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This paper deals with sensor fault detection (FD) for discrete-time switched systems subject to bounded disturbances. A novel approach is investigated to construct residual framers using interval observer with L ∞ performance. The proposed technique is used to provide more degrees of design freedom and to obtain accurate FD results. The design conditions of the FD observer are given in terms of Linear Matrix Inequalities (LMIs) adopting firstly a common quadratic Lyapunov function, under an arbitrary switching signal and secondly multiple quadratic Lyapunov functions, under an Average Dwell Time (ADT) switching signal. Furthermore, the FD decision is based on residual intervals generated by the proposed interval observer. The effectiveness of the proposed approach is highlighted through simulation results of an academic example.

Introduction

Due to the increasing demand for higher performance and safety, fault diagnosis for dynamic systems is becoming a major technological challenging issue in many engineering fields, such as automotive [START_REF] Polverino | Model-based diagnosis through structural analysis and causal computation for automotive polymer electrolyte membrane fuel cell systems[END_REF] and aerospace [START_REF] Zolghadri | Advanced model-based fdir techniques for aerospace systems: Today challenges and opportunities[END_REF][START_REF] Zolghadri | Parametric approach to fault detection in aircraft control surfaces[END_REF]. Faults are generally unavoidable especially for complex systems and may lead to significant performance degradation. Therefore, early alarms of faults in complex systems is a crucial task to prevent serious system damage and to improve safety and reliability. In presence of uncertainties, robust fault detection is a necessity to avoid false alarms in model-based fault diagnosis.

In the past decades, several techniques have been introduced for various systems in the field of fault diagnosis such as [START_REF] Li | Fault detection in finite frequency domain for takagisugeno fuzzy systems with sensor faults[END_REF][START_REF] Chadli | H -/H ∞ fault detection filter design for discrete-time takagi sugeno fuzzy system[END_REF][START_REF] Rotondo | Robust unknown input observer for state and fault estimation in discrete-time Takagi-Sugeno systems[END_REF][START_REF] Li | Sliding mode observer design for fault and disturbance estimation using takagi-sugeno model[END_REF][START_REF] Tan | Invariant set-based analysis of minimal detectable fault for discrete-time LPV systems with bounded uncertainties[END_REF]. For instance, in [START_REF] Chadli | H -/H ∞ fault detection filter design for discrete-time takagi sugeno fuzzy system[END_REF], a robust FD observer is investigated for a Takagi Sugeno fuzzy system with sensor faults and unknown bounded disturbances. Using an augmented model combined with an interval observer, the robust actuator fault estimation for a discrete-time descriptor system with unknown disturbances and measurement noises is developped in [START_REF] Zhang | A state augmentation approach to interval fault estimation for descriptor systems[END_REF]. In [START_REF] Tang | Fault detection and isolation for discretetime descriptor systems based on H -/L ∞ observer and zonotopic residual evaluation[END_REF], actuator FD and isolation are investigated for discrete-time linear descriptor systems. In [START_REF] Buciakowski | A bounded-error approach to simultaneous state and actuator fault estimation for a class of nonlinear systems[END_REF], the authors propose a new approach of fault estimation for a class of uncertain nonlinear systems with simultaneous unknown input and actuator faults.

Switched system is one of the most important complex systems [START_REF] Liberzon | Switching in systems and control[END_REF] and plays an essential role in many engineering applications. They are composed of continuous dynamical subsystems combined with a discrete rule that operates switching between these subsystems. Many efforts have been devoted to FD techniques for switched systems in recent years [START_REF] Lin | Fault detection for discrete-time switched singular time-delay systems: an average dwell time approach[END_REF][START_REF] Zhai | Fault detection for singular switched linear systems with multiple time-varying delay in finite frequency domain[END_REF][START_REF] Zhong | Fault detection for discrete-time switched systems in finite-frequency domain[END_REF]. This motivation drives from the fact that the class of switched systems can model and control a wide range of physical and engineering systems. In [START_REF] Zhong | Fault detection for discrete-time switched systems in finite-frequency domain[END_REF], the FD issue is investigated for discrete-time switched systems in the finite-frequency domain.

The finite frequency L 2 -gain is established for characterizing the disturbance attenuation performance. The work in [START_REF] Lin | Fault detection for discrete-time switched singular time-delay systems: an average dwell time approach[END_REF] is concerned with the H ∞ -filtering formulation of FD problems for a class of discrete-time switched systems with time-varying state delays. Without using decoupling transformations, a highorder sliding mode observer is designed in [START_REF] Van Gorp | Fault detection based on higher-order sliding mode observer for a class of switched linear systems[END_REF] for the detection of faults that occur in the continuous part of the switched system.

In the presence of uncertainties coming either from external disturbances or from the mismatch between the model and the real system, interval observers have been proven to be effective in determining whether the system is faulty or not, since they have been successfully applied to several practical problems and can deal with large uncertainties [START_REF] Zhang | Fault detection for discrete-time LPV systems using interval observers[END_REF][START_REF] Su | Fault detection for switched systems with all modes unstable based on interval observer[END_REF][START_REF] Tian | Interval observer and unknown input observer-based sensor fault estimation for high-speed railway traction motor[END_REF][START_REF] Pourasghar | Characterisation of intervalobserver fault detection and isolation properties using the set-invariance approach[END_REF]. In [START_REF] Zhang | Fault detection for discrete-time LPV systems using interval observers[END_REF], an interval observer-based FD method is investigated for discrete-time linear parametervarying systems. The FD decision is made by determining whether the zero signal is excluded from the residual interval when the faults occur. The proposed technique avoids the design of residual evaluation functions and threshold generators. In [START_REF] Su | Fault detection for switched systems with all modes unstable based on interval observer[END_REF], interval observers are designed for a class of switched systems with unstable modes. A fault detection approach is introduced where fault sensitivity as well as disturbance robustness performances are treated. In [START_REF] Tian | Interval observer and unknown input observer-based sensor fault estimation for high-speed railway traction motor[END_REF], fault estimation is performed for high-speed railway traction motor in the presence of sensor fault and disturbances using interval and unknown input observers. In [START_REF] Pourasghar | Characterisation of intervalobserver fault detection and isolation properties using the set-invariance approach[END_REF], a robust fault detection and isolation technique is proposed. By combining the set-invariance approach with a zonotopic interval observer, the minimum detectable and isolable fault is characterized. In [START_REF] Ifqir | Adaptive threshold generation for vehicle fault detection using switched ts interval observers[END_REF], residual intervals are generated based on a switched Takagi-Sugeno interval observer. Such observers provide at each time instant adaptive thresholds adjusted according to the real-time measurements. More recently, the authors in [START_REF] Ethabet | Set-membership fault detection for continuous-time switched linear systems[END_REF] propose a FD observer for continuous-time switched linear systems subject to bounded disturbances. Based on the concept of interval observers, the generated residual intervals can be used directly to make the FD decision. In practice, the performance of model-based fault detection may be affected by modelling uncertainties, measured noise and unknown input disturbances. However, the interval observer in [START_REF] Ethabet | Set-membership fault detection for continuous-time switched linear systems[END_REF] cannot provide accurate FD results since the effects of uncertainties on the residual framers are not minimized. To handle this problem, a robust fault detection technique is required. Many researches are intensively investigated in the field of robust diagnosis using H ∞ performances to analyze the robustness against uncertainties [START_REF] Belkhiat | Design of a robust fault detection based observer for linear switched systems with external disturbances[END_REF] and [START_REF] Zhai | Simultaneous fault detection and control for switched linear systems with mode-dependent average dwelltime[END_REF]. Note that the H ∞ norm is a measurement of energy-to-energy gain which may not be very convenient for residual evaluation. In fact, it requires that the disturbances should be energy-bounded signals. However, from a practical point of view, some signals cannot be considered energy-bounded but have bounded peak values. Therefore, it is more reasonable to use the L ∞ analysis which describes the peak-to-peak performance index. It can be considered as an alternative solution to enhance fault detection performances in many applications such as mechanical systems control, communication networks, embedded control models, power systems, traffic control and some other areas. For instance, in [START_REF] Zhou | H -/L ∞ fault detection observer for discrete-time takagi-sugeno fuzzy systems[END_REF], the L ∞ technique is used for discrete-time Takagi-Sugeno fuzzy systems to measure the worst effect of disturbances on residuals instead of the H ∞ norm. To the best of the authors' knowledge, L ∞ interval FD observers have not been fully investigated in the case of switched systems.

Interval observer design techniques are usually based on the theory of positive systems, which require the non-negativity of the error dynamics. Unfortunately, this assumption is still restrictive and may lead to high computational complexity for a gain matrix. Some methods propose a coordinate transformation to relax the design conditions of interval observers. However, as mentioned in [START_REF] Chambon | Overview of linear time-invariant interval observer design: towards a non-smooth optimisation-based approach[END_REF], it is hard to merge the coordinate transformation approach with some additional constraints related to control such as disturbance attenuation performance. In view of this major drawback, the authors in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF] propose a novel interval observer structure (TNL structure) that can give more degrees of design freedom. The basic idea consists of introducing weighted matrices in addition to the gain matrix. First, it offers a solution when a gain matrix cannot be founded. Second, better performances may be achieved. Inspired by the structure of the interval observer given in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF], this paper presents a new interval observer-based FD method for a class of discrete-time switched systems. Motivated by the above discussion, the aim of this paper is to achieve a setmembership technique to detect faults for discrete-time switched systems based on the L ∞ criterion. Common and multiple Lyapunov functions under an ADT are used to study the stability analysis. The main contributions of this paper lie in the following aspects:

• Compared with [START_REF] Zhang | Fault detection for discrete-time LPV systems using interval observers[END_REF][START_REF] Zammali | Interval observers based fault detection for switched systems with L ∞ performances[END_REF], a new observer structure is investigated for switched systems. The proposed approach allows reducing the conservatism of gain matrices and offers more degrees of design freedom by integrating weighted matrices in the structure of the FD observer design.

• Compared with the traditional methods of designing constant or timevarying thresholds, the present method provides a systematic way for residual evaluation based on a belonging test of the zero signal to the residual framers generated by the proposed FD observers.

• Using common and multiple quadratic Lyapunov functions under an ADT control scheme, novel solvable conditions are derived in terms of LMIs.

The reminder of this paper is structured as follows. Notations and some preliminaries are introduced in Section 2. In Section 3, the problem statement is presented. Main results are described in Section 4. In Section 5, simulation results are shown to illustrate the effectiveness of the proposed methods. Finally, the paper is concluded in Section 6.

Preliminaries

Notation. In the sequel, the following notations are adopted. R, R n and R m×n denote respectively the sets of real numbers, n dimensional and m × n dimensional Euclidean space. For a signal x ∈ R n , x represents the Euclidean norm of x and the L ∞ norm of a signal x is defined as x ∞ = sup k≥0 x(k) .

We denote by I = 1, N , N ∈ Z + the set of non-negative integers {1, ..., N }.

Z is used to denote the set of all integers. In symmetric block matrices, ( * ) denotes the terms introduced by symmetry. I n represents the identity matrix and O n denotes a n × n null matrix. For a matrix P , P 0 means that P is positive definite, P † represents its pseudo-inverse. For a matrix A ∈ R m×n , let us define A + = max{0, A}, A -= A + -A and |A| = A + + A -. A class of K-functions consists of all functions α : R + → R + which are continuous, strictly increasing, and satisfying α(0) = 0. α is a K ∞ -function if it is a K-function and α(s) → ∞ as s → ∞. Throughout this paper, the following inequalities ≤, ≥, < and > should be interpreted elementwise.

The following definitions and lemmas are used in this paper.

Definition 1. Consider a linear discrete-time switched system:

   x(k + 1) = A σ(k) x(k) + B σ(k) u(k) + w(k) y(k) = Cx(k) + v(k) , σ(k) ∈ I (1) 
where x ∈ R nx , u ∈ R nu , y ∈ R ny , w ∈ R nw and v ∈ R nv are respectively the state vector, the input, the output, the state disturbances and the measurement noises. The switchings between the subsystems are ensured via a switching signal represented as a piecewise constant function, σ(k) : Z + → I .

Lemma 1. [29]

Let A ∈ R m×n be a constant matrix and x ∈ R n be a vector such that x ≤ x ≤ x, thus

A + x -A -x ≤ Ax ≤ A + x -A -x.
Definition 2. A matrix A ∈ R n×n is called non-negative if all its elements are non-negative.

Lemma 2.

[30] Consider the system described by:

x(k + 1) = Ax(k) + u(k) , u : Z + → R n + , k ∈ Z + (2) 
with x ∈ R n . The system (2) is said cooperative or non-negative if and only if u(k) ≥ 0 for all k ≥ 0, x(0) ≥ 0 and A is a non-negative matrix.

Definition 3. [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF] We denote by N σ (k a , k b ) the number of discontinuities of a switching signal σ on an interval (k a , k b ). σ(k) has an ADT τ a if there exist two positive numbers N 0 and τ a such that:

N σ (k a , k b ) ≤ N 0 + k b -k a τ a , ∀k b ≥ k a ≥ 0 Lemma 3.
[32] Consider the switched system (1), and let 0 < λ < 1, ρ > 1.

Suppose that there exist V σ(k) : R n → R and two K ∞ functions a 1 and a 2 such that for each σ(k) = q, q = l, the following conditions hold:

a 1 ( x(k) ) ≤ V q (x(k)) ≤ a 2 ( x(k) ) (3) ∆V q (x(k)) ≤ -λV q (x(k)) (4) 
V q (x(k)) ≤ ρV l (x(k)) (5) 
then, the system ( 1) is Input to State Stable (ISS) for any switching signal with an ADT τ a .

τ a ≥ τ * a = -ln(ρ) ln(1-λ) (6) 
where τ * a is the lower bound of τ a determined by both parameters ρ and λ.

The previous Lemma is common in the literature when the ADT switching signal is considered. 

A = CB † + S(I -BB † )
where S ∈ R a×b is an arbitrary matrix.
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Consider the following discrete-time switched system:

   x(k + 1) = A q x(k) + B q u(k) + D q w(k) y(k) = Cx(k) + D v v(k) + F f (k), (7) 
where

x ∈ R nx , u ∈ R nu , y ∈ R ny , f ∈ R n f , w ∈ R nw and v ∈ R nv are
respectively the state vector, the input, the output, the sensor fault, the state disturbances and the measurement noises. The known matrices A q , B q , C, D q , D v and F are given with appropriate dimensions. The index q specifies, at each discrete instant k, the subsystem that is currently followed. q ∈ I = 1, N , N ∈ Z + , N is the number of linear subsystems. The switching signal is assumed to be known. Some assumptions are introduced for the rest of the paper.

Assumption 1. Assume that the state disturbances and the measurement noises are unknown but bounded with a priori known bounds such that

w ≤ w ≤ w, v ≤ v ≤ v where w, w ∈ R nw and v, v ∈ R nv .
Assumption 2. The pairs (A q , C) are detectable, ∀q = 1, . . . , N .

In the following, the goal is to design residual framers based on robust FD interval observers for discrete-time linear switched systems subject to sensor faults. An L ∞ criterion is developed in this paper in order to compute the observer gains and to take into account the presence of state disturbances and measurement noises in the design of the robust FD procedure.

Main results

In this section, a new technique is investigated to design residual framers based on the TNL structure interval observer. LMIs conditions are derived using firstly the common quadratic Lyapunov function under an arbitrary switching signal and secondly by adopting multiple quadratic Lyapunov functions under an ADT switching signal. The proposed method allows reducing the conservatism of gain matrices by providing more degrees of freedom and obtaining accurate fault detection results.

A common Lyapunov function based approach

In this part, the aim is to design a FD approach for discrete-time switched systems defined by [START_REF] Li | Sliding mode observer design for fault and disturbance estimation using takagi-sugeno model[END_REF]. The proposed method is robust against state disturbances and measurement noises. The stability analysis is analyzed by applying the common Lyapunov function.

We introduce the following assumption needed in the remainder of this paper.

Assumption 3. The upper and lower bounds of the initial state, x(0) and x( 0)

are chosen such that x(0) ≤ x(0) ≤ x(0).
Inspired by the structure of the observer proposed in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF], a FD interval observer is introduced. The proposed observer can reduce the conservatism of gain matrices and provide more degree of freedom by introducing weighted matrices T q , T q , N q and N q . The FD interval observer is given as follow:

∀q = 1, . . . , N                                        ξ(k + 1) = T q A q x(k) + T q B q u(k) + L q (y(k) -Cx(k)) + ∆ x(k) = ξ(k) + N q y(k) ξ(k + 1) = T q A q x(k) + T q B q u(k) + L q (y(k) -Cx(k)) + ∆ x(k) = ξ(k) + N q y(k) y(k) = C + x(k) -C -x(k) + D v + v -D v -v y(k) = C + x(k) -C -x(k) + D v + v -D v -v r(k) = y(k) -y(k) r(k) = y(k) -y(k) (8) 
where ξ(k), ξ(k) ∈ R nx denote intermediate variables, x(k), x(k) ∈ R nx are the upper and lower bounds of x(k) respectively. ∆ and ∆ are given by:

                 ∆ = (T q D q ) + w -(T q D q ) -w + (L q D v ) + v -(L q D v ) -v + (N q D v ) + v -(N q D v ) -v ∆ = (T q D q ) + w -(T q D q ) -w + (L q D v ) + v -(L q D v ) -v + (N q D v ) + v -(N q D v ) -v
In (8), L q ∈ R nx×ny and L q ∈ R nx×ny are the observer gains. T q ∈ R nx×nx , T q ∈ R nx×nx , N q ∈ R nx×ny and N q ∈ R nx×ny are constant matrices that should be designed to satisfy

T q + N q C = I nx (9) 
T q + N q C = I nx [START_REF] Tang | Fault detection and isolation for discretetime descriptor systems based on H -/L ∞ observer and zonotopic residual evaluation[END_REF] Based on Lemma 4, the general solutions of ( 9) and ( 10) are given by

T q N q =   I nx C   † + S q   In x +ny -   I nx C     I nx C   †    (11) 
T q N q =   I nx C   † + S q   In x +ny -   I nx C     I nx C   †    (12) 
where S q , S q ∈ R nx×(nx+ny) for q = 1, . . . , N are arbitrary matrices which will be designed such that all matrices T q , T q are of full rank.
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Under the designed FD interval observer ( 8), the objective is to compute the observer gains L q and L q that minimize the effect of state disturbances and measurement noises on the upper and lower bounds of the residual vectors r(k), r(k), respectively. Let e(k) = x(k) -x(k) and e(k) = x(k) -x(k) be the upper and the lower observation errors. By combining ( 7), ( 9) and ( 10), x(k + 1) can be written in two different ways:

x(k + 1) = (T q + N q C)x(k + 1) = T q x(k + 1) + N q (y(k + 1) -D v v(k + 1) -F f (k + 1)) = T q A q x(k) + T q B q u(k) + T q D q w(k) + N q y(k + 1) -N q D v v(k + 1) -N q F f (k + 1) (13) 
x(k + 1) = (T q + N q C)x(k + 1)

= T q x(k + 1) + N q (y(k + 1) -D v v(k + 1) -F f (k + 1)) = T q A q x(k) + T q B q u(k) + T q D q w(k) + N q y(k + 1) -N q D v v(k + 1) -N q F f (k + 1) (14) 
Then, the dynamics of the upper and lower errors are given by:

                 e(k + 1) = (T q A q -L q C)e(k) + ∆ + L q D v v(k) + N q D v v(k + 1) -T q D q w(k) + L q F f (k) + N q F f (k + 1) e(k + 1) = (T q A q -L q C)e(k) + ∆ + L q D v v(k) + N q D v v(k + 1) -T q D q w(k) + L q F f (k) + N q F f (k + 1) (15) 
We introduce

d(k) =      ∆ -T q D q w(k) D v v(k) D v v(k + 1)      , d(k) =      ∆ -T q D q w(k) D v v(k) D v v(k + 1)      , f (k) =   f (k) f (k + 1)  
Accordingly, the error dynamics in ( 15) can be rewritten as

   e(k + 1) = (T q A q -L q C)e(k) + H q d(k) + F q f (k) e(k + 1) = (T q A q -L q C)e(k) + H q d(k) + F q f (k) (16) 
where

H q =      I n L q T N q T      T , H q =      I n L q T N q T      T , F q =   (L q F ) T (N q F ) T   T , F q =   (L q F ) T (N q F ) T   T Remark 1.
One can notice that when T q = I nx , T q = I nx , N q = O nx and N q = O nx , the proposed interval observer in (8) can be written as follows ∀q = 1, . . . , N :

   x(k + 1) = A q x(k) + B q u(k) + L q (y(k) -Cx(k)) + ∆ x(k + 1) = A q x(k) + B q u(k) + L q (y(k) -Cx(k)) + ∆ ( 17 
)
where ∆ and ∆ are given by:

   ∆ = D q + w -D q -w + (L q D v ) + v -(L q D v ) -v ∆ = D q + w -D q -w + (L q D v ) + v -(L q D v ) -v
The error dynamics can be deduced from [START_REF] Zhang | Fault detection for discrete-time LPV systems using interval observers[END_REF] and given by:

   e(k + 1) = (A q -L q C)e(k) + ∆ + L q D v v(k) -D q w(k) + L q F f (k) e(k + 1) = (A q -L q C)e(k) + ∆ + L q D v v(k) -D q w(k) + L q F f (k) (18) 
where

d(k) =   ∆ -D q w(k) D v v(k)   , d(k) =   ∆ -D q w(k) D v v(k)   H q = I n L q , H q = I n L q
In this case, the gain matrices L q ∈ R nx×ny and L q ∈ R nx×ny should be designed such that A q -L q C and A q -L q C are non-negative ∀q = 1, . . . , N . This Assumption is still restrictive and conservative. Consequently, by introducing 180 weighted matrices T q , T q , N q and N q , the proposed FD observer in (8) can reduce the conservatism of gain matrices and provide more degree of freedom.

On the basis of the error system of ( 16), the non-negativity, the stability and the robustness of the proposed interval observer are studied in the following theorems.

185 Theorem 1. For system [START_REF] Li | Sliding mode observer design for fault and disturbance estimation using takagi-sugeno model[END_REF], let Assumption 1 hold, x(k) and x(k) in (8) satisfy in the fault free case (f = 0) the inclusion

x(k) ≤ x(k) ≤ x(k)
if T q A q -L q C and T q A q -L q C are non-negative for all k ≥ 0 and x(0), x(0) are chosen such that x(0) ≤ x(0) ≤ x(0).

Proof. In the fault free case (f = 0), according to Assumption 1, we have

∆ -T q D q w(k) + L q D v v(k) + N q D v v(k + 1) ≥ 0 ∆ -T q D q w(k) + L q D v v(k) + N q D v v(k + 1) ≤ 0
In addition, let Assumption 3 be satisfied. Then, e(0) ≥ 0 and e(0) ≤ 0.

Applying Lemma 2 to (15), the inclusion

x(k) ≤ x(k) ≤ x(k)
holds for all k ≥ 0 if T q A q -L q C and T q A q -L q C are non-negative.

In order to study the stability of the proposed residual framers, we propose an augmented state defined by

E(k) = [e(k) T e(k) T ] T and R(k) = [r(k) T r(k) T ]
T . The corresponding augmented system can be deduced:

   E(k + 1) = A q E(k) + H q d(k) + Fq f (k) R(k) = CE(k) + V ṽ(k) + Ff (k) (19) 
where

A q =   T q A q -L q C 0 0 T q A q -L q C   , H q =   H q 0 0 H q   , Fq =   F q F q   F =   -F -F   , C =   C + -C - -C -C +   , V =   -D v D v + -D v - -D v -D v - D v +   190 ṽ(k) =      v(k) v v      , d(k) =   d(k) d(k)   d ∈ R n d , n d = 2n x + 2n y .
The error dynamics in [START_REF] Tian | Interval observer and unknown input observer-based sensor fault estimation for high-speed railway traction motor[END_REF] can be split into two subsystems where the subsystem ( 20) is decoupled from the effects of f (k) and the subsystem ( 21) is only affected by the sensor fault.

   E d (k + 1) = A q E d (k) + H q d(k) R d (k) = CE d (k) + V ṽ(k) (20) 
   E f (k + 1) = A q E f (k) + Fq f (k) R f (k) = CE f (k) + Ff (k) (21) 
where

E(k) = E f (k) + E d (k).
Inspired by [START_REF] Wang | Fault estimation filter design for discrete-time descriptor systems[END_REF], and to facilitate the analysis of the error dynamics and the design of the proposed observer, the error dynamics system in [START_REF] Tian | Interval observer and unknown input observer-based sensor fault estimation for high-speed railway traction motor[END_REF] are split in both subsystems [START_REF] Pourasghar | Characterisation of intervalobserver fault detection and isolation properties using the set-invariance approach[END_REF] and [START_REF] Ifqir | Adaptive threshold generation for vehicle fault detection using switched ts interval observers[END_REF]. The objective in the sequel is to design a FD observer [START_REF] Tan | Invariant set-based analysis of minimal detectable fault for discrete-time LPV systems with bounded uncertainties[END_REF] such that the error system in ( 20) is stable and the effect of disturbances is minimized and thus the FD accuracy is improved. For this end, inspired by [START_REF] Zhang | Ellipsoid-based interval estimation for takagi-sugeno fuzzy systems[END_REF], the L ∞ technique is used such that for given scalars γ > 0, γ 1 > 0, γ 2 > 0 and 0 < λ < 1, the residual signal R d should satisfy the following inequality

||R d || < γ 2 1 (γ(λ(1 -λ) k V (0) + γθ 2 d )) + γ 2 2 θ 2 v ( 22 
)
where

V (0) = E d (0) T P E d (0), P 0 ∈ R 2nx×2nx , θ d and θ v are known constants such that θ d = d ∞ and θ v = ṽ ∞ .
195 Remark 2. The sensibility analysis of the proposed observer is not addressed in this paper. Based on interval observers, some authors characterized the minimum detectable fault or others H -approaches are used to improve the sensibility of the observer [START_REF] Pourasghar | Characterisation of intervalobserver fault detection and isolation properties using the set-invariance approach[END_REF][START_REF] Meseguer | Observer gain effect in linear interval observer-based fault detection[END_REF]. This study should be developed in a future work. Herein, we focus on TNL interval observer with L ∞ performance.
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Theorem 2. Let Assumptions 2 and 3 hold. Given scalars γ > 0, γ 1 > 0, γ 2 > 0 and 0 < λ < 1, the error dynamics system in ( 20) is stable and R d satisfies the L ∞ performance, if there exist a constant µ > 0, a diagonal matrix

P =   P 1 0 0 P 2 
 > 0, P = P T 0, P ∈ R 2nx×2nx and constant matrices W q1 , W q2 ∈ R nx×ny and Y q1 , Y q2 ∈ R nx×(nx+ny) for q = 1, 2, . . . , N such that:

  P 1 Θ † α 1 A q + Y q1 Ψα 1 A q -W q1 C 0 * P 2 Θ † α 1 A q + Y q2 Ψα 1 A q -W q2 C   ≥ 0. (23)      Υ 11 0 Υ 13 * -µI n d Υ 23 * * Υ 33      ≺ 0. ( 24 
)      λP 0 I 2nx * (γ -µ)I n d 0 * * γI 2nx      0. ( 25 
)   C T C -γ 2 1 I 2nx C T V * -γ 2 2 I 2nx + V T V   ≺ 0. ( 26 
)
where

Υ 11 =   (λ -1)P 1 0 * (λ -1)P 2   , Υ 33 =   -P 1 0 * -P 2   Υ 13 =   P 1 Θ † α 1 A q + Y q1 Ψα 1 A q -W q1 C 0 * P 2 Θ † α 1 A q + Y q2 Ψα 1 A q -W q2 C   T Υ 23 =   P 1 W q1 P 1 Θ † α 2 + Y q1 Ψα 2 0 0 0 0 0 0 P 2 W q2 P 2 Θ † α 2 + Y q2 Ψα 2   T and α 1 =   I nx 0   , α 2 =   0 I ny   , Θ =   I nx C   , Ψ = I nx+ny -ΘΘ †
Moreover, the observer gains L q , L q , T q , T q , N q and N q are given by:

                               L q = P 1 -1 W q1 L q = P 2 -1 W q2 T q = Θ † α 1 + P 1 -1 Y q1 Ψα 1 T q = Θ † α 1 + P 2 -1 Y q2 Ψα 1 N q = Θ † α 2 + P 1 -1 Y q1 Ψα 2 N q = Θ † α 2 + P 2 -1 Y q2 Ψα 2 (27) 
Proof. To prove the stability of ( 20) and the L ∞ performance ( 22), sufficient conditions are given in terms of LMIs based on the common quadratic Lyapunov function given by V (k) = E d (k)

T P E d (k), P T = P 0, P ∈ R 2nx×2nx . Note that P > 0 since it is a diagonal matrix. Thus, according to Theorem 1, P A q is also non-negative for all q = 1, . . . , N . By replacing T q and T q by their expressions in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF], the inequality (23) is satisfied.

The time difference of V (k) is given by

∆V (k) =      E d (k) d(k)      T      A q T P A q -P A q T P H q * H q T P H q           E d (k) d(k)     
If inequality ( 24) holds, then it can be rewritten as

     (λ -1)P 0 (P A q ) T * -µI n d (P H q ) T * * -P      ≺ 0 (28) 
It can also be easily shown by pre-and post-multiplying [START_REF] Zammali | Interval observers based fault detection for switched systems with L ∞ performances[END_REF] with

     I 2nx 0 A T q 0 I n d H q T     
and its transpose, respectively, that (29) yields

     A q T P A q -P A q T P H q * H q T P H q      +   λP 0 * -µI n d   ≺ 0 (29) 
In addition, by pre-and post-multiplying [START_REF] Efimov | Interval estimation for lpv systems applying high order sliding mode techniques[END_REF] with [E d (k)

T d(k)

T ] and its transpose, it follows that

∆V (k) < -λV (k) + µd(k) T d(k) (30) 
When w(k) = 0 and v(k) = 0, it implies that d(k) = 0 and ( 30) is deduced:

∆V (k) = V (k + 1) -V (k) < -λV (k) < 0
Accordingly, the error system in ( 20) is stable. Moreover, inequality (30) can be rewritten as

V (k + 1) < (1 -λ)V (k) + µθ 2 d ( 31 
)
From [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF], one can obtain

V (k) ≤ (1 -λ) k V (0) + µ k-1 τ =0 (1 -λ) τ θ 2 d ≤ (1 -λ) k V (0) + µ (1-λ k ) λ θ 2 d ≤ (1 -λ) k V (0) + µθ 2 d λ (32) 
Based on the Schur complement lemma, ( 25) is equivalent to

  λP 0 * (γ -µ)I n d   - 1 γ   I 2nx 0   I 2nx 0 0 ( 33 
)
Then, pre-multiplying and post-multiplying [START_REF] Wang | Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems[END_REF] with

[E d (k) T d(k)
T ] and its transpose, one can get

E d (k) T E d (k) ≤ γ λV (k) + (γ -µ)θ 2 d ( 34 
)
According to [START_REF] Zhu | Robust MPC under eventtriggered mechanism and round-robin protocol: An average dwell-time approach[END_REF], inequality in [START_REF] Wang | Fault estimation filter design for discrete-time descriptor systems[END_REF] gives

E d (k) T E d (k) ≤ γ λ (1 -λ) k V (0) + µθ 2 d λ + (γ -µ) θ 2 d ≤ γ λ (1 -λ) k V (0) + γθ 2 d
In addition, the matrix inequality in [START_REF] Chambon | Overview of linear time-invariant interval observer design: towards a non-smooth optimisation-based approach[END_REF] implies that

  E d (k) ṽ(k)   T   C T C -γ 2 1 I 2nx C T V * -γ 2 2 I 2nx + V T V     E d (k) ṽ(k)   < 0 which follows R d (k) T R d (k) ≤ γ 2 1 E d (k) T E d (k) + γ 2 2 ṽ(k) T ṽ(k) ≤ γ 2 1 γ λ(1 -λ) k V (0) + γθ 2 d + γ 2 2 θ 2 v
Therefore, the L ∞ criterion ( 22) is satisfied.

Remark 3. The designed LMIs conditions are relaxed by introducing weighted matrices T q , T q , N q and N q using a common quadratic Lyapunov function under an arbitrary switching signal. However, the existence of such a function is not always guaranteed. Therefore, multiple Lyapunov functions with an ADT 205 switching signal are introduced in the following to reduce the conservatism.

Residual framers design based on multiple Lyapunov functions

In this part, the stability analysis is analysed by applying multiple Lyapunov functions under an ADT switching signal. The results given by Theorem 2 are extended and new LMIs conditions are developed hereafter in the following 210 theorem.

Theorem 3. Consider the switched system given by ( 7), let Assumptions 2 and 3 hold and suppose that there exists a piecewise Lyapunov function defined by

V q (k) = E d (k) T P q E d (k).
If there exist positive definite diagonal matrices P q ,

P q ∈ R 2nx×2nx , constant matrices M l ∈ R 2nx×2nx , W q1 , W q2 ∈ R nx×ny and Y q1 , Y q2 ∈ R nx×(nx+ny) , a 2 > a 1 > 0, µ > 0 for given scalars γ > 0, γ 1 > 0,
γ 2 > 0, 0 < λ < 1 and 0 < β < 1, then the error dynamics system in ( 20) are stable, R d satisfies the L ∞ performance and the following conditions

min Pq, M l βρ + (1 -β)µ ( 35 
)
a 1 I 2nx ≤ P q ≤ a 2 I 2nx (36) 
  P q1 Θ † α 1 A q + Y q1 Ψα 1 A q -W q1 C 0 * P q2 Θ † α 1 A q + Y q2 Ψα 1 A q -W q2 C   ≥ 0. (37)      Υ q 11 0 Υ q 13 * -µI n d Υ q 23 * * Υ q 33      ≺ 0. ( 38 
)      λP q 0 I 2nx * (γ -µ)I n d 0 * * γI 2nx      0. ( 39 
)   C T C -γ 2 1 I 2nx C T V * -γ 2 2 I 2nx + V T V   ≺ 0. ( 40 
)   M l P q P q P q   0 (41)
hold for all q, l ∈ I , q = l where

Υ q 11 =   (λ -1)P q1 0 * (λ -1)P q2   , Υ q 33 =   -P q1 0 * -P q2   Υ q 13 =   P q1 Θ † α 1 A q + Y q1 Ψα 1 A q -W q1 C 0 * P q2 Θ † α 1 A q + Y q2 Ψα 1 A q -W q2 C   T Υ q 23 =   P q1 W q1 P q1 Θ † α 2 + Y q1 Ψα 2 0 0 0 0 0 0 P q2 W q2 P q2 Θ † α 2 + Y q2 Ψα 2   T and α 1 =   I nx 0   , α 2 =   0 I ny   , Θ =   I nx C   , Ψ = I nx+ny -ΘΘ † .
In addition, if the state x is bounded, then x and x are also bounded under a switching signal with an ADT τ a satisfying:

τ a > τ * a = - ln(ρ) ln(1 -λ) (42) 
where ρ = a2 a1 and the observer gains L q , L q , T q , T q , N q and N q are given by:

                               L q = P q1 -1 W q1 L q = P q2 -1 W q2 T q = Θ † α 1 + P q1 -1 Y q1 Ψα 1 T q = Θ † α 1 + P q2 -1 Y q2 Ψα 1 N q = Θ † α 2 + P q1 -1 Y q1 Ψα 2 N q = Θ † α 2 + P q2 -1 Y q2 Ψα 2 (43) 
Moreover, the interval error (20) satisfies:

lim k→∞ E d (k) < µ a 1 λ θ d 2 
Proof. First of all, the requirement on the non-negativity property of the matrices T q A q -T q C and T q A q -L q C is achieved via the inequality (37). We are interested in checking the stability of the observation errors via multiple Lyapunov functions for the proposed interval observer in [START_REF] Tan | Invariant set-based analysis of minimal detectable fault for discrete-time LPV systems with bounded uncertainties[END_REF]. According to (32), we have

V (k) ≤ (1 -λ) k V (0) + µθ 2 d λ
Based on equation (3) in Lemma 3, the following inequality

a 1 E d (k) ≤ V q (E d (k))
allows deducing that

E d (k) ≤ 1 a 1 ((1 -λ) k V (0) + µθ 2 d λ ) When k → ∞, inequality in (44) lim k→∞ E d (k) < µ a 1 λ θ d 2 (44) 
yields. Therefore, it has been shown that the interval error width is asymptotically upper bounded by µ a1λ θ d 2 which should be made as small as possible to enhance the accuracy of FD. One can notice that this bound depends on µ, for a given a 1 and λ. Consequently, the minimization of µ allows one reducing the interval width of the estimation error and thus the interval width of the residual signal. We aim also to minimize ρ to look for optimum dwell time. The resolution of such a problem leads to solving a problem of linear optimization which consists of seeking a minimization function. Then, the objective function can be added to the LMIs conditions and expressed as:

βρ + (1 -β)µ
where the weight β is in the range [0, 1].

Let us now deal with the stabilization of subsystems at the switching instants. The inequality given in ( 5) can be written as follows:

ρP l -P q 0 ( 45 
)
where q, l ∈ I , q = l, q is the current mode. Then applying the Schur complement lemma, (45) implies:

  ρP l I 2nx I 2nx P -1 q   0 (46) 20 
The multiplication both side of (46) by

  I 2nx O 2nx O 2nx P q   yields to   M l P q P q P q   0
where M l = ρP l . Therefore, (41) is verified. LMIs conditions in (38), (39) and 215 (40) have been proven in Theorem 2.

Under the proposed interval observer (8), the residual evaluation is based on determining whether the zero signal is excluded from the residual interval or not. The corresponding FD decision scheme is made as follows:

   0 ∈ [r(k) r(k)] Fault-free 0 / ∈ [r(k) r(k)] Faulty (47) 
The FD evaluation in (47) is deduced from the following relation

y(k) / ∈ [y(k) y(k)] (48) 
In fact, in the fault free case, the output signal is consistent with the estimation of the proposed interval observer, i.e. y ∈ [y y]. In contrary case, an inconsistency on the output signal is detected and it indicates the existence of a fault.

Based on (48), the consistency test can be written as follow

0 / ∈ [y(k) y(k)] -y(k) ⇒ 0 / ∈ [y(k) -y(k) y(k) -y(k)] (49) 
If zero is contained in the estimated framers, the system is assumed fault free.

Otherwise an alarm is triggered.

In the next section, an illustrative example is introduced to show the efficiency of the developed results using both common and multiple Lyapunov functions. 220

Numerical example

The numerical example is considered for a discrete-time switched system [START_REF] Li | Sliding mode observer design for fault and disturbance estimation using takagi-sugeno model[END_REF] defined with three subsystems, N = 3, with: 

A 1 =      0.6 0.
     B 1 =      1 0.1 1.3      , B 2 =      0.1 1 1      , B 3 =      1.2 1 0.5      , E 1 =      0.02 0.01 0.1      , E 2 =      0.05 0.1 0      E 3 =      0 0.1 0.1      D =   0.1 0 0 0.1   F 1 =   0.5 -0.5   C =   1.2 0.01 0 0.1 1.1 0.1   Remark 4.
It is pointed out that the matrices C and F are considered to be constant and common for all modes in this paper. However, there is no theoretical difficulty with allowing them to be switched.

In this example, w(k) ∈ R and v(k) ∈ R 2 are uniformly distributed bounded 

Fault detection results based on the common Lyapunov function

Based on the TNL structure used in [START_REF] Tan | Invariant set-based analysis of minimal detectable fault for discrete-time LPV systems with bounded uncertainties[END_REF], the following Lyapunov matrix is given by:

P 1 =      1.28 0 0 0 1.23 0 0 0 1.67      , P 2 =      1.5 0 0 0 1.5 0 0 0 1.92     
By solving LMIs in Theorem 2, the matrices L q , L q , N q , N q , T q and T q can be obtained as follows: Note that N q , N q , T q and T q are designed to satisfy ( 9) and ( 10). In the simulation, an abrupt sensor fault f (k) is carried out and represented as follows: In the simulation study, the proposed TNL method is compared with the traditional interval approach in [START_REF] Zammali | Interval observers based fault detection for switched systems with L ∞ performances[END_REF] based on the common Lyapunov function. The simulation results are shown in Fig. 3. The two proposed methods show their effectiveness for the detection of the sensor fault after its occurrence. Meanwhile, the results show that the FD obtained by the TNL method is more accurate than by the commonly used interval observer.

L 1 =      0 
f (k) =    1 
The case of a small abrupt sensor fault is also considered and simulation results in Fig. 4 show that only by using the TNL technique, the fault can be detected.

In fact, based on the traditional interval technique, the cooperativity property is still guaranteed even after the occurrence of the fault and some false alarms can be generated. 

P 11 =      1.29 0 0 0 1.26 0 0 0 1.67      , P 12 =      1.5 0 0 0 1.5 0 0 0 1.92      , P 21 =      1.35 0 0 0 1.23 0 0 0 1.63      P 22 =      1.5 0 0 0 1.49 0 0 0 1.84      , P 31 =      1.5 0 0 0 1.39 0 0 0 1.62      , P 32 =      1.49 0 0 0 1.58 0 0 0 1.77     
In the simulation study, µ = 2 which leads to an ADT τ a > 1. The set of observer gains L q , L q and the weighted matrices N q , N q , T q and T q are computed according to (43): 

Lemma 4 .

 4 [START_REF] Wang | Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems[END_REF] Given matrices A ∈ R a×b , B ∈ R b×c and C ∈ R a×c , if rank(B) = c, then the general solution of the following equation AB = C is given by
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  signals such that |w(k)| ≤ 1 and |v(k)| ≤ [0.1 0.1]. The state initial conditions are set as x(0) = [0 0 0] T x(0) = [-0.1 -0.1 -0.1] T and x(0) = [0.1 0.1 0.1] T such that x(0) ≤ x(0) ≤ x(0).Figure 1 shows the evolution of the switching signal. It indicates the active mode of the discretetime switched system.

Figure 1 :

 1 Figure 1: Evolution of the switching signal

  35 ≤ k ≤ 55 0 otherwise Under the switching sequence shown in Fig. 1, simulation results of the FD interval observer are depicted in Fig. 2 which illustrates the evolution of the residual signals. In the fault free case, the cooperativity property is ensured and one can remark that 0 ∈ [r(k) r(k)]. When a fault occurs (k = 35), the additive sensor fault is detected at the time instant k = 36 under the proposed FD TNL approach and 0 / ∈ [r(k) r(k)].

Figure 2 :Figure 3 :Figure 4 : 5 . 2 .

 23452 Figure 2: Residual framers using fault detection TNL interval observer

  been performed between FD performances based on the common Lyapunov and multiple Lyapunov functions. The results of the simulation are depicted in Fig. 5 where solid lines present the residual signals obtained by the common Lyapunov function and dashed lines present the residual framers obtained by multiple Lyapunov functions. The simulation results show that the tighter than that given by the common Lyapunov function. With the same initial conditions introduced before, the fault f (k) can be detected more quickly using Multiple Lyapunov functions.

Figure 5 : 5 .

 55 Figure 5: Residual framers using fault detection interval observer

interval width obtained by the construction of multiple Lyapunov functions is