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We demonstrate that the orbital angular momentum of radiating waves can be used to drive a mechanical
oscillator, an option that has remained elusive to date on experimental grounds whatever the nature of the
waves. This is done using an amplitude-modulated ultrasonic wave interacting with a centimeter-size
torsional pendulum. Achieved resonant quantitative measurements of the acoustic radiation torque and
material properties set the basis for orbital-angular-momentum-based metrology applications and possibly
cooling of the rotational degree of freedom of macroscopic objects.
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I. INTRODUCTION

The torsional pendulum holds a special place in the his-
tories of gravitation, electricity, and magnetism where the
measurement of tiny torques has often been involved [1].
One can cite the Cavendish experiment devoted to the
determination of the density of the Earth [2]. The Ein-
stein–de Haas experiment demonstrating the mechanical
nature of the angular momentum associated with electron
spins in a ferromagnet is another famous example [3].
It is also a torsional pendulum that was used to detect
and measure mechanically the spin angular momentum of
electromagnetic waves in the optical domain [4,5] in the
1930s and years later in the radio domain [6]. Of note,
its orbital counterpart was implemented only a few years
ago in the radio domain [7] and in the optical domain
[8,9]. The mechanical manifestation of the orbital angular
momentum of sound waves has also been revealed using a
torsional pendulum [10,11]. The demonstration of a reso-
nant torsional mechanical oscillator driven by wave-matter
orbital angular momentum coupling, however, is missing,
whatever the nature of the wave. In this work we report its
implementation using ultrasonic waves.

Here we start by presenting the design and fabrication
of the torsional pendulum in Sec. II followed by the model
used to describe its response to an amplitude-modulated
acoustic wave in Sec. III. Qualitative observations are
reported in Sec. IV using a first design that points out the
importance of the choice of the resonant frequency in order
to exploit the data using analytical solutions. Finally, a sec-
ond design enabling a quantitative analysis is demonstrated
in Sec. V and metrology applications are presented, such
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as the measurement of the complex shear modulus and the
measurement of acoustic radiation torque.

II. TORSIONAL PENDULUM DESIGN

Our approach relies on three-dimensionally (3D) printed
torsional pendulums made of prototyping resin PR57-K
(Autodesk) that are used in the air at atmospheric pres-
sure and room temperature. As sketched in Fig. 1(a), a
torsional wire of diameter D and length L, which defines
the z axis, is fixed at one end and holds a disk of radius
R = 15 mm and height H = 1 mm at the other end. At
the bottom of the disk, a slab with radius R and helical
corrugations facing downwards is placed using double-
sided tape. The helical surface is designed with ℓ identical
adjacent angular sectors having azimuthally varying thick-
ness t(φ) = ℓhφ/(2π) on the top of a disk pedestal with
height h′ = 1 mm, where h is the step height and φ is the
azimuthal angle in the (x, y) plane.

This design allows an airborne sound wave generated
by a flat transducer, with radius a = 5 mm and placed at
a distance d from the helical surface, to exert a torque on
the suspended part of the pendulum. Indeed, the large mis-
match of acoustic impedance between the air and the resin
leads to virtually unitary acoustic reflectivity. Moreover, as
the wave is reflected off the helical mirror, its wavefront is
twisted and the reflected field thus carries orbital angular
momentum directed along the z axis, which is a feature
common to “twisted waves” (e.g., light [12], sound [13],
gravitation [14], electrons [15], neutrons [16]). The con-
servation of angular momentum implies that the torsional
pendulum acquires angular momentum, also directed along
the z axis. Harmonic modulation of the pressure field
magnitude is therefore expected to drive the torsional pen-
dulum to resonance when the forcing frequency matches
that of the mechanical oscillator, whose natural frequency
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(a)

(b)

FIG. 1. (a) Geometry of the acoustic torsional pendulum
experiment. In all experiments reported in this work we have a =
5 mm, R = 15 mm, H = 1 mm, h′ = 1 mm, and h = 1.71 mm,
and the transducer operates at a nominal output acoustic power
P0 using a fixed external electrical modulation depth at fre-
quency F . The helical mirror inset shows a helically corrugated
plate with ℓ = 2. (b) The set of 3D printed helically corrugated
plates with topological charges 1 ≤ ℓ ≤ 4 with R = 15 mm, h′ =
1 mm, and h = 1.71 mm.

is F0 = (1/2π)
√

K/J , where K > 0 is the torsion constant
of the wire and J is the moment of inertia of the suspended
part of the pendulum along the z axis.

Here we choose a step height h = λ/2 for the sus-
pended helical mirrors, where λ = 3.43 mm is the wave-
length in the air associated with the ultrasonic wave
frequency f = 100 kHz [see Fig. 1(b)]. This choice
implies that the reflected (“r”) pressure field is of the
form pr ∝ exp(−iωt + iκz − iℓφ), where ω = 2π f and
κ = 2π f /c + iα is the complex wave vector, with c =
343 m s−1 and α ≃ 0.38 m−1 at 100 kHz frequency [17]
being the sound wave celerity and attenuation in air,
respectively. The reflected sound wave thus corresponds
to an acoustic vortex beam with topological charge −ℓ,
whose generation is associated (within the paraxial approx-
imation) with an acoustic radiation torque (z = ℓP/ω
exerted on the helical mirror where P is the acoustic power
intercepted by the helical mirror [18].

III. MODEL

Noting that ℓ and ω are imposed by the experimental
design and that P > 0, the ideal implementation of

a single-frequency driving acoustic torque (z = (0
cos(2πFt), where (0 is a constant and F is the driv-
ing frequency, is not possible. Instead, we externally
drive the amplitude electrical source of the transducer
at a frequency F ≪ f , which leads to an incident (“i”)
modulated pressure field of the form pi(t) = p0[1 +
ϵ cos(2πFt)] cos(2π ft), where p0 is a constant and 0 <
ϵ < 1 is the modulation depth of the pressure field. Since
P ∝ ⟨p2

i ⟩, where the brackets refer to time averaging over
one pressure oscillation period, the expression of the driv-
ing acoustic torque is written as

(z(t) = ℓP
ω

[
1 + ϵ2

2
+ 2ϵ cos(2πFt) + ϵ2

2
cos(4πFt)

]
.

(1)

In the limit of small angular deviation θ of the suspended
part of the pendulum in the plane (x, y), the mechanical
response obeys the second-order differential equation

J
d2θ

dt2
+ γ

dθ

dt
+ Kθ = (z(t), (2)

where γ > 0 is the damping coefficient and K > 0 is
the torsion constant associated with the real part of the
complex shear modulus G̃ = G′ + iG′′ according to K =
(πD4/32L)G′. Since Eq. (2) is linear, the solution to the
multiple-frequency external forcing given by Eq. (1) is
given by the superposition of the solutions of individual
forcing at frequencies 0, F and 2F . On the one hand, the
constant forcing leads to a static angular deviation ,stat =
(1 + ϵ2/2)ℓP/(Kω). On the other hand, the harmonic forc-
ing at frequency ν leads to a stationary dynamic angular
deviation oscillating at the same frequency, with magni-
tude θ

(ν)
dyn, whose expression can be modeled noting that the

damping has two contributions of distinct origins. Namely,
an internal one associated with the imaginary part of the
shear modulus of the material constituting the wire and
an external one associated with the viscous torque exerted
by the air surrounding the pendulum in motion around the
z axis. Considering the steady-state dynamics of a har-
monic forcing at frequency F , the internal contribution is
expressed as [19]

γint = K/(2πF), (3)

where K > 0 is associated with the imaginary part of the
complex shear modulus according to K = (πD4/32L)G′′.
Neglecting the hydrodynamic contribution associated with
the moving wire, whose diameter is much smaller than
that of the suspended part of the pendulum, a fair estimate
of the external contribution is made from the knowl-
edge of the hydrodynamics of an infinitely think disk
immersed in a fluid of density ρ and dynamic viscosity
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η that spins at frequency F around its axis of revolu-
tion. According to Ovseenko [20], if the Reynolds number
Re = 2πFR2ρ/η satisfies ζ Re2 ≪ 1 with ζ ∼ 10−3, the
hypothesis of creeping flow is valid and [21]

γext = (32/3)ηR3. (4)

In order to gauge the validity of the latter assumption,
we note that all our experiments are made for a resonant
oscillating frequency up to 100 Hz, hence ζ Re2 up to 1
noting that ρ = 1.2 kg m−3 and η = 2 × 10−5 Pa s for the
air under ambient conditions. Therefore, there is no need
to refine the Stokes framework in order to estimate the
order of magnitude of γext. The ratio γint/γext is therefore
evaluated from Eqs. (3) and (4) as

γext

γint
= 2048

3
ηLR3F
D4G′′ . (5)

At resonance and using the typical value G′′ = 0.1 GPa,
this gives γext/γint ! 10−3 and γext/γint ! 10−4 for the first
and second design, respectively, of the pendulum presented
in this work. Therefore, keeping only the internal viscous
shear losses of the twisted wire, one obtains

θ
(ν)
dyn = aν

ℓP
Kω

[(
1 − ν2

F2
0

)2

+
(K

K

)2
]−1/2

, (6)

where aF = 2ϵ and a2F = ϵ2/2. Since aF > a2F , we fur-
ther focus on the dominant harmonic ν = F for which the
maximal angular deviation magnitude ,

(F)
dyn = 2ϵℓP/(Kω)

is reached at the resonance frequency F = F0.

IV. QUALITATIVE EXPERIMENTS

At first, we design a pendulum with resonant frequency
F0 ≃ 10 Hz enabling a direct demonstration using a cam-
era according to the setup depicted in Fig. 2(a). A laser
beam is loosely focused via lens L1 onto a 100-µm-thick
mirror having an area of a few square millimeters, on
which the beam diameter is approximately 0.5 mm. The
reflected light beam is then focused onto a camera placed in
the focal plane of the second lens L2. The beam spot posi-
tion x allows monitoring of the angle θ = x/(2f2), where
f2 is the focal length of L2. As the modulation frequency
F is increased starting from zero, the amplitude of the
periodic displacement of the beam spot increases until it
reaches a maximum at F = F0. The dynamics of the beam
spot at resonance for ℓ = 4 is displayed in Fig. 2(b), which
exhibits the expected sinusoidal behavior (see solid curve).
This demonstrates qualitatively our main claim: the imple-
mentation of a torsional mechanical oscillator driven by
the orbital angular momentum of a radiating wave.

Despite that the choice of a small value of d has the
advantage of optimizing the intercepted acoustic power

(a)

(b)

FIG. 2. Acoustic torsional pendulum experiment. (a) Sketch
of the experimental setup used for the direct observation of
the pendulum dynamics. The light beam is provided by a He-
Ne laser operating at a wavelength of 633 nm, the lenses
L1 and L2 have focal lengths f1 = 0.5 m and f2 = 1 m, and
r ∼ 6 m. (b) Spatiotemporal experimental dynamics of the
beam spot intensity profile I(x, z, t) in the plane of the cam-
era, introducing the one-dimensional normalized intensity profile
Ĩ(x, t) =

∫
I(x, z, t)dz/ maxx[

∫
I(x, z, t)dz], for the parameters

ℓ = 4, d = 15 mm, L = 5 cm, and D = 1 mm. The solid line is a
sinusoidal fit.

P and that the choice of a low resonant frequency F0
allows for user-friendly direct monitoring of the dynam-
ical motion of the pendulum using a low-frame-rate
videoimaging system, this comes with a practical draw-
back. Indeed, our electric source fails to be driven with
a constant ϵ in the low-frequency regime, which prevents
a quantitative unraveling of the universal Lorentzian line
shape of the resonant oscillator. The latter issue is ascer-
tained by placing a piezoelectric sensor at a couple of
centimeters from the transducer, forming a on-axis acous-
tic cavity, and adjusting its position in order to maximize
the delivered voltage V(t) ∝ pi(t) [see Fig. 3(a)]. The mod-
ulation depth ϵ is measured by envelope detection of the
voltage signal V(t) delivered by the sensor. The results are
shown in Fig. 3(b), which exhibits a strongly frequency-
dependent ϵ for F < 50 Hz. Noting that ϵ = 0.48 ± 0.01
between 80 and 120 Hz, we therefore design a second gen-
eration of pendulum characterized by a resonant frequency
close to 100 Hz, around which the modulation depth can
be considered constant.

V. QUANTITATIVE EXPERIMENTS

We opt for L = 30 mm and D = 2.5 mm, and the dis-
tance d is substantially increased up to d = 100 mm in
order to eliminate cavity effects between the transducer and
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(a)

(b)

FIG. 3. Modulation depth of the driving pressure field.
(a) Sketch of the setup. AT: acoustic transducer; PS: piezoelectric
sensor; DAQ: data acquisition system. (b) Experimental modu-
lation depth ϵ as a function of the modulation frequency F of
the pressure field, measured by envelope detection of the voltage
signal V(t) delivered by the sensor.

the pendulum (see Appendix A). Experimentally, a stiffer
torsional wire and a substantially larger distance from the
transducer imply dealing with smaller angular deviations,
which prevents accurate video monitoring following the
detection framework used in the previous section. This
leads us to replace the lens L2 and the camera by a lateral
effect position sensor [22] placed at a distance r = 6.15 m
from the mirror attached to the pendulum, which gives
θ = x/(2r), and we use a lens L1 with f1 = 1 m.

The mechanical resonances are retrieved by sweeping
the driving frequency from F = 1 to 200 Hz in a lin-
ear manner during 10 min at a sampling frequency of
8.33 kHz. Then, wavelet transform processing gives access
to θ

(F)
dyn as a function of F (see Appendix B). Obtained

results are summarized in Fig. 4(a), which corresponds to
the collection of five independent sweeping measurements
for each value of ℓ, for 1 ≤ ℓ ≤ 4. For each ℓ, we fit the
dataset according to Eq. (6) that is rewritten as

θ
(F)
dyn = ,

(F)
dyn

G′′

G′

[(
1 − F2

F2
0

)2

+
(

G′′

G′

)2
]−1/2

, (7)

using G′, G′′, and ,
(F)
dyn as independent adjustable param-

eters, recalling that G′ is the only unknown parameter for
F2

0 = D4G′/(64πLMR2), where M is the mass of the sus-
pended part of the pendulum. The Lorentzian line shape
is experimentally confirmed whatever ℓ (see solid curves).
Moreover, all 20 experiments merge into a single univer-
sal curve when using normalized quantities for both the
angular deviation and the forcing frequency [see Fig. 4(b)],

(a)

(b)

FIG. 4. Resonant mechanical oscillator driven by acoustic
orbital angular momentum. (a) Torsional mechanical resonance
for four kinds of generated acoustic vortex by the helically cor-
rugated pendulum with ℓ = (1, 2, 3, 4). Markers: experimental
data of five independent experiments for each value of ℓ. Solid
curves: best-fit adjustment from Eq. (7). (b) Same as in (a)
using normalized angular deviation θ

(F)
dyn/,

(F)
dyn and normalized

frequency F/F0. Solid curve refers to the Lorentzian fit of all
20 experiments.

in agreement with Eq. (7). This behavior thus provides a
technique to measure the complex shear modulus parame-
ters. This is done by adjusting the data of the normalized
resonance curves with G′ and G′′ as the two adjustable
parameters [see solid curve in see Fig. 4(b)]. Namely, we
find G′ = 1.27 GPa and G′′ = 75.9 MPa.

These robust experimental observations also allow one
to address the challenge of quantitative tests of the acous-
tic radiation torque formulation in the paraxial regime,
so far based on the observation of objects immersed in
fluids set into spin owing to dissipative [23,24] or nondis-
sipative [18,25] transfer of orbital angular momentum
between wave and matter. Here, the acoustic torque con-
tribution of the harmonic at frequency F is expressed as
(

(F)
dyn = 2ϵℓP/ω = K,

(F)
dyn. Its measurement as a function

of the topological charge ℓ is extracted from the Lorentzian
adjustments reported in Fig. 4(a) and the results are dis-
played in Fig. 5(a), where a linear fit gives the slope
ξ = 15.0 nN m.

Testing the theory implies recovering the slope ξ from
its expression ξ = 2ϵP/ω. This requires one to determine
experimentally the acoustic power P intercepted by the
pendulum. This is achieved by three independent radia-
tion force balance measurements. It consists of irradiating
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(a) (b)

(c)

FIG. 5. Quantitative measurement of the acoustic radiation
torque. (a) Measurement of the acoustic torque contribution of
the harmonic at frequency F: (

(F)
dyn versus the topological charge

ℓ. Solid line is a linear fit. (b) Sketch of the setup for acoustic
power measurement from a radiation pressure experiment using a
precision scale. AT: acoustic transducer. The 3D printed disk has
a 30-mm diameter. (c) Mass measurements as a function of the
distance d at normal incidence. Solid line refers to simulations
using the total power P0 as the single adjustable parameter.

from the air a precision scale at an incidence angle β [see
Fig. 5(b)] and measuring the mass m resulting from the
acoustic radiation force exerted on a two-dimensionally
printed disk with a diameter of 30 mm, which behaves as a
perfect mirror.

First experiment. We choose d = 25 mm and β = 45◦,
which gives P0 = 25.0 ± 0.7 mW via mg = 2 cos(β)P0/c,
where g is the acceleration of gravity. Exploiting the cal-
culated relationship P ≃ 0.34P0 [see Fig. 6(a)], this gives
P = 9.3 mW.

Second experiment. We choose a normal incidence (β =
0◦) by retrieving the Fabry-Perot effect as the distance
d varies [see Fig. 5(c) and Appendix C]. Adjusting the
measured data with the calculations made using the scalar
beam propagation method with P0 as an adjustable param-
eter gives P0 = 31.6 mW. The relationship P ≃ 0.34P0
gives P = 11.7 mW.

Third experiment. Here we proceed to a direct evalua-
tion of P made at normal incidence and using d = 100 mm
as is the case for the resonant torque measurements. This
gives P = 7.5 ± 0.3 mW via mg = 2P/c.

We thus obtain ξ = 13.6 ± 2.5 nN m and, recalling the
unavoidable imperfections of the helical corrugations (e.g.,
the measured height step h differs from λ/2 up to a few
percent and the on-axis geometrical singularity leads to
imperfections over a radius of less than 1 mm), we con-
clude to a fair quantitative experimental validation of the
paraxial theory for the orbital angular momentum of sound
waves.

VI. CONCLUSION

The proposed torsional mechanical oscillator driven by
orbital angular momentum contributes to conceiving rota-
tional metrology techniques such as shear modulus mea-
surements or radiation torque calibration of sources of
acoustic orbital angular momentum [26–30]. Noticing that
in optics, the mechanical effects based on the interplay
between the angular momentum of light and matter attract
interest for both cavity and cavityless schemes (e.g., [31]),
our results based on acoustic waves might contribute to
foster the research field of “angular wave mechanics,” for
instance . Indeed, by reporting on a rotational oscillator
based on acoustic orbital angular momentum, we propose
an experimental platform to explore wave-matter inter-
play in the presence of angular momentum exchanges.
Remarkably, dealing with sound waves provides radia-
tion torque with far larger magnitude than that of light as
it scales as ω−1, hence making easy the implementation
of macroscopic rotational experiments. In particular, the
experimental implementation of the cooling of the rota-
tional degree of freedom of macroscopic objects following
the scheme proposed by Bhattacharya and Meystre [32]
appears conceivable in the acoustic domain.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from CONACYT Mexico.

APPENDIX A

Here we justify from acoustic propagation simulations
that the cavity effects between transducer and pendulum
can be neglected for d = 100 mm. The field propagation
method used is a generic one that applies to all kinds
of scalar propagating waves, which is based on Fourier
transforms (see [18]). The latter claim is supported by the
results shown in Fig. 6, assuming ℓ = 0 (i.e., no helical
corrugation). On the one hand, Fig. 6(a) displays the frac-
tion of the emitted power P0 that is intercepted “at first

(a) (b)

FIG. 6. Simulated dependence of the power fractions
P1(d)/P0 and P2(d)/P1(d) on the propagation distance. Black
curve: ℓ = 0; red curve: ℓ = 1.
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reflection” (subscript “1”) by the suspended part of the
pendulum, namely P1(d)/P0. On the other hand, Fig. 6(b)
displays the ratio between the power intercepted “at the
second reflection” (subscript “2”) and that intercepted “at
the first reflection” as a function of d, namely P2(d)/P1(d).

Obtained results show that there is approximately 1%
of acoustic power intercepted by the pendulum after one
round trip in the cavity for ℓ = 0 [Fig. 6(b), black curve]
and this fraction falls to below 0.1% for ℓ = 1 [Fig. 6(b),
red curve]. This value is even smaller as |ℓ| increases since
the reflected vortex field from the pendulum diffracts into a
beam having a doughnut-shaped intensity profile having a
dark core whose size increases with |ℓ|, which drastically
increases the cavity losses. We therefore conclude that the
cavity effects can be safely discarded at a distance d = 100
mm and in that case the intercepted power P equals P1(d)
to a good approximation, namely P ≃ 0.34P0.

APPENDIX B

Here we describe our data-processing protocol, demon-
strating its ability to extract the harmonic amplitudes θ

(ν)
dyn

with ν = (F , 2F) from the time-dependent signal θ(t)
recorded by the lateral effect position sensor as the driv-
ing frequency F is swept in time. Namely, let us consider
the synthetic time series

θ(t) = θideal(t) [1 + ξσ (t)] , (B1)

where ξσ (t) is a normal noise distribution having zero
mean value and standard deviation σ and

θideal(t) = θstat + θ
(F)
dyn(t) cos[2πF(t)t]

+ θ
(2F)
dyn (t) cos[4πF(t)t] (B2)

is the ideal noise-free signal. Mimicking our experimental
conditions we take

θstat = A
(

1 + ϵ2

2

)
, (B3)

θ
(F)
dyn(t) = A(2ϵ)(G′/G′′)4(F)(t), (B4)

and

θ
(2F)
dyn (t) = A(ϵ2/2)(G′/G′′)4(2F)(t), (B5)

where A is an unimportant constant factor, here taken as
A = 1, ϵ = 1/2, and G′′/G′ = 1/10. Moreover,

4(F)(t) = G′′

G′

[(
1 − F(t)2

F2
0

)2

+
(

G′′

G′

)2
]−1/2

(B6)

and

4(2F)(t) = G′′

G′

[(
1 − 4F(t)2

F2
0

)2

+
(

G′′

G′

)2
]−1/2

(B7)

are the normalized Lorentzian resonance line shapes of
the two harmonics (F , 2F) and F0 = 100 Hz. Also, we
choose a driving frequency sweeping defined as F(t) =
fstart + (fend − fstart)(t/T) with fstart = 1 Hz, fend = 200 Hz,
and T = 600 s. In addition, we choose a sampling fre-
quency of 5 kHz and a noise level characterized by σ =
0.05.

We use a wavelet transform method from MATLAB soft-
ware, the continuous wavelet transform built-in function
cwt. This function is called [wvt,f] = cwt(S,fs),
where S corresponds to the analyzed signal recorded over
a time series given by the vector T, fs is the sampling
frequency of the signal, and wvt is an M × N complex
matrix, where M and N are the length of the vectors f and
T, respectively. The matrix wvt corresponds to the wavelet
transform and the vector f defines the set of discrete fre-
quencies used during the transform. The absolute value of
wvt gives the amplitude of the signal at a given frequency
and time.

A temporal snapshot of the wavelet transform of the
synthetic data is shown in Fig. 7(a) where the labels ν =
(F , 2F) refer to the information associated with the first
and second harmonic of the signal θ(t), from which we
extract the amplitudes θ

(ν)
dyn(F) using the correspondence

between time t and driving frequency F . The reconstructed
resonances are shown in Fig. 7(b) whose Lorentzian fit
allows determination of the parameters max[θ (ν)

dyn], F0,
and G′′/G′. Obtained results are summarized in Table I,

(a) (b)

FIG. 7. (a) Wavelet transform of simulated signal in the inter-
val of a few seconds around the time t0 = 150 s at which the
instantaneous frequency is 50.75 Hz, hence near the resonance
at F0/2 = 50 Hz for the second harmonic. Amplitude values of
the first (ν = F) and second (ν = 2F) harmonic are extracted as
the maximal value at a given time t, which corresponds to the
frequency F(t). (b) Reconstructed resonances for the first and
second harmonic. Black curves: data extracted by wavelet trans-
form; red and blue curves: best fit using Lorentzian line shapes
θ

(ν)
dyn ∝ 4(ν).
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TABLE I. Obtained values for fit for maxF [θ (ν)
dyn], F0, and

G′′/G′ by fitting the frequency dependence of the amplitude of
the first and second harmonic using the Lorentzian resonance line
shape.

ν maxF [θ (ν)
dyn] F0 (Hz) G′′/G′

Synthetic data
F 1 100 1/10
2F 1/8 50 1/10
Retrieved data
F 0.9971 100.00 0.0999
2F 0.1245 100.00 0.1002

from which we conclude to a decent reconstruction of the
resonant plots.

APPENDIX C

As stated in the main text, three independent radiation
force balance measurements are made in order to deter-
mine the intercepted power P. One of them consists of
measuring the mass m resulting from the acoustic radiation
force exerted on a 3D printed disk of 30 mm in diameter
as a function of 25 mm < d < 30 mm at normal incidence
[see Fig. 5(c)]. The fact that the measured mass oscillates
with d emphasizes cavity effects between transducer and
flat disk that are both considered as perfect acoustic mirrors
in free space. Towards a quantitative description enabling
the determination of P0 from best-fit adjustment from sim-
ulated data, it is important to ensure that a large enough
number N of round trips for the wave in the cavity is taken
into account. The calculations are made according to the
expression

mN (d) = 2P0

gc
2π

∫ R

0

∣∣∣∣∣

N∑

n=1

An(r, d)

∣∣∣∣∣

2

rdr, (C1)

where

A0(r) = 1
πa2 circ

( r
a

)
, (C2)

A1(r) = P [A0(r); d] , (C3)

and

An+1(r) = P
[
P

[
An(r)circ

( r
R

)
; d

]
circ

( r
a

)
; d

]
, (C4)

with circ(x < 1) = 1 and circ(x > 1) = 0, and where
P[A(r); d] refers to the propagated axisymmetric wave
function A(r) over the distance d. The results of calcula-
tions are summarized in Fig. 8 for d = 25 mm, from which
we decide to fix N = 7 for the calculation of m(d).

FIG. 8. Simulation of the dependence of the number N of cav-
ity round trips on the measured mass normalized to its limit at
large N . Calculations are performed at d = 25 mm.
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