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Abstract. This lecture presents some commonly-used numerical algorithms devoted to optimization, that is
maximizing or, more often minimizing a given function of several variables. The goal is function estimation.
At �rst, some general mathematical tools are presented. Some gradient-free optimization algorithms are
presented and then some gradient-type methods are pointed out with pros and cons for each method. The
gradient of the function to be minimized is presented according to three distinct methods: �nite di�erence,
forward di�erentiation and the use of the additional adjoint-state problem. The last part presents some
practical studies where some tricks are given, along with some numerical results.
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Function estimation in IHTP

1 Introduction

This lecture is devoted to the solution of inverse problems in heat transfer, speci�cally when function are to
be recovered. Usually, such problems are non-linear and may fall into the category of large-scale inverse
problems, so that speci�c optimization tools are to be developed.
The lecture �rst presents some basic examples of IHCP (Inverse Heat Conduction Problems) and points out
the distinction between estimation of parameters on the one hand, and functions in the other hand. Indeed,
as a simple example, we have the distinction between estimating i) λ as a parameter, ii) λ(x) as a function
of the space x (x = (x1, x2)

t for instance) and, iii) λ(T ) as a function of the state T .
The lecture then presents the most usual optimization tools for the solution of di�erent kinds of inverse
problems. It �rst gives notions on the functional to be minimized, and convexity. It gives de�nitions of
constraints (equality and inequality) added to the functional to be minimized, the added constraints being
related to either the state or the parameter/functional.
Then, before tackling the detailed iterative optimization algorithms, the most usual stopping criteria are
presented.
Zero-order, �rst-order and quasi-second order optimization methods are brie�y presented with pros and
cons for each of them.
Concerning zero order methods, both deterministic and stochatic methods are very brie�y presented with
some speci�c examples (Simplex, PSO, and GA).
Within the frame of �rst-order methods, one presents the steepest-descent method with and without line-
search, then the conjugate gradient method for quadratic and arbitrary functions.
Some quasi-Newton algorithms are then presented: the BFGS, the Gauss–Newton and the Levenberg–
Marquardt methods.
A comparison is given in terms of gradient needed for all previously presented methods along with the
convergence rate, if possible.
The next part presents the computation of the functional gradient: through the �nite di�erence method,
through the direct di�erentiation of the PDEs (partial di�erential equations), and through the use of the
adjoint-state problem. Several ways to access the adjoint-state problems are given. A comparison of gradient
computations is given through examples to emphasize the di�erences.
Note that this lecture has been prepared with some well-known books such as [1, 2, 3, 4]. These books being
considered as “standard” popular books, some parts of this lecture are taken from these references.
Note also that this lecture is being continuously improved, starting from its very �rst version in 2005 [5].

2 Estimation in heat transfer – Optimization

2.1 Parameter and function estimation

The modeling of a physical system is based on several requirements. In addition to the physical modeling
equations that include some physical parameters (e.g. conductivity coe�cients), the initial state and the
sources are also to be known if the physical problem is to be solved. If all these data is known, then the
so-called direct problem – or forward problem – can be solved.

Now, if some of the previously expressed quantities are missing, the physical problem cannot be solved
any longer, but some inversion procedure may evaluate the missing quantity, �tting the model output with
some real ones (i.e. obtained through experiments). The evaluation of such missing quantities needs an
inverse problem – or a backward problem – to be solved.

Depending on the nature of the missing quantity, the estimation is performed on parameters or on
functions.

These last years, a debate took place within the heat transfer community about the di�erence and the
meaning of, on the one hand, parameter identi�cation and, on the other hand, function estimation. According
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2.1 Parameter and function estimation Function estimation in IHTP

to the author, both are very di�erent, though some similarities exist between both of them.
Let us work on following examples of physical properties estimation to back up our methodology.

i) If a single material conductivity λ is to be identi�ed, then the problem clearly belongs to the category
of parameter estimation. In such a case, the number of unknowns (the parameters) is very low: only
one for a uniform isotropic medium, and only six at maximum for a uniform orthotropic medium. Due
to the low dimensionality of the inverse problem, any optimizer can be used (either gradient-free or
gradient-type). Moreover, such problems are likely to be well-posed, and the use of regularization tools
may not be necessary. These parameter estimation problems are not di�cult both from mathematical
and computational points of view. The same comments can be drawn if di�erent non-varying thermal
conductivities are to be estimated in di�erent locations (for example dealing with the case of a multi-layer
medium).

ii) If several physical properties are to be estimated, for example a thermal conductivity λ [W m−1 K−1]), a
heat capacity Cp [J K−1]), and a convective heat transfer coe�cient h [W m−2 K−1]), then we consider
a collection of elements that can be put together into a vector, such that classical optimizers can solve
this parameter estimation problem. However, taking a norm of such a vector would not make any
sense in a physical point of view. This is one of the reasons why some priors are used (in this speci�c
case λ0, C0

p and h0), and the estimation is performed on adimensionalized parameters (in this speci�c
case λ̃ = λ/λ0, C̃p = Cp/C0

p and h̃ = h/h0). Doing so, norms (on the collection of adimensionalized
parameters) are understandable by both mathematicians and physicists. Note that another reason why
it is preferable to adimensionalize parameters is that it usually slightly attenuates the ill-posed character
of the inverse problem, and thus the process of adimensionalization can be seen, somehow, as the very
�rst regularization tool.

iii) If a physical property now depends continuously on the state, (e.g. temperature-dependent conductivity
λ(T )), then one may think that the problem of conductivity estimation falls into the category of
function estimation. However, a parameterization of this function is anyway necessary to use numerical
algorithms, and the type of parameterization can make the di�erence between parameter and function
estimation. If – for example – a polynomial expansion is used, say λ(T ) ≈∑N

i αiT
i, then the collection

of the N coe�cients αi is to be estimated, and, therefore, such a problem eventually falls into the
category of a parameter estimation problem (the parameters are the polynomial coe�cients). Moreover,
because the number of unknowns is likely to be low (say less than ten), the choice of the optimizer
does not matter much. (Note however that this choice of polynomial expansion is unlikely to be a good
candidate for the parameterization; the one presented in the following item iv) is likely to be much
better.)

iv) If a space-dependent physical property is to be estimated, for example a thermal conductivity λ (x),
then the estimation is performed on a function. As in the previous case, a parameterization of this
function is anyway necessary to use any numerical algorithm. Building a basis {ξi}Ni=1 and using
it to project the function, i.e. with λ (x) =

∑
λiξi(T ), the estimation in the end is performed on

discrete parameters {λi}Ni=1, all of these having the same unit, say [W m−1 K−1]. At this stage, one may
think we face again a parameter estimation problem. However, most often, the function has to satisfy
some regularity properties. For example, the conductivity is �nite and varies continuously in space, so
λ(x) ∈ H1(D) = {λ ∈ L2(D), ‖λ‖ ∈ L2(D)}. Because such a regularity property is be satis�ed, this
problem falls into the category of a function estimation problem, and speci�c regularization tools are to
be used to enforce the function to satisfy these constraints of regularity. Added to that, the dimension
of the discrete unknown, N , is very likely to be big. (As an example, a property de�ned in a cube
discretized with only 100 voxels per side gives 106 unknowns.) Therefore, some speci�c optimization
algorithms have been designed to cope with such high dimensions.
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2.2 The function to be minimized Function estimation in IHTP

It could be seen from previous examples how function estimation is di�erent from parameter estimation.
Main di�erences between both of them come from, on the one hand, the regularity of the functions to
be estimated, and, on the other hand, the high dimensionality of the optimization problem due to the
parameterization. The regularity issue demands speci�c regularization tools and a special care on the
parameterization, and the high dimensionality demands powerful optimization algorithms.

2.2 The function to be minimized

In an inversion process, one usually minimizes some errors between some experimental data (say ud) and
related model data (say u). The cost function (also called somewhere discrepancy function or objective
function) is often expressed as the square of a norm of the di�erence between u and ud. The most often,
one uses the L2(·) norm if some “quasi-”continuous u and especially ud are available (i.e. ‖u− ud‖2L2(S) =∫
S(u − ud)2 dx but, when data ud is given only on speci�c locations (in space and/or time) , then the

squared euclidean norm is to be used: ‖u − ud‖22 :=
∑

i(u(xi) − ud(xi))2 =
∫
S δ

j
i (u − ud)2 dx where

δji = δ(xi−xj). Often, some function of the state and of the measure are used, for instance state derivation,
integration, weighted summation, etc. Moreover, some selection process is, most of the time considered. So,
in order to write down a general form for the cost function to be minimized, we use :

J (u) = ‖u− ud‖2X (1)

without specifying any choice for the norm on X at this early stage. Though the cost function is explicitly
given in terms of the state u, the cost function is actually to be minimized with respect to what it is searched,
i.e. the parameters ψ. Hence we write the equality (by de�nition):

j(ψ) := J (u, ψ) (2)

where the function j is often called the reduced cost function, as opposed to J which is the calculated cost
function. One actually computes the cost function in terms of the state (by eq. (1) for instance), but the cost
function is to be minimized with respect to another quantity, say ψ.

2.3 Elements of minimization

The function denoted j in eq. (2) is de�ned on K with values in R. K is a set of admissible elements of
the problem. In some cases, K de�nes some constraints on the parameters or functions. The minimization
problem is written as:

inf
φ∈K⊂V

j(φ).

According to [1], if the notation “inf” is used for a minimization problem, it means that one does not
know, a priori, if the minimum is obtained, i.e. if there exists φ ∈ K such that

j (φ) = inf
ψ∈K⊂V

j(ψ).

For indicating that the minimum is obtained, one should prefer the notations

φ = arg min
ψ∈K⊂V

j(ψ) and j(φ) = min
ψ∈K⊂V

j(ψ)

Let us now recall basic de�nitions needed for mathematical optimization [1]:

De�nition 1. ψ is a local minimum of j on K if and only if

ψ ∈ K and ∃δ > 0, ∀φ ∈ K, ‖φ− ψ‖ < δ → j(φ) ≥ j(ψ).
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2.4 Optimality conditions Function estimation in IHTP

De�nition 2. ψ is a global minimum of j on K if and only if

ψ ∈ K and j(φ) ≥ j(ψ) ∀φ ∈ K.

De�nition 3. A minimizing series of j in K is a series (ψn)n∈N such that

ψn ∈ K ∀n and lim
n→+∞

j (ψn) = min
φ∈K

j(φ).

De�nition 4. a set K ∈ V is convex if, for all ψ, φ ∈ K and ∀θ ∈ [0, 1], the element (θψ + (1− θ)φ) is in K
(see �gure 1).

De�nition 5. A function j is said to be convex when de�ned on a non-null convex set K ∈ V with values in R
if and only if

j (θψ + (1− θ)φ) ≤ θj (ψ) + (1− θ) j (φ) ∀ψ, φ ∈ K, ∀θ ∈ [0, 1] .

Moreover, j is said to be strictly convex if the inequality is strict when ψ 6= φ and θ ∈ ]0, 1[ (see �g. 2).

Ending, if j if a convex function on K, the local minimum of j on K is the global minimum on K.

ψ

φ

ψ

φ

Figure 1: Convex and non-convex domaine K

ψ

j(ψ)

φ

j(φ)

θj (ψ) + (1− θ
) j (φ)

Figure 2: Convex function j(·)

2.4 Optimality conditions

For convex functions, there is no di�erence between local minima and global minimum. In the following we
are more interested in minimizing a function without specifying whether the minimum is local or global. It
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2.5 Stopping criteria Function estimation in IHTP

will be seen in next sections that some gradient-free optimization algorithms may �nd the global minimum
even if the cost function contains local minima.

Let us derive here the minimization necessary and su�cient conditions. These conditions use the
�rst-order derivatives (order-1 condition), and second-order derivatives (order-2 condition) on the cost
function j. Using gradient-type algorithms, the �rst–order condition is to be reached, while the second-order
condition requires assuming a local convexity hypothesis, and then make a distinction between minima,
maxima and optima.

Let us assume that j(ψ) is continuous and has continuous �rst partial derivatives (∂j/∂ψi)(ψ) and
second partial derivatives (∂2j/∂ψi∂ψj)(ψ). Then a necessary condition for ψ̄ to be a minimum of j (at
least locally) is that:

i) ψ̄ is a stationary point, i.e. ∇j(ψ̄) = 0,

ii) the Hessian∇2j(ψ̄) =
(
∂2j/∂ψi∂ψj

)
(ψ̄) is a positive semi-de�nite matrix, i.e. ∀y ∈ Rn,

(
∇2j(ψ̄)y, y

)
≥

0 where (., .) is a scalar product in Rn (we have dim(ψ) = n).

A point ψ̄ which satis�es condition item i) is called a stationary point. It is important to point out that
stationarity is not a su�cient condition for local optimality. For instance the point of in�exion for cubic
functions would satisfy the condition i), while there is no optimum. Hence the Hessian is not positive
de�nite but merely positive semi-de�nite.

The su�cient condition for ψ̄ to be a minimum of j (at least locally) is that

i) ψ̄ is a stationary point, i.e. ∇j(ψ̄) = 0,

ii) the Hessian ∇2j(ψ̄) =
(
∂2j/∂ψi∂ψj

)
(ψ̄) is a positive de�nite matrix, i.e. ∀y ∈ Rn, y 6= 0,(

∇2j(ū)y, y
)
> 0.

We remark that the condition item ii) amounts to assuming that j is strictly convex in the neighbourhood
of ψ̄.

2.5 Stopping criteria

Since the convergence of the iterative algorithms is, in general, not �nite, a stopping criterion must be
applied. Here below are given some commonly used criteria. We denote ψp the vector parameter ψ at the
optimization iteration p.

‖∇j(ψp)‖ ≤ ε; (3)∣∣j(ψp)− j(ψp−1)∣∣ ≤ ε; (4)∥∥ψp − ψp−1∥∥ ≤ ε; (5)
j(ψp) ≤ v (6)

For each of the above criteria, it may be judicious to demand that the test is satis�ed over several
successive iterations. The three �rst above-presented criteria are convergence criteria applied on the cost
function gradient, on the cost function evolution, or on the parameter evolutions. These criteria are very
commonly-used when dealing with optimization and optimal control problems.

The last criterion is, in one sense, more speci�c to inverse problems: when the cost function reaches a
critical value that depends on the variance of measurement errors, then the optimization algorithm should
stop [6, 7, 8]. It can be shown that the consequence of lowering the cost function below v a�ects the result
in dramatically highliting its inherent noise. This criterion is the “maximum discrepancy principle”.

Often, the maximum discrepancy principle eq. (6) is used together with the other criteria and also with
a maximum number of iterations.
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2.6 Classi�cation of optimization methods Function estimation in IHTP

2.6 Classi�cation of optimization methods

The solution of the optimization problem may be performed in numbers of ways. Among numerous methods
found in the litterature, the classi�cation of methods given below (see �g. 3) is based on our experience.
First, one can distinguish gradient-free methods from methods relying on gradients. Among gradient-free
methods, there are those deterministic and those stochastic (the latter introducing random in the search
of the optimum). Among gradient-based methods, one can distinguish between �rst and second-order
methods, and those in between.

n-D Optimization Methods

Gradient Free

Deterministic

Simplex . . .

Stochastic

PSO AG . . .

With Gradient

Order 1

Steepest Conjugate gradients

Order between 1 & 2

GN, LM DFP (L-)BFGS

Order 2

Newton

Figure 3: Classi�cation of optimization methods. PSO stands for “partcule swarm optimization”, AG stands
for “genetic algorithm”, GN stands for “Gauss–Newton”, and LM stands for Levenberg–Marquardt.

3 Zero-order n–dimensional optimization algorithms

Zero-order methods, also called “derivative-free optimization” (DFO) or “gradient-free methods” are based
on a global vision of the cost function value j on the search space. The main interest of using such methods
is when the cost function gradient is not available, or when the cost gradient is not easy to compute, or
when the cost function presents local minima. There is an increasing number of computation tools to solve
optimization problems with no gradient [9]. In the sequel, we restrict our-self in very brie�y presenting,
among the enormous number of existing methods, one deterministic algoritm which is the so-called simplex
method, and one probabilistic method which is the particle swarm optimization method.

3.1 Simplex

We present here the Nelder-Mead simplex method (1965). This method is popular and simple to code.
Moreover, there exists a large number of freeware that can be used to minimize a function using such
an algorithm. Let a simplex S0 be a set of n + 1 “points” linearly independent (n = dimψ) with S0 ={
ψI , I = 1, . . . , n+ 1

}
. One iteration of the simplex optimization algorithm consists in generating a

new simplex closer to the minimum eliminating the point with the higher cost function value. The basic
operations of n = 2 are given in �g. 4: let ψ̄ the isobarycenter of

{
ψI , I = 1, . . . , n,

}
(without ψh =

argI=1,...,n max j(ψI)), let the ordering so that

j(ψ1) ≤ j(ψ2) ≤ . . . ≤ j(ψn+1)

and let ψ` = argI=1,...,n min j(ψI). At each iteration, the simplex improvement is performed in three steps:

1. [Re�ection] One builds ψR symmetry of ψh with respect to the segment [ψ̄, ψ`]. According to the
value of the cost j(uR) with respect to j(ψ`), the parametric space is then extended (step 2), or
contracted (step 3);

8



3.2 PSO Function estimation in IHTP

2. [Extension] if j(ψR) < j(ψ`), one searches a new point in the same direction. The point ψE is such
that ψE = γψR + (1− γ)ψ̄ with γ > 1. If j(ψE) < j(ψR), ψh is replaced by ψR, otherwise ψh is
replaced by ψE ;

3. [Contraction] If j(ψR) > j(ψ`), the point ψC such that ψC = γψh + (1− γ)ψ̄, γ ∈]0, 1[ is created.
If j(ψC) < j(ψR), ψh is replaced by ψC otherwise the simplex is contracted (inside contraction) in
all directions replacing ∀I 6= L ψI by (ψI + ψ`)/2.

◦ψh

◦
ψl

◦

×
ψ̄

ψR ◦ψh

◦
ψl

◦

×
ψ̄ ψR

ψE ◦ψh

◦
ψl

◦

×
ψ̄ ψR

ψC
◦ψh

◦
ψl

◦

×
ψ̄

Figure 4: Basic operations on a simplex for n = 2. From left to right: re�ection, expansion, contraction, and
inside contraction.

3.2 PSO

The particle swarm optimization is a stochastic algorithm described by Kennedy and Eberhart in 1995. One
considers an initial set of individuals (particles) located randomly. Each particle moves within the space K
interacting with other particles on their best locations. From this information, the particle shall change its
position ψi and its velocity δψi. The general formulation for this behavior is given by:

δψi = χδψi + λ1rand1
(
φg − ψi

)
+ λ2rand2

(
φi − ψi

)
ψi = ψi + δψi

(7)

whereψi is the position of the particle i, δψi is its velocity, φg is the best position obtained in its neighborhood,
and φi is its best position (see �g. 5). χ, λ1 and λ2 are some coe�cients weighting the three directions of
the particule [9]:

• how much the particle trusts itself now;

• how much it trusts its experience;

• how much it trusts its neighbours.
Next, rand1 and rand2 are random variables following a uniform distribution in [0, 1]. There are several

con�guration parameters for the method, see [10]:
• swarm size, usually between 20 and 30;

• initialization of both the position of the particles and their velocity ∼ U [0, 1];

• neighborhood topology such that a particule communicates with only some other particles;

• inertial factor χ which de�nes the exploration capacity of the particules;

• con�dence coe�cients λ1 and λ2 which are constriction coe�cients;

• stopping criterion which is usually the maximum of iterations, or the critical value of the cost function
j(ψ).

Usually, a circular neighborhood topology is used, along with χ = 0.72 and λ1 = λ2 = 1.46. A large
number of free software are available, see for instance [10].

9
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◦ψi

φi

φg

δψi

Figure 5: PSO algorithm: a particle displacement.

4 One-dimensional unconstrained opimization – line search algorithm

In order to �nd the optimum of a function j of n variables, we shall describe in section 5 a number of
iterative methods which require, at each step, the solution of an optimization problem in one single variable,
of the type:

Find ᾱ = arg min
α>0

g(α) = j (ψp + αdp) , (8)

where ψp = (ψp1 . . . ψ
p
n)
t is the obtained point at iteration p and where dp = (dp1 . . . d

p
n)
t is the direction of

descent (see section 5). As a matter of fact we have the problem of �nding the optimum of the function j,
starting from the guess ψ0 in the direction of descent d0. Since this problem must be solved a great number
of times, it is important to design e�cient algorithms that deal with it.In any case, one has to keep in mind
that the main objective is not to solve eq. (8) but to �nd the minimum of j(ψ). Thus one has to design
e�cient tools for the one-dimensional algorithm that �nds the minimum of g(α), or approach it, in a not so
expensive way. Note that we always assume that g′(0) = (∇j(ψp), dp) < 0, which means that dp is indeed
a descent direction.

4.1 The dichotomy method

This method halves, at each step, the length of the interval which contains the minimum, by computing the
function g in two new points. By carrying out n computations of the function g, the length of the initial
interval [a0, b0] is reduced in a proportion of 2(n−3)/2. The general procedure is the following: starting from
the interval [a0, b0], and taking the midpoint c0 =

(
a0 + b0

)
/2, and the two points d0 =

(
a0 + c0

)
/2,

and e0 =
(
c0 + b0

)
/2, one obtains �ve equidistant points of length δ0 = (b0 − a0)/4; computing the cost

function values at these points, two of the four sub-intervals may be eliminated, while the two adjacent
sub-intervals remain; the same procedure is repeated within the selected interval [a1, b1], and so on. Since the
step length is divided by 2 at each iteration, the dichotomy method converges linearly to the minimum [2].

4.2 The Newton–Raphson method

Let us assume that the function g(α) is twice continuously di�erentiable. The search for a minimum of
g(α) is carried out by looking for a stationary point, i.e. ᾱ satisfying the possibly nonlinear relationship
g′(ᾱ) = 0. If αq is the point obtained at stage q, then the function g′(α) is approximated by its tangent,
and the next point αq+1 is chosen to be at the intersection of this tangent with the zero-ordinate axis. The
relationship to pass from one step to the next comes from g′

(
αq+1

)
= g′ (αq)+g′′ (αq)×

(
αq+1 − αq

)
= 0

which gives:

αq+1 = αq − g′ (αq)

g′′ (αq)
. (9)

10
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It is of interest that this method has the property of �nite convergence when applied to quadratic
functions. This is an interesting feature because any function which is su�ciently regular (at least twice
continuously di�erentiable) behaves as a quadratic function near the optimum [2]. On the other hand, the
main drawback of this method is that it requires the computation of the �rst and of the second derivative
of g at each stage. That is the reason why the secant method (next section) is also widely used, especially
when there is no way for computing the second order derivative, or when the exact second derivative is
complicated to compute or too time consuming.

g′(α0)

α0 α1 α2

Figure 6: Schematic representation of the Newton–Raphson line search method.

4.3 The secant method

The second-order derivative g′′(α) is approximated by �nite di�erences so that the Newton–Raphson’s
equation initially given by eq. (9) becomes eq. (10):

αq+1 u αq − g′(αq) αq − αq−1
g′ (αq)− g′ (αq−1) . (10)

This method is the so-called secant method. Applied to the search of g′(α) = 0, this method consists
in searching the intersection between the zero-ordinate axis and the straight line passing by the points[
αq−1, g′(αq−1)

]
and [αq, g′(αq)].

4.4 The quadratic interpolation

By comparison of those of sections 4.2 and 4.3, this method has the advantage of not requiring the com-
putation of �rst or second order derivatives of the function . Let three points α1 ≤ α2 ≤ α3 such that
g(α1) ≥ g(α2) ≤ g(α3) and let us approximate the function g on the related interval by a quadratic function
g̃ with the same values as those of g at the points α1, α2 and α3. The minimum of g̃ is obtained at the new
point α4 satisfying:

α4 =
1

2

r23g(α1) + r31g(α2) + r12g(α3)

s23g(α1) + s31g(α2) + s12g(α3)
, (11)

where rij = α2
i − α2

j and sij = αi − αj . This procedure may be repeated again with the three new selected
points. Under some regularity hypothesis, the convergence rate of this method is super-linear [2].

Another approach consists in di�erentiating the cost function towards the direction of descent with a
Taylor expansion, andin neglecting second order derivatives:

g′ (α) =
d

dα

∥∥∥u(ψk + αdk
)
− ud

∥∥∥2
X

=
d

dα

∥∥∥u(ψk)− αu′ (ψk; dk)− ud∥∥∥2
X

= 0 (12)

11
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with u′
(
ψ, dk

)
= u′ the derivative of u at the point ψk and in the direction dk. This equation gives

straightforwardly: (
u′, u− ud

)
X + α

(
u′, u′

)
X = 0 (13)

α = −(u′, u− ud)X
(u′, u′)X

(14)

This latter method – which is widely used in the heat transfer community – can give easily an accurate
step size α when the cost function j is close to quadratic, i.e. when the state u varies almost linearly with ψ.

4.5 Other methods – Inexact line-search

A great number of other one-dimensional optimization methods may be found in the literature. These
methods may be more or less complicated and some of them may be much more optimal than the above-
presented methods. In practice the Fibonacci method,the golden section search method and the cubic
interpolation method are also very widely used in practice (the reader may refer to [4, 2] for more details).
All these methods can be quite CPU-time consuming, and in fact, the convergence of some of the methods
presented afterwards in Section 5 (typically the BFGS method) can be reached without getting a point very
close to satisfying g (α) = 0. Well-accepted conditions used to build inexact line-search algorithms are
based on the two rules:

a) α must not be too large in order, for instance, to avoid oscillations,

b) α must not be chosen too small in order to prevent from premature convergence.

Among the large number of inexact line-search algorithms, one is based on the Goldstein rules (see
Figure 7) which �rst ensures condition a) by satisfying (15) choosing m1 ∈ [0, 1], and second ensures
condition b) satisfying (16) choosing m2 ∈ [m1, 1].

g (α) ≤ g (0) +m1αg
′ (0) (15)

g (α) ≥ g (0) +m2αg
′ (0) (16)

Other rules can be stated in similar ways. For instance, the Armijo’s method is a variant of the Golstein
method. Related algorithms are very simple and can be found in any book on optimization.

0

g′ (0) m2g
′ (0)

m1g
′ (0)

a b c d

Figure 7: Set of points satisfying the Goldstein’s rules: [a, b] ∪ [c, d].

12



Function estimation in IHTP

Algorithm 1: Typical method based on the Goldstein rules
input :αmin = 0, αmax =∞, ψ = ψk, ∇j, d = dk

output : ᾱ

1 Give some initial value to α;
Compute g′(0) = (∇j, d);

2 Compute g(α) = j(ψ + αd);
if g(α) ≤ g(0) +m1αg

′(0) then
go to 3)

else
set αmax = α and go to 5

end
3 Compare g (α) and g (0) +m2αg

′ (0);
if g(α) ≥ g(0) +m2αg

′(0) then
END

else
go to 4

end
4 Set αmin = α;
5 Look for new value in ]αmin, αmax[ and return to 2

5 Gradient-type n-dimensional optimization algorithms

Since in all cases, the stationarity of j is a necessary optimality condition, almost all unconstrained optimiza-
tion methods consist in searching the stationary point ψ̄ where∇j(ψ̄) = 0. The usual methods are iterative
and proceed this way: one generates a sequence of points ψ0, ψ1,. . .ψp which converges to a local optimum
of j. At each stage p, ψp+1 is de�ned by ψp+1 = ψp + αpdp where dp is a displacement direction which
may be either the opposite of the gradient of j at ψp (i.e. dp = −∇j(ψp)), or computed from the gradient,
or chosen in any another way, provided that it is a descent direction, i.e. satisfying (∇j(ψp), dp) < 0.

5.1 1st order gradient methods

5.1.1 The gradient with prede�ned steps method (1st order method)

At each iteration step p, the gradient ∇j(ψp) gives the direction of the largest increase of j. The procedure
consists in computing the gradient, and in �nding the new point according to the prede�ned strictly positive
step size αp as:

ψp+1 = ψp − αp ∇j(ψ
p)

‖∇j(ψp)‖ . (17)

It may be shown that this iterative scheme converges to ψ̄ provided that αp → 0 (p → ∞) and∑∞
p=0 α

p = +∞. One can choose for instance αp = 1/p. The main drawback of this method is its very low
convergence rate.

5.1.2 The steepest descent method (1st order method)

In this frequently used method, αp is chosen at each iteration p so as to minimize the function g(α) =
j (ψp − α∇j(ψp)) on the set of α ≥ 0. The algorithm is thus the following. One chooses a starting point
ψ0 and set p = 0. At each iteration p, one computes the gradient and set dp = −∇j(ψp). One then solves
the one-dimensional problem (see section 4) and set ψp+1 = ψp + αpdp. This procedure is repeated until a
stopping test is satis�ed (see section 2.5). The main disadvantage of the steepest descent method is the fact

13



5.1 1st order gradient methods Function estimation in IHTP

that the convergence can still be very slow. As a matter of fact, since αp minimizes g(α) = j (ψp + αdp)
then g′(αp) = (dp,∇j (ψp + αdp)) =

(
dp,∇j

(
ψp+1

))
. Hence

(
dp, dp+1

)
= 0. This means that two

successive displacements are strictly orthogonal. As a direct consequence, the number of steps to minimize
elongated valley-type functions for instance may be very high (see �g. 8 and then �g. 10d on page 22).

ψ0

d 0

ψ1

d 1

ψ2

d 2

Figure 8: When the steepest descent method is used, the two consecutive directions are orthogonal.

5.1.3 The conjugate gradient method for quadratic functions (1st order method)

In this section we shall �rstly assume that the cost function is quadratic. The case of arbitrary functions
shall be dealt with in section 5.1.4. Let the quadratic functional be of the form:

j(ψ) =
1

2
(A ψ,ψ) , (18)

and let us recall the de�nition for two conjugate vectors. Let A be a given symmetric matrix (operator). Two
vectors x1 and x2 are A -conjugate if (A x1, x2) = 0. The general method to optimize j is the following.
Let us start with a given ψ0 and choose d0 = −∇j(ψ0). One may remark that for quadratic functions, the
one-dimensional minimization procedure may be analytically solved. Recalling that the minimization of
g(α) along the direction d0 should lead to the fact that this current direction (d0) would be orthogonal to
the next gradient ∇j(ψ1), one has: (

d0,∇j
(
ψ1
))

= 0. (19)
Using the relationship ∇j(ψ) = A ψ given by the di�erentiation of (18) and the reactualization

formulation ψ1 = ψ0 + α0d0, (19) becomes:(
d0,∇j

(
ψ1
))

=
(
d0,A ψ1

)
=
(
d0,A

(
ψ0 + α0d0

))
=
(
d0,A ψ0

)
+ α0

(
d0,A d0

)
.

(20)

Equaling (20) to zero gives the step size α0:

α0 = −
(
d0,A ψ0

)
(d0,A d0)

. (21)

Next, at stage p, we are at the point ψp and we compute the gradient ∇j(ψp). The direction dp is
obtained by combining linearly the gradient ∇j(ψp) and the previous direction dp−1, where the coe�cient
βp is chosen in such a way that dp is A -conjugate to the previous direction. Hence:(

dp,A dp−1
)

=
(
−∇j (ψp) + βpdp−1,A dp−1

)
= −

(
∇j (ψp) ,A dp−1

)
+ βp

(
dp−1,A dp−1

)
.

(22)
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Next, choosing βp such that the previous equation equals zero yields to:

βp =

(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

. (23)

The algorithm based on the above relationships is given in algorithm 2. Also, it is proved, see [2], that
the conjugate gradient method applied to quadratic functions converges in at most n iterations, where
n = dimψ.

Algorithm 2: The conjugate gradient algorithm applied to quadratic functions

1. Let p = 0, ψ0 be the starting point,
compute the gradient and the descent direction, d0 = −∇j(ψ0),

compute the step size α0 = −
(
d0,A ψ0

)
(d0,A d0)

;

2. At step p, we are at the point ψp.
We de�ne ψp+1 = ψp + αpdp with:

• the step size αp = −(dp,∇j(ψp))
(dp,A dp)

• the direction dp = −∇j(ψp) + βpdp−1

• where the coe�cient needed for conjugate directions: βp =

(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

;

3. Stopping rule (see Section 2.5). If satis�ed: End, otherwise set p← p+ 1 and return to step (2).

ψ0

d 0

ψ1

d 1

ψ2

Figure 9: When the conjugate gradient method is used, the two consecutive directions are conjugate instead
of orthogonal. Applied to a quadratic function, the method converges in at most n iterations (in this �gure
two iterations are needed since dimψ = 2).

5.1.4 The conjugate gradient method for arbitrary (non quadratic) functions (1st order)

Before presenting the application of conjugate gradient methods on arbitrary functions, let us give some
properties inherent to quadratic functions. Di�erentiating eq. (18), and taking into account of the re-
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actualization relationship, one has:

∇j(ψp)−∇j(ψp−1) = A
(
ψp − ψp−1

)
= A

(
ψp−1 + αp−1dp−1 − ψp−1

)
= αp−1A dp−1,

(24)

which also gives the following relationship:

1

αp−1
(
∇j(ψp),∇j(ψp)−∇j(ψp−1

)
=
(
∇j(ψp),A dp−1

)
. (25)

On the other hand, substituting (25) into (23) gives

βp =

(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

=

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(dp−1,∇j(ψp)−∇j(ψp − 1))

. (26)

Next, expanding the descent direction dp−1, (26) becomes:

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(−∇j(ψp−1) + βp−1dp−2,∇j(ψp)−∇j(ψp−1)) ; (27)

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(−∇j(ψp−1)− βp−1∇j(ψp−2) + Λ,∇j(ψp)−∇j(ψp−1)) , (28)

where Λ is the series given from the re-actualizations. All the gradients being orthogonal to each other, (28)
becomes:

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(∇j(ψp−1),∇j(ψp−1)) , (29)

and also:
βp =

(∇j(ψp),∇j(ψp))
(∇j(ψp−1),∇j(ψp−1)) . (30)

It is pointed out that in the neighborhood of the optimum, non-quadratic functions may always be
approximated by quadratic functions. The Fletcher and Reeves’ method consists in applying (30) to access
βp while the Polak and Ribiere’s method consists in applying (29) to access βp. Taking into account of
above remarks, the conjugate gradient algorithm applied to arbitrary functions is given in Algorithm 3. It is
important to note that the global convergence of the presented methods is only ensured if a periodic restart
is carried out . The restart dn = −∇j(un) is usually carried out every n iterations, at least.

Algorithm 3: The conjugate gradient algorithm applied to arbitrary functions

1. Let p = 0, ψ0 be the starting point, d0 = −∇j(ψ0);

2. At step p, we are at the point ψp; we de�ne ψp+1 = ψp + αpdp with:

• the step size αp = arg min
α∈R+

g(α) = j (ψp + αdp) with:

• the direction dp = −∇j(ψp) + βpdp−1 where
• the conjugate condition βp satis�es either (29) or (30) depending on the chosen method;

3. Stopping rule (see subsection 2.5). If satis�es: End, otherwise, set p← p+ 1 and return to step (2).
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5.2 The Newton’s method (2nd order)

Let us assume that the cost function j(ψ) is now twice continuously di�erentiable and that second derivatives
exist. The idea is to approach the next cost function gradient by its quadratic approximation through a
Taylor development:

∇j(ψp+1) = ∇j(ψp) +
[
∇2j(ψp)

]
δψp +O (δψp)2 , (31)

and equaling the obtained approximated gradient to zero to get the new parameter ψp+1 = δψp + ψp:

ψp+1 = ψp −
[
∇2j (ψp)

]−1∇j(ψp). (32)

Note that while using second-order optimization algorithms, the direction of descent as well as the step
size are obtained from (32) in one go. Another interesting point is the fact that the algorithm converges to ψ̄
in a single step when applied to strictly quadratic functions. However, for arbitrary functions,O (δψp)2 may
be far from zero in eq. (31); yielding to some errors in the displacement δψp, and thus in the new point ψp+1.
As a consequence, if the starting point ψ0 is too far away from the solution ψ̄, then the Newton method
may not converge. On the other hand, since the approximation of j(ψ) by a quadratic function is almost
always valid in the neighborhood of ψ̄, then the algorithm should converge to ψ̄ if the starting point ψ0 is
chosen closely enough to the solution. Moreover, it is very common to control the step size this way. One
�rst calculates the direction dp = −

[
∇2j(ψp)

]−1∇j(ψp) and control the step size through an iterative
one-dimensional minimization problem of the kind min g(α) = j (ψp + αdp) before the actualization
ψp+1 = ψp + αdp. One limitation of the Newton’s method is when the Hessian ∇2j(up) is not positive
de�nite. In these cases, the direction given by dp = −

[
∇2j(ψp)

]−1∇j(up) may not be a descent direction,
and the global convergence of the algorithm may not be guaranteed any more. Moreover, and above all, the
Hessian is usually very di�cult to compute and highly time consuming. To overcome these di�culties, one
should prefer using one of the numerous quasi-Newton methods detailed afterwards.

5.3 Quasi-Newton methods

Quasi-Newton methods consist in generalizing the Newton’s recurrence formulation (32). Since the limitation
of the Newton’s method is the restriction of the Hessian∇2j(up) to be positive de�nite, the natural extension
consists in replacing the inverse of the Hessian by an approximation to a positive de�nite matrix denoted
Hp. Obviously, this matrix is modi�ed at each step p. There is much �exibility in the choice for computing
the matrix Hp. In general, the condition given by (33) is imposed:

H
[
∇j(ψp)−∇j(ψp−1)

]
= ψp − ψp−1. (33)

Various corrections of the type
Hp+1 = Hp + Λp (34)

may be found in the literature [2]. Depending on whether ∆p is of rank 1 or 2, we shall speak of a correction
of rank 1 or 2.

5.3.1 Rank 1 correction

The point is to choose a symmetric matrix H0 and to perform the corrections so that they preserve the
symmetry of the matrices Hp. The rank 1 correction matrix consists in choosing ∆p = αpvpvp> where vp
is a vector and αp is a scalar such that, from a symetric matrix H0, the correction preserves the symetry of
matrices Hp. Denoting

δp = ψp+1 − ψp (35)
γp = ∇j(ψp+1)−∇j(ψp) (36)
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one chooses αp and vp such that Hp+1γp = δp, thus:[
Hp + αp(vpvpt)

]
γp = δp, (37)

and
γp>Hpγp + αp

(
γp>vp

)(
vp>γp

)
= γp>δp, (38)

thus
αp
(
vp>γp

)2
= γp> (δp −Hpγp) . (39)

Using the identity

αp
(
vpvp>

)
=

(
αpvpvp>γp

) (
αpvpvp>γp

)>
αp
(
vp>γp

)2 , (40)

and using (37) and (38) to get

αpvpvp>γp = δp −Hpγp, (41)

αp
(
vp>γp

)2
= γp> (δp −Hpγp) , (42)

one obtains the correction (of rank 1) of the inverse Hessian:

Hp+1 −Hp = αp
(
vpvp>

)
=

(δp −Hpγp) (δp −Hpγp)>

γp> (δp −Hpγp)
. (43)

5.3.2 The rank 2 Davidon-Fletcher-Powell (DFP) algorithm

The Davidon-Fletcher-Powell algorithm (in short DFP) consists in modifying the inverse Hessian with the
correction formulation of rank 2:

Hp+1 = Hp +
δp(δp)>

(δp)>γp
− Hpγp(γp)>Hp

(γp)>Hγp
(44)

where we have de�ned above δp = ψp+1 − ψp and γp = ∇j(ψp+1)−∇j(ψp), and where the new point
ψp+1 is obtained from ψp through the displacement

dp = −Hp∇j(ψp). (45)

The global DFP method is presented in algorithm 4.

5.3.3 The rank 2 Broyden – Fletcher – Goldfarb – Shanno (BFGS) algorithm

The Broyden – Fletcher – Goldfarb – Shanno algorithm (in short BFGS) developped in 1969-1970 uses a
rank 2 correction matrix for the inverse Hessian that is derived from eq. (44). It can be shown [2] that the
vectors δp and γp can permute in eq. (44) and in the relationship Hp+1γp = δp. The correction eq. (44) can
thus also approximate the Hessian itself, and the correction for the inverse Hessian Hp+1 can thus be given
from Hp through the correction formulation:

Hp+1 = Hp +

[
1 +

γptHpγp

δptγp

]
δp(δp)t

(δp)tγp
− δpγptHp + Hpγpδpt

δptγp
. (47)

When applied to a non purely quadratic function, one has, as for the conjugate gradient method and
the DFP method, to carry out a periodic restart in order to ensure the convergence [4, 11]. It is known that
the BFGS algorithm is superior than the DFP algorithm is the sense that it is much less sensitive on the
line-search inaccuracy, allowing the use of economical inexact line-search algorithms [2].
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Algorithm 4: The Davidon – Fletcher – Powell (DFP) algorithm

1. Let p = 0, ψ0 be the starting point. Choose any positive de�nite matrix H0 (often the identity
matrix);

2. at step p, compute the displacement direction dp = −Hp∇j(ψp), and �nd ψp+1 at the minimum of
j(ψp + αdp) with α ≥ 0;

3. set δp = ψp+1 − ψp and compute γp = ∇j(ψp+1)−∇j(ψp) to actualize:

Hp+1 = Hp +
δp(δp)t

(δp)tγp
− Hpγp(γp)tHp

(γp)tHγp
; (46)

4. Stopping rule (see section 3.4). If satis�es: End, otherwise, set p← p+ 1 and return to step item 2.

Algorithm 5: The BFGS algorithm

1. Let p = 0, ψ0 be the starting point. Choose any positive de�nite matrix H0 (often the identity
matrix);

2. at step p, compute the displacement direction dp = −Hp∇j(ψp), and �nd ψp+1 at the minimum of
j(ψp + αdp) with α ≥ 0;

3. set δp = ψp+1 − ψp and compute γp = ∇j(ψp+1)−∇j(ψp) to actualize:

Hp+1 = Hp +

[
1 +

γptHpγp

δptγp

]
δp(δp)t

(δp)tγp
− δpγptHp + Hpγpδpt

δptγp
(48)

4. Stopping rule (see section 3.4). If satis�es: End, otherwise, set p← p+ 1 and return to step item 2.

5.3.4 Gauss–Newton

When the cost function is explicitly a square norm of the error between the prediction and the state, that is
of the form

j(ψ) := J (u) = ‖u− ud‖2X , (49)

then the Gauss–Newton method or some derivatives or it (e.g. Levenberg–Marquardt) may be interesting
to deal with, especially if the number of parameters is small. Before going deeper into the cost function
gradient computation (see section 6), de�ning u′(ψ; δψ) as the derivative of the state at the point ψ in the
direction δψ as:

u′(ψ; δψ) := lim
ε→0

u(ψ + εδψ)− u(ψ)

ε
, (50)

then the directional derivative of the cost function writes out as:

j′(ψ; δψ) =
(
u− ud, u′(ψ; δψ)

)
X , (51)

where j′(ψ; δψ) = (∇j(ψ), δψ). In the analogue way, the second derivative of j(ψ) at the point ψ in the
directions δψ and δφ is given by:

j′′(ψ; δψ, δφ) =
(
u− ud, u′′(ψ; δψ, δφ)

)
X +

(
u′(ψ; δψ), u′(ψ; δφ)

)
X . (52)
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Neglecting the second-order term (this is actually the Gauss–Newton approach), we have:

j′′(ψ; δψ, δφ) ≈
(
u′(ψ; δψ), u′(ψ; δφ)

)
X . (53)

In order to build up the gradient vector of cost function and the approximated Hessian matrix, one
has to choose the directions for the whole canonical basis of ψ. Doing so, one can use the so-called
sensititivity matrix S which gathers the derivatives of u in all directions δψi, i = 1, . . . ,dimψ, and the
product (u′(ψ; δψi), u

′(ψ; δψj)) involved in (53) is the product of the so-called sensitivity matrix with its
transposed. The Newton relationship is thus approximated as:

StSδψk = −∇j(ψk). (54)

The matrix system StS is obviously symmetric and positive de�nite with a dominant diagonal yielding thus
to interesting features (Cholesky factorization, etc.). Though the Gauss–Newton system eq. (54) presents
inherent interesting features (it almost gives in one step the descent direction and the step size), the matrix
StS is likely to be ill-conditionned. One way to decrease signi�cantly the ill-condition feature is to “damp”
the system, using: [

StS + `I
]
δψk = −∇j(ψk), (55)

or better: [
StS + `diag(StS)

]
δψk = −∇j(ψk). (56)

Note that ` → 0 yields the Gauss–Newton algorithm while ` bigger gives an approximation of the
steepest descent gradient algorithm. In practice, the parameter ` may be adjusted at each iteration.

5.4 Elements of comparison between some presented methods

Some of the presented methods are below tested on the well-known Rosenbrock function:

f(x, y) = (x− α)2 + β(x2 − y)2. (57)

For the considered case, the chosen parameters are α = 1 and β = 100, so that the optimum is at (1, 1).
Figure 10a on page 22 presents the function. This function presents a long elongated valley where the
function gradient is very low. Next, the PSO algorithm is the one from [10].

The deterministic simplex method from the GSL library starting from the point x0 = −1, y0 = 1
needs 64 evaluations of the cost function. The stopping criterion is based on the simplex characteristic size
equal to 10−2. The PSO algorithm taken from [10] with 20 particles with 3 informed particles, φ = 4.14,
χ = 2

φ−2+
√
φ2−4φ

, λ1 = λ2 = 0.5χφ. The stopping criterion is based on the cost function equal to 10−5.
With these parameters, around 6,000 evaluations of the cost function is needed for the minimization. For
the Steepest descent, the conjugate gradient and the BFGS algorithms, the stopping criterion is based either
on the gradient norm equal to 10−3, or on a maximum number of iterations equal to 10,000. For the steepest
descent method, the maximum of iteration criterion is achieved. For the conjugate gradient, and the BFGS
method, 49 and 11 iterations are needed, respectively.

To sum up about this numerical optimization test case in which we were searching the minimum of the
Rosenbrock function, we can give the following comments and conclusions:

• The PSO method, which is a stochastic zero-order method – as genetic algorithms are also – does
converge to the minimum, but at a huge expense. In fact, usually, such stochastic methods are even
able to �nd the minimum of non-convex functions, which is their most important advantage, but
anyway at the price of being very expensive.
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• When the function is likely to be convex (which is not the case of the Rosenbrock function), one
should prefer less expensive deterministic optimization algorithms. Among those, the simplex method
is also a gradient-free (zero-order optimizer) so it �nds the minimum of the convex function at a more
moderate expense, because it is deterministic. But we are here – in this simple example – handling a
function of only two parameters, which is very few, and tens of function evaluations are necessary.
With more parameters, say hundreds or thousands (this is at least what one usually has in function
estimation), zero-order gradient-free are still too expensive and thus cannot be used in practice;
gradient-based optimizers should be prefered.

• When the function is likely to be convex, and when the cost function depends on some states – solution
of partial di�erential equations –, then the model itself is likely to be di�erentiated. In such cases,
gradient-based optimizers are to be chosen. Among those, with respect to the most basic steepest
descent algorithm, the numerical e�ort of implementing the conjugate gradient, or better the BFGS,
is highly recommended.

• The example presented here, on the only two-dimensional Rosenbrock function, has demonstrate this
result. Such conclusions are of course much solid when it comes to function estimation where higher
dimensions are encountered.

6 Cost function gradient

We recall here that the function to be minimized is the cost function J (u), expressed in terms of the state u,
but minimized with respect to the parameters ψ. We thus have the equality (by de�nition) between the
cost function and its reduced version: j(ψ) := J (u). The state u is related to the parameters ψ through
an operator (which may be linear, or not) that combines the partial di�erential equations along with the
boundary conditions, initial conditions, etc. This operator is denoted as S for the state problem. To be
concise, one writes down

S(u, ψ) = 0, (58)

where we have the mapping ψ 7→ u(ψ). Often, the space (and time) is discretized so that the state operator
S is approximated in some matrix formulation. In this case, we have R(u, ψ) = 0, with dimR = dimu.
Note that u involved in (58) is continuous while u involved inR(u, ψ) = 0 is likely to be already discretized
(using �nite di�erence, �nite elements, etc.). We now need the de�nition of the directional derivative of
j(ψ) in the direction δψ (see de�nition 6). Other kinds of derivatives can also be used, such as the Gâteaux
or Fréchet derivatives, see [1] for technical de�nitions.

De�nition 6 (Directional derivative). Let a point ψ ∈ K and a direction φ ∈ K. One de�nes `(t) := ψ + tφ
and the function J (t) := j(`(t)). The directional derivative of j at the point ψ in the direction φ is:

j′(ψ;φ) := J ′(0) = lim
t→0
t>0

j(ψ + tφ)− j(ψ)

t
. (59)

It has been seen before (see eq. (51)) that we have the equality

j′(ψ; δψ) =
(
u− ud, u′(ψ; δψ)

)
X , (60)

and, because of linearity of both u′(ψ; δψ) and j′(ψ; δψ) in δψ:

j′(ψ; δψ) = (∇j(ψ), δψ)Z . (61)

where Z is most of the time chosen equal to Y but it can be chosen di�erently for regularization purposes.

21



Function estimation in IHTP

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−1
−0.5

0
0.5

1
1.5

2
2.5

3

0

500

1,000

1,500

2,000

2,500

x
y

(a) 2–D Rosenbrock function.

−1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

10

10

1
0

10

10

1
0

9

9

9

9

9

9

8

8

8

8

8

8

7

7

7

7

7

7

6

6

6

6

6

6

5

5

5

5

5

5

4

4

4

4

4

4

3

3

3

3

3
3

2

2

2

2

2

1

1

1 1

x

y

(b) PSO algorithm: ≈ 6,000 cost function evaluations.
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(c) Simplex algorithm: 64 cost function evaluations.
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(d) Steepest descent algorithm: more than 100 cost func-
tion evaluations.
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(e) Conjugate gradients descent algorithm: 45 cost func-
tion evaluations.
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(f) BFGS descent algorithm: 11 cost function evaluations.

Figure 10: Numerical comparison of optimizers on the 2-D Rosenbrock function.
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6.1 Finite di�erence

The �nite di�erence approach consists in approaching the cost function gradient through a substraction
of the cost function with a perturbed cost function for the whole canonical base of ψ, that is δψ =
δψ1, δψ2, . . . , δψdimψ . For the ith component, we have:

(∇j(ψ))i = (∇j(ψ), δψi)Z ≈
j(ψ + εδψi)− j(ψ)

ε
. (62)

Usually, in order to perform the same relative perturbation on all components ψi, one rather uses εi ← ε|ψi|,
where the positive scalar ε is �xed. The very simple related algorithm is described in algorithm 6.

Algorithm 6: The �nite di�erence algorithm to compute the gradient of the cost function
Set the length ε > 0;
At iteration p, compute the state u(ψp), compute j(ψp);
foreach i = 1, . . . ,dimψ do

Compute the cost j(ψp + ε|ψi|δψi);

Set the gradient (∇j(ψ))i ←
j(ψp + ε|ψi|δψi)− j(ψp)

ε|ψi|
end
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS for instance among the presented methods)

In practice, the tuning parameter ε has to be chosen within a region where variables depend roughly
linearly on ε. Indeed for too small values, the round-o� errors dominate while for too high values one gets a
nonlinear behavior. Even though the �nite di�erence method is easy to implement, it has the disadvantage of
being highly CPU time consuming. Indeed, the method needs as many integrations of the model S(u, ψ) = 0
as the number of parameters, dimψ. The gradient computed this way can be integrated to the previously
presented optimization methods that do not rely on u′, such as the conjugate gradient methods, or better
the BFGS.

When performing the �nite di�erenciation with respect to ψi, one also accesses the approximated
perturbed state u′(ψ; δψi). This way, one can use again the conjugate gradient methods or the BFGS method
for instance, but also the Gauss–Newton-type methods based on matrix inversion and which do rely on the
sensitivities u′(ψ; δψi), i = 1, . . . ,dimψ. Doing so, the related optimization is given in algorithm 7.

6.2 Forward di�erentiation

The forward di�erentiation approach consists in computing u′(ψ; δψi) di�erentiating the state equations
S(u, ψ) = 0, to get:.

S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0. (63)

As in the previous section, the gradient computation needs one integration of eq. (63) per parameter ψi;
so one needs dimψ integrations in total to access the full gradient ∇j(ψ). However, in this case, eq. (63) is
linear, while eq. (58) was not linear.

As for the �nite di�erence approach, one may use the sensitivities u′ and integrate them into the
Gauss–newton-type methods, or simply use the cost function gradient, and then use the methods that do
not rely on the sensitivities.

When compared to the �nite di�erence approach, the forward di�erence method leads to exact cost
function gradient components. Moreover, though S is likely to be a nonlinear operator, the system given
by eq. (63) is linear, thus yielding to much less CPU time. Another singularity is that the discrete version
of S ′u(u, ψ), i.e. R′u, is the tangent matrix that is to be used anyway for solving the “forward” problem
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6.2 Forward di�erentiation Function estimation in IHTP

Algorithm 7: The �nite di�erence algorithm to compute the gradient of the cost function and the
sensitivities

Set the step ε > 0;
At iteration p, compute the state u(ψp), compute j(ψp);
foreach i = 1, . . . ,dimψ do

Compute the perturbed state u(ψp + ε|ψi|δψi) and the cost j(ψp + ε|ψi|δψi);

Set the state sensitivity u′(ψ; δψi)←
u(ψp + ε|ψi|δψi)− u(ψp)

ε|ψi|
;

Set the gradient (∇j, δψi) with either (u− ud, u′(ψ; δψi)) or as in previous algorithm with
j(ψp + ε|ψi|δψi)− j(ψp)

ε|ψi|
.

end
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS among the presented methods) or within optimization methods that
do rely on the sensitivities (Gauss–Newton or Levenberg–Marquardt).

S(u, ψ) = 0. The computation of this linear tangent matrix is most often the task that takes the longer time
in solving S(u, ψ) = 0. The optimized procedure is thus the one given in algorithm 8.

Algorithm 8: The forward di�erentiation algorithm to compute the cost gradient and the sensi-
tivities

At iteration p, solve iteratively S(u, ψp) = 0, compute j(ψp) and save the discrete version of the
linear tangent operator S ′u(u, ψp);
foreach i = 1, . . . ,dimψ do

Solve S ′u(u, ψ)u′ + S ′ψ(u, ψp)δψi = 0;
Set (∇j, δψi)Z = (u− ud, u′(ψ; δψi)X ;

end
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS among the presented methods) or within optimization methods that
do rely on the sensitivities (Gauss–Newton or Levenberg–Marquardt).

Note: the linear tangent matrix which is to be assembled for the solution of the “forward” model can
be re-used for all canonical components δψi.

Remark. Equation (63) is often called the sensitivity equation.

Example. Let us consider the unsteady heat conduction equation, with known heat capacity C , conductivity λ,
volume source term f , initial condition u0, and Dirichlet condition on a part of the boundary, e.g. u0 on ∂DD .
The unknown ψ is the �ux φ on the rest of the boundary, i.e. on ∂DN = ∂D\∂DD .
The unperturbed and perturbed models are:

S(u, ψ) ≡


C ∂u
∂t −∇ · λ∇u = f in D

u(x, t = 0) = u0 in D
u(x, t) = u0 on ∂DD

−∇u(x, t) · n = φ on ∂DN

; S(u+, ψ+εδψ) ≡


C ∂u+

∂t −∇ · λ∇u+ = f in D
u+(x, t = 0) = u0 in D
u+(x, t) = u0 on ∂DD

−∇u+(x, t) · n = φ+ εδψ on ∂DN

(64)
Substracting the equations involved in these two models, dividing by ε, and searching the limit when ε→ 0
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gives:

lim
ε→0

S(u+, ψ + εδψ)− S(u, ψ)

ε
≡


limε→0C

∂ u
+−u
ε
∂t −∇ · λ∇u+−u

ε = 0 in D
limε→0

u+−u
ε (x, t = 0) = 0 in D

limε→0
u+−u
ε (x, t) = 0 on ∂DD

limε→0−∇u+−u
ε (x, t) · n = δψ on ∂DN

(65)

that gives:

S ′u(u, ψ)u′ + S ′ψδψ ≡


C ∂u′

∂t −∇ · λ∇u′ = 0 in D
u′(x, t = 0) = 0 in D
u′(x, t) = 0 on ∂DD

−∇u′(x, t) · n = δψ on ∂DN

(66)

6.3 Adjoint state

In this section we present the use of an additional problem – the so-called adjoint-state problem – that gives
also the exact cost function gradient, but in a computational cheap way. We present one method based on the
identi�cation procedure (section 6.3.1), and another one that uses the Lagrange function (section 6.3.2). For
the latter method, the model equation is treated as an equality constraint for the optimization. Both methods
can deal with either the continuous equations or the discrete ones. One has to keep in mind that when
the continuous method is used, all the obtained equations have later on to be discretized. Both strategies
are equivalent in usual, but if the cost is computed through the integration of some discretized equations,
then we consider that the discretized equations have to be di�erented (it is the so-called “discretize-then-
di�erentiate” method). The other way is to deal with the continuous equations, then discretize the state
model, etc. (it is the so-called “di�erentiate-then-discretize” method). Some examples of adjoint derivation
will be given in the last sections.

6.3.1 Identi�cation method

In this �rst part, we derive the adjoint-state method using the identi�cation method. From the de�nition of
the functional gradient, one writes the gradient:

(∇j, δψ)Z = j′(ψ; δψ) =
(
u− ud, u′(ψ; δψ)

)
X . (67)

One then introduces a new variable (the adjoint-state variable u∗) such that the gradient equation given
by eq. (67) also satis�es the “easier–to–compute”:

j′(ψ; δψ) =
(
S ′ψ(u, ψ)δψ, u∗

)
U . (68)

On the other hand, since we have the relationship S(u, ψ) = 0, then

S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0 (69)

and thus, we have:
j′(ψ; δψ) = −

(
S′u(u, ψ)u′, u∗

)
U . (70)

Identifying eq. (67) and eq. (70), we obtain the adjoint-state problem that must satisfy the equality:

−
(
S ′u(u, ψ)u′, u∗

)
U =

(
u− ud, u′(ψ; δψ)

)
X . (71)

Next, if the adjoint problem given by eq. (71) is satis�ed (it means that we accessed the adjoint state u∗),
then the cost function gradient is very simply given by eq. (68). We then use the inner product property
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(A u, v) = (u,A ∗v) where A ∗ is the transposed conjugate operator of A (adjoint) to modify the adjoint
equation given by eq. (71) to:

S∗(u, ψ)u∗ + (u− ud) = 0, (72)
where S∗ is the conjugate transposed of the linear tangent operator S ′u, i.e., we used:(

S ′u(u, ψ)u′, u∗
)
U =

(
S∗(u, ψ)u∗, u′

)
U + [· · · ] (73)

where the term [· · · ] may contain some additional terms coming from some integrations by parts. Figure 11
schematically represents the process of identi�cation method.

j′(ψ; δψ)

(∇j, δψ)Z

we have

(
R′ψ(u, ψ)δψ, u∗

)
U

⇓
− (R′u(u, ψ)u′, u∗)U

we want

(u− ud, u′(ψ; δψ))X

we compute

the gradient

the adjoint

unused

Figure 11: Schematical representation of the adjoint-state method.

Remark. The inner product (v, w)U is performed on the whole domain of de�nition of u. For instance if
u ∈ L2(0, T ;L2(D)), then (v, w)U =

∫ T
0

∫
D vw dx dt.

Algorithm 9: The adjoint state problem to compute the cost function gradient with integration
within an optimization algorithm

At iteration p, solve iteratively S(u, ψ) = 0;
Compute j(ψp);
Save the solution u;
Compute the adjoint state problem S∗(u, ψ)u∗ + (u− ud) = 0;
Compute the gradient (∇j(ψ); δψ)Z =

(
S ′ψ(u, ψ)δψ, u∗

)
U

;
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS among the presented methods)

6.3.2 Lagrange formulation

The use of a Lagrange formulation means that the state equations are taken as constraints in the optimization
problem. To do so, let us introduce the Lagrange function [12, 13]:

L (u, u∗, ψ) = J (u) + (S(u, ψ), u∗)U (74)
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The Lagrange function introduced in this section is a function of three variables, namely the state u ,
the parameter to be to be identi�ed ψ, and the adjoint state variable u∗. This means that both variables
u and ψ are somehow considered to be independent, even though there exists, at least implicitly, the
relationship S(u, ψ) = 0 that maps ψ to u. Moreover, since u is the solution of the forward model, then the
Lagrange function L is always equal to the cost function J (u), and the constraints – which represent the
partial di�erential equations of the forward problem – are always satis�ed. We now show that a necessary
condition for the set ψ to be solution of the optimization problem eq. (1) is that there exists a set (u, ψ) such
that (u, ψ, u∗) is a saddle point (stationary point) of L . Indeed, let us show that the necessary condition
j′(ψ; δψ) = 0, ∀δψ, is equivalent to:

∃ (u, u∗, ψ) |L ′
u (·) δw = 0; L ′

u∗ (·) δw = 0; L ′
ψ (·) δw = 0, (75)

for all directions δw taken in appropriate spaces (u′, δu∗ and δψ). First, since the state is satis�ed, then:

L ′
u∗ = S(u, ψ) = 0.

Moreover, since we have also S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0, we get:

L ′
ψ (·) δψ =

(
S ′ψ(u, ψ)δψ, u∗

)
U = −

(
S ′u(u, ψ)u′, u∗

)
U . (76)

In another hand, the di�erentiation of the Lagrange function with respect to the state gives:

L ′
u (·)u′ =

(
u− ud, u′

)
X +

(
S ′u(u, ψ)u′, u∗

)
U . (77)

So far, the choice for the adjoint variables u∗ has not been �xed yet. However, choosing the adjoint
variable such that L ′

u (·)u′ = 0 ∀u′ considerably simpli�es the relationship between the di�erentiated
lagrangian with respect to ψ and the cost function gradient. One actually chooses u∗ such that it satis�es
the adjoint-state equation: (

S′u(u, ψ)u′, u∗
)
U +

(
u− ud, u′(ψ; δψ)

)
X = 0. (78)

This way we obtain the cost function gradient:

L ′
ψ (·) δψ =

(
u− ud, u′(ψ; δψ)

)
X = j′(ψ; δψ) = (∇j, δψ)Y (79)

The adjoint-state equation is thus:

S∗(u, ψ)u∗ + (u− ud) = 0, (80)

and the gradient is given by:
∇j =

(
S ′ψ(u, ψ), u∗

)
Y . (81)

Summarizing, the minimum of the cost function is to be found at the stationary point of the Lagrange
function eq. (74). When the adjoint-state equation eq. (80) is satis�ed, then the components of the cost
function gradient are simply given through the inner product eq. (81).

6.3.3 Examples

In the examples presented below, we do not specify what the parameters are. We just give the form of the
adjoint-state problem related to the “forward” state problem form.
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6.3 Adjoint state Function estimation in IHTP

Case of ODE Let us start with the case where the state model is simpli�ed to a single linear continuous
ordinary di�erential equations integrated in time I = (0, tf ]. The forward problem thus writes:

S (u, ψ) = C u̇−B = 0 for t ∈ I
u = u0 for t = 0,

(82)

where C is an inertial scalar term and B contains the loadings. Injecting the di�erentiated time-dependent
relationship eq. (82) into the adjoint-state relationship eq. (78) gives:(

C u̇′, u∗
)
U +

(
u− ud, u′

)
X = 0

where the inner must be understood as (a, b)U =
∫
I abdt. One then integrates by part the �rst term to get:

−
(
u′,C u̇∗

)
U +

[
u′Cu∗

]tf
0

+
(
u− ud, u′

)
X = 0

Since there is no reason that the initial state depend on the parameters ψ (except if the initial state is
searched), then the derivatives u′ of u at initial time is zero. The adjoint-state problem is eventually:

−C u̇∗ + (u− ud) = 0 for t ∈ I
Cu∗ + (u− ud) = 0 for t = tf .

(83)

Remark. There is a minus sign just before the operator C involved in the �rst equation. At the same time, the
boundary-time condition is given at �nal time tf . Therefore, when considering these two points, there is no
way to solve the adjoint problem forwardly, i.e., from t = 0 to tf . The trick consists in introducing a new time
variable τ = tf − t (the dual time). Doing so, the initial condition is given at the initial time τ = 0, and the
time-dependent equation eq. (83) is solved in the forward way in the dual time variable τ – which corresponds
to the backward way in the primal time variable t.

Remark. The loading component (u−ud) involved in eq. (83) is non-zero only at times where the cost function
j is to be integrated, i.e., in accordance with the de�nition of the X -norm.

Remark. Inherently, the adjoint-state problem is linear: even though the forward problem is likely to be
nonlinear (it was not the case in the considered exemple), the adjoint-state problem is still linear since the
operators do not depend on the adjoint-state variables. An equivalent remark was given for the forward
di�erentiation method which used the linear tangent operator.

Case of elliptic PDE This second example concerns the case where the state model is simpli�ed to a
di�usive-type continuous partial di�erential equation independent of time:

S (u, ψ) = −∇ · λ∇u− f = 0 in D. (84)

Injecting the di�erentiated space-dependent relation eq. (84) into the adjoint eq. (78) gives:(
−λ∆u′, u∗

)
U +

(
u− ud, u′

)
X = 0.

with (a, b)U =
∫
D abdx. Using twice the Green theorem on the �rst integral, one gets:(

u′,−λ∆u∗
)
U + (. . .)∂U +

(
u− ud, u′

)
X = 0. (85)

Owing to be veri�ed for all directional derivatives u′, the general adjoint-state problem becomes:

−λ∆∇u∗ + (u− ud) = 0. (86)

Remark. The second term, (. . .)∂U comes in eq. (85) because of the integration by parts. These terms depend
on the boundary conditions associated to eq. (84) that formed the complete forward model. Taking into account
of these terms will also complete the de�nition of the adjoint-state model, yielding the boundary conditions
associated to the adjoint-state equation eq. (86).
Remark. The loading component u − ud involved in the space-dependent equation is non-zero only at the
selected locations where the cost function j is to be integrated, i.e., in accordance with the de�nition of the
X -norm.
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6.4 The global optimization algorithm Function estimation in IHTP

Case of parabolic PDE The discretization of the space and time dependent di�usive model yields to the
so-called parabolic problem. It is somehow the union between both just above presented cases:

S (u, ψ) = C u̇−∆u−B = 0 for t ∈ I, x ∈ D
u = u0 for t = 0,

(87)

with associated boundary conditions. Injecting the di�erentiated operators involved in eq. (87) into the
adjoint eq. (78) gives: (

C u̇′, ψ
)
U −

(
∆u′, ψ

)
U +

(
u− ud, u′

)
X = 0

with (a, b)U =
∫
T
∫
D abdx dt. Transposing all operators through integration by parts (once in time and

twice space) gives:

−
(
u′,C u̇∗

)
U +

[(
u′,Cu∗

)
D
]T
0
−
∫
I

[...]∂D dt+
(
u− ud, u′(ψ; δψ)

)
X = 0

Eventually, the adjoint problem becomes:

−C u̇∗ −∆u∗ + J ′(u) = 0 for t ∈ I
u∗ = 0 for t = tf .

(88)

along with associated spatial boundary conditions.

Remark. A more detailed example given later on in section 9.2 provides the full calculation of the boundary
condition for a similar case.

6.4 The global optimization algorithm

The general algorithm is given in algorithm 10. The global procedure described in this algorithm is run
until (at least) one of the stopping criteria presented in section 2.5 is reached.
Algorithm 10: The global optimization algorithm

1. Integrate the cost function value through integration of the forward (maybe nonlinear) problem;
Store all state variables to reconstruct the tangent matrix (or store the tangent matrix);

2. Integrate the backward linear adjoint-state problem, all matrices being possibly stored or recomputed
from stored state variables

3. Compute the cost function gradient;
Compute the direction of descent

4. Solve the line-search algorithm

6.5 Continuous gradient and discretized continuous gradient

In previous examples as well as in the derivation of both forward di�erentiated and adjoint-state models, all
derivations were performed on continuous equations. To be solved, such equations will have later on to be
discretized, for example with �nite elements or any other method. This ordinary process yields the so-called
continuous gradient. For example, refering to �g. 12, the continuous state equation for the continuous
variable u is �rst di�erentiated, yielding a continuous di�erentiated state u′, solution of a continuous
di�erentiated partial di�erential equation. Then, after discretization (which is an approximation process),
one has the discretized di�erentiated state (u′)h, such that the discretized continuous gradient j′|DCG can
be computed.
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The other way round consists in �rst discretizing, then di�erentiating. All partial di�erential equations
are discretized, so that the forward state is uh, and the corresponding cost function, based on this approxi-
mated state is jh. This approximated model can then be di�erentiated so that the derivative we get is (uh)′,
which gives the discrete gradient j′|DG.

Both gradients j′|DCG and j′|DG are di�erent because the approximations are not performed on the same
operators. The cost function is always jh because a numerical solver is used to compute uh. The minimum
of jh corresponds to j′|DG = 0 but at this minimum, it is likely that we have j′|DCG 6= 0. This means that the
discrete gradient is compatible with the cost function which is calculated while the discretized continuous
gradient is not. However, one has to keep in mind that errors coming from discretization are likely to be
negligible when compared to measurement errors of the inverse problem. As such, the computation of
discretized continuous gradients is – according to the author – the better strategy because all derivations are
performed on partial di�erential equations, and di�erentiated models are also partial di�erential equation
very similar to model equation, and such similarity is the easiest way to go: similar equation, re-use the
forward solver for the di�erentiated model or for the adjoint-state, etc.

u 1. discretize uh → jh

2. di�erentiate

(uh)′ 7→ j′|DG

1. di�erentiate

u′ 2. discretize (u′)h 7→ j′|DCG

Figure 12: Discrete gradient vs discretized continuous gradient

7 Elements of comparison

We give in this section some elements of comparison between the previously presented optimization
algorithms and between the di�erent gradient computation strategies.

7.1 Convergence speed

The optimization algorithms presented in section 5 yield to a series {ψk}k≥1 that converges to ψ̄. Hereafter
are some some convergence rate de�nitions [3, 2].

De�nition 7. The convergence rate of the series {ψk}k≥1 is said to be linear if

‖ψk+1 − ψk‖
‖ψk − ψ̄‖

≤ τ, τ ∈ (0, 1). (89)

This means that the distance to the solution ψ̄ decreases at each iteration by at least the constant factor τ .

De�nition 8. The convergence rate of the series {ψk}k≥1 is said to be superlinear in n steps if

lim
k→∞

‖ψk+n − ψk‖
‖ψk − ψ̄‖

= 0. (90)
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De�nition 9. The convergence rate of the series {ψk}k≥1 is said to be quadratic if

‖ψk+1 − ψk‖
‖ψk − ψ̄‖2

≤ τ, τ > 0. (91)

Quasi–Newton methods usually converge super-linearly and the Newton method converges quadratically.
The steepest descent method converge linearly. Moreover, for ill-posed problems, this method may converge
linearly with a constant τ close to 1. Next, the conjugate-gradient method converges superlinearly in n
steps to the optimum [2].

Thus the quasi-Newton methods convergence-rate is much higher than the conjugate gradient methods
convergence-rate which need approximately n times more steps (n times more line-search) at the same
convergence behavior. However, for the quasi-Newton method, the memory place is proportionnal to n2.

7.2 Gradient computation cost

Let S(u, ψ) = 0 the state problem that mapsψ 7→ u,R being possibly nonlinear (for highlighting di�erences
between the distinct strategies), and dimψ the number of parameters to be evaluated. We compare the
number of times the model S , the di�erentiated model and/or the adjoint-state model are computed to
access the full gradient of the cost function.

1. Finite di�erence method:
(dimψ + 1) nonlinear computation of S(u, ψ) = 0.

2. Forward di�erentiation method:
1 nonlinear computation of S(u, ψ) = 0,
dimψ linear computation of S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0.

3. Adjoint state method:
1 nonlinear computation of S(u, ψ) = 0,
1 linear computation of S∗(u, ψ)u∗ + u− ud = 0.

Thus, the �nite di�erence method is very time consuming, though it is easy to use. Next, comparing
the two latter methods, the operator involved in the adjoint-state method is almost the same as the one
involved in the forward di�erentiation method, though the adjoint-state method yields to higher algorithmic
complexity (backward time integration, memory, etc.). When dimψ is high (even if dimψ is bigger than
say 100), the use of the direct di�erentiation method becomes cumbersome and computationally expensive;
the adjoint-state method is, in fact, the only acceptable method.

7.3 Gradient computation needs

We recall in the following table the way (the required needed steps) one computes the cost function gradient.

Steepest, conjugate-gradients, Newton Gauss–Newton,
BFGS, DFP, . . . Levenberg–Marquardt, . . .
u← S(u, ψ) = 0 u← S(u, ψ) = 0 u← S(u, ψ) = 0
j ← u j ← u j ← u

∇j ←


Forward di�.
or
Adjoint state

∇j ←


Forward di�.
or
Adjoint state

∇j ← StS ← S ← u′ (Forward di�.)

∇2j (complicated)
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8 Regularization

When the inverse problem is ill-posed (which is likely to be the case in real cases, especially when the
control space dimension is big), regularization is needed and sometimes compulsary. Regarding function
estimation, for instance space-dependent physical properties or sources, speci�c regularization strategies
di�erent from the ones used in parametric estimation are required. Regularization may be viewed as adding
a priori information, but other means can also be used, including (see [14] for elements of comparison on
applications of optical tomography):

• choose of speci�c X -norm for the cost function expression according to the prior knowledge of the
unknown (use for instance the L1(D)-norm instead of the ordinary L2(D)-norm).

• add prior information through Tikhonov penalization, If some Tikhonov-type regularization terms
are added to the cost function, the cost function jε(ψ) := J (u) + εJ +(ψ) is the one to be minimized,
with:

J + := ‖Dψ‖2Y (92)

where D is often a di�erential operator acting on the function ψ and ‖·‖Y is another norm to be
de�ned according to the chosen control space.

• choose an appropriate Z-norm for extracting the cost function gradient. The use of speci�c inner
products when extracting the cost function gradient is a recent regularization tool. In order to present
this regularization strategy, let us work on the example where a space-dependent physical property
in D is to be estimated. In such a case it is usual to use the ordinary L2(D)-inner product, i.e., one
uses j′(ψ;φ) = (∇j, φ)L2(D); this gives the ordinary L2(D) cost function gradient, denoted here as
∇L2j(ψ). Besides, the Sobolev inner product can give much better (smoother) results when the noise
has propagated to the adjoint-state variable and then to the cost function gradient. Even better, the
weighted version has recently proven to give excellent results. This one de�ned as:

(u, v)Z = (u, v)H1(`)(D) :=

∫
D

(
uv + `2∇u · ∇v

)
dx (93)

is used in the cost function gradient extraction relationship j′(ψ;φ) = (∇j, φ)H1(`)(D) in order to
compute the weighted Sobolev cost function gradient∇H1(`)

j(ψ).

• choose an appropriate functional space for the control space parameterization. In practice, the control
space must be approximated in order to be �nite. Often, the �nite element method is used so that
one searches ψ that belongs to a �nite dimensional subspace, say V . Let us consider a triangulation
M of the computational domain D, and let us note np the number of vertices inM. It has been
shown, through numerical means on a speci�c OT problem that, among the large number of tested
possibilities, the piecewise linear continuous functions (dimψ = np) are the most appropriate for the
estimation of space-dependent functions.

• choose an appropriate dimension dimψ of the control space parameterization. Usually the �nite
element space used to solve the forward model (58) has to be �ne enough to ensure that numerical
errors stay small enough. Most often, the triangulation chosen for the control space is the one chosen
for the state. It has been shown again, through numerical means, that both the convergence and the
quality of the reconstructions are much improved when dimψ is lowered, up to a certain limit, at
least for quasi-Newton algorithms.

• Multi-scales approaches is also a fabulous opportunity to regularize solutions and in the same time
accelerate the convergence and avoid converging to local minima. Coupled with wavelets on one

32



Function estimation in IHTP

side, and the BFGS in the other side, this method relies on a reformulation of the original inverse
problem into a sequence of sub-inverse problems of di�erent scales using wavelet transform, from
the largest scale to the smallest one. Successful applications of this method include the estimation of
space-dependent absorption and scattering coe�cients in optical tomography [15].

9 Examples

9.1 Parametric conductivities in a transient heat conduction problem

This �rst simple example deals with the estimation of uniform conductivity coe�cients in di�erent sub-
domains. Heat transfer is considered. Initial temperature is assumed to be known and equal to T0. T0 is
also the Dirichlet temperature for positive time on the whole boundary ∂D. The domain has the shape
of a head with two eyes, one nose and one mouth. The geometry being known, as well as the initial and
boundary conditions, the heat capacity and the time-dependent heat source, the inverse heat conduction
problem consists in estimating, through infra-red like temperature measurements on D × I , the set of
conductivities λi, i = 1, · · · , 4 (1, 2, 3, 4 corresponding to the left eye, the right eye, the noze and the mouth,
respectively). Noisy (1 % white noise) synthetic data was generated with conductivities equal to 20, 30, 40
and 50, respectively. Guessed conductivities were all equal to 10.

If optimization methods based on sensitivities are chosen, one will have to compute, sucessively:

ρC
∂T ′

∂t
−∇ ·

(
λT ′
)

= ∇ ·
(
λ′∇T

)
(94)

with null initial and boundary conditions. In the sensitivity model, the direction λ′ equals 0 or 1 depending
on the location for the four considered sensitivity problems. Corresponding sensitivities are presented
in �g. 13.

With so few parameters to identify (4 in total in this example), it is not really necessary to use the
adjoint-state method to compute the cost gradient. We however give in �g. 13 the evolution of the adjoint-
state variable which is solved backwardly from �nal time to initial time, while integrating along time the
errors integrated within the cost function (this �rst application was actually chosen for this purposes : small
number of unknowns, and possible visualization).

From the knowledge of these temperature sensitivities, one can compute the sensitivity matrix S such
that si×k,j gathers for instance the sensitivity of temperature on the (�nite element) node i at time k
with respect to λj . In the same manner, the error vector ei×k gathers the error (di�erence between the
predictions and the measurements) at the (FE) node i, and at time tk. Consequently, the cost gradient is
computed straightforwardly through ∇j = S>e, and the Gauss–Newton algorithm can be used without
any regularization because this parametric problem is not ill-posed. Very few Gauss–Newton iterations are
needed to converge as can be seen in �g. 14.

9.2 Space-dependent convection coe�cient in a transient heat conduction problem

In this section, we consider an application of a nonlinear transient heat transfer inverse problem arising in
thermal treatment for instance. D being an open bounded set of R2 and I =]0, tf ], the modeling equation
in D × I is

C
∂T

∂t
−∇ · (λ∇T ) = f for (x, t) ∈ D × I (95)
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Figure 14: Evolution of the parameters and of the cost function with respect to the G-N iterations.

where the temperature-dependent physical properties are considered. We also consider the following initial
and boundary conditions with ∂D1 ⊕ ∂D3 ⊕ ∂D3 forming a partition of ∂D:

T = T0 at t = 0
−λ∇T · n = h (T − T∞) for x ∈ ∂D1

∇T · n = 0 for x ∈ ∂D2

−λ∇T · n = εσ
(
T 4 − T 4

∞
)

for x ∈ ∂D3

(96)

The estimation of the heat transfer function h(x, t), x ∈ ∂D1, t ∈]0, tf ] is performed through the
minimization of the cost function:

j(h) := J (T ) =

∫ tf

0

N∑
j=1

(T (xj , t)− Td(xj , t))2dt (97)

where T (xj , t) and Td(xj , t) represent respectively the predicted and measured temperatures at N various
locations x := (rj , zj) in the material. For such application, the minimization can be carried out by using
conjugate gradients or better quasi-Newton methods. In any case, the optimization is based on the gradient
computation.

The cost function gradient is obtained for all values x ∈ ∂D1, t ∈]0, tf ] by the following relationship:

∇j(h) = T ∗ × (T − T∞) (98)

where T ∗ is the solution of the adjoint problem:

−C∂T
∗

∂t
−∇ · (λ∇T ∗) =

∑
j

(T − Td)× δ (x− xj) (99)

with the condition T ∗ = 0 at �nal time tf and the conditions on the boundaries:

−λ∇T ∗ · n = hT ∗ for x ∈ ∂D1

∇T ∗ · n = 0 for x ∈ ∂D2

−λ∇T ∗ · n = 4εσT 3T ∗ for x ∈ ∂D3

(100)

Remark. The following notations are used: U := L2(I;L2(D)), Ui := L2(I;L2(∂Di)), ∀i = 1, 2, 3 and
U∗ := L2(I;L2(∪i∂Di)).
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Proof. The derivative of the state T at the point h and towards δh, T ′(h; δh) is de�ned by:
C ∂T ′

∂t −∇ · λ∇T ′ = 0 x ∈ D, t ∈ I
T ′ = 0 x ∈ D, t = 0
λ∇T ′ · n + hT ′ + δh(T − T∞) = 0 x ∈ ∂D1, t ∈ I
∇T ′ · n = 0 x ∈ ∂D2, t ∈ I
λ∇T ′ · n + 4εσT 3T ′ = 0 x ∈ ∂D3, t ∈ I

(101)

The Lagrange function is formally de�ned as:

L (T, {T ∗, γ, ξ,$}, h) = J (T ) +
(
C ∂T

∂t −∇ · (λ∇T )− f, T ∗
)
U

+ (λ∇T · n + h (T − T∞) , γ)U1
+ (∇T · n, ξ)U2
+
(
λ∇T · n + εσ

(
T 4 − T 4

∞
)
, $
)
U3

(102)

The di�erentiated Lagrange function with respect to h in the direction δh is:

(L ′
h(·), δh) = (T − Td, T ′)X

+
(
C ∂(T ′)

∂t −∇ · λ∇T ′, T ∗
)
U

+ (λ∇T ′) · n + hT ′ + δh(T − T∞), γ)U1
+ (∇T ′ · n, ξ)U2
+
(
λ∇T ′ · n + 4εσT 3T ′, $

)
U3

(103)

We then use the following integrations by parts to express some particular terms:(
C ∂T ′

∂t , T
∗
)
U

=
(
T ′,−C ∂T ∗

∂t

)
U + (CT ′, T ∗)D (t = tf )− (CT ′, T ∗)D (t = 0)

(λ∆T ′, T ∗)U = (λ∆T ∗, T ′)U + (λ∇T ∗ · n, T ′)U∗ − (λT ∗,∇T ′ · n)U∗

(104)

We bring together similar terms to get:

(L ′
h(T, {T ∗, γ, ξ,$}, h), δh) = (T − Td, T ′)X + (δh (T − T∞) , γ)U1

+
(
−C ∂T ∗

∂t − λ∆T ∗, T ′
)
U + (CT ∗, T ′)D (t = tf )

+ (λ∇T ∗ · n, T ′)U∗ − (λT ∗,∇T ′ · n)U∗
+ (λ∇T ′) · n + hT ′, γ)U1 + (∇T ′ · n, ξ)U2
+
(
λ∇T ′ · n + 4εσT 3T ′, $

)
U3

(105)

Choosing γ = T ∗ on ∂D1, ξ = λT ∗ on ∂D2 and $ = T ∗ on ∂D3, the adjoint problem can eventually
be written as: 

−C ∂T ∗

∂t − λ∆T ∗ = −∑j(T − Td)× δ(x− xj) x ∈ D, t ∈ I
T ∗ = 0 x ∈ D, t = tf
−λ∇T ∗ · n = hT ∗ x ∈ ∂D1, t ∈ I
∇T ∗ · n = 0 x ∈ ∂D2, t ∈ I

−λ∇T ∗ · n = 4εσT 3T ∗ x ∈ ∂D3, t ∈ I

(106)

and the cost gradient is written as:
∇j = − (T − T∞)T ∗. (107)

From the integration of the adjoint-state, the cost function gradient is computed. From the knowledge
of the cost function gradient, the direction of descent is computed, for instance with the conjugate gradient
method, or with any other faster method if a �ne parameterization for h is required. It is also to be pointed
out that the temperature state being varying almost linearly with the convection property, the line-search
equation can be for instance given by the solution of (14).
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9.3 Adjoint RTE

This last example aims at developping adjoint-state equation of the radiative transfer equation (RTE). The
main objective behind this developments is the solution of optical tomography problems, in which the
problem is the reconstruction of radiative properties (κ(x) and σ(x)) within the medium, input intensity
being prescribed on the boundary, and measurements being also performed on boundaries. Some of the
di�culties for solving such problems include:

i) the dimension of the discrete control space is likely to be high, in 2-D and especially in 3-D. This means
that e�cient optimizers such as the ones based on the gradient-type BFGS are the only ones to be
used. Others such as the conjugate gradients for instance may be too slow and gradient-free are not
appropriate at all;

ii) the RTE is integro-di�erential, so appropriate inner products must be used through all the derivations.
Therefore, mathematical developments for the derivation of the adjoint-state as well as for the cost
function gradient must be undertaken very carefully. In the same spirit, numerical algorithm and
implementation must be undertaken very carefully;

iii) the state being non linear with respect to the physical properties and overall the nonlinear inverse
problem being ill-posed, several regularization strategies must be used and combined together.

Let the radiative transfer equation (RTE) being written as, ∀ (x, s) ∈ Dπ:

(s · ∇+ κ+ σ) I(x, s) = σ

∮
4π
I(x, s)Φ(s, s′) dω(s′), (108)

where s is the considered direction of propagation, Φ(s, s′) is the phase function representing the probability
that a photon arriving from the direction s′ is scattered to the direction s, and κ and σ are the absorption
and di�usion space-dependent functions, respectively. On a part of the boundary, there is a prescribed
Dirichlet condition:

I(x, s) = Ī for x ∈ ∂Ds and s · n < 0. (109)

Also, let a cost function measuring the mis�t between predictions and measurements somewhere on the
boundary, i.e., ∂Ωd ⊂ ∂Ω, the mis�t being expressed (it is actually a norm) in terms of the radiance,

e = I(x, sd)− Id(x, sd) for x ∈ ∂Dd and sd · n > 0. (110)

In order to make the derivation of the adjoint-state, the tools described in previous sections are used.
Additionally, the state variable I being de�ned in (x, s) ∈ D × 4π, the inner product U de�ned in eq. (68)
and in following equations is:

(u, v)U =

∫
4π

∫
D
uv dxds. (111)

After integration by parts and some – technical – manipulations in the inner products, one �nds the
adjoint RTE to be:

(−s · ∇+ κ+ σ) I∗(x, s) = σ

∮
4π
I∗(x, s)Φ(s, s′) dω(s′) (112)

coupled with the Dirichlet boundary condition:

I∗(x,−sd) = (sd · n)−1 (I − Id) (x,−sd) for x ∈ ∂Dd and sd · n > 0 (113)
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The adjoint-state being computed, the cost function gradient, here as an implicit function of x can be
computed:

∇κj(x) =

∮
4π
I(x, s)I∗(x, s) ds

∇σj(x) =

∮
4π

(
I(x, s)I∗(x, s)−

∮
4π
I(x, s′)Φ(s, s′) ds′ I∗(x, s)

)
ds

(114)

This continuous version of the components of the cost function gradient is then projected onto the basis
used to parameterize the control-space. A very detailed derivation of the adjoint RTE can be found in [16],
for instance.

10 Concluding remarks

This lecture was devoted to the presentation of mathematical and numerical algorithms used in the estimation
of functions while solving inverse heat transfer problems. Contrarily to parameter estimation problem,
the dimension of the “control space” is likely to be big after the process of parameterization, this being an
essential issue and reason of why using e�cient optimization algorithms. Among those e�cient algorithms,
the ones based on the cost function gradient as well as on adjoint-states are of �rst importance. Functions
to be estimated usually contain several regularity requirements and thus, the use of e�cient regularization
tools are compulsory to cope with the ill-posed character of the inverse problem.
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