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Using simulations, we study the diffusion of rod-like guest particles in a smectic environment of
rod-like host particles. We find that the dynamics of guest rods across smectic layers changes from
a fast nematic-like diffusion to a slow hopping-type dynamics via an intermediate switching regime
by varying the length of the guest rods with respect to the smectic layer spacing. We determine the
optimal rod length that yields the fastest and the slowest diffusion in a lamellar environment. We
show that this behavior can be rationalized by a complex 1D effective periodic potential exhibiting
two energy barriers, resulting in a varying preferred mean position of the guest particle in the smectic
layer. The interplay of these two barriers controls the dynamics of the guest particles yielding a
slow, an intermediate and a fast diffusion regime depending on the particle length.

Understanding the dynamics of particles or objects in
crowded environments is important in many fields rang-
ing from traffic jams @], evacuations of crowds, sheep
herding, evasive tumor growth, to caging in colloidal
glasses E—@] The motion of a guest particle in a disor-
dered crowded environment is severely hampered by its
surrounding constituents. As most disordered systems
are characterized by only one relevant length scale (e.g.
particle size), a simple picture emerges: the bigger the
particle the slower its dynamics ﬂa—@] This phenomenon
is invariant across scales as demonstrated by the above-
mentioned examples. However, this simple picture breaks
down as the environment becomes inhomogeneous and
ordered, yielding additional competing length scales and
giving rise to remarkable exceptions to this general rule.

The motion of particles in ordered environments has
been thoroughly studied in the field of liquid crystals,
finding that crowded environments with different degrees
of positional and/or orientational order lead to a wide va-
riety of dynamic behaviors. For nematic liquid crystals,
exhibiting long-range orientational order, the anisotropy
of the environment is transferred to the motion of the
particles. A fast longitudinal self-diffusion is observed
in the direction parallel to the nematic director i (the
average particle orientation), and a slow transverse self-
diffusion in the perpendicular direction ﬂﬂ—lﬂ]

In the case of long-range positional order, the dynam-
ics strongly depends on the dimensionality of the transla-
tional order and the corresponding effective energy land-
scape. In 3D colloidal crystals, particles are confined to
their lattice positions, and the diffusion is largely deter-
mined by the motion of defects ]. In columnar
liquid crystals, showing 2D positional order, a liquid-like
longitudinal diffusion is observed within the columns, ac-
companied by a transverse hopping-type dynamics be-
tween different columns ﬂﬂ, ]. Finally, in smectic lig-
uid crystal phases characterized by a quasi long-range 1D
translational order, a quantized hopping-type dynamics

is found across smectic layers as the particles experience
an effective one-dimensional periodic potential due to the
lamellar organization ] Furthermore, computer
simulations demonstrated cooperative motion of string-
like clusters of particles across the smectic layers ﬂﬂ]
In general, the presence of positional and/or orienta-
tional order introduces additional length scales to the
system. In the presence of guest particles, their inter-
play with the various length scales associated with the
structure increases the complexity of the dynamics. On
the one hand, the diffusion of guest spherical particles
in nematic phases of rod-like host liquid crystals has
been widely addressed in literature [23-29), finding a
faster diffusion in the direction longitudinal to the ne-
matic director field. On the other hand, the diffusion
of non-spherical particles in anisotropic liquid crystalline
environments is still largely unexplored. Recently, Al-
varez et al. ﬂg] studied in experiments the diffusion of
tracer amounts of non-commensurate guest viral rods in
a smectic phase of shorter host fd filamentous viruses
with a size ratio Lgyest /Lnost =~ 1.3. Surprisingly they
found that while the host particles experience the usual
hopping-type dynamics across smectic layers, the non-
commensurate guest particles undergo a fast and al-
most continuous nematic-like diffusion, yielding the ex-
ceptional case of larger guest particles diffusing faster
than the smaller host ones. No significant differences be-
tween host and guest particles were found in the trans-
verse in-layer diffusion. The typical slow hopping-type
diffusion across smectic layers was recovered for dimeric
and trimeric mutants of the host fd particles, namely for
guest particles with length ratios of 2 and 3, respectively.
In this Letter, we study using computer simulations
the dynamics of guest particles of varying lengths in a
smectic environment of host particles in order to unravel
the mechanism behind this highly counterintuitive fast
diffusion of large non-commensurate guest particles. We
show that by tuning the length of the guest rods with
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FIG. 1. (a) Snapshot from simulations of a guest spherocylinder (cyan) with cylindrical length L, and diameter d diffusing in a
host smectic phase of layer spacing A formed by hard spherocylinders (purple) with equal diameter d and length L, = 40d. (b)
Example trajectories of guest particles with varying size ratio r = (Lg + d)/A along the nematic director i of the host smectic
phase in simulations (top) and experiments (bottom) ﬂQ] showing the fast nematic-like diffusion of non-commensurate guest rods
with 7 ~ 1.3 and discrete hopping-type diffusion of host particles (r ~ 1). The conversion factor from the computational time
unit 7 to seconds s (1 ~ 2-107%s) is discussed in the Supplemental Material ﬂm] (c) Longitudinal mean square displacement
(MSD) of simulated guest particles of varying size ratios » = (Lg + d)/\, showing either a fast nematic-like diffusion for non-
commensurate guest rods of » ~ 1.3 and 0.3, or a sub-diffusive regime for the other guest and host particles. The diffusion
exponents v = 0.5 and 1 are indicated for comparison (See Eq. (1)).

respect to the smectic layer spacing their longitudinal
dynamics changes from a fast nematic-like diffusion to a
slow hopping-type dynamics via an intermediate switch-
ing regime, thereby obtaining control over the speed and
type of behavior of the longitudinal diffusion. More im-
portantly, we determine the optimal rod size for either
the fastest or slowest diffusion, and rationalize this be-
havior in terms of a complex 1D effective smectic periodic
potential characterized by two energy barriers that each
rod feels in the lamellar structure of the smectic phase.
We show that the interplay and relative height of the two
energy barriers control the dynamics of the guest parti-
cles, yielding a slow, an intermediate and a fast diffusion
regime depending on the particle length.

We model the experimental mixture of long and short
filamentous bacteriophage viruses as a binary mixture of
rigid rods. Each guest and host rod is modeled by a hard
spherocylinder, i.e. a cylinder of diameter d and length
L, and Ly, respectively, capped at both ends with hemi-
spheres of diameter d, yielding an end-to-end length of
Lyn +d (Fig. [h). We introduce a tracer amount of
N,y = 6 guest particles in a system of Nj, = 3072 host
particles with a length L; = 40d. The overall phase
sequence of isotropic, nematic, smectic-A (Smy), and
smectic-B/crystal phases of fd-viruses [30] is well cap-
tured by that of hard spherocylinders with L;, = 40d [31],
even though fd virus suspensions also display a columnar
phase @] The aspect ratio of the host rods in the sim-
ulations is set such that it roughly matches the effective
rod length over diameter ratio of the experimental sys-
tem, thereby taking into account the electrostatic repul-
sion of the fd viruses [30)].

We equilibrate the system in a low-density Sm 4 state

using Monte Carlo (MC) simulations in an isothermal-
isobaric ensemble, i.e. the pressure, temperature, N, and
N}, are kept fixed. Note that the smectic layer spacing
in simulations is A ~ 1.1Lp, whereas A ~ 1.0Lys in the
experimental system of filamentous viruses @] After
full equilibration we investigate using both standard and
Dynamic MC (DMC) simulations [33, [34] the longitudi-
nal dynamics along the z-axis, parallel to the nematic
director n, for various Ly € [0.2,2.5]L;, corresponding to
various size ratios r = (Lg + d)/\. Within this range of
lengths the probability of finding guest rods in a trans-
verse inter-lamellar configuration is negligible @, 36].
We refer the reader to the Supplemental Material Nﬁ]
for technical details on the simulations.

In Fig. [Ob, we present typical longitudinal trajec-
tories from both simulations and experiments, showing
remarkably similar slow hopping-type dynamics of host
particles (r ~ 1) as well as fast diffusive behavior of non-
commensurate guest particles (r ~ 1.3). For each particle
trajectory z(t) we measure the mean square displacement
along the director i, MSD(¢) = {(z(to+1) — z(t0))?), and
average the MSDs of all particles with equal length. In
Fig. [k we show the MSDs for a selected set of size ra-
tios r. For particles with a length commensurate with
the smectic layer spacing (r ~ 1) we obtain the typical
MSD of particles in a lamellar phase @] with a cage-
trapping plateau between the short- and long-time diffu-
sion regimes corresponding to the intra- and inter-layer
dynamics, respectively (See Supplemental Material ﬂﬁ])
As the length of the guest particles increases, the time
interval for the caging becomes shorter, and eventually
disappears for r ~ 1.25 when the dynamics becomes
nematic-like with a diffusive behavior (Fig. k). Upon



further increasing the particle length, the cage-trapping
plateau reappears (r ~ 1.45) and becomes more pro-
nounced as the dynamics becomes hopping-type again
for nearly commensurate dimers (r ~ 1.90). Similarly,
for guest rods shorter than the smectic layer spacing, the
time interval of caging decreases (r ~ 0.47) and even-
tually disappears for guest particles of low anisotropy
(r ~0.29).
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FIG. 2. Long-time diffusion coefficient D (r) normalized by
the infinite-dilution diffusion coefficient Do (r) [10] of guest
particles as a function of the size ratio r. The experimental
values of Dj(r) are shown in purple for » = 1, 1.3, and 2
ﬂg] The inset shows the raw diffusion coefficients. The back-
ground is colored according to the three diffusion regimes dis-
played in Fig. Bl and the dashed lines are guides to the eye.

To quantify the long-term dynamic behavior, we deter-
mine the long-time diffusion coefficient D defined as half
the slope of the MSD at long times, i.e. MSD(t) = 2D t"
(1), and we present D|| normalized by the particle diffu-
sion coefficient at infinite dilution Dg(r) as a function
of the size ratio r in Fig. In the range 1 < r < 2,
a strong increase of the diffusion is observed with a
maximum D (r)/Do(r) at r ~ 1.25, corresponding to
a fast nematic-like diffusion of particles whose length is
not commensurate with the smectic layer spacing. This
yields an optimal value for the fastest longitudinal dif-
fusion remarkably close to the particle length ratio for
which fast diffusion was observed in experiments ﬂg] For
larger r the diffusion slows down as the hopping-like dy-
namics is retrieved. The slowest diffusion is not found
for particles twice the length of the smectic layer spacing
(r ~ 2) but at slightly smaller lengths (r ~ 1.75). We
also observe in Fig. 2l that the values of D (r)/Do(r) are
in good quantitative agreement with the experimental
values marked by the purple symbols despite the sim-
plicity of our model. For guest particles shorter than the
host ones (r < 1), the fastest and the slowest dynam-
ics are obtained by non-commensurate particles of size
ratio r ~ 0.25 and r ~ 0.75 respectively, corresponding
to the fast nematic-like diffusion for the former and slow

hopping-like dynamics for the latter. Interestingly, the
normalized values for r < 1 of the diffusion coefficients
for the slowest and fastest dynamics are very similar to
their corresponding values for » > 1, emphasizing again
that the shortest particles do not necessarily diffuse the
fastest. In the long rod limit, i.e. for » > 2, we find
another maximum of Dy (r)/Do(r) at r ~ 2.25.

The dependence of D (r)/Do(r) on the size ratio r in
Fig. [2] suggests a periodic behavior of the longitudinal
dynamics with a period set by the smectic layer spac-
ing A\. For each size ratio interval r € [n,n + 1] with
n=20,1,2,---, the dynamics first speeds up as r increases
and the smectic caging becomes less severe, reaches a
maximum value at r >~ n 4+ 0.25 corresponding to the
fastest nematic-like diffusion, and then slows down and
reaches a minimal value at r ~ n+0.75. This periodic be-
havior can be explained by dividing the end-to-end guest
rod length L,+d = r\ into a length ¢|r] that is commen-
surate with |r] smectic layers (where the floor function
|| denotes the largest integer that is less than z), and
an “excess” length of £(r — |r]). The longitudinal dy-
namics of guest particles is predominately determined by
the excess part of the guest rod, which creates voids in
the smectic layers and affects the caging of the lamellar
phase. Here, the only effect of the “commensurate” part
of the particle is a general slowing down of the dynamics
with n (See the inset of Fig. [2I).

To quantify the effect of the excess particle length, we
measure the effective potential SUgy, (2) = — In(p(2)) felt
by a guest rod, where p(z) is the probability distribution
of finding a rod-shaped particle in an infinitesimal inter-
val of [z, z+ 6z] and 8 = 1/kpT. The effective potential
is periodic due to the smectic host ordering, therefore
p(z) is only measured in a single smectic layer 0 < z < .
In Fig. Bh-f, we report the smectic potential for varying
length ratios 0 < r < 2. Surprisingly, we find that the
smectic potentials exhibit two barriers, or equivalently
two minima at 2" and z5"™ which merge into a single
minimum when r ~ n, namely when particles are com-
mensurate with the layer spacing. We plot 2™ and z3™
for varying r in Fig. @, allowing us to distinguish three
different regimes as schematically illustrated in Fig. B.

In the first regime (I) corresponding to size ratios
r € [n,n 4 0.3], the guest particles are on average lo-
cated at the same position as their commensurate coun-
terparts with » = n, i.e. in the middle of the smectic
layers. However, as they are longer than n\, they create
holes in the adjacent smectic layers resulting in a release
of the cage constraint thereby facilitating the inter-layer
diffusion and speeding up the dynamics, with the fastest
nematic-like diffusion found for r ~ n+0.25. In the oppo-
site limit, the third regime (IIT) having r € [n+0.6,n+1]
exhibits the slowest diffusion behavior and corresponds to
guest particles which already have the same equilibrium
position as the next commensurate multimer (r = n+1).
Because the guest rods are shorter than (n + 1)\, they
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FIG. 3. (a-f) Effective potential Usm(z) experienced by guest particles for varying size ratios r = (Ly + d)/A in a smectic

phase with a layer spacing A\. The dashed vertical lines indicate the equilibrium positions of the rod particles, 2™

min

and z3"",

corresponding to the minima of the ordering potential Us.,(z). A video showing the variation of Ugy,(z) with the size ratio r

can be found in the SM [10]. (g) Sketches of the host (purple) and guest (cyan) particles at their equilibrium positions 27
for three exemplary size ratios (r = 1.25,1.5,1.75) corresponding to the different diffusion regimes.

min

and z5

first have to diffuse within the smectic layer to reach one
of its two boundaries, before they can jump to the ad-
jacent layer, slowing down the longitudinal diffusion in
comparison to the one associated with commensurate

particles. We denote regime III as the slow diffusive
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FIG. 4. Center-of-mass positions zi"'" and z3"" of the guest
rods corresponding to the minima of the effective smectic po-
tential as a function of size ratio r. The background is colored
according to the three diffusive regimes displayed in Fig.

regime. More intriguingly perhaps is the regime IT with
r € [n+0.3,n+0.6], where the minima 2™ and 25" cor-
respond to the center-of-mass positions at which one of
the ends of the guest particles touches one of the bound-
aries of the smectic layers (Fig. Bb and e). This was re-

min

cently experimentally observed for short rods dispersed
in colloidal monolayer of host rod-shaped particles with
a length ratio » ~ 0.5 ﬂﬁ] the short rods were found
to strongly anchor to the membrane interfaces, and only
occasionally hop to the opposite interface. Our results
confirm this anchoring behavior and extend it to par-
ticles even larger than the lamellar spacing. The pref-
erential adsorption of non-commensurate guest rods at
the interface of smectic layers can be explained by the
fact that guest rods at the interface generates large voids
that can be partially filled via small angular fluctuations
of neighboring host particles, thereby hindering their dif-
fusion. However, if the guest particle is at the center
of a smectic layer (or in between two smectic layers),
the resulting voids are smaller, making it harder for host
particles to occupy the empty space. This would indeed
require higher tilt angle of the host rods, hence gener-
ating a defect structure in the smectic organization. As
a consequence, the guest particles escape from this cen-
tral position and adhere to one of the two smectic layer
interfaces. In this regime II, referred as the switching
regime, the guest particles experience two potential bar-
riers of varying height (Fig.Bb and d) for varying r, which
results from a non-trivial interplay of the effective smec-
tic potentials that are felt by single host rods (r ~ 1,
Fig.Bk) as well as by commensurate rods (r ~ 2, Fig. Bf)



and which are out-of-phase in terms of barrier locations
(See Supplemental Material [10]).

In conclusion, we showed that the dynamics of guest
rods can be controlled by tuning the ratio r of their size
over the lamellar spacing. We observed that the long-
time diffusion coefficient D) is a periodic function of r,
as the longitudinal dynamics is entirely determined by
the excess length ¢(r — |r]) of the guest particle. We
show that this behavior can be rationalized by a 1D effec-
tive periodic potential exhibiting up to two energy bar-
riers, yielding a slow, an intermediate and a fast diffu-
sive regime, granting complete control over the type and
speed of the dynamics of guest particles in a smectic en-
vironment.
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