J, Briand C et al (2020) Mass balance of PAHs at the scale of the Seine
River basin. In: Flipo N, Labadie P, Lestel L (eds) The Seine River basin. Handbook of
environmental chemistry. Springer, Cham. https://doi.org/10.1007/698_2019_382

3. Chevreuil M, Carru AM, Chesterikoff A et al (1995) Contamination of fish from different areas
of the river Seine (France) by organic (PCB and pesticides) and metallic (Cd, Cr, Cu, Fe, Mn, Pb
and Zn) micropollutants. Sci Total Environ 162:31–42

4. Teil M, Blanchard M, Chesterikoff A, Chevreuil M (1998) Transport mechanisms and fate of
polychlorinated biphenyls in the Seine River (France). Sci Total Environ 218:103–112

5. Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science
304:838

6. Arthur C, Baker J, Bamford H (2008) Proceedings of the international research workshop on the
occurrence, effects and fate of microplastic marine debris. Proceedings of the international
research workshop on the occurrence, effects and fate of microplastic marine. University of
Washington Tacoma campus in Tacoma, Washington

7. SPI – About Plastics – SPI Resin Identification Code – Guide to Correct Use. http://www.
plasticsindustry.org/AboutPlastics/content.cfm?ItemNumber=823&navItemNumber=2144.
Accessed 12 Apr 2016

8. Dris R, Gasperi J, Saad M et al (2016) Synthetic fibers in atmospheric fallout: a source of
microplastics in the environment? Mar Pollut Bull 104:290–293. https://doi.org/10.1016/j.
marpolbul.2016.01.006

9. Karami A, Golieskardi A, Choo CK et al (2017) The presence of microplastics in commercial
salts from different countries. Sci Rep 7:46173. https://doi.org/10.1038/srep46173

10. Liebezeit G, Liebezeit E (2013) Non-pollen particulates in honey and sugar. Food Addit
Contam Part A 30:2136–2140. https://doi.org/10.1080/19440049.2013.843025

11. Browne MA, Dissanayake A, Galloway TS et al (2008) Ingested microscopic plastic trans-
locates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol
42:5026–5031

12. Li J, Qu X, Su L et al (2016) Microplastics in mussels along the coastal waters of China.
Environ Pollut 214:177–184. https://doi.org/10.1016/j.envpol.2016.04.012

13. Oßmann BE, Sarau G, Holtmannspötter H et al (2018) Small-sized microplastics and pigmented
particles in bottled mineral water. Water Res 141:307–316. https://doi.org/10.1016/j.watres.
2018.05.027

14. Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by
micro-Raman spectroscopy: release of plastic particles from different packaging into mineral
water. Water Res 129:154–162. https://doi.org/10.1016/j.watres.2017.11.011

15. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol
51:6634–6647. https://doi.org/10.1021/acs.est.7b00423

16. Dris R, Gasperi J, Rocher V, Tassin B (2018) Synthetic and non-synthetic anthropogenic fibers
in a river under the impact of Paris megacity: sampling methodological aspects and flux
estimations. Sci Total Environ 618:157–164. https://doi.org/10.1016/j.scitotenv.2017.11.009

17. Scherer C, Weber A, Lambert S, Wagner M (2018) Interactions of microplastics with freshwater
biota. Freshwater microplastics. Springer, Cham, pp 153–180

18. Sanchez W, Bender C, Porcher J-M (2014) Wild gudgeons (Gobio gobio) from French rivers
are contaminated by microplastics: preliminary study and first evidence. Environ Res 128:98–
100. https://doi.org/10.1016/j.envres.2013.11.004

19. European Union (2008) Directive 2008/56/EC of the european parliament and of the council of
17 June 2008 establishing a framework for community action in the field of marine environ-
mental policy (Marine Strategy Framework Directive)

P. Labadie et al.

https://doi.org/10.1007/698_2019_382
http://www.plasticsindustry.org/AboutPlastics/content.cfm?ItemNumber=823&navItemNumber=2144
http://www.plasticsindustry.org/AboutPlastics/content.cfm?ItemNumber=823&navItemNumber=2144
https://doi.org/10.1016/j.marpolbul.2016.01.006
https://doi.org/10.1016/j.marpolbul.2016.01.006
https://doi.org/10.1038/srep46173
https://doi.org/10.1080/19440049.2013.843025
https://doi.org/10.1016/j.envpol.2016.04.012
https://doi.org/10.1016/j.watres.2018.05.027
https://doi.org/10.1016/j.watres.2018.05.027
https://doi.org/10.1016/j.watres.2017.11.011
https://doi.org/10.1021/acs.est.7b00423
https://doi.org/10.1016/j.scitotenv.2017.11.009
https://doi.org/10.1016/j.envres.2013.11.004


20. Jambeck JR, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean.
Science 347:768–771. https://doi.org/10.1126/science.1260352

21. Lebreton LCM, van der Zwet J, Damsteeg J-W et al (2017) River plastic emissions to the
world’s oceans. Nat Commun 8:15611. https://doi.org/10.1038/ncomms15611

22. Dris R (2016) First assessment of sources and fate of macro- and micro- plastics in urban
hydrosystems: case of Paris megacity. Université Paris-Est, Champs-sur-Marne

23. Tramoy R, Gasperi J, Dris R et al (2019) Assessment of the plastic inputs from the Seine Basin
to the sea using statistical and field approaches. Front Mar Sci 6:151. https://doi.org/10.3389/
fmars.2019.00151

24. Gasperi J, Dris R, Bonin T et al (2014) Assessment of floating plastic debris in surface water
along the Seine River. Environ Pollut 195:163–166. https://doi.org/10.1016/j.envpol.2014.09.
001

25. Buck RC, Franklin J, Berger U et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the
environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541.
https://doi.org/10.1002/ieam.258

26. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ
Sci Technol 35:1339–1342. https://doi.org/10.1021/es001834k

27. Kannan K, Corsolini S, Falandysz J et al (2004) Perfluorooctanesulfonate and related
fluorochemicals in human blood from several countries. Environ Sci Technol 38:4489–4495.
https://doi.org/10.1021/es0493446

28. Renner R (2001) Growing concern over perfluorinated chemicals. Environ Sci Technol
35:154A–160A. https://doi.org/10.1021/es012317k

29. United Nations Environmental Programme (2009) Recommendations of the persistent organic
pollutants review committee of stockholm convention to amend annexes A, B or C of the
convention. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.
aspx

30. Ahrens L (2011) Polyfluoroalkyl compounds in the aquatic environment: a review of their
occurrence and fate. J Environ Monit 13:20–31. https://doi.org/10.1039/c0em00373e

31. Munoz G, Giraudel JL, Botta F et al (2015) Spatial distribution and partitioning behavior of
selected poly- and perfluoroalkyl substances in freshwater ecosystems: a French nationwide
survey. Sci Total Environ 517:48–56

32. Labadie P, Chevreuil M (2011) Biogeochemical dynamics of perfluorinated alkyl acids and
sulfonates in the River Seine (Paris, France) under contrasting hydrological conditions. Environ
Pollut 159:3634–3639

33. Teil MJ, Tlili K, Blanchard M et al (2014) Polychlorinated biphenyls, polybrominated diphenyl
ethers, and phthalates in roach from the Seine River basin (France): impact of densely urbanized
areas. Arch Environ Contam Toxicol 66:41–57

34. Johnson AC (2010) Natural variations in flow are critical in determining concentrations of point
source contaminants in rivers: an estrogen example. Environ Sci Technol 44:7865–7870

35. McLachlan MS, Holström KE, Reth M, Berger U (2007) Riverine discharge of perfluorinated
carboxylates from the European continent. Environ Sci Technol 41:7260–7265

36. Loos R, Gawlik BM, Locoro G et al (2009) EU-wide survey of polar organic persistent
pollutants in European river waters. Environ Pollut 157:561–568

37. Simcik MF, Dorweiler KJ (2005) Ratio of perfluorochemical concentrations as a tracer of
atmospheric deposition to surface waters. Environ Sci Technol 39:8678–8683. https://doi.org/
10.1021/es0511218

38. Munoz G, Fechner LC, Geneste E et al (2018) Spatio-temporal dynamics of per and
polyfluoroalkyl substances (PFASs) and transfer to periphytic biofilm in an urban river: case-
study on the River Seine. Environ Sci Pollut Res 25:23574–23582

39. Sabater S, Guasch H, Ricart M et al (2007) Monitoring the effect of chemicals on biological
communities. The biofilm as an interface. Anal Bioanal Chem 387:1425–1434

Contaminants of Emerging Concern in the Seine River Basin: Overview of. . .

https://doi.org/10.1126/science.1260352
https://doi.org/10.1038/ncomms15611
https://doi.org/10.3389/fmars.2019.00151
https://doi.org/10.3389/fmars.2019.00151
https://doi.org/10.1016/j.envpol.2014.09.001
https://doi.org/10.1016/j.envpol.2014.09.001
https://doi.org/10.1002/ieam.258
https://doi.org/10.1021/es001834k
https://doi.org/10.1021/es0493446
https://doi.org/10.1021/es012317k
http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx
http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx
https://doi.org/10.1039/c0em00373e
https://doi.org/10.1021/es0511218
https://doi.org/10.1021/es0511218


40. Houde M, De Silva AO, Muir DCG, Letcher RJ (2011) Monitoring of perfluorinated com-
pounds in aquatic biota: an updated review. Environ Sci Technol 45:7962–7973. https://doi.org/
10.1021/es104326w

41. Gerbersdorf SU, Cimatoribus C, Class H et al (2015) Anthropogenic trace compounds (ATCs)
in aquatic habitats – research needs on sources, fate, detection and toxicity to ensure timely
elimination strategies and risk management. Environ Int 79:85–105

42. Ruhí A, Acuña V, Barceló D et al (2016) Bioaccumulation and trophic magnification of
pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Sci Total Environ
540:250–259

43. Labadie P, Chevreuil M (2011) Partitioning behaviour of perfluorinated alkyl contaminants
between water, sediment and fish in the Orge River (nearby Paris, France). Environ Pollut
159:391–397

44. Liu C, Gin KYH, Chang VWC et al (2011) Novel perspectives on the bioaccumulation of PFCs
– the concentration dependency. Environ Sci Technol 45:9758–9764. https://doi.org/10.1021/
es202078n

45. Xia X, Rabearisoa AH, Dai Z et al (2015) Inhibition effect of Na+ and Ca2+ on the
bioaccumulation of perfluoroalkyl substances by Daphnia magna in the presence of protein.
Environ Toxicol Chem 34:429–436

46. McMahon RF, Hunter RD, Russell-Hunter W (1974) Variation in aufwuchs at six freshwater
habitats in terms of carbon biomass and of carbon: nitrogen ratio. Hydrobiologia 45:391–404

47. WHO (World Health Organization) (2002) Emerging issues in water and infectious disease.
World Health Organization, London

48. Pappas G, Roussos N, Falagas ME (2009) Toxoplasmosis snapshots: global status of toxo-
plasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int
J Parasitol 39:1385–1394. https://doi.org/10.1016/j.ijpara.2009.04.003

49. Castro-Hermida JA, Garcia-Presedo I, González-Warleta M, Mezo M (2010) Cryptosporidium
and Giardia detection in water bodies of Galicia, Spain. Water Res 44:5887–5896. https://doi.
org/10.1016/j.watres.2010.07.010

50. Figueras MJ, Borrego JJ (2010) New perspectives in monitoring drinking water microbial
quality. Int J Environ Res Public Health 7:4179–4202. https://doi.org/10.3390/ijerph7124179

51. Chauret C, Armstrong N, Fisher J et al (1995) Correlating Cryptosporidium and Giardia with
microbial indicators. Am Water Works Assoc 87:76–84

52. Gomez-Bautista M, Ortega-Mora LM, Tabares E et al (2000) Detection of infectious Crypto-
sporidium parvum oocysts in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma
edule). Appl Environ Microbiol 66:1866–1870

53. Pachepsky YA, Blaustein RA,Whelan G, Shelton DR (2014) Comparing temperature effects on
Escherichia coli, Salmonella, and Enterococcus survival in surface waters. Lett Appl Microbiol
59:278–283. https://doi.org/10.1111/lam.12272

54. Mons C, Dumètre A, Gosselin S et al (2009) Monitoring of Cryptosporidium and Giardia river
contamination in Paris area. Water Res 43:211–217. https://doi.org/10.1016/j.watres.2008.10.
024

55. Moulin L, Richard F, Stefania S et al (2010) Contribution of treated wastewater to the
microbiological quality of Seine River in Paris. Water Res 44:5222–5231. https://doi.org/10.
1016/j.watres.2010.06.037

56. Ayres PA, Burton HW, Cullum ML (1978) Sewage pollution and shellfish. In: Lovelock DM,
Davies R (eds) Techniques for the study of mixed populations. Society for applied bacteriology
technical series. Academic Press, London, pp 51–62

57. Palos Ladeiro M, Aubert D, Villena I et al (2014) Bioaccumulation of human waterborne
protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring. Water Res
48:148–155. https://doi.org/10.1016/j.watres.2013.09.017

P. Labadie et al.

https://doi.org/10.1021/es104326w
https://doi.org/10.1021/es104326w
https://doi.org/10.1021/es202078n
https://doi.org/10.1021/es202078n
https://doi.org/10.1016/j.ijpara.2009.04.003
https://doi.org/10.1016/j.watres.2010.07.010
https://doi.org/10.1016/j.watres.2010.07.010
https://doi.org/10.3390/ijerph7124179
https://doi.org/10.1111/lam.12272
https://doi.org/10.1016/j.watres.2008.10.024
https://doi.org/10.1016/j.watres.2008.10.024
https://doi.org/10.1016/j.watres.2010.06.037
https://doi.org/10.1016/j.watres.2010.06.037
https://doi.org/10.1016/j.watres.2013.09.017


58. Palos Ladeiro M, Bigot-Clivot A, Aubert D et al (2015) Assessment of toxoplasma gondii levels
in zebra mussel (Dreissena polymorpha) by real-time PCR: an organotropism study. Environ
Sci Pollut Res 22:13693–13701. https://doi.org/10.1007/s11356-015-4296-y

59. Pond K, Rueedi J, Pedley S (2004) Pathogens in drinking water sources. In: Microbiological
risk assessment: a scientific basis for managing drinking water safety from source to tap. Robens
Centre for Public and Environmental Health, University of Surrey

60. Olson ME, Thorlakson CL, Deselliers L et al (1997) Giardia and Cryptosporidium in Canadian
farm animals. Vet Parasitol 68:375–381. https://doi.org/10.1016/S0304-4017(96)01072-2

61. Smith HV, Rose JB (1990) Waterborne cryptosporidiosis. Parasitol Today 6:8–12. https://doi.
org/10.1016/0169-4758(90)90378-H

62. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40:277–283
63. Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother

52:5–7. https://doi.org/10.1093/jac/dkg293
64. Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations.

Curr Opin Microbiol 9:445–453. https://doi.org/10.1016/j.mib.2006.08.006
65. Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug

resistance via radical-induced mutagenesis. Mol Cell 37:311–320. https://doi.org/10.1016/j.
molcel.2010.01.003

66. Baharoglu Z, Mazel D (2011) Vibrio cholerae triggers SOS and mutagenesis in response to a
wide range of antibiotics: a route towards multiresistance. Antimicrob Agents Chemother
55:2438–2441. https://doi.org/10.1128/AAC.01549-10

67. Gullberg E, Cao S, Berg OG et al (2011) Selection of resistant Bacteria at very low antibiotic
concentrations. PLoS Pathog 7:e1002158. https://doi.org/10.1371/journal.ppat.1002158

68. Tamtam F, Mercier F, Le Bot B et al (2008) Occurrence and fate of antibiotics in the Seine River
in various hydrological conditions. Sci Total Environ 393:84–95. https://doi.org/10.1016/j.
scitotenv.2007.12.009

69. Thurman EM, Dietze JE, Scribner EA (2002) Occurrence of antibiotics in water from fish
hatcheries. U.S. Department of the Interior/U.S. Geological Survey, USGS Fact Sheet 120-02

70. Dinh QT, Moreau-Guigon E, Labadie P et al (2017) Fate of antibiotics from hospital and
domestic sources in a sewage network. Sci Total Environ 575:758–766. https://doi.org/10.1016/
j.scitotenv.2016.09.118

71. Dinh QT, Moreau-Guigon E, Labadie P et al (2017) Occurrence of antibiotics in rural catch-
ments. Chemosphere 168:483–490. https://doi.org/10.1016/j.chemosphere.2016.10.106

72. Rosal R, Rodríguez A, Perdigón-Melón JA et al (2010) Occurrence of emerging pollutants in
urban wastewater and their removal through biological treatment followed by ozonation. Water
Res 44:578–588. https://doi.org/10.1016/j.watres.2009.07.004

73. Gros M, PetrovićM, Barceló D (2009) Tracing pharmaceutical residues of different therapeutic
classes in environmental waters by using liquid chromatography/Quadrupole-linear ion trap
mass spectrometry and automated library searching. Anal Chem 81:898–912. https://doi.org/10.
1021/ac801358e

74. Servais P, Passerat J (2009) Antimicrobial resistance of fecal bacteria in waters of the Seine
river watershed (France). Sci Total Environ 408:365–372. https://doi.org/10.1016/j.scitotenv.
2009.09.042

75. Kovac Virsek M, Hubad B, Lapanje A (2013) Mercury induced community tolerance in
microbial biofilms is related to pollution gradients in a long-term polluted river. Aquat Toxicol
144–145:208–217. https://doi.org/10.1016/j.aquatox.2013.09.023

76. Aubertheau E, Stalder T, Mondamert L et al (2017) Impact of wastewater treatment plant
discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance.
Sci Total Environ 579:1387–1398. https://doi.org/10.1016/j.scitotenv.2016.11.136

Contaminants of Emerging Concern in the Seine River Basin: Overview of. . .

https://doi.org/10.1007/s11356-015-4296-y
https://doi.org/10.1016/S0304-4017(96)01072-2
https://doi.org/10.1016/0169-4758(90)90378-H
https://doi.org/10.1016/0169-4758(90)90378-H
https://doi.org/10.1093/jac/dkg293
https://doi.org/10.1016/j.mib.2006.08.006
https://doi.org/10.1016/j.molcel.2010.01.003
https://doi.org/10.1016/j.molcel.2010.01.003
https://doi.org/10.1128/AAC.01549-10
https://doi.org/10.1371/journal.ppat.1002158
https://doi.org/10.1016/j.scitotenv.2007.12.009
https://doi.org/10.1016/j.scitotenv.2007.12.009
https://doi.org/10.1016/j.scitotenv.2016.09.118
https://doi.org/10.1016/j.scitotenv.2016.09.118
https://doi.org/10.1016/j.chemosphere.2016.10.106
https://doi.org/10.1016/j.watres.2009.07.004
https://doi.org/10.1021/ac801358e
https://doi.org/10.1021/ac801358e
https://doi.org/10.1016/j.scitotenv.2009.09.042
https://doi.org/10.1016/j.scitotenv.2009.09.042
https://doi.org/10.1016/j.aquatox.2013.09.023
https://doi.org/10.1016/j.scitotenv.2016.11.136


77. Marti E, Jofre J, Balcazar JL (2013) Prevalence of antibiotic resistance genes and bacterial
community composition in a river influenced by a wastewater treatment plant. PLoS One 8:
e78906. https://doi.org/10.1371/journal.pone.0078906

78. Koczura R, Mokracka J, Taraszewska A, Łopacinska N (2016) Abundance of Class 1 Integron-
Integrase and sulfonamide resistance genes in river water and sediment is affected by anthro-
pogenic pressure and environmental factors. Microb Ecol 72:909–916. https://doi.org/10.1007/
s00248-016-0843-4

79. Gillings MR, Gaze WH, Pruden A et al (2015) Using the class 1 integron-integrase gene as a
proxy for anthropogenic pollution. ISME J 9:1269–1279

80. Borruso L, Harms K, Johnsen PJ et al (2016) Distribution of class 1 integrons in a highly
impacted catchment. Sci Total Environ 566–567:1588–1594. https://doi.org/10.1016/j.
scitotenv.2016.06.054

81. Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil
and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399. https://doi.
org/10.3389/fmicb.2012.00399

82. Di Cesare A, Eckert E, Corno G (2016) Co-selection of antibiotic and heavy metal resistance in
freshwater bacteria. J Limnol 75. https://doi.org/10.4081/jlimnol.2016.1198

83. Fechner LC, Gourlay-Francé C, Bourgeault A, Tusseau-Vuillemin M-H (2012) Diffuse urban
pollution increases metal tolerance of natural heterotrophic biofilms. Environ Pollut 162:311–
318. https://doi.org/10.1016/j.envpol.2011.11.033

84. Bonnard M, Barijhoux L, Dedrouge-Geffard O et al (2020) Experience gained from ecotoxi-
cological studies in the Seine River and its drainage basin over the last decade: applicative
examples and research perspectives. In: Flipo N, Labadie P, Lestel L (eds) The Seine River
basin. Handbook of environmental chemistry. Springer, Cham. https://doi.org/10.1007/698_
2019_384

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

P. Labadie et al.

https://doi.org/10.1371/journal.pone.0078906
https://doi.org/10.1007/s00248-016-0843-4
https://doi.org/10.1007/s00248-016-0843-4
https://doi.org/10.1016/j.scitotenv.2016.06.054
https://doi.org/10.1016/j.scitotenv.2016.06.054
https://doi.org/10.3389/fmicb.2012.00399
https://doi.org/10.3389/fmicb.2012.00399
https://doi.org/10.4081/jlimnol.2016.1198
https://doi.org/10.1016/j.envpol.2011.11.033
https://doi.org/10.1007/698_2019_384
https://doi.org/10.1007/698_2019_384
http://creativecommons.org/licenses/by/4.0/

	Contaminants of Emerging Concern in the Seine River Basin: Overview of Recent Research
	1 Introduction
	2 Macro- and Microplastics
	2.1 Context
	2.2 Objectives
	2.3 Macroplastics in the Seine River
	2.4 Microplastic Sources and Fluxes in Greater Paris and the Seine River

	3 Poly- and Perfluoroalkyl Substances (PFASs)
	3.1 Context
	3.2 Dynamics of PFASs in the Seine River
	3.3 Transfer of PFASs to Biota in the Seine River Basin

	4 Pathogenic Protozoa
	4.1 Context
	4.2 Occurrence of Pathogenic Parasites in the Seine River

	5 Antibiotics and Bacterial Antibiotic Resistance
	5.1 Context
	5.2 Sources of Antibiotics in the Seine Watershed
	5.3 Antibiotic Contamination in the Seine River
	5.4 The Resistome and Antimicrobial Resistance

	6 Conclusions and Perspectives
	References


