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Introduction

Van der Waals interactions, first introduced in 1873 to reproduce experimental results on simple gases [START_REF] Van Der Waals | On the continuity of the gaseous and liquid states[END_REF], have proved to also play an essential role in complex systems in the condensed phase, such as biological molecules [START_REF] Baldwin | Energetics of protein folding[END_REF][START_REF] Roth | Van der Waals interactions involving proteins[END_REF] and 2D materials [START_REF] Geim | Van der Waals heterostructures[END_REF]. The quantum mechanical origin of the dispersive van der Waals interaction has been elucidated by London in the 1930s [START_REF] London | The general theory of molecular forces[END_REF]. The rigorous mathematical foundations of the van der Waals interaction have been investigated in the pioneering work by Lieb and Thiring [START_REF] Lieb | Universal nature of van der Waals forces for coulomb systems[END_REF], and later by many authors (see in particular [START_REF]On van der Waals forces[END_REF][START_REF] Anapolitanos | On the van der Waals interaction between a molecule and a half-infinite plate[END_REF][START_REF] Anapolitanos | Differentiability of the van der Waals interaction between two atoms[END_REF][START_REF] Anapolitanos | Long-range behavior of the van der Waals force[END_REF][START_REF] Barbaroux | Van der Waals-London interaction of atoms with pseudo-relativistic kinetic energy[END_REF][START_REF] Koppen | Van der Waals forces in the context of non-relativistic quantum electrodynamics[END_REF] and references therein).

In a recent paper [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF], a new numerical approach was introduced to compute the leading order term -C 6 R -6 of the van der Waals interaction between hydrogen atoms separated by a distance R. Here we extend that approach to compute higher order terms -C n R -n , n > 6. The coefficients C n have been computed by various methods. On the one hand, both [START_REF] Pauling | The van der Waals interaction of hydrogen atoms[END_REF] and [START_REF] Choy | Van der Waals interaction of the hydrogen molecule: An exact implicit energy density functional[END_REF] apparently failed to include key components in the computation of C 10 , computing only one component out of three that we derive here. On the other hand, our result differs by approximately 200% and agrees with [START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF]. One of the objects of this paper is to clarify this discrepancy.

The computation of the expansion coefficients can also be derived through techniques using polarizabilities [START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF] which is exact but might involve slightly different numerical computations than the perturbation method used here. In order to get the right values, one has to use a high enough order of perturbation theory. Computations using up to the second order [START_REF] Alves De Lima | Van der Waals density functional from multipole dispersion interactions[END_REF][START_REF] Cebim | High precision calculation of multipolar dynamic polarizabilities and two-and three-body dispersion coefficients of atomic hydrogen[END_REF][START_REF] Thakkar | Higher dispersion coefficients: Accurate values for hydrogen atoms and simple estimates for other systems[END_REF] fail for C 12 , C 14 and C 16 (with errors of approximately 1%, 5%, and 10%) for which computations up to the fourth order [START_REF] Mitroy | Higher-order Cn dispersion coefficients for hydrogen[END_REF] are needed. The third order [START_REF] Yan | Third-order dispersion coefficients for H(1s)-H(1s) system[END_REF] is sufficient for C 11 , C 13 and C 15 . Moreover, the polarizabilities method can be derived also for other atoms than hydrogen as well as for three-body interaction [START_REF] Cebim | High precision calculation of multipolar dynamic polarizabilities and two-and three-body dispersion coefficients of atomic hydrogen[END_REF]. A comparison of the numerical results is explored in Section 3.1.

One can also compute the expansion coefficients using basis states as in [START_REF] Forestell | The importance of basis states: an example using the hydrogen basis[END_REF]. However, this leads to a substantial error even for C 6 . The discrepancy observed between the basis states method and the other methods can be interpreted as the missing contribution to the energy from the continuous spectrum.

The perturbation method of [START_REF] Slater | The van der Waals forces in gases[END_REF] is remarkable because, in the case of two hydrogen atoms, the problem splits, for any of the C n terms, exactly into terms constituted of an angular factor and a function of two one-dimensional variables (the underlying problem is six-dimensional). The first term in this expansion has been examined in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF] and gave a value of C 6 agreeing with [START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF]. This article extends this analysis and allows computation of all C n . The linearity and the nature of the angular parts allows treatment of these problems separately in a way analogous to the first term of the expansion. Although the partial differential equations (PDE) defining the functions of these two variables are not solvable in closed form, they are nevertheless easily solved by numerical techniques.

In Section 2, we present an extended and modified version of Slater and Kirkwood's derivation, in order to manipulate more suitable family of PDEs for theoretical analysis and numerical simulation. These modified Slater-Kirkwood PDEs are well posed at all orders and, when their unique solutions are multiplied by their respective angular factor, the resulting function, after summation of the terms, solves the triangular systems of six-dimensional PDEs originating from the Rayleigh-Schrödinger expansion. We finally check that the so-obtained perturbation series are asymptotic expansions of the ground state energy and wave function (after applying some "almost unitary" transform) of the hydrogen molecule in the dissociation limit. In Section 3, we use a Laguerre approximation [START_REF] Scott | Introduction to Automated Modeling with FEniCS[END_REF]Section 7.3] to compute coefficients up to C 19 , given that C 6 has been computed in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF]. Our approach also allows us to evaluate the respective contributions of the bound and scattering states of the Hamiltonian of the hydrogen atom to the C 6 coefficient of the van der Waals interaction. Numerical simulations show that the terms in the sum-over-states expansion coupling two bound states only contribute to about 60%. The mathematical proofs are gathered in Section 4. Lastly, some useful results on the multipolar expansion of the hydrogen molecule electrostatic potential in the dissociation limit and on the Wigner (2n + 1) rule used in the computations are provided in the Appendix. [START_REF] Alves De Lima | Van der Waals density functional from multipole dispersion interactions[END_REF] The hydrogen molecule in the dissociation limit As usual in atomic and molecular physics, we work in atomic units:

= 1 (reduced Planck constant), e = 1 (elementary charge), m e = 1 (mass of the electron), ǫ 0 = 1/(4π) (dielectric permittivity of the vacuum). The length unit is the bohr (about 0.529 Ångstroms) and the energy unit is the hartree (about 4.36 × 10 -18 Joules).

We study the Born-Oppenheimer approximation of a system of two hydrogen atoms, consisting of two classical point-like nuclei of charge 1 and two quantum electrons of mass 1 and charge -1. Let r 1 and r 2 be the positions in R 3 of the two electrons, in a cartesian frame whose origin is the center of mass of the nuclei. We denote by e the unit vector pointing in the direction from one hydrogen atom to the other, and by R the distance between the two nuclei. We introduce the parameter ǫ = R -1 and derive expansions in ǫ of the ground state energy and wave function. Note that in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF], we use instead ǫ = R -1/3 . The latter is well-suited to compute the lower-order coefficient C 6 , but the change of variable ǫ = R -1 is more convenient to compute all the terms of the expansion.

Since the ground state of the hydrogen molecule is a singlet spin state [START_REF] Helgaker | Molecular electronic-structure theory[END_REF], its wave function can be written as

ψ ǫ (r 1 , r 2 ) | ↑↓ -| ↓↑ √ 2 , (1) 
where ψ ǫ > 0 is the L 2 -normalized ground state of the spin-less six-dimensional Schrödinger equation

H ǫ ψ ǫ = λ ǫ ψ ǫ , ψ ǫ L 2 (R 3 ×R 3 ) = 1, (2) 
where for ǫ > 0, the Hamiltonian H ǫ is the self-adjoint operator on

L 2 (R 3 × R 3 ) with domain H 2 (R 3 × R 3 ) defined by H ǫ = - 1 2 ∆ r1 - 1 2 ∆ r2 - 1 |r 1 -(2ǫ) -1 e| - 1 |r 2 -(2ǫ) -1 e| - 1 |r 1 + (2ǫ) -1 e| - 1 |r 2 + (2ǫ) -1 e| + 1 |r 1 -r 2 | +ǫ,
where ∆ r k is the Laplace operator with respect to the variables r k ∈ R 3 . The first two terms of H ǫ model the kinetic energy of the electrons, the next four terms the electrostatic attraction between nuclei and electrons, and the last two terms the electrostatic repulsion between, respectively, electrons and nuclei. The ground state of

H ǫ is symmetric (ψ ǫ (r 1 , r 2 ) = ψ ǫ (r 2 , r 1 
)) so that the wave function defined by (1) does satisfy the Pauli principle (the anti-symmetry is entirely carried by the spin component). It is well-known [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF] that

λ ǫ = -1 -C 6 ǫ 6 + o ǫ 6 .
The computation of λ ǫ (and ψ ǫ ) to higher order by a modified version of the Slater-Kirkwood approach, is the subject of this article.

Perturbation expansion

The first step is to make a change of coordinates. Introducing the translation operator

τ ǫ f (r 1 , r 2 ) = f (r 1 + (2ǫ) -1 e, r 2 -(2ǫ) -1 e) = f (r 1 + 1 2 Re, r 2 -1 2 Re), R = ǫ -1
, the swapping operator C and the symmetrization operator S defined by

Cφ(r 1 , r 2 ) = φ(r 2 , r 1 ), S = 1 √ 2 (I + C),
where I denotes the identity operator, as well as the "asymptotically unitary" operator

T ǫ = Sτ ǫ . (3) 
It is shown in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF] that

H ǫ T ǫ = T ǫ H 0 + V ǫ , (4) 
where H 0 is the reference non-interacting Hamiltonian

H 0 = - 1 2 ∆ r1 - 1 |r 1 | - 1 2 ∆ r2 - 1 |r 2 | ,
and V ǫ the correlation potential

V ǫ (r 1 , r 2 ) = - 1 |r 1 -ǫ -1 e| - 1 |r 2 + ǫ -1 e| + 1 |r 1 -r 2 -ǫ -1 e| + ǫ. (5) 
The linear operator T ǫ is "asymptotically unitary" in the sense that for all f, g ∈ L 2 (R 3 × R 3 ),

T ǫ f, T ǫ g = f, g + Cf, τ ǫ/2 g -→ ǫ→0 f, g . It follows from (4) that if (λ, φ) is a normalized eigenstate of H 0 + V ǫ , that is (λ, φ) satisfies (H 0 + V ǫ )φ = λφ, φ L 2 (R 3 ×R 3 ) = 1, then H ǫ T ǫ φ = λT ǫ φ.
In addition, we know from Zhislin's theorem [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF][START_REF] Zhislin | Discussion of the spectrum of Schrödinger operators for systems of many particles[END_REF] that both H ǫ and H 0 + V ǫ have ground states, that their ground state eigenvalues are non-degenerate, and that their ground state wave functions are (up to replacing them by their opposites) positive everywhere in R 3×3 . Since T ǫ preserves positivity, we infer that H ǫ and H 0 + V ǫ share the same ground state eigenvalue λ ǫ and that if φ ǫ is the normalized positive ground state wave function of

H 0 + V ǫ , then ψ ǫ := T ǫ φ ǫ / T ǫ φ ǫ L 2 (R 3 ×R 3 )
is the normalized positive ground state wave function of H ǫ . The next step is to construct for ǫ > 0 small enough the ground state (λ ǫ , φ ǫ ) of H 0 + V ǫ by the Rayleigh-Schrödinger perturbation method from the explicit ground state

λ 0 = -1, φ 0 (r 1 , r 2 ) = π -1 e -(|r1|+|r2|) , (6) 
of H 0 . Using a multipolar expansion, we have

V ǫ (r 1 , r 2 ) = +∞ n=3 ǫ n B (n) (r 1 , r 2 ), (7) 
where homogeneous polynomial functions B (n) , n ≥ 3 are specified below (see equation ( 14)), the convergence of the series being uniform on every compact subset of R 3 × R 3 . Assuming that λ ǫ and φ ǫ can be Taylor expanded as

λ ǫ = λ 0 - +∞ n=1 C n ǫ n and φ ǫ = +∞ n=0 ǫ n φ n , (formal expansions) (8) 
(we use the standard historical notation -C n instead of λ n for the coefficients of the eigenvalue λ ǫ ) inserting these expansions in the equations

(H 0 + V ǫ )φ ǫ = λ ǫ φ ǫ , φ ǫ L 2 (R 3 ×R 3 ) = 1
, and identifying the terms of order n in ǫ, we obtain a triangular system of linear elliptic equations (Rayleigh-Schrödinger equations). The well-posedness of this system is given by the following lemma, whose proof is postponed until Section 4.2.

Lemma 1. The triangular system

∀n ≥ 1, (H 0 -λ 0 )φ n = - n k=3 B (k) φ n-k - n k=1 C k φ n-k , (9) 
φ 0 , φ n = - 1 2 n-1 k=1 φ k , φ n-k , ( 10 
)
where we use the convention

n k=m • • • = 0 if m > n, has a unique solution ((C n , φ n )) n∈N * in (R × H 2 (R 3 × R 3 )) N * . In particular, we have (C 1 , φ 1 ) = (C 2 , φ 2 ) = 0 and C 3 = C 4 = C 5 = 0.
In addition, the functions φ n are real-valued.

Note that (C 1 , φ 1 ) = (C 2 , φ 2 ) = 0 directly follows from the fact that the first non-vanishing term in the expansion (7) of V ǫ is ǫ 3 B (3) . The formal expansions [START_REF] Barbaroux | Van der Waals-London interaction of atoms with pseudo-relativistic kinetic energy[END_REF] are in fact asymptotic expansions as established in the following theorem. Its proof is provided in Section 4.2.

Theorem 2. Let ψ ǫ ∈ H 2 (R 3 × R 3 ) be the positive L 2 (R 3 × R 3 )-normalized ground state of H ǫ and λ ǫ the associated ground-state energy:

H ǫ ψ ǫ = λ ǫ ψ ǫ , ψ ǫ L 2 (R 3 ×R 3 ) = 1, ψ ǫ > 0 a.e. on R 3 × R 3 . (11) 
Let (φ 0 , λ 0 ) be as in [START_REF] Anapolitanos | Long-range behavior of the van der Waals force[END_REF], ((C n , φ n )) n∈N * the unique solution of (9) in (R × H 2 (R 3 × R 3 )) n∈N * , and T ǫ the "almost unitary" symmetrization operator defined in (3). Then, for all n ∈ N, there exists ǫ n > 0 and K n ∈ R + such that for all 0 < ǫ ≤ ǫ n ,

ψ ǫ -ψ (n) ǫ H 2 (R 3 ×R 3 ) ≤ K n ǫ n+1 , λ ǫ -λ (n) ǫ ≤ K n ǫ n+1 , λ ǫ -µ (n) ǫ ≤ K n ǫ 2(n+1) , (12) 
where

ψ (n) ǫ := T ǫ φ 0 + n k=3 ǫ k φ k T ǫ (φ 0 + n k=3 ǫ k φ k ) L 2 (R 3 ×R 3 ) , λ (n) ǫ := λ 0 - n k=6 C k ǫ k , µ (n) ǫ = ψ (n) ǫ |H ǫ |ψ (n) ǫ .
Let us point out that in view of the last two bounds in [START_REF] Choy | Van der Waals interaction of the hydrogen molecule: An exact implicit energy density functional[END_REF], the series expansion of µ

(n) ǫ
in ǫ up to order (2n + 1), which can be computed from the φ k 's for 0 ≤ k ≤ n, is given by

µ (n) ǫ = λ 0 - 2n+1 k=6 C k ǫ k + O(ǫ 2n+2 ).
Therefore, the knowledge of the φ k 's up to order n allows one to compute all the C k 's up to order (2n + 1) (Wigner's (2n + 1) rule).

Remark 3 (van der Waals forces). It follows from the Hellmann-Feynman theorem that the van der Waals force F ǫ acting on the nucleus located at (2ǫ) -1 e is given by

F ǫ = R 3 (r -(2ǫ) -1 e) |r -(2ǫ) -1 e| 3 ρ ǫ (r) dr with ρ ǫ (r) = 2 R 3 |ψ ǫ (r, r ′ )| 2 dr ′ (electronic density). Introducing the approximation F (n) ǫ of F ǫ computed from ψ (n) ǫ as F (n) ǫ = R 3 (r -(2ǫ) -1 e) |r -(2ǫ) -1 e| 3 ρ (n) ǫ (r) dr with ρ (n) ǫ (r) = 2 R 3 |ψ (n) ǫ (r, r ′ )| 2 dr ′ ,
we obtain from the Cauchy-Schwarz inequality, the Hardy inequality in R 3 , and (12) that

|F ǫ -F (n) ǫ | ≤ 8 ψ ǫ -ψ (n) ǫ H 1 (R 3 ×R 3 ) ψ ǫ + ψ (n) ǫ H 1 (R 3 ×R 3 ) ≤ K ′ n ǫ n+1
for some constant K ′ n ∈ R + independent of ǫ and ǫ small enough. Since F (n) ǫ can be Taylor expanded at ǫ = 0, we obtain that the force F ǫ satisfies for all n ≥ 6

F ǫ = - n k=6 nC n ǫ n+1 e + O(ǫ n+1 ).
This extends the result F ǫ = -6C 6 ǫ 7 e + O(ǫ 8 ) proved in [START_REF] Anapolitanos | Differentiability of the van der Waals interaction between two atoms[END_REF]Theorem 4] for any two atoms with non-degenerate ground states, to arbitrary order in the simple case of two hydrogen atoms.

Computation of the perturbation series

The coefficients B (n) are obtained by a classical multipolar expansion, detailed in Appendix A.1 for the sake of completeness. Using spherical coordinates in an orthonormal cartesian basis (e 1 , e 2 , e 3 ) of R 3 for which e 3 = e, so that

r i = r i sin(θ i ) cos(φ i )e 1 + sin(θ i ) sin(φ i )e 2 + cos(θ i )e , cos(θ i ) = r i • e, and r i = |r i |, i = 1, 2, (13) 
it holds that for all n ≥ 3,

B (n) (r 1 , r 2 ) = (l1,l2)∈Bn r l1 1 r l2 2 -min(l1,l2)≤m≤min(l1,l2) G c (l 1 , l 2 , m)Y m l1 (θ 1 , φ 1 )Y -m l2 (θ 2 , φ 2 ), (14) 
= (l1,l2)∈Bn r l1 1 r l2 2 -min(l1,l2)≤m≤min(l1,l2) G r (l 1 , l 2 , m)Y m l1 (θ 1 , φ 1 )Y m l2 (θ 2 , φ 2 ), (15) 
where (Y m l ) l∈N, m=-l,-l+1,••• ,l-1,l and (Y m l ) l∈N, m=-l,-l+1,••• ,l-1,l are respectively the complex and real spherical harmonics , and where

B n = {(l 1 , l 2 ) : l 1 + l 2 = n -1, l 1 , l 2 = 0} = {(l, n -1 -l) : 1 ≤ l ≤ n -2} . (16) 
The coefficients G c (l 1 , l 2 , m) and G r (l 1 , l 2 , m) are respectively given by

G c (l 1 , l 2 , m) := (-1) l2 4π(l 1 + l 2 )! (2l 1 + 1)(2l 2 + 1)(l 1 -m)!(l 1 + m)!(l 2 -m)!(l 2 + m)! 1/2 , ( 17 
) G r (l 1 , l 2 , m) := (-1) m G c (l 1 , l 2 , m).
Both expansions [START_REF] Geim | Van der Waals heterostructures[END_REF] and [START_REF] Helgaker | Molecular electronic-structure theory[END_REF] are useful: [START_REF] Geim | Van der Waals heterostructures[END_REF] will be used in the proof of Theorem 5 to establish formula [START_REF] Slater | The van der Waals forces in gases[END_REF], which has a simpler and more compact form in the complex spherical harmonics basis. On the other hand, (15) allows one to work with real-valued functions.

One of the main contributions of this article is to show that the functions φ n , hence the real numbers λ n , can be obtained by solving simple 2D linear elliptic boundary value problems on the quadrant

Ω = R * + × R * + .
For each angular momentum quantum number l ∈ N, we denote by

κ l (r) = l(l + 1) 2r 2 - 1 r - 1 2 λ 0 = l(l + 1) 2r 2 - 1 r + 1 2 , ( 18 
)
and we consider the boundary value problem:

given f ∈ L 2 (Ω) findT ∈ H 1 0 (Ω) such that - 1 2 ∆T (r 1 , r 2 ) + (κ l1 (r 1 ) + κ l2 (r 2 )) T = f (r 1 , r 2 ) in D ′ (Ω). (19) 
It follows from classical results on the radial operator -1 2

d 2
dr 2 + κ l on L 2 (0, +∞) with form domain H 1 0 (0, +∞) encountered in the study of the hydrogen atom (see Section 4.1 for details) that for all l 1 , l 2 ∈ N, (l 1 , l 2 ) = (0, 0), the problem ( 19) is well posed in H 1 0 (Ω). For l 1 = l 2 = 0, this problem is well-posed in

H 1 0 (Ω) = v ∈ H 1 0 (Ω) : Ω v(r 1 , r 2 )e -r1-r2 r 1 r 2 dr 1 dr 2 = 0 ,
provided that the compatibility condition

Ω f (r 1 , r 2 )e -r1-r2 r 1 r 2 dr 1 dr 2 = 0 (20) 
is fulfilled. Problem ( 19) is useful to solve the Rayleigh-Schrödinger system ( 9)-( 10) thanks to the following lemma, proved in Section 4.1. We denote by

φ ⊥ 0 := ψ ∈ L 2 (R 3 × R 3 ) : φ 0 , ψ = 0 .
Note that the condition ( 20) is equivalent to φ 0 , f (r1,r2)

r1r2 = 0. Lemma 4. Let l 1 , l 2 ∈ N, m 1 , m 2 ∈ Z such that -l j ≤ m j ≤ l j for j = 1, 2, and f ∈ L 2 (Ω). Consider the problem of finding ψ ∈ H 2 (R 3 × R 3 ) ∩ φ ⊥ 0 solution to the equation (H 0 -λ 0 )ψ = F with F := f (r 1 , r 2 ) r 1 r 2 Y m1 l1 (θ 1 , φ 1 )Y m2 l2 (θ 2 , φ 2 ). (21) 
1. If (l 1 , l 2 ) = (0, 0), then the unique solution to (21

) in H 2 (R 3 × R 3 ) is ψ = T (r 1 , r 2 ) r 1 r 2 Y m1 l1 (θ 1 , φ 1 )Y m2 l2 (θ 2 , φ 2 ), ( 22 
)
where T is the unique solution to [START_REF] London | The general theory of molecular forces[END_REF] in H 1 0 (Ω);

2. If (l 1 , l 2 ) = (0, 0), and if the compatibility condition (20) is satisfied, then the unique solution to (21

) in H 2 (R 3 × R 3 ) ∩ φ ⊥ 0 is ψ = 1 4π T (r 1 , r 2 ) r 1 r 2 ,
where T is the unique solution to [START_REF] London | The general theory of molecular forces[END_REF] in H 1 0 (Ω).

In addition, if f decays exponentially at infinity, then so does T , hence ψ, in the following sense: for all 0 ≤ α < 3/8, there exists a constant

C α ∈ R + such that for all η > α, l 1 , l 2 ∈ N, m 1 , m 2 ∈ Z such that -l j ≤ m j ≤ l j for j = 1, 2, and all f ∈ L 2 (Ω) e α(r1+r2) T H 1 (Ω) ≤ C α e η(r1+r2) f L 2 (Ω) , (23) 
e α(|r1|+|r2|) ψ L 2 (R 3 ×R 3 ) ≤ C α e η(|r1|+|r2|) F L 2 (R 3 ×R 3 ) , (24) 
e α(|r1|+|r2|) ψ H 1 (R 3 ×R 3 ) ≤ C α (1 + 4l 1 (l 1 + 1) + 4l 2 (l 2 + 1)) 1/2 e η(|r1|+|r2|) F L 2 (R 3 ×R 3 ) . ( 25 
)
Lastly, if f is real-valued, then so is T .

The properties of the functions φ n upon which our numerical method is based, are collected in the following theorem, proved in Section 4.2. [START_REF] Brink | Angular momentum[END_REF]. Then, φ 1 = φ 2 = 0, C n = 0 for 1 ≤ n ≤ 5 and for each n ≥ 3, there exists a positive integer N n such that

Theorem 5. Let ((C n , φ n )) n∈N * be the unique solution in (R × H 2 (R 3 × R 3 )) n∈N * to the Rayleigh- Schrödinger system
φ n = (l1,l2)∈Ln T (n) (l1,l2) (r 1 , r 2 ) r 1 r 2   min(l1,l2) m=-min(l1,l2) α (n) (l1,l2,m) Y m l1 (θ 1 , φ 1 )Y -m l2 (θ 2 , φ 2 )   , (26) 
where L n is a finite subset of N 2 with cardinality N n < ∞, where

T (n) (l1,l2) is the unique solution to (19) in H 1 (Ω) (or in H 1 (Ω) if l 1 = l 2 = 0) for f = f (n) (l1,l2) , where f (n) (l1,l2
) is a real-valued function that can be computed recursively from the T

(n ′ ) (l ′ 1 ,l ′ 2 )
's, for n ′ < n, and where α

(n) (l1,l2,m) are real coefficients. Moreover, there exists α n > 0 such that

e αn(r1+r2) T (n) (l1,l2) H 1 (Ω) < ∞, (27) 
e αn(|r1|+|r2|) φ n H 1 (R 3 ×R 3 ) < ∞. (28) 
The number N n = |L n | (number of terms in the expansion) for 6 ≤ n ≤ 9 are displayed in Table 1, whose construction rules are given in the proof of Theorem 5 (see Section 4.2). For 3 ≤ n ≤ 5, L n = B n , where the latter set is defined in [START_REF] Kato | On the upper and lower bounds of eigenvalues[END_REF], and

N n = |B n | = n -2. For general n, B n ⊂ L n .
For n ≥ 6, additional terms appear, as indicated in Table 1.

n N n pairs of angular momentum quantum numbers (l 1 , l 2 ) in L n \B n 6 8
(0,2;0,2) 7 13 (0,2;1,3), (1,3;0,2) 8 18 (0,2;0,2,4), (

Table 1: Additional spherical harmonics appearing in each φ n for 6 ≤ n ≤ 9. N n is the number of terms in the spherical harmonics expansion [START_REF] Slater | The van der Waals forces in gases[END_REF]. The condensed notation (l

1 , l ′ 1 ; l 2 , l ′ 2 ) (resp. (l 1 , l ′ 1 ; l 2 , l ′ 2 , l ′′ 2 ) or (l 1 , l ′ 1 , l ′′ 1 ; l 2 , l ′ 2 
)) stands for the four (resp. six) pairs (l 1 , l 2 ), (l ′ 1 , l 2 ), (l 1 , l ′ 2 ), etc.

Table 1 can be read using the following rule: for a given n, if (l 1 , l 2 ) appears in the corresponding row of the table, then there may exist m such that

Y m l1 (θ 1 , φ 1 )Y -m l2 (θ 2 , φ 2 ) might appear with a non-zero coefficient α (n) (l1,l2,m) in the spherical harmonics expansion (26) of φ n . Conversely, if a given (l 1 , l 2 ) does not appear in the table, then φ n , v(r1,r2) r1r2 Y m1 l1 (θ 1 , φ 1 )Y m2 l2 (θ 2 , φ 2 ) = 0, for all m 1 , m 2 and all v ∈ L 2 (Ω).
The relative complexity of Table 1 is due to fact the first term in the right-hand side of ( 9) is a sum of bilinear terms in B (k) and φ n-k . The angular parts of both B (k) and φ n-k are finite linear combinations of angular basis functions Y m l1 ⊗ Y -m l2 . When multiplied, they give rise to a still finite but longer linear combination of Y m l1 ⊗ Y -m l2 's (see ( 69)). By contrast, the corresponding table for the B (n) 's is quite simple, since all the rows have the same structure: for all n ≥ 3, we have

n | n -2 | (k, n -k) for 1 ≤ k ≤ n -2. ( 29 
)
From (φ k ) 0≤k≤n , we can obtain the coefficients λ j up to j = 2n + 1 using Wigner's (2n + 1) rule. Another, more direct, way to compute recursively the λ n 's is to take the inner product of φ 0 with each side of (9) and use the fact that φ 0 , (H

0 -λ 0 )φ n = (H 0 -λ 0 )φ 0 , φ n = 0. Since (C 1 , φ 1 ) = (C 2 , φ 2 ) = 0, we thus obtain C n = - n-3 k=3 φ 0 , B (k) φ n-k - n-3 k=3 C k φ 0 , φ n-k , (30) 
where we use the convention n k=m ...

= 0 if m > n. It follows that C 3 = C 4 = C 5 = 0.
Using ( 14), ( 26) and the orthonormality properties of the complex spherical harmonics, the terms ψ 0 , B (k) φ n-k in (30) can be written as

φ 0 , B (k) φ n-k = B (k) φ 0 , φ n-k = (l1,l2)∈B k r l1 1 r l2 2 min(l1,l2) m=-min(l1,l2) G c (l 1 , l 2 , m)Y m l1 (θ 1 , φ 1 )Y -m l2 (θ 2 , φ 2 )π -1 e -(r1+r2) , (l ′ 1 ,l ′ 2 )∈L n-k T (n-k) (l ′ 1 ,l ′ 2 ) (r 1 , r 2 ) r 1 r 2 min(l ′ 1 ,l ′ 2 ) m ′ =-min(l ′ 1 ,l ′ 2 ) α (n-k) (l ′ 1 ,l ′ 2 ,m ′ ) Y m ′ l ′ 1 (θ 1 , φ 1 )Y -m ′ l ′ 2 (θ 2 , φ 2 ) = - (l1,l2)∈L n-k ∩B k β (n-k) (l1,l2) t (n-k) l1,l2 , (31) 
where

β (n) (l1,l2) := -π -1 min(l1,l2) m=-min(l1,l2) α (n) (l1,l2,m) G c (l 1 , l 2 , m) (32) 
t (n) (l1,l2) := Ω r l1+1 1 r l2+1 2 e -(r1+r2) T (n) (l1,l2) (r 1 , r 2 ) dr 1 dr 2 , (33) 
with the convention that β

(n) (l1,l2) = t (n) (l1,l2) = 0 if (l 1 , l 2 ) / ∈ L n .
In view of Table 1, we see in particular that since the sum in ( 31) is empty

φ 0 , B (k) φ n = 0 ∀ k, n = 3, 4, 5, k = n, (34) 
and that many other vanish, e.g. φ 0 , B (3) φ 6 = 0, φ 0 , B (4) φ 5 = 0, φ 0 , B (5) φ 4 = 0, φ 0 , B (6) 

φ 3 = 0. ( 35 
)
Additional pairs k, n can be examined by comparing the sets B k and L n-k . Furthermore, if the chosen numerical method to solve the boundary value problem [START_REF] London | The general theory of molecular forces[END_REF] giving the radial function

T n-k l ′ 1 ,l ′ 2
is a Galerkin method using as basis functions of the approximation space tensor products of 1D Laguerre functions (that are, polynomials in r times e -r ), then the computation of t n l1,l2 can be done explicitly, at least for the approximate solution [START_REF] Scott | Introduction to Automated Modeling with FEniCS[END_REF]Section 7.3]. Using the fact that

φ 0 = 4e -(r1+r2) Y 0 0 (θ 1 , φ 1 )Y 0 0 (θ 2 , φ 2 ), (36) 
we then have

φ 0 , φ n = 4e -(r1+r2) Y 0 0 (θ 1 , φ 1 )Y 0 0 (θ 2 , φ 2 ), (l ′ 1 ,l ′ 2 )∈Ln T (n) (l ′ 1 ,l ′ 2 ) (r 1 , r 2 ) r 1 r 2 min(l ′ 1 ,l ′ 2 ) m ′ =-min(l ′ 1 ,l ′ 2 ) α (n) (l ′ 1 ,l ′ 2 ,m ′ ) Y m ′ l ′ 1 (θ 1 , φ 1 )Y -m ′ l ′ 2 (θ 2 , φ 2 ) = 4α (n) (0,0,0) t (n) (0,0) . ( 37 
)
As a consequence, φ 0 , φ n = 0 if (0, 0) / ∈ L n , so that in particular

φ 0 , φ 3 = φ 0 , φ 4 = φ 0 , φ 5 = 0. (38) 
Then, C n can be computed from [START_REF] Wan | Generating functions of Legendre polynomials: a tribute to Fred Brafman[END_REF] as

C n = n-3 k=3 (l1,l2)∈L n-k l1+l2=k-1 l1,l2 =0 β (n-k) (l1,l2) t (n-k) (l1,l2) -4 n-3 k=6 C k α (n-k) (0,0,0) t (n-k) (0,0) . ( 39 
)

Practical computation of the lowest order terms

We detail in this section the practical computation of φ 3 (already done in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF]), φ 4 and φ 5 , as well as C n for n ≤ 11. Recall that φ 1 = φ 2 = 0, and C n = 0 for n ≤ 5.

Computation of φ 3 . We have

B (3) = r 1 r 2 1 m=-1 G c (1, 1, m))Y m 1 (θ 1 , φ 1 )Y -m 1 (θ 2 , φ 2 ) , (40) 
(H 0 -λ 0 )φ 3 = -B (3) φ 0 , (41) 
φ 0 , φ 3 = 0, (42) 
with

G c (1, 1, m) = -π 3 (8 -4|m|
) and therefore

(H 0 -λ 0 )φ 3 = -r 1 r 2 e -(r1+r2) 1 m=-1 π -1 G c (1, 1, m)Y m 1 (θ 1 , φ 1 )Y -m 1 (θ 2 , φ 2 ) , φ 0 , φ 3 = 0.
As a consequence, using Lemma 4, it holds that L 3 = {(1, 1)},

φ 3 = T (3) (1,1) (r 1 , r 2 ) r 1 r 2 1 m=-1 α (3) (1,1,m) Y m 1 (θ 1 , φ 1 )Y -m 1 (θ 2 , φ 2 ) , (43) where α (3) 
(1,1,m) = -π -1 G c (1, 1, m) = -1 3 (8 -4|m|
) and where T

(1,1) ∈ H 1 0 (Ω) can be numerically computed by solving the 2D boundary value problem r1+r2) in Ω with homogeneous Dirichlet boundary conditions.

- 1 2 ∆T (3) (1,1) + (κ 1 (r 1 ) + κ 1 (r 2 )) T (3) (1,1) = r 2 1 r 2 2 e -(
Computation of φ 4 . To compute the next order, we first expand B (4) as 9)-( 10), we get

B (4) =r 1 r 2 2 1 m=-1 G c (1, 2, m)Y m 1 (θ 1 , φ 1 )Y -m 2 (θ 2 , φ 2 ) + r 2 1 r 2 2 m=-2 G c (2, 1, m)Y m 1 (θ 1 , φ 1 )Y -m 2 (θ 2 , φ 2 ), with G c (1, 2, 1) = G c (1, 2, -1) = 4π/ √ 5, G c (1, 2, 0) = 4π √ 3/ √ 5, G c (2, 1, m) = -G c (1, 2, m). From (
(H 0 -λ 0 )φ 4 = -B (3) φ 1 -B (4) φ 0 , φ 0 , φ 4 = 0, since φ 1 = φ 2 = 0 and C k = 0 for 1 ≤ k ≤ 5. We therefore have L 4 = {(1, 2), (2, 1)} and φ 4 = T (4) (1,2) (r 1 , r 2 ) r 1 r 2 1 m=-1 α (4) (1,2,m) Y m 1 (θ 1 , φ 1 )Y -m 2 (θ 2 , φ 2 ) + T (4) (2,1) (r 1 , r 2 ) r 1 r 2 1 m=-1 α (4) (2,1,m) Y m 2 (θ 1 , φ 1 )Y -m 1 (θ 2 , φ 2 ),
where α

(4) (l1,l2,m) = -π -1 G c (l 1 , l 2 , m), T (4) 
(2,1) ∈ H 1 0 (Ω) solves

- 1 2 ∆ 2 T (4) (2,1) (r 1 , r 2 ) + (κ 2 (r 1 ) + κ 1 (r 2 )) T (4) (2,1) = r 3 1 r 2 2 e -r1-r2 in Ω, (44) 
and

T (4) (1,2) (r 1 , r 2 ) = T (4) 
(2,1) (r 2 , r 1 ). A representation of T

(2,1) can be seen in Figure 1. Computation of φ 5 . We have B (5) and

=r 1 r 3 2 1 m=-1 G c (1, 3, m)Y m 1 (θ 1 , φ 1 )Y -m 3 (θ 2 , φ 2 ) + r 2 1 r 2 2 2 m=-2 G c (2, 2, m)Y m 2 (θ 1 , φ 1 )Y -m 2 (θ 2 , φ 2 ) + r 3 1 r 1 2 1 m=-1 G c (3, 1, m)Y m 3 (θ 1 , φ 1 )Y -m 1 (θ 2 , φ 2 ),
(H 0 -λ 0 )φ 5 = -B (5) φ 0 , φ 0 , φ 5 = 0, since φ 1 = φ 2 = 0 and C k = 0 for 1 ≤ k ≤ 5. We thus have L 5 = {(1, 3), (2, 2), (3, 1)} and ψ (5) = T (5) (1,3) (r 1 , r 2 ) r 1 r 2 1 m=-1 α (5) (1,3,m) Y m 1 (θ 1 , φ 1 )Y -m 3 (θ 2 , φ 2 ) + T (5) (2,2) (r 1 , r 2 ) r 1 r 2 2 m=-2 α (5) (2,2,m) Y m 2 (θ 1 , φ 1 )Y -m 2 (θ 2 , φ 2 ) + T (5) (3,1) (r 1 , r 2 ) r 1 r 2 1 m=-1 α (5) (3,1,m) Y m 3 (θ 1 , φ 1 )Y -m 1 (θ 2 , φ 2 ), (45) 
where α

(5)

(l1,l2,m) = -π -1 G c (l 1 , l 2 , m), T (5) 
(1,3) ∈ H 1 0 (Ω) solves - 1 2 ∆ 2 T (5) (1,3) (r 1 , r 2 ) + (κ 1 (r 1 ) + κ 3 (r 2 )) T (5) (1,3) = r 2 1 r 4 2 e -(r1+r2) , (46) 
T (5) (2,3) ∈ H 1 0 (Ω) solves - 1 2 ∆ 2 T (5) (2,2) (r 1 , r 2 ) + (κ 2 (r 1 ) + κ 2 (r 2 )) T (5) (2,2) = r 3 1 r 3 2 e -(r1+r2) , (47) and T 
(5)

(3,1) (r 1 , r 2 ) = T (5) 
(1,3) (r 2 , r 1 ). Computation of λ n for 6 ≤ n ≤ 11. From [START_REF] Wan | Generating functions of Legendre polynomials: a tribute to Fred Brafman[END_REF] and the fact that C n = 0 for 3 ≤ n ≤ 5, we obtain, using [START_REF] Wang | The mutual influence between the two atoms of hydrogen[END_REF], (38), (39), Table 1, and the symmetries of the coefficients β

(n) (l1,l2) and t (n) (l1,l2) , C 6 = -φ 0 , B (3) φ 3 = β (3) (1,1) t (3) (1,1) , (48) 
C 7 = -φ 0 , B (3) φ 4 -φ 0 , B (4) φ 3 = 0, C 8 = -φ 0 , B (3) φ 5 -φ 0 , B (4) φ 4 -φ 0 , B (5) φ 3 = -φ 0 , B (4) φ 4 = β (4) 
(1,2) t

(1,2) + β

(2,1) t

(2,1) = 2β

(1,2) t

(1,2) , C 9 = -φ 0 , B (3) φ 6 -φ 0 , B (4) φ 5 -φ 0 , B (5) φ 4 -φ 0 , B (6) φ 3 -C 6 φ 0 , φ 3 = 0,

C 10 = - 7 k=3 φ 0 , B (k) φ 10-k - 7 k=6 C k φ 0 , φ 10-k = -φ 0 , B (5) φ 5 = β (5) (1,3) t (5) (1,3) + β (5) (2,2) t (5) (2,2) + β (5) (3,1) t (5) (3,1) = 2β (5) (1,3) t (5) (1,3) + β (5) (2,2) t (5) (2,2) , (49) 
C 11 = - 8 k=3 φ 0 , B (k) φ 11-k - 8 k=6 C k φ 0 , φ 11-k = -φ 0 , B (4) φ 7 -φ 0 , B (5) φ 6 = β (7) 
(1,2) t

(1,2) + β

(2,1) t

(2,1) + β

(2,2) t

(2,2) .

As α

(n) (l1,l2,m) = -π -1 G(l 1 , l 2 , m) for n = 3, 4, 5, (l 1 , l 2 ) ∈ L n and -min(l 1 , l 2 ) ≤ m ≤ min(l 1 , l 2 )
, we obtain, using [START_REF] Koppen | Van der Waals forces in the context of non-relativistic quantum electrodynamics[END_REF], that 

α (n) (l1,l2,m) 2 = 16 ((l 1 + l 2 )!) 2 (2l 1 + 1)(2l 2 + 1)(l 1 -m)!(l 1 + m)!(l 2 -m)!(l 2 + m)! , and therefore β (3) (1,1) = 1 m=-1 (α (3) (1 
(1,2) = β

(2,1) = 

1 m=-1 (α (4) 
(1,3) = β

(5)

(3,1) = 1 m=-1 (α (5) 
(1,3,m)

) 2 = 64 3 , β (5) 
(2,2)

= 2 m=-2 (α (5) 
(2,2,m) ) 2 = 224 5 , so that

C 6 = 32 3 t (3) (1,1) , C 7 = 0, C 8 = 32t (4) 
(1,2) , C 9 = 0, C 10 = 128 3 t

(1,3) + 224 5 t

(2,2) .

It is optimal to use (51) to compute C 6 , C 8 , C 10 since only φ n is needed to compute C 2n . On the other hand, computing C 11 using (50) requires computing φ 6 and φ 7 , and it is therefore preferable to use Wigner's (2n + 1) rule that allows computing C 11 from φ 3 , φ 4 and φ 5 .

Computation of higher-order terms. For n ≥ 6, the right-hand side of (9) contains terms of the form B (k) φ n-k with k ≥ 3 and n -k ≥ 1. The computation of φ n therefore requires solving 2D boundary value problems of the form

- 1 2 ∆T + (κ l1 (r 1 ) + κ l2 (r 2 )) T = r l ′ 1 1 r l ′ 2 2 T (n-k) (l ′′ 1 ,l ′′ 2 )
for some

(l 1 , l 2 ) ∈ L n , l ′ 1 + l ′ 2 = k -1 and (l ′′ 1 , l ′′ 2 ) ∈ L n-k .
The right-hand side of this equation is not explicit, but the above equation can nevertheless be solved numerically since

T (n-k) (l ′′ 1 ,l ′′ 
2 ) has been previously computed numerically during the calculation of φ n-k .

3 Numerical results

Comparison between different approaches

The following tables contain the results of the approximated values of the C n coefficients computed by Ovsiannikov and Mitroy [START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF], by Choy [START_REF] Choy | Van der Waals interaction of the hydrogen molecule: An exact implicit energy density functional[END_REF], by Pauling and Beach [START_REF] Pauling | The van der Waals interaction of hydrogen atoms[END_REF], and by the techniques described in this paper. The latter consist in solving recursively the Modified Slater-Kirkwood boundary value problems of type (9) using a Galerkin scheme in finite-dimensional approximation spaces constructed from tensor products of 1D Laguerre functions with degrees lower of equal to k. With basic double-precision floating-point arithmetics, the latter approach is numerical stable up to k = 11 and provides results with excellent precision (relative error lower than 10 -9 ). It is well-known that the conditioning of spectral methods for PDEs using orthogonal polynomial spaces grows exponentially. However, in the present case, the entries of the Galerkin matrix are square roots of rational numbers so that arbitrary precision can be obtained using symbolic computation. The method of Choy [START_REF] Choy | Van der Waals interaction of the hydrogen molecule: An exact implicit energy density functional[END_REF] is based on the Slater-Kirkwood algorithm [START_REF] Slater | The van der Waals forces in gases[END_REF], whereas the method of Pauling and Beach [START_REF] Pauling | The van der Waals interaction of hydrogen atoms[END_REF] is different. Although Slater and Kirkwood are referenced in [START_REF] Pauling | The van der Waals interaction of hydrogen atoms[END_REF], Pauling and Beach were motivated by a method of S. C. Wang [START_REF] Wang | The mutual influence between the two atoms of hydrogen[END_REF]. [START_REF] London | The general theory of molecular forces[END_REF] in tensor products of Laguerre functions up to degree 11 (for which round-off error is suitably controlled). These results agree at least to 9 digits with the results in [START_REF] Cebim | High precision calculation of multipolar dynamic polarizabilities and two-and three-body dispersion coefficients of atomic hydrogen[END_REF][START_REF] Mitroy | Higher-order Cn dispersion coefficients for hydrogen[END_REF][START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF][START_REF] Thakkar | Higher dispersion coefficients: Accurate values for hydrogen atoms and simple estimates for other systems[END_REF][START_REF] Yan | Third-order dispersion coefficients for H(1s)-H(1s) system[END_REF].

Method

The discrepancy between the Choy and Pauling-Beach results (who agree to the digits given) and the other methods for C 10 has the following origin. According to (49), we have

C 10 = 2β (5) (1,3) t (5) (1,3) + β (5) (2,2) t (5) 
(2,2) .

It appears that Choy in [START_REF] Choy | Van der Waals interaction of the hydrogen molecule: An exact implicit energy density functional[END_REF], who also was guided by [START_REF] Slater | The van der Waals forces in gases[END_REF], only computed the second term [START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF] and our method based on numerical solutions of boundary value problems of type [START_REF] London | The general theory of molecular forces[END_REF] in tensor products of Laguerre functions up to degree 11 (for which round-off error is suitably controlled). These results agree at least to 9 digits with the results in [START_REF] Mitroy | Higher-order Cn dispersion coefficients for hydrogen[END_REF][START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF].

β (5) (2,2) t ( 

Role of continuous spectra in sum-over-state formulae

It follows from (41), ( 42) and (48) that the leading coefficient C 6 of the van der Waals expansion can be written as

C 6 = B (3) φ 0 , (H 0 -λ 0 ) -1 φ ⊥ 0 B (3) φ 0 ,
where

(H 0 -λ 0 ) -1 φ ⊥ 0
is the inverse of the restriction to H 0 -λ 0 to the invariant subspace φ ⊥ 0 (which is well-defined since λ 0 is a non-degenerate eigenvalue of the self-adjoint operator H 0 . This expression is sometimes wrongly rewritten as a sum-over-state formula

C 6 = j | ψ j , B (3) ψ 0 | 2 E j -E 0 (wrong), (53) 
with ψ 0 := φ 0 , E 0 := λ 0 = -1, where the ψ j 's form an orthonormal family of excited states of H 0 associated with the eigenvalues E j . This is not possible because H 0 has a non-empty continuous spectrum. Using (53) with a sum running over the excited states of H 0 (and omitting an integral over the scattering states of H 0 ) leads to an error that we are going to estimate. We have

C ′ 6 := j | ψ j , B (3) ψ 0 | 2 E j -E 0 = -B (3) φ 0 , φ 3,pp ,
where φ 3,pp is the projection of φ 3 on the Hilbert space spanned by the eigenfunctions of H 0 .

Recall that the eigenvalues and associated eigenfunctions of the hydrogen atom Hamiltonian h 0 := -1 2 ∆ -1 |r| , which is a self-adjoint operator on L 2 (R 3 ), are of the form

ε n = - 1 2n 2 , ψ n,l,m (r) = ϕ n,l (r)Y m l (θ, φ), n ∈ N * , 0 ≤ l ≤ n -1, -l ≤ m ≤ l, (54) 
with

ϕ n,1 = 2 n 3 (n -2)! 2n(n + 1)! 2r n L (3) n-2 2r n e -r/n , (55) 
where the associated Laguerre polynomials of the second type L (m) n , n, m ∈ N, are defined from the Laguerre polynomial L n and are given by

L (m) n (x) = (-1) m d m L n+m dx m (x) = 1 n! n k=0 n! k! n + m n -k (-x) k . (56) 
The eigenvalues and associated eigenfunctions of H 0 are therefore given by

E n1,n2 = ε n1 + ε n2 = - 1 2n 2 1 - 1 2n 2 2 , Ψ n1,l1,m1;n2,l2,m2 = ψ n1,l1,m1 ⊗ ψ n2,l2,m2 ,
for n j ∈ N * , 0 ≤ l j ≤ n j -1, -l j ≤ m j ≤ l j . Note that φ 0 = Ψ 1,0,0;1,0,0 . We therefore have

C ′ 6 = (n1,n2)∈(N * ×N * )\{(1,1)} n1-1 l1=0 n2-1 l2=0 l1 m1=-l1 l2 m2=-l2 | Ψ n1,l1,m1;n2,l2,m2 , B (3) ψ 0 | 2 ε n1 + ε n2 + 1 ,
Using (40) and the L 2 (S 2 )-orthonormality of the spherical harmonics, we get Ψ n1,l1,m1;n2,l2,m2 , B (3) 

ψ 0 = π -1 S n1 S n2 1 m=-1 G c (1, 1, m)δ l1,1 δ l2,1 δ m,m1 δ -m,m2 ,
where

S n := +∞ 0 r 3 e -r φ n,1 (r) dr = 8n 3 (n -1) n-3 (n + 1) n+3 (n + 1)! (n -2)! . ( 57 
)
The latter expression is derived in Appendix C. We finally obtain

C ′ 6 = π -2 1 m=-1 |G c (1, 1, m)| 2 n1,n2≥2 S 2 n1 S 2 n2 1 -1 2n 2 1 -1 2n 2 2 = 32 3 n1,n2≥2 S 2 n1 S 2 n2 1 -1 2n 2 1 -1 2n 2 2 . ( 58 
)
Summing up the terms of the above series for n 1 , n 2 ≤ 300 (note that S n ∼ n→∞ 8 e 2 n 3/2 ), we obtain the approximate value C ′ 6 ≃ 3.923 which shows that the continuous spectrum plays a major role in the sum-over-state evaluation of the C 6 coefficient of the hydrogen molecule (recall that C 6 ≃ 6.499).

Proofs

We now establish the results stated above, starting from Lemma 4.

Proof of Lemma 4

Recall that the Hydrogen atom Hamiltonian h 0 = -1 2 ∆-1 |r| introduced in the previous section is a self-adjoint operator on L 2 (R 3 ) with domain H 2 (R 3 ), and that its ground state is non-degenerate:

h 0 ψ 1,0,0 = - 1 2 ψ 1,0,0 with ψ 1,0,0 = ϕ 1,0 (r)Y 0 0 (θ, φ) = π -1/2 e -r , ψ 1,0,0 L 2 (R 3 ) = 1. Since H 0 = h 0 ⊗ 1 L 2 (R 3 ) + 1 L 2 (R 3 ) ⊗ h 0 , H 0 is a self-adjoint operator on L 2 (R 3 × R 3 ) with domain H 2 (R 3 × R 3 )
and it also has a non-degenerate ground state

H 0 φ 0 = λ 0 φ 0 with φ 0 = ψ 1,0,0 ⊗ ψ 1,0,0 = π -1 e -(r1+r2) , φ 0 L 2 (R 3 ×R 3 ) = 1 and λ 0 = -1. Given (α, F ) ∈ R × L 2 (R 3 × R 3 ), the problem consisting of seeking (µ, Ψ) ∈ R × H 2 (R 3 × R 3 ) such that (H 0 -λ 0 )Ψ = F -µφ 0 , φ 0 , Ψ = α, (59) 
is well-posed and its unique solution is given

Ψ = (H 0 -λ 0 )| -1 φ ⊥ 0 Π φ ⊥ 0 F + αφ 0 , µ = φ 0 , F ,
where

(H 0 -λ 0 )| -1 φ ⊥ 0
is the inverse of H 0 -λ 0 on the invariant subspace φ ⊥ 0 and Π φ ⊥ 0 F := F -φ 0 , F φ 0 the orthogonal projection of F on φ ⊥ 0 . Consider the unitary map

U : L 2 (Ω) ⊗ L 2 (S 2 ) ⊗ L 2 (S 2 ) → L 2 (R 3 × R 3 ) ≡ L 2 (R 3 ) ⊗ L 2 (R 3 )
induced by the spherical coordinates defined for all f ∈ L 2 (Ω), l 1 , l 2 ∈ N, -l j ≤ m j ≤ l j by

(U(f ⊗ s 1 ⊗ s 2 ))(r 1 , r 2 ) = f (|r 1 |, |r 2 |) |r 1 | |r 2 | s 1 r 1 |r 1 | s 2 r 2 |r 2 | .
Since (Y m l ) l∈N, -l≤m≤l is an orthonormal basis of L 2 (S 2 ), we have

L 2 (Ω) ⊗ L 2 (S 2 ) ⊗ L 2 (S 2 ) = l1,l2∈N l1 m1=-l1 l2 m2=-l2 H m1,m2 l1,l2
where H m1,m2 l1,l2 is an invariant subspace for U * H 0 U and that

:= L 2 (Ω)⊗CY
U * H 0 U| H m 1 ,m 2 l 1 ,l 2 = H l1,l2 ⊗ 1 CY m 1 l 1 ⊗ 1 CY m 2 l 2
, where the expression of H l1,l2 can be derived by adapted the arguments in [10, Section 3], that we do not detail here for the sake of brevity: H l1,l2 is the self-adjoint operator on L 2 (Ω) with form domain H 0 1 (Ω) defined by

H l1,l2 = - 1 2 ∆ + κ l1 (r 1 ) + κ l2 (r 2 ) + λ 0 . ( 60 
)
Note that the operator H l1,l2 on L 2 (Ω) ≡ L 2 (0, +∞) ⊗ L 2 (0, +∞) can itself be decomposed as

H l1,l2 = h l1 ⊗ 1 L 2 (0,+∞) + 1 L 2 (0,+∞) ⊗ h l2 ≥ - 1 2(l 1 + 1) 2 - 1 2(l 2 + 1) 2 ,
where for each l ∈ N, h l is the self-adjoint operator on L 2 (0, +∞) with form domain H 1 0 (0, +∞) defined by

h l := - 1 2 
d 2 dr 2 + l(l + 1) 2r 2 - 1 r = - 1 2 
d 2 dr 2 + κ l - 1 2 .
This well-known operator allows one to construct the bound-states of hydrogen atom with orbital quantum number l. It satisfies h l ≥ -1 2(l+1) 2 and its ground state eigenvalue -1 2(l+1) 2 is nondegenerate. It follows from this bound that

H l1,l2 -λ 0 = H l1,l2 + 1 ≥ 3 8 for all (l 1 , l 2 ) ∈ N 2 \ {(0, 0}. (61) 
Choosing α = 0 in (59) amounts to enforcing that the solution Ψ is in φ ⊥ 0 . Taking α = 0 and

F = f (r1,r2) r1r2 Y m1 l1 (θ 1 , φ 1 )Y m2 l2 (θ 2 , φ 2 ) = U(f ⊗ Y m1 l1 ⊗ Y m2 l2 ), with f ∈ L 2 (Ω), it follows that (21) has a unique solution in H 2 (R 3 × R 3 ) if and only if µ = φ 0 , F = 0, that is δ (l1,l2)=(0,0) Ω f (r 1 , r 2 )e -(r1+r2) r 1 r 2 dr 1 dr 2 = 0,
in which case the solution is given by

Ψ = U(T ⊗ Y m1 l1 ⊗ Y m2 l2 )
where

T := (H l1,l2 -λ 0 ) -1 f if (l 1 , l 2 ) = (0, 0), T := (H 0,0 -λ 0 )| -1 (r1r2e -(r 1 +r 2 ) ) ⊥ f if (l 1 , l 2 ) = (0, 0).
We therefore have

ψ = T (r 1 , r 2 ) r 1 r 2 Y m1 l1 (θ 1 , φ 1 )Y m2 l2 (θ 2 , φ 2 ),
where T is the unique solution to [START_REF] London | The general theory of molecular forces[END_REF] in

H 1 0 (Ω) if (l 1 , l 2 ) = (0, 0) and T is the unique solution to (19) in H 1 0 (Ω) = H 1 0 (Ω) ∩ (r 1 r 2 e -(r1+r2) ) ⊥ if (l 1 , l 2 ) = 0.
The fact that if f decays exponentially at infinity, then so does T , hence ψ, is a consequence of the following result, whose proof follows the same lines as in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF]Section 3.3] where this result is established for the special case when (l 1 , l 2 ) = (1, 1) and f = r 2 1 r 2 2 e -(r1+r2) . Lemma 6. If the function f of (19) decays exponentially at infinity at a rate η > 0, in the sense that e η(r1+r2

) f L 2 (Ω) < ∞, ( 62 
)
then the unique solution T of (19) also decays exponentially at infinity. More precisely, for all 0 ≤ α < 3/8, there exists a constant C α ∈ R + such that for all η > α and all f ∈ L 2 (Ω) satisfying (62), it holds

e α(r1+r2) T H 1 (Ω) ≤ C α e η(r1+r2) f L 2 (Ω) . ( 63 
)
Proof. We limit ourselves to the case when (l 1 , l 2 ) = (0, 0). The special case (l 1 , l 2 ) = (0, 0) can be dealt with similarly, by replacing H 1 0 (Ω) by H 1 0 (Ω). Let a be the continuous bilinear form on H 1 0 (Ω) × H 1 0 (Ω) associated with the positive self-adjoint operator H l1,l2 -λ 0 :

∀u, v ∈ H 1 0 (Ω), a(u, v) = 1 2 Ω ∇u • ∇v + Ω (κ l1 (r 1 ) + κ l2 (r 2 ))u(r 1 , r 2 )v(r 1 , r 2 ) dr 1 dr 2 .
Recall that the continuity of a can be shown directly (without using the fact that H 1 0 (Ω) is the form domain of H l1l2 ) as a straightforward consequence of the one-dimensional Hardy inequality

∀g ∈ H 1 0 (0, +∞), ∞ 0 (g(r)/r) 2 dr ≤ 4 ∞ 0 g ′ (r) 2 dr. ( 64 
)
It follows from (61) that a ≥ 3 8 (in the sense of quadratic forms on L 2 (Ω)). For 0 ≤ α < 3/8, we introduce the continuous bilinear form a α on H 1 0 (Ω) × H 1 0 (Ω) defined by

∀u, v ∈ H 1 0 (Ω), a α (u, v) = a(u, v) - Ω αu(r) ∂v ∂r 1 (r) + ∂v ∂r 2 (r) dr - Ω α 2 u(r)v(r)dr, for which ∀v ∈ H 1 0 (Ω), a α (v, v) = a(v, v) -α 2 v 2 L 2 (Ω) ≥ 3 8 -α 2 >0 v 2 L 2 (Ω) .
Using either the fact that κ l (r) ≥ 1 4 (for l ≥ 1) or the Hardy inequality (64) (for l = 0), we also have

∀v ∈ H 1 0 (Ω), a α (v, v) = a(v, v) -α 2 v 2 L 2 (Ω) ≥ 1 4 Ω |∇v| 2 -2 v 2 L 2 .
Since a ≥ 3 8 and a α ≥ 3 8 -α 2 > 0, the above bound implies that a and a α are both continuous and coercive on H 1 0 (Ω). The function T ∈ H 1 0 (Ω) solution to ( 19) is also the unique solution to the variational equation

∀w ∈ H 1 0 (Ω), a(T, w) = Ω f w.
Proceeding as in [10, Section 3.3], we obtain that for all u ∈ H 1 0 (Ω) such that e α(r1+r2) u ∈ H 1 0 (Ω) and w ∈ C ∞ c (Ω), we have a α (e α(r1+r2) u, w) = a(u, e α(r1+r2) w).

Consider now f ∈ L 2 (Ω) satisfying (62) for some η > α. The function e α(r1+r2) f is in L 2 (Ω), so that the problem of finding v ∈ H 1 (Ω) such that

∀w ∈ H 1 0 (Ω), a α (v, w) = Ω e α(r1+r2) f w has a unique solution v, satisfying v H 1 (Ω) ≤ C α e α(r1+r2) f L 2 (Ω) ≤ C α e η(r1+r2) f L 2 (Ω)
, where C α ≥ 1 is the ratio between the continuity constant and the coercivity constant of a α . Let u = e -α(r1+r2) v ∈ H 1 0 (Ω). In view of (65), we have r1+r2) f w = a(T, e α(r1+r2) w).

∀w ∈ C ∞ c (Ω), a(u, e α(r1+r2) w) = a α (v, w) = Ω e α(
Hence, T = u and e α(r1+r2

) T H 1 (Ω) = e α(r1+r2) u H 1 (Ω) = v H 1 (Ω) ≤ C α e η(r1+r2) f L 2 (Ω) .
As a consequence, we have

e α(|r1|+|r2|) ψ L 2 (R 3 ×R 3 ) = e α(r1+r2) T L 2 (Ω) ≤ e α(r1+r2) T H 1 (Ω) ≤ C α e η(r1+r2) f L 2 (Ω) = C α e η(|r1|+|r2|) F L 2 (R 6 ) ,
which proves [START_REF] Scott | Introduction to Automated Modeling with FEniCS[END_REF]. In addition, a simple calculation using (64) shows that for all g ∈ H 1 0 (Ω)

g r 1 r 2 ⊗ Y m1 l1 ⊗ Y m2 l2 2 H 1 (R 3 ×R 3 ) = g 2 H 1 (Ω) + l 1 (l 1 + 1) g r 1 2 L 2 (Ω) + l 2 (l 2 + 1) g r 2 2 L 2 (Ω) ≤ (1 + 4l 1 (l 1 + 1) + 4l 2 (l 2 + 1)) g 2 H 1 , yielding e α(|r1|+|r2|) ψ H 1 (R 3 ×R 3 ) ≤ (1 + 4l 1 (l 1 + 1) + 4l 2 (l 2 + 1)) 1/2 e α(r1+r2) T H 1 (Ω) ≤ C α (1 + 4l 1 (l 1 + 1) + 4l 2 (l 2 + 1)) 1/2 e η(|r1|+|r2|) F L 2 (Ω) .
Lastly, since H l1,l2 is a real operator in the sense that H l1,l2 φ = H l1,l2 φ for all φ ∈ D(H l1,l2 ), it is obvious that T is real-valued, whenever f is.

Proof of Lemma 1 and Theorem 5

We have seen in the previous section that for each (α,

F ) ∈ R × L 2 (R 3 × R 3 ), (59) has a unique solution (µ, ψ) in R × H 2 (R 3 × R 3 ). For n = 1, we have (H 0 -λ 0 )φ 1 = -C 1 φ 0 , φ 0 , φ 1 = 0,
and it is clear that (C 1 , φ 1 ) = (0, 0) is a solution, hence the solution, to this system. Likewise, for n = 2, we have

(H 0 -λ 0 )φ 2 = -C 1 φ 1 -C 2 φ 0 = -C 2 φ 2 , φ 0 , φ 2 = - 1 2 φ 1 , φ 1 = 0,
so that (C 2 , φ 2 ) = (0, 0). To prove that the Rayleigh-Schrödinger triangular system ( 9)-( 10) is well-posed and that φ n is of the form [START_REF] Slater | The van der Waals forces in gases[END_REF], we proceed by induction on n. It is proven in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF] that for n = 3,

φ 3 = T (3) (1,1) (r 1 , r 2 ) r 1 r 2 1 m=-1 α (3) (1,1,m) Y m 1 (θ 1 , φ 1 )Y -m 1 (θ 2 , φ 2 ), with α (3) 
(1,1,m) = -πG c (1, 1, m) and T

(1,1) (r 1 , r 2 )e η 3 1,1 (r1+r2)

H1(Ω) =: C 3 1,1 < ∞. Let L 3 = {(1, 1)
} and assume that for some n ≥ 3 the following recursion hypotheses are satisfied (this is the case for n = 3): for all 3 ≤ k ≤ n,

φ k = (l1,l2)∈L k T (k) (l1,l2) (r 1 , r 2 ) r 1 r 2   min(l1 ,l2) m=-min(l1,l2) α (k) 
(l1,l2,m) Y m l1 (θ 1 , φ 1 )Y -m l2 (θ 2 , φ 2 )   , (66) 
for some finite set

L k ⊂ N 2 with cardinality N k < ∞, where T (k) (l1,l2) is the unique solution to (19) in H 1 (Ω) (or in H 1 (Ω) if l 1 = l 2 = 0) for f = f (k) (l1,l2) ∈ L 2 (Ω) and that for all (l 1 , l 2 ) ∈ L k there exists η k l1,l2 > 0 such that T (k) (l1,l2) (r 1 , r 2 )e η k l 1 ,l 2 (r1+r2) H 1 (Ω) =: C k l1,l2 < ∞. (67) 
From ( 14), the fact that φ 1 = φ 2 = 0 and the recursion hypothesis (66), we obtain that for all 3 ≤ k ≤ n + 1,

B (k) φ n+1-k = l1+l2=k-1 l1,l2 =0 (l ′ 1 ,l ′ 2 )∈L n+1-k min(l1,l2) m=-min(l1,l2) min(l ′ 1 ,l ′ 2 ) m ′ =-min(l ′ 1 ,l ′ 2 ) U f m,m ′ n-k+1,l1,l ′ 1 ,l2,l ′ 2 ⊗ Y m l1 Y m ′ l ′ 1 ⊗ Y -m l2 Y -m ′ l ′ 2 , (68) 
where

f m,m ′ j,l1,l ′ 1 ,l2,l ′ 2 (r 1 , r 2 ) := G c (l 1 , l 2 , m)r l1 1 r l2 2 α (j) (l ′ 1 ,l ′ 2 ,m ′ ) T (j) (l ′ 1 ,l ′ 2 ) (r 1 , r 2 ). In addition, we have Y m l Y m ′ l ′ = l+l ′ l ′′ =|l-l ′ | ζ m,m ′ l,l ′ ,l ′′ Y m+m ′ l ′′ where ζ l,l ′ ,l ′′ = 0 if l + l ′ + l ′′ / ∈ 2N, (69) 
where the coefficients ζ m,m ′ l,l ′ ,l ′′ ∈ R can be computed explicitly using Wigner's 3-j symbols [9, p. 146]:

ζ m,m ′ l,l ′ ,l ′′ = (-1) m+m ′ (2l + 1)(2l ′ + 1)(2l ′′ + 1) 4π l l ′ l ′′ 0 0 0 l l ′ l ′′ m m ′ -m -m ′ .

This implies that

- n+1 k=3 B (k) φ n+1-k , - n+1 k=1 C k φ n+1-k = (l1,l2)∈Ln+1 f (n+1) (l1,l2) (r 1 , r 2 ) r 1 r 2   min(l1,l2) m=-min(l1,l2) α (k) (l1,l2,m) Y m l1 (θ 1 , φ 1 )Y -m l2 (θ 2 , φ 2 )   , (70) 
for some L n+1 ⊂ N 2 with finite cardinality, where the f

(n+1) l1,l2 's are linear combinations of the functions r l1 1 r l2 2 T (j) (l ′ 1 ,l ′ 2 ) ∈ L 2 (Ω), 3 ≤ j ≤ n, l ′ 1 , l ′ 2 ∈ L j , l 1 + l 2 + j ≤ n + 1
, and therefore satisfy in view of (67)

f (n+1) (l1,l2) (r 1 , r 2 )e ξ n+1 l 1 ,l 2 (r1+r2) H1(Ω) < ∞ (71) 
for some ξ n+1 l1,l2 > 0. Therefore the problem consisting in seeking

(C n+1 , φ n+1 ) ∈ R × H 2 (R 3 × R 3 ) satisfying (H 0 -λ 0 )φ n+1 = - n+1 k=3 B (k) φ n+1-k , - n+1 k=1 C k φ n+1-k , φ 0 , φ n+1 = - 1 2 n k=1 φ k , φ n+1-k
is well-posed and we deduce from Lemma 4 that

φ n+1 := (l1,l2)∈Ln+1 T (n+1) (l1,l2) (r 1 , r 2 ) r 1 r 2   min(l1,l2) m=-min(l1,l2) α (k) (l1,l2,m) Y m l1 (θ 1 , φ 1 )Y -m l2 (θ 2 , φ 2 )   ,
where

T (n+1) (l1,l2) is the unique solution to (19) in H 1 (Ω) (or in H 1 (Ω) if l 1 = l 2 = 0) for f = f (n+1) 
(l1,l2) . In addition, it follows from (71) that (67) holds true for k = n+1. Therefore, the Rayleigh-Schrödinger triangular system ( 9)-( 10) is well-posed and the T (n) (l1,l2) 's decay exponentially at in the sense of (67). From (66) we obtain that for α n = min (l1,l2)∈Ln (η n l1,l2 ) > 0, we have

e αn(|r1|+|r2|) φ n H 1 (R 3 ×R 3 ) ≤ C n (l1,l2)∈Ln e αn(r1+r2) T (n) (l1,l2) H 1 (Ω) ≤ C n (l1,l2)∈Ln e η n (l 1 ,l 2 ) (r1+r2) T (n) (l1,l2) H 1 (Ω) < ∞,
for some C n ∈ R + , so that φ n decays exponentially at infinity in the sense of [START_REF] Tough | Properties of the regular and irregular solid harmonics[END_REF]. Lastly, we infer from Wigner's (2n + 1) rule and the fact that φ 1 = φ 2 = 0, that C n = 0 for 1 ≤ n ≤ 5. This completes the proof of both Lemma 1 and Theorem 5.

Let us finally explain how to construct Table 1. We have already shown that L 3 = {(1, 1)}, and from (68)-(70) and the fact that φ 1 = φ 2 = 0, we see that

L n+1 ⊂ n-2 k=3 M k,n+1-k M n+1,0   3≤k≤n-5 | C n+1-k =0 L k   ,
where for k, n ≥ 3,

M k,0 = {(l 1 , l 2 ) ∈ N * × N * | l 1 + l 2 = k -1} = {(1, k -2), • • • , (k -2, 1)}, M k,n = (l 1 , l 2 ) ∈ N × N | ∃(l ′ 1 , l ′ 2 ) ∈ M k,0 , ∃(l ′′ 1 , l ′′ 2 ) ∈ L n s.t. |l ′ j -l ′′ j | ≤ l j ≤ l ′ j + l ′′ j , l j + l ′ j + l ′′ j ∈ 2N, j = 1, 2 . Consequently, we have L 4 = M 4,0 ; L 5 = M 5,0 ;
L 6 = M 3,3 ∪ M 6,0 with M 3,3 = {(0, 2; 0, 2)}; L 7 = M 3,4 ∪ M 4,3 ∪ M 7,0 with M 3,4 = M 4,3 = {(0, 2; 1, 3), (1, 3; 0, 2)}; L 8 = M 3,5 ∪ M 4,4 ∪ M 5,3 ∪ M 8,0 with M 3,5 = M 5,3 = {(0, 2; 2, 4), (1, 3; 1, 3), (2, 4; 0, 2)}, M 4,4 = {(0, 2; 0, 2, 4), (0, 2, 4; 0, 2), (1, 3; 1, 3)} L 9 = M 3,6 ∪ M 4,5 ∪ M 5,4 ∪ M 6,3 ∪ M 9,0 ∪ L 3 with M 6,3 M 3,6 = {(0, 2; 3, 5), (1, 3; 2, 4), (2, 4; 1, 3), (3, 5; 0, 2), (1, 3; 1, 3)}, M 4,5 = M 5,4 = {(0, 2; 1, 3, 5), (1, 3; 0, 2, 4), (2, 4; 1, 3), (1, 3; 2, 4), (0, 2, 4; 1, 3), (1, 3, 5; 0, 2)}, where we recall that (l

1 , l ′ 1 ; l 2 , l ′ 2 ) (resp. (l 1 , l ′ 1 ; l 2 , l ′ 2 , l ′′ 2 ), (l 1 , l ′ 1 , l ′′ 1 ; l 2 , l ′ 2 
)) stands for the four (resp. six) pairs (l 1 , l 2 ), (l ′ 1 , l 2 ), (l 1 , l ′ 2 ), etc. After eliminating redundancies, we obtain Table 1.

Proof of Theorem 2

As in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF], we introduce the space

V = v ∈ L 2 (R 3 × R 3 ) : v(r 1 , r 2 ) = v(r 2 , r 1 ) ∀r 1 , r 2 ∈ R 3 , (72) 
the functions ψ

(n) ǫ ∈ V ∩ H 2 (R 3 × R 3 ) normalized in L 2 (R 3 × R 3 ), ψ (n) ǫ := m (n) ǫ T ǫ φ (n) ǫ where φ (n) ǫ := φ 0 + n k=3 ǫ k φ k and m (n) ǫ = T ǫ φ (n) ǫ -1 L 2 (R 3 ×R 3 ) , (73) 
as well as the Rayleigh quotient

µ (n) ǫ = ψ (n) ǫ , H ǫ ψ (n) ǫ ( 74 
)
and the approximation

λ (n) ǫ = λ 0 - n k=6
C n ǫ n of λ ǫ . When ǫ → 0, we have T ǫ (φ 0 ) → 1 and therefore m

(n) ǫ → 1.
We know from [10, Section 2.4] that there exists a constant C ∈ R + such that for ǫ > 0 small enough

ψ ǫ -ψ (3) ǫ H 2 (R 3 ×R 3 ) ≤ Cǫ 4 , |λ ǫ -µ (3)
ǫ | ≤ Cǫ 8 , and |λ ǫ -λ (6) ǫ | ≤ Cǫ 7 . It follows from Theorem 5 that the φ n 's are in H 2 (R 3 × R 3 ). Since T ǫ continuous on this space, we obtain that for all n ≥ 3, there exists c n ∈ R, such that for ǫ > 0 small enough

ψ ǫ -ψ (n) ǫ H 2 (R 3 ×R 3 ) ≤ c n ǫ 4 .
We infer from [10, Lemma 2.2 and Appendix A] that there exists a constant C ∈ R + such that for all n ≥ 3 there exists ǫ > 0 such that for all 0 < ǫ ≤ ǫ n ,

|λ ǫ -µ (n) ǫ | ≤ C H ǫ ψ (n) ǫ -µ (n) ǫ ψ (n) ǫ 2 L 2 (R 3 ×R 3 ) , (75) 
ψ ǫ -ψ (n) ǫ L 2 (R 3 ×R 3 ) ≤ C H ǫ ψ (n) ǫ -µ (n) ǫ ψ (n) ǫ L 2 (R 3 ×R 3 ) (76) 
(the first estimate above follows from the Kato-Temple inequality [START_REF] Kato | On the upper and lower bounds of eigenvalues[END_REF]). To proceed further, we need to evaluate the L 2 -norm of the residual r

(n) ǫ := H ǫ ψ (n) ǫ -µ (n) ǫ ψ (n) ǫ .
We have

H ǫ ψ (n) ǫ = m (n) ǫ H ǫ T ǫ (φ (n) ǫ ) = m (n) ǫ T ǫ (H 0 + V ǫ )φ (n) ǫ ) = m (n) ǫ T ǫ (H 0 + V ǫ )(φ 0 + n k=3 ǫ k φ k ) ,
and thus,

r (n) ǫ = m (n) ǫ T ǫ (H 0 + V ǫ )φ (n) ǫ -µ (n) ǫ φ (n) ǫ = m (n) ǫ T ǫ (H 0 + V ǫ )(φ 0 + n k=3 ǫ k φ k ) -(λ 0 - n k=3 C k ǫ k )(φ 0 + n k=3 ǫ k φ k ) + (λ (n) ǫ -µ (n) ǫ )φ (n) ǫ = m (n) ǫ T ǫ H 0 + n k=3 ǫ k B (k) (φ 0 + n k=3 ǫ k φ k ) -(λ 0 - n k=3 C k ǫ k )(φ 0 + n k=3 ǫ k φ k ) +(λ (n) ǫ -µ (n) ǫ )φ (n) ǫ + (V ǫ - n k=3 ǫ k B (k) )φ (n) ǫ .
Using (9), we get

(H 0 + n k=3 ǫ k B (k) )(φ 0 + n k=3 ǫ k φ k ) -(λ 0 - n k=3 C k ǫ k )(φ 0 + n k=3 ǫ k φ k ) = ǫ n n k=1 ǫ k   n j=k B (j) φ n+k-j + n j=k C j φ n+k-j   . (77) 
Since B (j) are degree (j -1) homogeneous functions (in cartesian coordinates) and the φ n 's decay exponentially in the sense of ( 28), there exists K n ∈ R + and ǫ n > 0 such that for all 0 < ǫ ≤ ǫ n ,

(H 0 + n k=3 ǫ k B (k) )(φ 0 + n k=3 ǫ k φ k ) -(λ 0 - n k=3 C k ǫ k )(φ 0 + n k=3 ǫ k φ k ) L 2 (R 3 ×R 3 ) ≤ K n ǫ n+1 . (78) It remains to bound (V ǫ - n k=3 ǫ k B (k) )ψ (n) ǫ L 2 (R 3 ×R 3 )
. From ( 6), ( 28) and ( 73), there exists

ǫ n > 0, α n > 0 and M n ∈ R + such that for all 0 < ǫ ≤ ǫ n e αn(|r1|+|r2|) φ (n) ǫ H 1 (R 3 ×R 3 ) ≤ M n . Introducing Ω ǫ = (r 1 , r 2 ) ∈ R 3 × R 3 : |r 1 | + |r 2 | < (2ǫ) -1 . ( 79 
)
and the potentials defined by

v (1) ǫ (r 1 , r 2 ) := |r 1 -ǫ -1 e| -1 , v (2) ǫ (r 1 , r 2 ) := |r 2 + ǫ -1 e| -1 , v (3) ǫ (r 1 , r 2 ) := |r 1 -r 2 -ǫ -1 e| -1 , (80) 
we have,

(V ǫ - n k=3 ǫ k B (k) )φ (n) ǫ L 2 (R 3 ×R 3 ) ≤ (V ǫ - n k=3 ǫ k B (k) )φ (n) ǫ L 2 (Ωǫ) + n k=3 ǫ k B (k) φ (n) ǫ L 2 (Ω c ǫ ) + 3 j=1 v (j) ǫ φ (n) ǫ L 2 (Ω c ǫ ) + ǫ φ (n) ǫ L 2 (Ω c ǫ ) .
We first see that

φ (n) ǫ L 2 (Ω c ǫ ) ≤ e -αn(2ǫ) -1 e αn(|r1|+|r2|) φ (n) ǫ L 2 (Ω c
ǫ ) ≤ M n e -αn(2ǫ) -1 . Next, as B (k) is a polynomial function, there exists a constant B n such as for all 0 < ǫ ≤ ǫ n ,

n k=3 ǫ k B (k) φ (n) ǫ L 2 (Ω c ǫ ) ≤ n k=3 ǫ k B (k) e -αn(|r1|+|r2|) L ∞ (Ω c ǫ ) e αn(|r1|+|r2|) φ (n) ǫ L 2 (Ω c ǫ ) ≤ M n n k=3 ǫ k B (k) e -αn(|r1|+|r2|) L ∞ (Ω c ǫ ) ≤ B n ǫ 3 e -αn(2ǫ) -1 .
In addition, we have

3 j=1 v (j) ǫ φ (n) ǫ L 2 (Ω c ǫ ) ≤ 3 j=1 e -αn(2ǫ) -1 v (j) ǫ e αn(|r1|+|r2|) φ (n) ǫ L 2 (Ω c ǫ ) ≤ 3 j=1 e -αn(2ǫ) -1 v (j) ǫ e αn(|r1|+|r2|) φ (n) ǫ L 2 (R 3 ×R 3 ) ≤ 8e -αn(2ǫ) -1 e αn(|r1|+|r2|) φ (n) ǫ H 1 (R 3 ×R 3 ) = 8e -αn(2ǫ) -1
M n , where we have used the Hardy inequality in dimension 3

∀φ ∈ H 1 (R 3 ), R 3 |φ(r)| 2 |r| 2 dr ≤ 4 R 3 |∇φ(r)| 2 dr to show that for any ψ ∈ H 1 (R 3 × R 3 ), v (j) ǫ ψ 2 L 2 (R 3 ×R 3 ) = R 3 R 3 |ψ(r 1 , r 2 )| 2 |r j + (-1) j ǫ -1 e| 2 dr j dr 3-j ≤ R 3 4 R 3 |∇ rj ψ(r 1 , r 2 )| 2 dr j dr 3-j ≤ 4 ∇ rj ψ 2 L 2 (R 3 ×R 3 ) ,
for j = 1, 2, and

v (3) ǫ ψ 2 L 2 (R 3 ×R 3 ) = R 3 R 3 |ψ(r 1 , r 2 )| 2 |r 1 -r 2 -ǫ -1 e| 2 dr 1 dr 2 = 1 8 R 3 R 3 |ψ (r ′ 1 + r ′ 2 , r ′ 1 -r ′ 2 ) | 2 |r ′ 2 -ǫ -1 e| 2 dr ′ 1 dr ′ 2 ≤ 1 2 R 3 R 3 |(∇ r1 -∇ r2 )ψ (r ′ 1 + r ′ 2 , r ′ 1 -r ′ 2 ) | 2 dr ′ 1 dr ′ 2 =4 (∇ r1 -∇ r2 )ψ 2 L 2 (R 3 ×R 3 ) = 8 ∇ψ 2 L 2 (R 3 ×R 3 ) .
From the multipolar expansion of V ǫ , we know that there exist

c n ∈ R + V ǫ (r 1 , r 2 ) - n i=3 ǫ i B (i) (r 1 , r 2 ) ≤ c n K n ǫ n+1 , whenever |r 1 | + |r 2 | ≤ K ≤ (2ǫ) -1 . (81) 
Let us now show that (81) implies that there exists

c n ∈ R + such that for all 0 ≤ K ≤ (2ǫ) -1 , sup |r1|+|r2|≤K V ǫ (r 1 , r 2 ) - n i=3 ǫ i B (i) (r 1 , r 2 ) e -αn(|r1|+|r2|) ≤ c n ǫ n+1 , (82) 
This is immediate from (81) for K ≤ 1, taking c n = c n . Now we let K > 1. Then (81) implies

sup (K/2)≤(|r1|+|r2|)≤K V ǫ (r 1 , r 2 ) - n i=3 ǫ i B (i) (r 1 , r 2 ) e -αn(|r1|+|r2|) ≤ c n e -αnK/2 K n ǫ n+1 .
Applying this repeatedly for 2 -j K replacing K until 2 -j K < 1 yields (82), with

c n = c n sup t≥0 t n e -αnt/2 .
Applying (82) for K = (2ǫ) -1 yields

(V ǫ - n k=3 ǫ k B (k) )e -αn(|r1|+|r2|) L ∞ (Ωǫ) ≤ c n ǫ n+1 ,
from which we obtain

(V ǫ - n k=3 ǫ k B (k) )φ (n) ǫ L 2 (Ωǫ) ≤ (V ǫ - n k=3 ǫ k B (k) )e -αn(|r1|+|r2|) L ∞ (Ωǫ) e αn(|r1|+|r2|) φ (n) ǫ L 2 (Ωǫ) ≤ c n M n ǫ n+1 .
Finally, we get

(V ǫ - n k=3 ǫ k B (k) )φ (n) ǫ L 2 (R 3 ×R 3 ) ≤ c n M n ǫ n+1 + (8 + ǫ + B n ǫ 3 )M n e -αn(2ǫ) -1 , (83) 
Together with (78), this proves that there exists c ′′ n ∈ R + such that for all 0 < ǫ ≤ ǫ n ,

r (n) ǫ L 2 (R 3 ×R 3 ) = H ǫ ψ (n) ǫ -µ (n) ǫ ψ (n) ǫ L 2 (R 3 ×R 3 ) ≤ c ′′ n ǫ n+1 . (84) 
It follows from (75)-(76) that for n ≥ 3 fixed, there exists C ∈ R + such that for all 0 < ǫ ≤ ǫ n ,

|λ ǫ -µ (n) ǫ | ≤ Cǫ 2(n+1) and ψ ǫ -ψ (n) ǫ L 2 (R 3 ×R 3 ) ≤ Cǫ n+1 . (85) 
Then,

µ (n) ǫ -λ (n) ǫ = ψ (n) ǫ , H ǫ ψ (n) ǫ -λ (n) ǫ ψ (n) ǫ = m (n) ǫ ψ (n) ǫ , T ǫ (V ǫ - n k=3 ǫ k B (k) )φ (n) ǫ + ǫ n n k=1 ǫ k n j=k B (j) φ n+k-j + n j=k C j φ n+k-j
so that there exists a constant c n such that for 0 < ǫ ≤ ǫ n ,

µ (n) ǫ -λ (n) ǫ ≤ 2 (V ǫ - n k=3 ǫ k B (k) )φ (n) ǫ + ǫ n n k=1 ǫ k n j=k B (j) φ n+k-j + n j=k C j φ n+k-j L 2 (R 3 ×R 3 ) ≤ c n ǫ n+1 .
The error bounds on the eigenvalue errors in [START_REF] Choy | Van der Waals interaction of the hydrogen molecule: An exact implicit energy density functional[END_REF] follow from (85) and the above inequality.

Finally, the error ξ

(n) ǫ = ψ ǫ -ψ (n)
ǫ , as defined in [START_REF] Cancès | Van der Waals interactions between two hydrogen atoms: The Slater-Kirkwood method revisited[END_REF], satisfies

H ǫ ξ (n) ǫ = λ ǫ ψ ǫ -H ǫ ψ (n) ǫ = λ ǫ -µ (n) ǫ -r (n) ǫ =: η (n) ǫ . From (84)-(85), there exists a constant c n ∈ R + such that for all 0 < ǫ ≤ ǫ n , ξ (n) ǫ L 2 (R 3 ×R 3 ) ≤ c n ǫ n+1 and η (n) ǫ L 2 (R 3 ×R 3 ) ≤ c n ǫ n+1 . In addition, - 1 2 ∆ξ (n) ǫ = -W ǫ ξ (n) ǫ + η (n) ǫ , (86) 
where

W ǫ (r 1 , r 2 ) := - 1 |r 1 -(2ǫ) -1 e| - 1 |r 2 -(2ǫ) -1 e| - 1 |r 1 + (2ǫ) -1 e| - 1 |r 2 + (2ǫ) -1 e| + 1 |r 1 -r 2 | + ǫ.
Proceeding as in [10, Section 2.4], we use the Hardy inequality in R 3 and the Cauchy-Schwarz inequality to obtain that

1 2 ∇ξ (n) ǫ 2 L 2 (R 3 ×R 3 ) = ξ (n) ǫ , -W ǫ ξ (n) ǫ + η (n) ǫ ≤ (10 ∇ξ (n) ǫ L 2 (R 3 ×R 3 ) + ǫ ξ (n) ǫ L 2 (R 3 ×R 3 ) + η (n) ǫ L 2 (R 3 ×R 3 ) ) ξ (n) ǫ L 2 (R 3 ×R 3 ) , 1 2 ∆ξ (n) ǫ L 2 (R 3 ×R 3 ) = -W ǫ ξ (n) ǫ + η (n) ǫ L 2 (R 3 ×R 3 ) ≤ 10 ∇ξ (n) ǫ L 2 (R 3 ×R 3 ) + ǫ ξ (n) ǫ L 2 (R 3 ×R 3 ) + η (n) ǫ L 2 (R 3 ×R 3 ) .
It follows from (86) that there exists a constant c n ∈ R + such that for all 0 < ǫ ≤ ǫ n , ∆ξ

(n) ǫ L 2 (R 3 ×R 3 ) ≤ c n ǫ n+1 , and thus ξ (n) ǫ H 2 (R 3 ×R 3 ) ≤ c n ǫ n+1 . taking -1 ≤ x = r • e |r| ≤ 1, t = |r| R .
Since the Legendre polynomials are at most 1 in magnitude on the interval [-1, 1], the sum in (88) converges absolutely for all |t| < 1, and

∞ k=n P k (x)t k ≤ ∞ k=n t k = t n 1 -t ≤ 2t n , for all |t| ≤ 1 2 .
Consequently,

1 |r -Re| - 1 R n-1 k=0 P k r • e |r| |r| R k ≤ 2 |r| n R n+1 , for all |r| ≤ R/2. ( 89 
)
Recalling that P 0 (x) = 1, P 1 (x) = x and

V ǫ (r 1 , r 2 ) = - 1 |r 1 -ǫ -1 e| - 1 |r 2 + ǫ -1 e| + 1 |r 1 -r 2 -ǫ -1 e| + ǫ.
with ǫ = R -1 , we deduce from (89) that

V ǫ (r 1 , r 2 ) - n k=3 ǫ k B (k) (r 1 , r 2 ) ≤ 6K n ǫ n+1 , whenever |r 1 | + |r 2 | ≤ K ≤ (2ǫ) -1 , (90) 
where the polynomial functions B (k) are given by

B (k) (r 1 , r 2 ) := P k-1 (r 1 -r 2 ) • e |r 1 -r 2 | |r 1 -r 2 | k-1 -P k-1 r 1 • e |r 1 | |r 1 | k-1 -P k-1 - r 2 • e |r 2 | |r 2 | k-1 .
This proves (81). To derive the expression [START_REF] Geim | Van der Waals heterostructures[END_REF] for the B (k) 's, we first use the identities

P l (σ • σ ′ ) = 4π 2l + 1 l m=-l (-1) m Y m l (σ)Y m l (σ ′ ), 4π 2l + 1 Y m l (e) = δ m,0 ,
valid for all l ∈ N, -l ≤ m ≤ l, σ, σ ′ ∈ S 2 (recall that e is the unit vector of the z-axis), and get

B (k) (r 1 , r 2 ) := 4π 2k -1 Y 0 k-1 r 1 -r 2 |r 1 -r 2 | |r 1 -r 2 | k-1 -Y 0 k-1 r 1 |r 1 | |r 1 | k-1 -Y 0 k-1 - r 2 |r 2 | |r 2 | k-1 .
We next use the addition formula [START_REF] Tough | Properties of the regular and irregular solid harmonics[END_REF] stating that for l ∈ N, r 1 , r 2 ∈ R 

B Wigner (2n + 1) rule

Using the notation in (73), we consider the Rayleigh quotients

µ (n) ǫ = ψ (n) ǫ , H ǫ ψ (n) ǫ and µ (n) ǫ = φ (n) ǫ , H 0 + 2n+1 i=3 ǫ i B (i) φ (n) ǫ φ (n) ǫ 2 L 2 (R 3 ×R 3 )
(recall that ψ We deduce from the boundedness of the φ n 's in H 2 (R 3 × R 3 ), the Hardy inequality in R 3 , and the estimates ( 28) and (81), that there exist C ∈ R + , β n > 0 and ǫ n > 0 such that for all 0 ≤ ǫ ≤ ǫ n

φ (n) ǫ L 2 (R 3 ×R 3 ) ≤ 2, η (n) ǫ L 2 (R 3 ×R 3 ) ≤ C, υ (n) ǫ L 2 (R 3 ×R 3 ) ≤ Cǫ 2n+2 , ξ (n) 
ǫ L 2 (R 3 ×R 3 ) ≤ Ce -βnǫ , proceeding as in the proof of (83) to establish the third inequality. It follows from [START_REF] Choy | Van der Waals interaction of the hydrogen molecule: An exact implicit energy density functional[END_REF] and the above bounds that Thus, the coefficients C k for k ≤ 2n + 1 can be computed from the Taylor expansion of µ

µ (n) ǫ = λ ǫ + µ (n) ǫ -µ (n) ǫ + O(ǫ 2n+2 ) = λ ǫ + φ (n) ǫ , H 0 + 2n+1 i=3 ǫ i B (i) φ (n) ǫ φ (n) ǫ 2 L 2 (R 3 ×R 3 ) - T * ǫ T ǫ φ (n) ǫ , (H 0 + V ǫ )φ (n) ǫ T * ǫ T ǫ φ (n) ǫ , φ (n) ǫ + O(ǫ 2n+2 ) = λ ǫ - φ (n) ǫ , υ (n) ǫ φ (n) ǫ , φ (n) ǫ + ξ (n) ǫ , η (n) ǫ -ξ (n) ǫ , φ (n) ǫ φ (n) ǫ , η (n) ǫ φ (n) ǫ , φ (n) ǫ + ξ (n) ǫ , φ (n) 
(n) ǫ up to order (2n + 1), which only involves the φ k 's for k ≤ n, and the B (k) 's for k ≤ (2n + 1). To obtain a computable expression of the coefficients C 2n and C 2n+1 , we first use Equation [START_REF] Brink | Angular momentum[END_REF], which can be rewritten as

H 0 φ k + k j=3 B (j) φ k-j = -C 0 φ k - k j=6 C j φ k-j = - k j=0 C j φ k-j , (91) 
with C 0 = 1 and C i = 0 for i = 1, ..., 5, to get that for all n ≥ 1 (n + 1)! (n -2)! .

ν (n) ǫ : = φ (n) ǫ , H 0 + 2n+1 i=3 ǫ i B (i) φ (n) ǫ = -
Finally, we get S n = 8n 3 (n -1) n-3 (n + 1) n+3

(n + 1)! (n -2)! .
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 1 Figure 1: Shape of T (4) (2,1) (a) and T (4) (2,1) (r 1 , r 2 )/(r 1 r 2 ) (b), using the Laguerre function approximation scheme [25, Section 7.3].
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Table 2 :

 2 Comparison of the coefficients C 6 to C 11 between various papers and the basis states method and our method based on numerical solutions of boundary value problems of type

		C 6	C 8	C 10	C 11
	[22]	6.49903	124.399	1135.21
	[12]	6.4990267	124.3990835	1135.2140398
	This work 6.49902670540 [10] 124.399083	3285.82841	-3474.89803
	[21]	6.499026705406	124.3990835836 3285.828414967 -3474.898037882

Table 3 :

 3 Comparison of the C n coefficients C 12 to C 15 between[START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF] and our method based on numerical solutions of boundary value problems of type[START_REF] London | The general theory of molecular forces[END_REF] in tensor products of Laguerre functions up to degree 11 (for which round-off error is suitably controlled). These results agree at least to 9 digits with the results in[START_REF] Mitroy | Higher-order Cn dispersion coefficients for hydrogen[END_REF][START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF][START_REF] Yan | Third-order dispersion coefficients for H(1s)-H(1s) system[END_REF] for C 13 and C 15 and[START_REF] Mitroy | Higher-order Cn dispersion coefficients for hydrogen[END_REF][START_REF] Ovsiannikov | Regular approach for generating van der Waals Cs coefficients to arbitrary orders[END_REF] for C 12 and C 14 .

			5) (2,2) = 1135.214 . . .	(52)
	Method	C 12	C 13	C 14	C 15
	This work 122727.608	-326986.924	6361736.04	-28395580.6
	[21]	122727.6087007 -326986.9240441 6361736.045092 -28395580.6
	Method This work 441205192 C 16	C 17 × 10 -9 -2.73928165	C 18 × 10 -10 3.93524773	C 19 × 10 -11 -3.07082459
	[21]	441205192.2739 -2.739281653140 3.93524773346 -3.07082459389

Table 4 :

 4 Comparison of the C n coefficients C 16 to C 19 between

  m1 l1 ⊗CY m2 l2 . It follows from classical results for Schrödinger operators on L 2 (R 3 ) with central potentials (see e.g. [23, Section XIII.3.B]) that each H m1,m2

	l1,l2
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A Appendix

A.1 Multipolar expansion of V ǫ

We start from the well-known multipolar expansion of 1 |r-Re| in terms of Legendre polynomials

which is a straightforward consequence of the definition of Legendre polynomials via their generating function [START_REF] Wan | Generating functions of Legendre polynomials: a tribute to Fred Brafman[END_REF] ∀