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Abstract

Reliability properties associated to the classic models of systems with age replacement have been
a usual topic of research. Most previous works have checked the aging properties of the lifetime of
the working units using stochastic comparisons among the systems with age replacement at different
times. However, from a practical point of view, it would also be interesting to deduce to which
aging classes the lifetime of the system belongs, making use of the aging properties of the lifetime
of its working units. The first part of this article deals with this problem. Further along, stochastic
orderings are established between the systems with replacement at the same time using several
stochastic comparisons among the lifetimes of their working units. In addition, the lifetimes of two
systems with age replacement are compared as well. This is performed assuming stochastic orderings
between the number of replacement until failure, and the lifetimes of their working units conditioned
to be less or equal than the replacement time. Similar comparisons are accomplished considering two
systems with age replacement where the replacements occur at a random time. Illustrative examples
are presented throughout the paper.

Keywords: age replacement; random time replacement; stochastic orders; aging classes; sta-
tionary pointwise availability; parallel systems.

2020 Mathematics Subject Classification: Primary 90B25, Secondary 60E15.

1 Introduction

A natural way to improve the reliability of systems is implementing a replacement policy for a
unit after it had been working for a period of time. Acting in this way it is possible to avoid
system failures and periods of inactivity. Stochastic properties of lifetimes of systems with planned
replacement policies have been widely studied and the age replacement policy comes up as one of
the most studied kinds of replacement [29]. Under an age replacement policy, it is supposed that
a single unit works upon failure or upon a specified age T , when a replacement by a new unit
occurs, whichever comes first. The times of replacement are assumed as instantaneous. We assume
the lifetimes of all units to be placed in service are independent and equally distributed with the
same distribution of a random variable X, which has finite mean, distribution function F , survival
function F = 1 − F and density function f . Let us denote by τX,T the lifetime of the system with
age replacement planned at T > 0. It is well known, see e.g. [4], that the survival function and the
density function of τX,T , denoted by FX,T and fX,T , respectively, satisfy

FX,T (t) = [F (T )]bt/TcF

(
t−

⌊ t
T

⌋
T

)
, (1)

fX,T (t) = [F (T )]bt/Tcf

(
t−

⌊ t
T

⌋
T

)
,

for all t ≥ 0, where bxc stands for the greater integer less or equal than x.
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Systems with age replacement are important for practical and theoretical reasons. These systems
have been used to characterize some aging classes. For example, Barlow and Proschan [4, 5] prove
that the lifetime of a system with age replacement, τX,T , is stochastically decreasing (increasing) in
T if and only if X ∈ IFR (X ∈ DFR). They also consider a model where the time until replacement
is random and all lifetimes and times until replacement are assumed independent. A similar result
for the discrete-time version of the age replacement model is proved in the recent work of Sudheesh
et al. [39].

Marshall and Proschan [24] provide characterizations of NBU (NWU) and NBUE (NWUE) aging
classes using the age replacement model. They show that X ≤st (≥st)τX,T for all T > 0 if and
only if X ∈ NBU (X ∈ NWU). Furthermore, µ = E[X] ≤ (≥)E[τX,T ] for all T > 0 if and only
if X ∈ NBUE (X ∈ NWUE). See also [33] for these and other results associated to models with
replacement policies. Similar characterizations are deduced by Belzunce et al. [7] for the increasing
convex order and its associated new better than used class. In Theorem 2.6 we analyze the hazard
rate and likelihood ratio orderings between X and τX,T when X belongs to IFR (DFR) and ILR
(DLR) aging classes, respectively.

Those previous results characterize the aging properties of the random variable X using the
random variable τX,T , for T > 0. However, in practical situations it would be interesting to deduce
some properties of τX,T using the aging class to which X belongs. In this direction we provide
several results: in Theorem 2.1, we prove that τX,T ∈ NBU (τX,T ∈ NWU), whenever X ∈ IFR
(X ∈ DFR). Moreover, in Theorem 2.2 we prove that τX,T ∈ DMRL, or τX,T ∈ IMRL, if and only
if it has exponential distribution.

It is well known, see e.g. [4], that

E [τX,T ] =

∫ T

0

F (x) dx

F (T )
. (2)

Marshall and Proschan [24] point out the lack of relation between the monotony of E [τX,T ] in T and
the most common aging classes. As they noted, X ∈ IFR implies that E [τX,T ] is decreasing in T ,
and that implies X ∈ NBUE. Furthermore both implications are false in the opposite sense. Due to
this fact, some authors, as Klefsjö [18], Knopik [19, 20], Kayid et al. [15] and Nair et al. [28], study
the Decreasing Mean Time to Failure (DMTTF) aging class. See also the related work of Li and Xu
[22] where the equivalent aging notion of new better than renewal used in the reversed hazard rate
order (NBUrh) is defined and studied. We say that X belongs to the DMTTF class (denoted by
X ∈ DMTTF) if E [τX,T ] given by (2) is decreasing in T > 0. It is well known that DMTTF ⊂ NBUE
[4, 18] and IFR ⊂ DMTTF [20]. Kayid et al. [16], Izadi et al. [12] and Ali Khan et al. [17] consider
generalizations of this aging class.

The following characterization of the DMTTF and IMTTF aging classes can be obtained: X ∈
DMTTF (X ∈ IMTTF) if and only if E[τX,T ] ≥ 1/λ(T ) (E[τX,T ] ≤ 1/λ(T )), where λ = f/F is the
hazard rate function of X. Besides, E[τX,T ] is constant in T only if X is exponentially distributed
(cf. [19]). The equivalent results are obtained for the discrete time age replacement model in [39,
Theorems 3.1 and 3.2]. In Corollary 2.4 we obtain another characterization of the DMTTF and
IMTTF aging classes proving that X ∈ DMTTF (X ∈ IMTTF) if and only if τX,T ∈ NBUE
(τX,T ∈ NWUE) for all T > 0.

Consider we have two systems with age replacement whose units have lifetimes X1 and X2,
respectively, and with time until replacement T > 0 for both systems. It is natural to ask for the
relation between the stochastic orderings that X1, X2 and τX1,T , τX2,T satisfy. For example, Asha
and Unnikrishnan Nair [3] and Kayid et al. [15] study the comparisons of the mean lifetimes of two
systems with age replacement. Jain [13, Theorem 32] extends these results proving that X1 � X2

if and only if τX1,T � τX2,T , for all T > 0; where � denotes the usual stochastic order, hazard rate
order or the likelihood ratio order (see also the work of Block et al. [8] related to the usual stochastic
order). In Theorems 2.8 and 2.9 we obtain similar results for the reversed hazard rate order, the
mean residual lifetime order and the increasing convex and concave orders. Possible applications of
these results are also commented. The existing results on stochastic orders for comparing parallel
systems with constant and random number of units [9, 32], allow us to establish stochastic orderings
between the lifetimes of two parallel systems with age replacement. We consider a parallel system
with age replacement with a constant number of units, and also the case where the number of units is
random. These models have recently received considerable attention and optimization studies have
been carried out to determine the optimum replacement time that minimizes a defined cost function
[10, 29, 30, 42]. For the random-size parallel system with age replacement, we particularly focus on
the case where the number of units is given by a truncated Poisson distribution, as it is considered,
for example, by Nakagawa and Zhao [31] and Zhao et al. [42].

The last part of the present work deals with the system with replacement occurring at a random
time. Similarly to the age replacement models, the optimal replacement time which minimizes
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a given cost function has been extensively studied on models with replacements at random time
[30, 42]. However, as far as we know, stochastic orderings between lifetimes of such systems have not
been studied. For the sake of filling this gap, lifetimes of two systems with this kind of replacement
are compared using the usual stochastic order and the Laplace transform order. In order to exemplify
the applications of these results we compare the lifetimes of two systems with replacement first or
replacement last, i.e. where the replacement time is given by the minimum or the maximum of n
independent random times and a fixed time T > 0.

We must emphasize that the lifetimes of systems with replacement at random time are con-
siderably more difficult to compare than the lifetimes of systems with age replacement previously
considered. In general, it is necessary to assume stronger aging properties to get weaker order rela-
tions. For this reason, we also compare the mean lifetimes and the stationary pointwise availabilities
of two systems as other measures of their reliability. The stationary pointwise availability of systems
with replacement has been previously considered as a measure of the reliability of such systems.
Moreover, the stationary pointwise availability of systems with replacement has been used to con-
struct cost functions in studies about determining the optimal replacement time. See for example
the works of Angus et al. [1], Zhao et al. [42] and Park et al. [34].

The rest of the paper is organized as follows: Section 1.1 provides the definitions of aging classes
and stochastic orders we use in the sequel. Section 2 deals with the system with age replacement
where the time until replacement is constant. Section 2.1 mainly deals with the results associated
to aging classes and Section 2.2 is devoted to the results associated to stochastic orderings. Finally,
Section 3 studies a system with replacement at a random time.

1.1 Background on stochastic orders and aging classes

During this work we assume that all lifetimes and times until replacements are nonnegative absolutely
continuous random variables with finite means. Throughout the article, the terms increasing and
decreasing are used in the non-strict sense. The following definitions introduce some well-known
concepts related to stochastic orders and aging classes.

Definition 1.1 (Aging classes). Let X be a nonnegative random variable with density function f ,
survival function F and finite mean µ. We say that X belongs to the aging class

a) New Better (Worse) than Used in Expectation, denoted by NBUE (NWUE), if∫ ∞

t

F (x) dx ≤ (≥) µ F (t) for all t ≥ 0,

b) Decreasing (Increasing) Mean Time to Failure, denoted by DMTTF (IMTTF), if the function

mX(t) =

∫ t

0

F (x)dx/F (t) is decreasing (increasing) in t > 0,

c) New Better (Worse) than Used, denoted by NBU (NWU), if F (x + t) ≤ (≥)F (x)F (t) for all
x, t ∈ R+,

d) Decreasing (Increasing) Mean Residual Life, denoted by DMRL (IMRL), if µX(t) =

∫ ∞

t

F (x)dx/F (t)

is decreasing (increasing) in {t ≥ 0 : F (t) > 0},
e) Increasing (Decreasing) Failure Rate, denoted by IFR (DFR), if F (x+ t)/F (x) is decreasing

(increasing) in {x ≥ 0 : F (x) > 0} for all t ≥ 0,

f) Increasing (Decreasing) Likelihood Rate, denoted by ILR (DLR), if f(x+ t)/f(x) is decreasing
(increasing) in {x ≥ 0 : f(x) > 0} for all t ≥ 0.

Figure 2 shows the relations among the aging classes in Definition 1.1.

ILR (DLR) IFR (DFR)

DMRL (IMRL)

DMTTF (IMTTF)

NBU (NWU) NBUE (NWUE)

Figure 1: Relations among the aging classes in Definition 1.1.

Let us denote the hazard rate of X by λ(t) = f(t)/F (t), which is defined for all t ≥ 0 such that
F (t) > 0. It is well known that X ∈ IFR (X ∈ DFR) if and only if λ is increasing (decreasing) in its
domain.
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For a nonnegative integer-valued random variable N these aging classes are analogously defined.
For example, we say that N is IFR (DFR) if P[N = n]/P[N > n] is increasing (decreasing) in n ∈ N.
Analogously, we say that N is ILR (DLR) if P[N = n + m]/P[N = n] is decreasing (increasing) in
n ∈ N, for every m ∈ N. Moreover, as in the continuous case we have ILR ⊂ IFR and DLR ⊂ DFR.
See Barlow and Proschan [5], Lai and Xie [21] and Unnikrishnan Nair et al. [28] for more details
about these aging notions.

Definition 1.2 (Stochastic orders). Let X1 and X2 be two nonnegative random variables with finite
means and with density functions f1 and f2, distribution functions F1 and F2 and survival functions
F 1 and F 2, respectively. We say that X1 is greater than X2 in the

a) Laplace transform order, denoted by X1 ≥Lt X2, if

∫ ∞

0

F 1(t) e−stdt ≥
∫ ∞

0

F 2(t) e−stdt for all

s ≥ 0,

b) Increasing convex order, denoted by X1 ≥icx X2, if

∫ ∞

t

F 1(x)dx ≥
∫ ∞

t

F 2(x)dx, for all t ≥ 0,

c) Increasing concave order, denoted by X1 ≥icv X2, if

∫ t

0

F 1(x)dx ≥
∫ t

0

F 2(x)dx, for all t ≥ 0,

d) Harmonic mean residual lifetime order, denoted by X1 ≥hmrl X2, if

∫ ∞

t

F 1(x)

E[X1]
dx ≥

∫ ∞

t

F 2(x)

E[X2]
dx,

for all t ≥ 0,

e) Mean residual lifetime order, denoted by X1 ≥mrl X2, if

∫ ∞

t

F 2(x)dx/

∫ ∞

t

F 1(x)dx is decreas-

ing for all t ≥ 0 such that

∫ ∞

t

F 1(x)dx > 0,

f) Usual stochastic order, denoted by X1 ≥st X2, if F 1(t) ≥ F 2(t) for all t ≥ 0,

g) Reversed hazard rate order, denoted by X1 ≥rh X2, if F1(t)/F2(t) is decreasing for all t ≥ 0,

h) Hazard rate order, denoted by X1 ≥hr X2, if F 2(t)/F 1(t) is decreasing for all t ≥ 0 such that
F 1(t) > 0,

i) Likelihood ratio order, denoted by X1 ≥lr X2, if f2(t)/f1(t) is decreasing for all t ≥ 0 such that
f1(t) > 0.

The relations among these stochastic orders are shown in Figure 2.

X1 ≥lr X2

X1 ≥hr X2

X1 ≥rh X2

X1 ≥mrl X2

X1 ≥st X2

X1 ≥hmrl X2

X1 ≥icx X2

X1 ≥icv X2 X1 ≥Lt X2

Figure 2: Relations among the stochastic order in Definition 1.2.

For a nonnegative integer-valued random variable N , its probability generating function, denoted
by φN , is defined as follows

φN : t ∈ (0, 1) 7→ E[tN ].

A stochastic ordering between two nonnegative integer-valued random variables, N1 and N2, can
be defined using the probability generating functions of these random variables, which turns to be
equivalent to the Laplace transform ordering. Indeed, we say that N1 is greater than N2 in the sense
of the probability generating function, denoted N1 ≥pgf N2, if φN1(t) ≤ φN2(t), for all t ∈ (0, 1).
N1 ≥pgf N2 is thus equivalent to E[e−sN1 ] ≤ E[e−sN2 ], which is equivalent to N1 ≥Lt N2.

Denote by λ1 and λ2 the hazard rates of X1 and X2, respectively. The ordering X1 ≥hr X2 holds
if and only if λ1(t) ≤ λ2(t), for all t ≥ 0 where λ1 and λ2 are defined. Similarly, X1 ≥rh X2 if and
only if r1(t) ≥ r2(t), for all t ≥ 0, where ri = fi/Fi is the reversed hazard rate of Xi, for i = 1, 2.
A deeply treatment of these and other stochastic orders can be found in Müller and Stoyan [27],
Shaked and Shanthikumar [36] and Belzunce et al. [6].

Consider the following sets of functions:

Grh = {g : R2 → R such that g(x, y)− g(y, x) is increasing in x for all x ≤ y},
Glr = {g : R2 → R such that g(x, y) ≥ g(y, x) for all x ≥ y}.
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These sets of functions can be used to characterize the reversed hazard rate and likelihood ratio
orders.

Proposition 1.1 (Characterization of rh and lr orders). Let X1 and X2 be two independent absolutely
continuous random variables. Then,

a) X1 ≥rh X2 if and only if E[φ(X1, X2)] ≥ E[φ(X2, X1)], for all φ ∈ Grh,

b) X1 ≥lr X2 if and only if E[φ(X1, X2)] ≥ E[φ(X2, X1)], for all φ ∈ Glr.

See [37, Theorem 2.3] and [36, Theorem 1.B.48] for the proofs of these results.
A nonnegative function h : R2 → [0,∞) is said to be totally positive of order 2 (TP2) if

h(x1, y1)h(x2, y2) ≥ h(x2, y1)h(x1, y2), for all x1 ≤ x2 and y1 ≤ y2, see [14]. The following charac-
terizations of IFR and DFR aging classes can be found in Propositions B.8 and B.9 of [23].

Proposition 1.2 (Characterization of IFR and DFR aging classes). Let X be an absolutely contin-
uous random variable. Then,

a) X ∈ IFR if and only if F (y − x) is a TP2 function in (x, y),

b) X ∈ DFR if and only if F (x+ y) is a TP2 function in (x, y).

The Gamma and the Weibull distributions are two of the more used distributions to model the
lifetimes and repair times of components in reliability theory [25, 29, 30]. We say that a random
variable X follows a Gamma distribution with parameters α, β ∈ (0,∞), denoted X ∼ Gamma(α, β),
if it has density f(x) = β(βx)α−1e−βx/Γ(α), for all x > 0. Also, X follows a Weibull distribution
with parameters α, β ∈ (0,∞), denoted X ∼ Weibull(α, β), if it has density f(x) = βαxα−1e−βx

α

,
for all x > 0. In Table 1 we show sufficient conditions to order two random variables with Gamma
or Weibull distribution according to some of the stochastic orders in Definition 1.2. See Taylor [40],
Müller and Stoyan [27] and Belzunce et al. [6] for the proofs of these and further results.

X1 ≥lr X2 X1 ≥mrl X2 X1 ≥icv X2

Xi ∼ Gamma(αi, βi)

fi(x) = βi(βix)αi−1e−βix/Γ(αi),
E[Xi] = αi/βi, i = 1, 2

α1 ≥ α2

β1 ≤ β2

α1 ≤ α2

E[X1] ≥ E[X2]
β1 ≥ β2

E[X1] ≥ E[X2]

Xi ∼ Weibull(αi, βi)
fi(x) = βiαix

αi−1e−βix,
E[Xi] = (βi)

−1/αiΓ(1 + 1/αi), i = 1, 2

α1 = α2

β1 ≤ β2

α1 ≤ α2

E[X1] ≥ E[X2]
α1 ≥ α2

E[X1] ≥ E[X2]

Table 1: Sufficient conditions to order two random variables with Gamma or Weibull distributions.

2 Results on systems with age replacement

This section is devoted to the study of the lifetime of systems with age replacement at age T > 0
using aging classes and stochastic orders. In Section 2.1 we study the relation between the aging
classes to which X and τX,T belong. In Section 2.2 we establish stochastic orderings between the
lifetimes of two systems with age replacement using stochastic orderings between the lifetimes of the
working units.

2.1 Aging classes

The relation between τX,T1 and τX,T2 when X belongs to an aging class has been widely studied.
However, as far as we know, it has not been analyzed the aging classes to which τX,T belongs, using
aging properties of X. The following results deal with this problem.

Theorem 2.1. If X ∈ IFR (X ∈ DFR), then τX,T ∈ NBU (τX,T ∈ NWU), for all T > 0.

Proof. To prove τX,T ∈ NBU we have to check the inequality FX,T (x)FX,T (t) ≥ FX,T (x+ t) for all
nonnegative x and t, where FX,T (t) is defined as in (1). This inequality is equivalent to

[F (T )]bx/Tc+bt/TcF
(
x−

⌊ x
T

⌋
T
)
F

(
t−

⌊ t
T

⌋
T

)
≥ [F (T )]b(x+t)/TcF

(
x+ t−

⌊x+ t

T

⌋
T

)
. (3)

As
⌊x+ t

T

⌋
=
⌊ t
T

⌋
+
⌊ x
T

⌋
or
⌊x+ t

T

⌋
=
⌊ t
T

⌋
+
⌊ x
T

⌋
+ 1, we can focus our attention on the following

two excluding cases:
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Case 1:
⌊x+ t

T

⌋
=
⌊ t
T

⌋
+
⌊ x
T

⌋

In this case, (3) can be written as

F
(
x−

⌊ x
T

⌋
T
)
F

(
t−

⌊ t
T

⌋
T

)
≥ F

(
x−

⌊ x
T

⌋
T + t−

⌊ t
T

⌋
T

)
. (4)

Then, for (4) to hold it is sufficient that F (w)F (z) ≥ F (w+z) for all w ≥ 0 and z ≥ 0 satisfying
w + z ∈ [0, T ]. So, the inequality (3) holds because X ∈ NBU.

Case 2:
⌊x+ t

T

⌋
=
⌊ t
T

⌋
+
⌊ x
T

⌋
+ 1

Now, (3) is equivalent to

F
(
x−

⌊ x
T

⌋
T
)
F

(
t−

⌊ t
T

⌋
T

)
≥ F (T )F

(
x+ t−

⌊ x
T

⌋
T −

⌊ t
T

⌋
T − T

)
. (5)

Let us suppose, without lost of generality, that t−
⌊
t
T

⌋
T ≤ x−

⌊
x
T

⌋
T ≤ T . Then the following

inequalities hold

T ≥ x−
⌊ x
T

⌋
T ≥ t−

⌊ t
T

⌋
T ≥ x−

⌊ x
T

⌋
T + t−

⌊ t
T

⌋
T − T.

Hence (5) is true when F (x1)F (x4) ≤ F (x2)F (x3) for x1 ≥ x2 ≥ x3 ≥ x4 such that xi ∈ [0, T ],
i = 1, 2, 3, 4. So, (5) is satisfied when F (y − x) is a TP2 function in (x, y), or equivalently by
part a) of Proposition 1.2, when X ∈ IFR.

The proof when X ∈ DFR can be analogously obtained using part b) of Proposition 1.2.

Remark 2.1. It is easy to see that if λ is increasing (decreasing) in [0, T ], then τX,T ∈ NBU
(τX,T ∈ NWU). Thus, τX,T could belong to NBU even if X /∈ IFR.

When X has probability density, so does τX,T and its hazard rate, denoted by λX,T , satisfies

λX,T (t) = λ
(
t−

⌊
t/T

⌋
T
)
, for all t ≥ 0. As λX,T is a periodic function, it is monotonic if and only

if it is constant. So, τX,T ∈ IFR (DFR) for all T > 0 if and only if it is exponentially distributed, i.e.,
τX,T /∈ IFR(DFR) except when there exists a λ > 0 such that F (t) = e−λt, for all t ∈ [0, T ], which
implies FX,T (t) = e−λt, for all t ≥ 0. In Theorem 2.2 below we set a stronger result considering the
DMRL and IMRL aging classes.

First, let us denote by µX,T the mean residual lifetime of τX,T and denote x = nT + h, where
h ∈ [0, T ) and n = bx/T c ≥ 0. Next, we will obtain an expression for µX,T . Note that

µX,T (x) =

∞∫

0

FX,T (x+ t)

FX,T (x)
dt =

1

FX,T (x)

∞∫

x

FX,T (t)dt. (6)

Furthermore,

∞∫

x

FX,T (t)dt =

(n+1)T∫

x

FX,T (t)dt+

∞∫

(n+1)T

FX,T (t)dt

=

(n+1)T∫

x

FX,T (t)dt+

∞∑

k=n+1

(k+1)T∫

kT

FX,T (t)dt

=
[
F (T )

]n
(n+1)T∫

nT+h

F (t− nT ) dt+

∞∑

k=n+1

[
F (T )

]k
(k+1)T∫

kT

F (t− kT ) dt.

Then,
∞∫

x

FX,T (t)dt =
[
F (T )

]n
T∫

h

F (u)du+
[F (T )]n+1

1− F (T )

T∫

0

F (u)du. (7)

Moreover,
FX,T (x) =

[
F (T )

]n
F (h) . (8)

Thus, plugging (7) and (8) in (6) we get

µX,T (x) =
1

F (h)




T∫

h

F (u)du+
F (T )

1− F (T )

T∫

0

F (u)du


 , (9)

for x = nT + h, with h ∈ [0, T ), and n = bx/T c ≥ 0.
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Theorem 2.2. τX,T ∈ DMRL (IMRL) if and only if it is exponentially distributed.

Proof. Suppose µX,T is monotonic. As µX,T is a periodic function, it must be constant. Let us
define c = E[τX,T ] = µX,T (0). Using (9), we get µX,T is a constant function if and only if

T∫

h

F (u)du = c[F (h)− F (T )], for h ∈ [0, T ].

The solution of the previous integral equation satisfies F (h) = e−h/c, for h ∈ [0, T ]. Consequently,
using (1), we obtain that τX,T is exponentially distributed. The converse implication is trivially
true.

Theorem 2.3. τX,T ∈ NBUE (τX,T ∈ NWUE) if and only if E[τX,h] ≥ (≤)E[τX,T ] for all h ∈ [0, T ].

Proof. Using (2) and (9) we know that τX,T ∈ NBUE if and only if

T∫

h

F (u)du+
F (T )

1− F (T )

T∫

0

F (u)du ≤ F (h)

1− F (T )

T∫

0

F (u)du,

for h ∈ [0, T ). This inequality is equivalent to

T∫

0

F (u)du−
h∫

0

F (u)du =

T∫

h

F (u)du ≤ F (h)− F (T )

1− F (T )

T∫

0

F (u)du ≤
[
1− 1− F (h)

1− F (T )

] T∫

0

F (u)du.

Rearranging conveniently we obtain the equivalent inequality

E[τX,T ] =
1

F (T )

T∫

0

F (u)du ≤ 1

F (h)

h∫

0

F (u)du = E[τX,h],

which proves the result. The case τX,T ∈ NWUE can be analogously obtained.

Suppose that a system with age replacement at time T is already functioning, and it must be
decided if a sooner replacement policy should be implemented or not. Because of the definition of
the DMTTF aging class, when X ∈ DMTTF a smaller time between replacement always increases
the expected lifetime of the system, but this is not necessarily true for other (not stronger) aging
classes. Moreover, if the system is already working, the lifetime data we can collect come from the
lifetime of the system with replacement, and not from the unconditioned lifetime of a working unit
without a replacement policy implemented. Theorem 2.3 offers a solution in this case because it
is sufficient to check that τX,T ∈ NBUE to ensure that E[τX,T ] ≤ E[τX,h], for all h ∈ (0, T ]. The
hypothesis τX,T ∈ NBUE could be accepted using some of the existing statistical tests. We refer the
interested readers on these kind of tests to [2], [21, Section 7.4.5], [38] and the references therein.

Example 1. Let us consider a random variable X with survival function

FX(t) = 1−
[
1− 1

(1 + αt)2

]2

,

where α > 0. The expected value of τX,T can be computed using (2) and is equal to

E[τX,T ] =
1

3α

(αT + 1)(5α2T 2 + 9αT + 3)

αT (αT + 2)2
, for T > 0.

This example was considered first by Weiss [41]. In Figure 3 we can see that 3αE[τX,T ] is not
monotonic as a function of αT . Also, as α is fixed, the global minimum of E[τX,T ] is attained when
αT =

√
6/2. Thus, by Theorem 2.3 we have that τX,T ∈ NBUE if and only if T ≤

√
6/2α.

Note that since the graph of 3αE[τX,T ] crosses its limit value when T tends towards infinity,
namely 3αE[X] = 5, we get that X in not NBUE, neither NWUE. However, it can be set up
a replacement policy at age T ∈

(
0,
√

6/2α
)

such that τX,T is NBUE, and equivalently E[τX,h] ≥
E[τX,T ], for all h ∈ (0, T ]. However, from a practical point of view, as Weiss [41] points out,
it is inadvisable to set a replacement policy up unless E[τX,T ] ≥ lim

T→∞
E[τX,T ] = E[X] = 5/3α,

or equivalently αT ≤ (
√

34− 4)/6 ≈ 0.3052. Indeed, for a planned replacement at T such that
E[τX,T ] ≤ E[X], it would be better not to implement a replacement in the sense of the expected value.

The following result is a consequence of Theorem 2.3.
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Figure 3: Plot of 3αE[τX,T ] as a function of αT .

Corollary 2.4. X ∈ DMTTF (IMTTF) if and only if τX,T ∈ NBUE (NWUE) for all T ≥ 0.

In Theorem 2.1 we proved that X ∈ IFR is a sufficient condition for τX,T ∈ NBU to hold. One
could ask if X ∈ NBU is a sufficient condition for τX,T ∈ NBU. The following example gives us a
negative answer to this question showing that X ∈ NBU is not even a sufficient condition even for
τX,T ∈ NBUE to hold.

Example 2 (X ∈ NBU and τX,T /∈ NBUE). Let X be a random variable with hazard rate function
λ and cumulative hazard rate function Λ satisfying

λ(x) =





2x if x ∈ [0, 1/2]
−2(x− 1) if x ∈ (1/2, 1]

x if x ∈ (1,∞)
, Λ(x) =

∫ x

0

λ(t)dt =





x2 if x ∈ [0, 1/2]
−(x− 1)2 + 1/2 if x ∈ (1/2, 1]

x2/2 if x ∈ (1,∞).

Figure 4-(a) shows a plot of these functions.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

λ

Λ

(a) Plots of functions λ and Λ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

2

4

6

8

10

E
[
τX,T

]

(b) Plot of E[τX,T ]

Figure 4: Plots of functions λ and Λ, and the expectation E[τX,T ] as a function of T .

Then, X has survival function F (x) = e−Λ(x). It can be shown that Λ(x + t) ≥ Λ(x) + Λ(t)
for all x and t in R+, thus X ∈ NBU. However, λ is not monotonic, so X /∈ IFR. Also, as it is
showed in Figure 4-(b), E[τX,T ] is not decreasing in T . Then, from Theorem 2.3, there are values of
T such that τX,T /∈ NBUE. For example, taking T1 = 3

4
and T = 1, we get E[τX,T1 ] ≈ 1.7976 and

E[τX,T ] ≈ 2.012. Thus, even if X ∈ NBU and T1 < T , the inequality E[τX,T1 ] ≤ E[τX,T ] holds, and
consequently τX,T /∈ NBUE.

Marshall and Proschan [24] prove that X ≤st τX,T (X ≥st τX,T ) for all T > 0 if and only if
X ∈ NBU (X ∈ NWU). In a similar way, the following lemma provides necessary and sufficient
conditions for stochastic orderings in the hazard rate and the likelihood ratio senses between the
lifetime of a system with replacement and the lifetime of its units.
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Lemma 2.5. Let X be an absolutely continuous random variable. Then

a) τX,T ≥hr X (τX,T ≤hr X), for all T ≥ 0, if and only if
F (x+ y)

F (x)
is decreasing (increasing) for

x ∈ [0, y] and for all y ≥ 0.

b) τX,T ≥lr X (τX,T ≤lr X), for all T ≥ 0, if and only if
f(x+ y)

f(x)
is decreasing (increasing) for

x ∈ [0, y] and for all y ≥ 0.

Proof.

a) We will prove the result for τX,T ≥hr X. The proof for τX,T ≤hr X is analogous.

Due to the continuity of F (t), the function

FX,T (t)

F (t)
=

[
F (T )

]bt/Tc
F
(
t−

⌊
t
T

⌋
T
)

F (t)
(10)

is also continuous. Then, to prove that (10) is increasing is equivalent to check the function

F (t− (n− 1)T )

F (t)
is increasing in t ∈ [(n−1)T, nT ), for all natural n. Let x = t−(n−1)T . Thus

τX,T ≥hr X if and only if
F (x)

F (x+ (n− 1)T )
is increasing in x ∈ [0, T ] for all T > 0 and n ≥ 1.

Setting n = 2 and T = y, it is clear that
F (x)

F (x+ y)
is increasing for x ∈ [0, y] and for all y ≥ 0.

Now, we will prove the converse implication. Assume
F (x)

F (x+ y)
is increasing in x ∈ [0, y], for

all y ≥ 0, and let m be a natural number. Then
F (x)

F (x+mT )
is increasing for x ∈ [0, T ] because

it is for x ∈ [0,mT ] ⊃ [0, T ].

b) The proof is very similar to the previous case.

The next result follows straightforward from Lemma 2.5.

Theorem 2.6.

a) If X ∈ IFR, then τX,T ≥hr X for all T > 0.

b) If X ∈ ILR, then τX,T ≥lr X for all T > 0.

Moreover, using that the hazard rate function of τX,T satisfies λX,T (t) = λ
(
t−

⌊
t
T

⌋
T
)
, for all

t ≥ 0, we get the following result.

Proposition 2.7. If sup
t∈[0,T )

λ(t) ≤ inf
t∈[T,∞)

λ(t), then τX,T ≥hr X.

Proposition 2.7 shows that the ordering τX,T ≥hr X can hold even when X /∈ IFR. For instance,
consider a random variable X with hazard rate λ as in Example 2. It can be proved that τX,T ≥hr X
for all T ≥ 1.

2.2 Stochastic orderings

Let us consider two systems with age replacement whose units have lifetimes with the same distri-
bution of the random variables X1 and X2, respectively. Jain [13, Theorem 32] proves the existence
of stochastic orderings between τX1,T and τX2,T when the same ordering hold between X1 and X2.
He consideres the usual stochastic order, the hazard rate order and the likelihood ratio order. The
next theorem expands these results considering other stochastic orders.

Theorem 2.8. The following statements hold:

a) The ordering X1 ≥rh X2 holds, if and only if τX1,T ≥rh τX2,T , for all T ≥ 0.

b) If

∫ T

h

F 1(u)du/

∫ T

h

F 2(u)du is increasing in h ∈ (0, T ), then τX1,T ≥mrl τX2,T .

c) If F 1(T ) ≥ F 2(T ) and ∫ t

0

F 1(x)dx ≥
∫ t

0

F 2(x)dx, (11)

for all t ∈ [0, T ], then τX1,T ≥icv τX2,T .

9



Proof.

a) The reversed hazard rate of τXi,T , denoted by rXi,T (t), is equal to

rXi,T (t) =

[
F i(T )

]bt/Tc
fi (t− bt/T cT )

1−
[
F i(T )

]bt/Tc
+
[
F i(T )

]bt/Tc
Fi (t− bt/T cT )

=
ri (t− bt/T cT )

1−[F i(T )]bt/Tc

[F i(T )]bt/Tc
Fi(t−bt/TcT )

+ 1

, (12)

where ri(t) is the reversed hazard rate of Xi, for i = 1, 2.

Note that for t ∈ [0, T ] we get rXi,T (t) = ri(t), for i = 1, 2. So, if τX1,T ≥rh τX2,T , for all
T ≥ 0, then r1(t) ≥ r2(t) for all t ≥ 0, and consequently X1 ≥rh X2.

Now, let us prove that if X1 ≥rh X2, then τX1,T ≥rh τX2,T . The ordering τX1,T ≥rh τX2,T is
equivalent to rX1,T (t) ≥ rX2,T (t), for t ≥ 0, which using (12) becomes equivalent to

r1 (t− bt/T cT )

[
1−

[
F 2(T )

]bt/Tc
[
F 2(T )

]bt/Tc
F2 (t− bt/T cT )

+ 1

]
≥ r2 (t− bt/T cT )

[
1−

[
F 1(T )

]bt/Tc
[
F 1(T )

]bt/Tc
F1 (t− bt/T cT )

+ 1

]
.

As r1 (t) ≥ r2 (t) for all t ≥ 0, it is sufficient to check the inequality

1−
[
F 2(T )

]bt/Tc
[
F 2(T )

]bt/Tc
F2 (t− bt/T cT )

≥
1−

[
F 1(T )

]bt/Tc
[
F 1(T )

]bt/Tc
F1 (t− bt/T cT )

,

which can be written in the way

F2(T )
[
1 + F 2(T ) + · · ·+

[
F 2(T )

]bt/Tc−1
]

F2 (t− bt/T cT )
[
F 2(T )

]bt/Tc ≥
F1(T )

[
1 + F 1(T ) + · · ·+

[
F 1(T )

]bt/Tc−1
]

F1 (t− bt/T cT )
[
F 1(T )

]bt/Tc .

(13)
Since F 1(T ) ≥ F 2(T ), a sufficient condition for the inequality (13) to hold is

F2(T )

F2 (t− bt/T cT )
≥ F1(T )

F1 (t− bt/T cT )
.

But this last inequality is equivalent to

F2(T )

F1(T )
≥ F2 (t− bt/T cT )

F1 (t− bt/T cT )
,

and it is true because, as X1 ≥rh X2, the function
F2(t)

F1(t)
is increasing for all t ≥ 0.

b) Using (7) it can be seen the ordering τX1,T ≥mrl τX2,T is equivalent to

[
F 1(T )

F 2(T )

]n
l(h) (14)

being increasing in h ∈ [0, T ] and in n ∈ N, where

l(h) =




∫ T

h

F 1(u)

F 1(T )
du+ E[τX1,T ]

∫ T

h

F 2(u)

F 2(T )
du+ E[τX2,T ]


 .

Observe that

F 1(T )

F 2(T )
≥

∫ T

h

F 1(u)du

∫ T

h

F 2(u)du

≥ F 1(h)

F 2(h)
, (15)

where the first inequality holds taking limits when h tends to T and the second inequality is

true because by hypothesis the derivative of h 7→
∫ T

h

F 1(u)du/

∫ T

h

F 2(u)du with respect to h

is nonnegative.
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Taking h = 0 in (15) we have
F 1(T )

F 2(T )
≥ F 1(0)

F 2(0)
= 1 and thus

[
F 1(T )

F 2(T )

]n
is increasing in n.

Consequently, it only remains to prove that l(h) is increasing in h ∈ (0, T ).

Deriving l(h) we get it is increasing if and only if

F 2(h)

∫ T

h

F 1(u)du

F 1(T )F 2(T )
+
F 2(h)

F 2(T )
E[τX1,T ] ≥

F 1(h)

∫ T

h

F 2(u)du

F 1(T )F 2(T )
+
F 1(h)

F 1(T )
E[τX2,T ]. (16)

Note that the inequalities F 2(h)

∫ T

h

F 1(u)du ≥ F 1(h)

∫ T

h

F 2(u)du and
F 2(h)

F 2(T )
≥ F 1(h)

F 1(T )
hold

due to (15). Taking h = 0 in (15) we have

∫ T

0

F 1(u)du ≥
∫ T

0

F 2(u)du and using F1(T ) ≤

F2(T ) we get E[τX1,T ] ≥ E[τX2,T ]. Thus, the inequality (16) holds.

c) τX1,T ≥icv τX2,T holds when

∫ t

0

FX1,T (u)du ≥
∫ t

0

FX2,T (u)du,

for all t ≥ 0. This inequality is equivalent to

E[τX1,T ]−
∫ ∞

t

FX1,T (u)du ≥ E[τX2,T ]−
∫ ∞

t

FX2,T (u)du. (17)

Using (2) and (7), the inequality (17) becomes

∫ T

0

F 1(u)du

F1(T )
−
[
F 1(T )

]n−1
∫ T

h

F 1(u)du− [F 1(T )]n

F1(T )

∫ T

0

F 1(u)du ≥

∫ T

0

F 2(u)du

F2(T )
−
[
F 2(T )

]n−1
∫ T

h

F 2(u)du− [F 2(T )]n

F2(T )

∫ T

0

F 2(u)du,

which is equivalent to

∫ T

0

F 1(u)du

F1(T )

[
1−

[
F 1(T )

]n−1
]

+
[
F 1(T )

]n−1
∫ h

0

F 1(u)du ≥

∫ T

0

F 2(u)du

F2(T )

[
1−

[
F 2(T )

]n−1
]

+
[
F 2(T )

]n−1
∫ h

0

F 2(u)du.

Note that

1−
[
F i(T )

]n−1

Fi(T )
= 1 + F i(T ) +

[
F i(T )

]2
+ · · ·+

[
F i(T )

]n−2
, for i = 1, 2.

Thus, the result comes from (11) and the inequality F 1(T )k ≥ F 2(T )k for all k ≥ 1.

We remark that the use of the increasing concave order has not been so common in reliabil-
ity. Recently, Mercier and Castro [26] use it for comparing the lifetimes of systems with imperfect
maintenance actions modeled as a Gamma process, which is, in some sense, a generalization of the
classical system with age replacement.

Let X(1), X(2), . . . be independent random variables with the same distribution of X such that
X(n) is the lifetime of the unit which starts to work after the (n − 1) th replacement. Thus, the
interval from the (n−1) th replacement to the n th replacement or the failure of the system, whichever
occurs first, is given by Z(n) = min{X(n), T}, for all n ≥ 1. The random variables Z(1), Z(2), . . . are
independent and equally distributed. The number of replacements until the failure of the system is
the random variable νX − 1, where νX = inf{n ≥ 1 : X(n) < T}, which has geometric distribution
with mean 1/F (T ), i.e.

P[νX = n] =
[
F (T )

]n−1
F (T ),

for all n ≥ 1. A scheme of a trajectory of the stochastic process modeling the lifetime of the system
with age replacement is shown in Figure 5.
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Note that the lifetime τX,T can be expressed as a random sum of independent random variables
as follows

τX,T =

νX∑

n=1

Z(n).

However, the summands in the previous random sum are not independent of the number of sum-
mands. This problem can be solved noting that

τX,T =st (νX − 1)T + (X | X < T ), (18)

where =st stands for the equality in distribution. Moreover, the two random variables in the right
side of (18) are independent.

0 T 2T 3T 4T

X(4)X(1) X(2) X(3)

Z(1) Z(2) Z(3) Z(4)

τX,T

Figure 5: Scheme of a trajectory of the stochastic process modeling the lifetime τX,T .

The representation of τX,T as a sum of independent random variables could be used to establish
stochastic orderings similar to those in Theorem 2.8, using the existing theory for comparing the
sum of independent random variables (cf. [6, 36]). Moreover, this different approach has a prac-
tical interpretation: when we collect data of the lifetime of a system with replacement, it gives us
information about the lifetime of its units conditioned to be smaller than T and about the number
of replacements until failure, not about the (unconditional) lifetime of the units. Suppose we have
two different kinds of units with lifetimes X1 and X2, which have survival functions F 1 and F 2 and
density functions f1 and f2, respectively. From a practical point, of view it would be more useful to
take advantage of the stochastic relations between X ′1 = (X1 | X1 < T ) and X ′2 = (X2 | X2 < T )
to decide which system has a greater lifetime, instead of the relations between the (unconditional)
lifetimes of the units. The next result is similar to Theorem 2.8 but under this different approach.

Theorem 2.9. The following statements hold

a) If F 1(T ) ≥ F 2(T ) and (X1 | X1 < T ) ≥icx (X2 | X2 < T ), then τX1,T ≥icx τX2,T ,

b) If F 1(T ) ≥ F 2(T ) and (X1 | X1 < T ) ≥icv (X2 | X2 < T ), then τX1,T ≥icv τX2,T ,

c) If F 1(T ) ≥ F 2(T ) and (X1 | X1 < T ) ≥st (X2 | X2 < T ), then τX1,T ≥st τX2,T ,

d) If f1(t) ≤ f2(t) for all t ∈ [0, T ] and (X1 | X1 < T ) ≥hr (X2 | X2 < T ), then τX1,T ≥hr τX2,T ,

e) If f1(t) ≤ f2(t) for all t ∈ [0, T ] and (X1 | X1 < T ) ≥rh (X2 | X2 < T ), then τX1,T ≥rh τX2,T ,

f) (X1 | X1 < T ) ≥lr (X2 | X2 < T ) if and only if τX1,T ≥lr τX2,T .

Proof. Note that as νX1 and νX2 are geometric random variables with means 1/F1(T ) and 1/F2(T ),
respectively. The ordering νX1 ≥st νX2 is thus equivalent to F 1(T ) ≥ F 2(T ). In fact, the ordering
νX1 ≥st νX2 is also equivalent to the same ordering in the sense of all the stochastic orders defined
in Definition 1.1, and to the inequality E[νX1 ] ≥ E[νX2 ].

The increasing concave, the increasing convex and the usual stochastic orders remain valid under
sums of independent random variables, see e.g. [36]. Thus, the results in a), b) and c) come from
(18).

Let us denote by FX′
i

and fX′
i

the survival and the density functions of X ′i = (Xi | Xi < T ),
respectively, for i = 1, 2. Using (18) we have

FXi,T (t) = P
[
νXi =

⌊
t

T

⌋
+ 1

]
FX′

i

(
t−

⌊
t

T

⌋)
+ P

[
νXi >

⌊
t

T

⌋
+ 1

]

= pi(1− pi)bt/TcFX′
i

(
t−

⌊
t

T

⌋)
+ (1− pi)bt/Tc+1, (19)

where pi = Fi(T ), for i = 1, 2. From (19) we get

fXi,T (t) = pi(1− pi)bt/TcfX′
i

(
t−

⌊
t

T

⌋)
. (20)
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It remains to prove d) and e). The hazard rate function of τXi,T can be written as

λXi,T (t) =
pi(1− pi)b

t
T
cfX′

i

(
t−

⌊
t
T

⌋)

pi(1− pi)bt/TcFX′
i

(
t−

⌊
t
T

⌋)
+ (1− pi)bt/Tc+1

=
pifX′

i

(
t−

⌊
t
T

⌋)

piFX′
i

(
t−

⌊
t
T

⌋)
+ (1− pi)

,

for all t ≥ 0 and i = 1, 2. The inequality λX1,T (t) ≤ λX2,T (t) becomes equivalent to

p1p2fX′
1
(x)FX′

2
(x) + p1(1− p2)fX′

1
(x) ≤ p1p2fX′

2
(x)FX′

1
(x) + p2(1− p1)fX′

2
(x),

for all x ∈ [0, T ]. Note that p1p2fX′
1
(x)FX′

2
(x) ≤ p1p2fX′

2
(x)FX′

1
(x) holds due to X ′1 ≥hr X

′
2. Also,

as p1 ≤ p2, a sufficient condition for p1(1−p2)fX′
1
(x) ≤ p2(1−p1)fX′

2
(x) to hold is f1(x) = p1fX′

1
(x) ≤

p2fX′
2
(x) = f2(x), for all x ∈ [0, T ], which is true by hypothesis. Consequently, τX1,T ≥hr τX2,T .

Part e) is analogously proved.
Moreover, f) is trivially proved using (20).

The ordering (X1 | X1 < T ) ≥icv (X2 | X2 < T ) is equivalent to the inequality

∫ t

0

F1(x)dx

F1(T )
≤

∫ t

0

F2(x)dx

F2(T )
(21)

for all t ∈ [0, T ]. If F 1(T ) ≥ F 2(T ) and (11) hold, so does (21). Consequently, Theorem 2.9-b) is a
particular case of part of Theorem 2.8-c). Also, note that X1 ≥icv X2 is sufficient for (11) to hold.

Weibull distribution with increasing hazard rate is one of the most commonly used distributions
to model lifetimes of components in a system. This fact makes interesting the comparison of the
lifetimes of system with age replacement whose working units have Weibull lifetimes, as we consider
in the following example.

Example 3 (Weibull lifetimes). Suppose the lifetimes of the units of two systems with age replace-
ments have Weibull distribution. Namely, Xi ∼ Weibull(αi, βi), where αi > 1 and βi > 0, for
i = 1, 2. Using Table 1 we obtain that if α1 = α2 and β1 ≤ β2, then X1 ≥lr X2, and consequently
τX1,T ≥lr τX2,T , for all T > 0. If α1 6= α2, it can be proved that there is no usual stochastic ordering
between X1 and X2 (cf. [40]). However, the condition (X1 | X1 < T ) ≥lr (X2 | X2 < T ) becomes
equivalent to the function

ψ(t) =
F
′
1(t)

F
′
2(t)

=
β1α1 t

α1 e−β1t
α1

β2α2 tα2 e−β2t
α2

being increasing for t ∈ [0, T ]. Deriving ψ(t) we get

ψ′(t) =sg g(t) = α1 − α2 + α2β2t
α2 − α1β1t

α1 , (22)

where h1(x) =sg h2(x) means that there exists a real positive function h(t) such that h1(t) = h(t)h2(t),
for all t ≥ 0. Assume α1 ≥ α2, then a sufficient condition for ψ being increasing in [0, T ] is that
Tα1−α2 ≤ α2β2

α1β1
.

Now, suppose that Tα1−α2 ≤ β2
β1

. Note that

g(t) = (α1 − α2) + α2β2t
α1

(
tα2−α1 − α1β1

α2β2

)
≥ (α1 − α2) + β1α2t

α1

(
1− α1

α2

)

≥ (α1 − α2) (1− β1T
α1) ,

which is nonnegative if Tα1 ≤ 1
β1

. Thus, if α1 ≥ α2 and one of the following two conditions holds:

a) Tα1−α2 ≤ α2β2
α1β1

,

b) Tα1−α2 ≤ β2
β1

and Tα1 ≤ 1
β1

,

then Theorem 2.9-f) ensures that τX1,T ≥lr τX2,T , even though X1 �st X2.

Applications to parallel systems

Next we consider the age replacement models where the lifetime of the working unit is given by
a parallel system. For such systems, optimization analysis has been carried out to determine the
optimum replacement times assuming costs [29, 42]. The results previously obtained related to
stochastic orderings can be easily adapted for these models as we next show.

Consider two parallel systems whose units have lifetimesX
{1}
1 , X

{2}
1 , . . . , X

{n}
1 andX

{1}
2 , X

{2}
2 , . . . , X

{n}
2 ,

respectively. For each system, the lifetimes of its units are assumed independent, but not necessarily
equally distributed. Thus, the lifetimes of the parallel systems are given byMn

1 = max{X{1}1 , X
{2}
1 , . . . , X

{n}
1 }

and Mn
2 = max{X{1}2 , X

{2}
2 , . . . , X

{n}
2 }. Our goal is to find conditions among the random variables
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X
{i}
1 and X

{j}
2 , for i, j ∈ {1, 2, . . . , n}, that ensure an ordering between τMn

1 ,T
and τMn

2 ,T
in the

sense of one of the stochastic orders in Definition 1.2. The following proposition uses well-known
results on the stochastic ordering of parallel systems to achieve this purpose.

Proposition 2.10. The following statements hold for every replacement time T > 0:

a) If X
{i}
1 ≥st X

{i}
2 , for all i ∈ {1, 2, . . . , n}, then τMn

1 ,T
≥st τMn

2 ,T
,

b) If X
{i}
1 ≥rh X

{i}
2 , for all i ∈ {1, 2, . . . , n}, then τMn

1 ,T
≥rh τMn

2 ,T
,

c) If X
{i}
1 ≥hr X

{j}
2 , for all i, j ∈ {1, 2, . . . , n} and X

{i}
1 , X

{i}
2 have support (a, b), for some a < b,

then τMn
1 ,T
≥hr τMn

2 ,T
,

d) If X
{i}
1 ≥lr X

{j}
2 , for all i, j ∈ {1, 2, . . . , n}, then τMn

1 ,T
≥lr τMn

2 ,T
.

Proof. It is immediate that X
{i}
1 ≥st X

{i}
2 , for all i ∈ {1, 2, . . . , n}, implies that Mn

1 ≥st Mn
2 .

Moreover, using Proposition 1.B.35 in [36] we get that X
{i}
1 ≥rh X

{i}
2 , for all i ∈ {1, 2, . . . , n},

implies that Mn
1 ≥rh M

n
2 . Thus, using Theorem 32-c) in [13] and Theorem 2.8-a) above, we get a)

and b).
Furthermore, under the hypothesis in c) and d) we have that Mn

1 ≥hr M
n
2 and Mn

1 ≥lr M
n
2 ,

respectively (see Proposition 1.B.35 and Corollary 1.C.34 in [36]). Finally, using Theorem 32-a) and
b) in [13] we prove the statements c) and d).

Another model that has attracted the attention in studies about replacement in recent years is the
random-size parallel system with age replacement [10, 30, 31, 42]. For this model, it is considered a
parallel system of independent and identically distributed units, but the number of units is assumed
random. Let us denote by MNi

i the lifetime of a parallel system of independent units with lifetimes
with the same distribution as the random variable Xi, whereas the number of units is given by the
positive integer-valued random variable Ni, for i = 1, 2. Then,

MNi
i = max

{
X
{1}
i , X

{2}
i , . . . , X

{Ni}
i

}
,

for i = 1, 2. The distribution function of MNi
i is given by

F
M
Ni
i

(t) =

∞∑

n=1

Fi(t)
nP[Ni = n] = ϕNi(Fi(t)), (23)

where ϕNi is the probability generating function of Ni, for i = 1, 2. The next result compares
τM1

N1 ,T and τM2
N2 ,T in the sense of the usual stochastic order.

Proposition 2.11. If X1 ≥st X2 and N1 ≥pgf N2, then τM1
N1 ,T ≥st τX2

N2 ,T .

Proof. Using (23) we have that τM1
N1 ,T ≥st τX2

N2 ,T , if X1 ≥st X2 and N1 ≥pgf N2 (cf. [32,
Theorems 3.1 and 3.5]). Finally, the ordering τX1

N1 ,T ≥st τX2
N2 ,T holds due to the results in [8].

We next consider the case where the number of components in the parallel systems, Ni, is
distributed according to a truncated Poisson distribution with parameter ρi > 0, i.e.

P[Ni = n] =
e−ρi

1− e−ρi
ρni
n!
,

for all n ≥ 1, and i = 1, 2. This particular choice of distribution for the random number of units
has been recurrent in the literature related to random-size parallel systems with age replacement,
see e.g. [10, 30, 31, 42]. It can be checked that

φNi(t) =
eρi(t−1) − e−ρi

1− e−ρi
,

for i = 1, 2. Thus, the distribution function of Mi
Ni , denoted FMiNi , satisfies

FMiNi (t) =
e−ρiF i(t) − e−ρi

1− e−ρi
,

for i = 1, 2. Let us denote by FMiNi and fMiNi the survival and density functions of Mi
Ni , for

i = 1, 2. These functions satisfy,

FMiNi (t) =
1− e−ρiF i(t)

1− e−ρi
, fMiNi (t) = ρifi(t)

e−ρiF i(t)

1− e−ρi
,

for i = 1, 2.
The next result compares two age replacement models where the lifetimes of the working units

are given by parallel systems with truncated Poisson number of components.
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Proposition 2.12 (Parallel system with truncated Poisson number of components). Consider N1

and N2 two random variables with truncated Poisson distribution with positive parameters ρ1 and ρ2,
respectively. Assume ρ1 ≥ ρ2. The following statements hold:

a) if X1 ≥st X2, then τ
M
N1
1 ,T

≥st τMN2
2 ,T

,

b) if X1 ≥hr X2, then τ
M
N1
1 ,T

≥hr τMN2
2 ,T

.

Proof. The statement a) is proved using Proposition 2.11. Indeed, we only need to check that
N1 ≥pgf N2, when ρ1 ≥ ρ2. In fact, it can be proved that the stronger ordering N1 ≥lr N2 holds,
which is equivalent to P[N1 = n]/P[N2 = n] being increasing for n ∈ N.

To prove statement b) note that the hazard rate function of MNi
i , denoted λ

M
Ni
i

, satisfies

λ
M
Ni
i

(t) = ρifi(t)
e−ρiF i(t)

1− e−ρiF i(t)
= λi(t)

ρiF i(t)e
−ρiF i(t)

1− e−ρiF i(t)
.

The prove τ
M
N1
1 ,T

≥hr τMN2
2 ,T

we need to check that the inequality λ
M
N1
1

(t) ≤ λ
M
N2
2

(t) holds for

all t ≥ 0. By hypothesis λ1(t) ≤ λ2(t) holds, for all t ≥ 0. Hence, it is sufficient to prove that

ρ1F 1(t)e−ρ1F1(t)

1− e−ρ1F1(t)
≤ ρ2F 2(t)e−ρ2F2(t)

1− e−ρ2F2(t)
,

for all t ≥ 0. The last inequality follows from ρ1F 1(t) ≥ ρ2F 2(t), for all t ≥ 0, and the fact that the
function x 7→ x e−x/(1− e−x) is decreasing for all x ≥ 0.

The following example shows that a similar result to those in the previous proposition does not
hold for the reversed hazard rate order, and thus neither for the likelihood ratio order.

Example 4. Consider X1 and X2 with exponential distribution with hazard rates µ1 and µ2, re-
spectively. Assume ρ1 = ρ2 = ρ and µ1 < µ2, which imply N1 =st N2 and X1 ≥lr X2, respectively.
Let us denote by r

M
Ni
i

the reversed hazard rate function of τ
M
Ni
i

, for i = 1, 2. Then, the ordering

τ
M
N1
1 ,T

≥rh τMN2
2 ,T

is equivalent to the inequality r
M
N1
1

(t) ≥ r
M
N2
2

(t), for all t ≥ 0, which can be

written as

∆(t) =
µ1

µ2

e−µ1t

e−µ2t

exp{−ρ e−µ1t}
exp{−ρ e−µ2t}

exp{−ρ e−µ2t} − e−ρ

exp{−ρ e−µ1t} − e−ρ
≥ 1,

for all t ≥ 0. However, it is possible to check that the function ∆ satisfies

∆(t) = 1 + (µ1 − µ2)

(
ρ− 1

2

)
t+ tε(t)

where ε(t) denotes a function such that lim
t→0+

ε(t) = 0. Then, since µ1 < µ2, the function ∆ is initially

decreasing when ρ > 1/2 and thus, in this case, there is no reversed hazard rate ordering between
MN1

1 and MN2
2 , and neither between τ

M
N1
1 ,T

and τ
M
N2
2 ,T

, because of Theorem 2.8-a).

3 Results on systems with replacement at random time

Consider a nonnegative absolutely continuous random variable Y , with finite mean, distribution
function G, survival function G and density function g. Let us suppose that X(n) is the lifetime of
the unit which starts to work after the (n−1) th replacement and Y (n) the random time between the
(n− 1) th and the n th replacements, which has the same distribution of Y , for n ≥ 1. Assume that
X(n) and Y (n) are independent for all n ≥ 1. Thus, the interval from the n th replacement to the
(n+1) th replacement or the failure of the system, whichever occurs first, is Z(n) = min{X(n), Y (n)},
for all n ≥ 1. The number of replacements before the failure of the system is a random variable
νX,Y − 1, where νX,Y = min{n ≥ 1 : X(n) < Y (n)} has geometric distribution starting at 1, with
mean 1/P[X < Y ]. Then, the lifetime of the system with random time replacement, denoted by
τX,Y , satisfies

τX,Y =

νX,Y∑

n=0

Z(n). (24)

A scheme of a trajectory of the stochastic process modeling the lifetime of the system with replace-
ment at random time is showed in Figure 6.
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Y (1) Y (2) Y (3) Y (4)

X(4)X(1) X(2) X(3)

Z(1) Z(2) Z(3) Z(4)

τX,Y

Figure 6: Sketch of a trajectory of the stochastic process modeling the lifetime τX,Y .

The summands and the number of summands in the representation of τX,Y as a random sum in
(24) are not independent. In order to solve the problem we give the following alternative represen-
tation of τX,Y as a random sum of independent random variables:

τX,Y =st

νX,Y −1∑

n=0

(
Y (n) | X(n) ≥ Y (n)

)
+
(
X(n) | X(n) < Y (n)

)
, (25)

where Y0 = 0, X(n) =st X and Y (n) =st Y , for all n ≥ 1. Observe that the summands in (25) and
νX,Y are independent.

From Theorem 1.A.4 in [36] we know that the usual stochastic ordering between random variables
is preserved by random sums if the random number of summands also satisfy the usual stochastic
ordering in the same sense, the summands are independent among them and independent of the
number of summands. Thus, it would be interesting to compare random variables with the same
distribution as (Y | X ≥ Y ) and (X | X < Y ). In order to do that we have the following result
which has an independent interest.

Lemma 3.1. Consider X1, X2, Y1 and Y2 absolutely continuous random variables such that Xi and
Yi are independent for i = 1, 2. Let us suppose Y1 =st Y2 =st Y . The following two statements hold:

a) If X1 ≥hr X2, then (Y1 | X1 ≥ Y1) ≥st (Y2 | X2 ≥ Y2).

b) If X1 ≥rh X2, then (X1 | X1 < Y1) ≥st (X2 | X2 < Y2).

Proof. a) It must be proved that for all t ≥ 0

P[Y1 > t | X1 ≥ Y1] ≥ P[Y2 > t | X2 ≥ Y2],

or equivalently
P[Y1 > t; X1 ≥ Y1]

P[X1 ≥ Y1]
≥ P[Y2 > t; X2 ≥ Y2]

P[X2 ≥ Y2]
.

This inequality can be written as
∫ ∞

t

F 1(x)dG(x)

∫ t

0

F 1(x)dG(x) +

∫ ∞

t

F 1(x)dG(x)

≥

∫ ∞

t

F 2(x)dG(x)

∫ t

0

F 2(x)dG(x) +

∫ ∞

t

F 2(x)dG(x)

.

Using Fubini’s Theorem it is obtained the equivalent inequality

∞∫

t

t∫

0

F 1(x)F 2(y)dG(y)dG(x) ≥
∞∫

t

t∫

0

F 1(y)F 2(x)dG(y)dG(x). (26)

Thus, (26) holds if F 1(x)F 2(y) ≥ F 1(y)F 2(x), for x ≥ t y 0 ≤ y ≤ t, which is true due to
X1 ≥hr X2.

b) In a similar way to the previous case, it must be proved

∫ ∞

t

G(x)dF1(x)
∫ ∞

0

G(x)dF1(x)

≥

∫ ∞

t

G(x)dF2(x)
∫ ∞

0

G(x)dF2(x)

.
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That is equivalent to

∞∫

t

t∫

0

G(x)G(y)f1(x)f2(y) dxdy ≥
∞∫

t

t∫

0

G(x)G(y)f2(x)f1(y) dxdy. (27)

Denote φ(x, y) = 1[t,∞)(x)1(−∞,t](y)G(x)G(y). The inequality (27) is equivalent to E[φ(X1, X2)] ≥
E[φ(X2, X1)]. When x ≤ y we have

φ(x, y)− φ(y, x) = −G(x)G(y)1(−∞,t](x)1[t,∞)(y)

which is increasing in x. Thus, E[φ(X1, X2)] ≥ E[φ(X2, X1)] holds due to φ ∈ Grh and part a)
of Proposition 1.1.

We next establish sufficient conditions to compare two systems with replacement at random time
in the sense of the usual stochastic order, when the replacement times have the same distribution
for both systems.

Theorem 3.2. If X1 ≥hr X2, X1 ≥rh X2 and Y1 =st Y2, then τX1,Y1 ≥st τX2,Y2 .

Proof. Note that νX1,Y1 ≥st νX2,Y2 due to P[X1 < Y1] ≤ P[X2 < Y2]. Now, using (25), Lemma 3.1
and Theorem 1.A.4 in [36] we get the desired result.

Example 5 (Gamma lifetimes). The conditions in Theorem 3.2 hold, for instance, when X1 ≥lr X2

and Y1 =st Y2. As an example, consider Xi with distribution Gamma(αi, βi) for i = 1, 2. If α1 ≥ α2

and β1 ≤ β2, using Table 1 we get that the ordering X1 ≥lr X2 holds. Thus, τX1,Y1 ≥st τX2,Y2 for
any pair of random variables Y1 and Y2, such that Y1 =st Y2.

Let ΦX,Y be the survival function of τX,Y and consider the Laplace transform of ΦX,Y , denoted
by Φ̂X,Y , defined by

Φ̂X,Y (s) =

∫ ∞

0

ΦX,Y (t)e−stdt,

for all s ≥ 0. It is not difficult to see that

Φ̂X,Y (s) =

∫ ∞

0

F (x)G(x)e−sxdx
∫ ∞

0

f(x)G(x)e−sxdx+ s

∫ ∞

0

F (x)G(x)e−sxdx

. (28)

The next theorem compares the lifetimes of two systems with different replacement time distri-
butions in the sense of the Laplace transform order.

Theorem 3.3. If X1 =st X2, Y1 ≤hr Y2 (Y1 ≥hr Y2) and X1, X2 ∈ IFR (X1, X2 ∈ DFR), then
τX1,Y1 ≥Lt τX2,Y2 .

Proof. Let Φ̂X1,Y1 and Φ̂X2,Y2 be the Laplace transforms of ΦX1,Y1 and ΦX2,Y2 , respectively. Let
G1 and G2 be the survival functions of Y1 and Y2, respectively. We need to prove that, Φ̂X1,Y1(s) ≥
Φ̂X2,Y2(s), for all s ≥ 0 which, due to (28), is equivalent to

∫ ∞

0

f(x)G1(x)e−sxdx
∫ ∞

0

F (x)G1(x)e−sxdx

≤

∫ ∞

0

f(x)G2(x)e−sxdx
∫ ∞

0

F (x)G2(x)e−sxdx

.

Rearranging the terms and using Fubini’s Theorem, the previous expression becomes equivalent to

∫∫

R2
+

e−s(x+y)G1(x)G2(y)F (x)f(y)dxdy ≤
∫∫

R2
+

e−s(x+y)G1(x)G2(y)F (y)f(x)dxdy,

which is equivalent to

I =

∫∫

R2
+

e−s(x+y)G1(x)G2(y)F (x)F (y)[λ(x)− λ(y)]dxdy ≥ 0 (29)

where λ is the hazard rate of X1 and X2. Let us define

h(x, y) = e−s(x+y)G1(x)G2(y)F (x)F (y)[λ(x)− λ(y)].
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Then,

I =

∫∫

x≥y

h(x, y)dxdy +

∫∫

x≤y

h(x, y)dxdy

=

∫∫

x≥y

[h(x, y) + h(y, x)]dxdy

=

∫∫

x≥y

e−s(x+y)F (x)F (y)[λ(x)− λ(y)]× [G1(x)G2(y)−G1(y)G2(x)]dxdy.

Finally, the last expression is positive when Y1 ≤hr Y2 and X1 ∈ IFR or Y1 ≥hr Y2 and X1 ∈ DFR.

Example 6 (Replacement first and replacement last). Recently some authors have studied a model
where the time to replacement combines the constant and the random policies, i.e., the model with
replacement first and replacement last [30, 42, 43]. For the model with replacement first it is assumed

that the unit with lifetime Xi is replaced at time T or at times Y
{j}
i , j = 1, 2, . . . , n, whichever occurs

first, for i = 1, 2. The random variables Xi and Y
{j}
i , for i = 1, 2 and j = 1, 2, . . . , n, are considered

independent. Then, the replacement time under this policy, denoted Y First
i , satisfies

Y First
i = min

{
Y
{1}
i , Y

{2}
i , . . . , Y

{n}
i , T

}
,

for i = 1, 2. Analogously, it is defined the model with last replacement, i.e., the replacement occurs at
time T or at Y

{j}
i , j = 1, 2, . . . , n and i = 1, 2, whichever occurs last. In this case, the replacement

time is given by

Y Last
i = max

{
Y
{1}
i , Y

{2}
i , . . . , Y

{n}
i , T

}
,

for i = 1, 2. Then, we can use the existing results related to comparisons of the maximum or
the minimum of random variables to establish stochastic orderings between two systems with first
replacement or last replacement. Let us denote by τXi,Y First

i
(resp. τXi,Y Last

i
) the lifetime of the

system whose units have lifetimes Xi and first replacement at Y First
i (resp. last replacement at

Y Last
i ), for i = 1, 2. Moreover, let us denote by λ

Y
{j}
i

(t) the hazard rate of Y
{j}
i , for j = 1, 2, . . . , n

and i = 1, 2. Then, using Theorems 1.B.33 and 1.B.35 in [36] and Theorem 3.3 above we get the
following results:

• if X1 =st X2 ∈ IFR and λ
Y

{j}
1

(t) ≥ λ
Y

{j}
2

(t) for all j ∈ {1, 2, . . . , n} and t ∈ [0, T ], then

τX1,Y
First
1

≥Lt τX2,Y
First
2

,

• if X1 =st X2 ∈ IFR and λ
Y

{i}
1

(t) ≥ λ
Y

{j}
2

(t) for all i, j ∈ {1, 2, . . . , n} and t ∈ [0, T ], then

τX1,Y
Last
1
≥Lt τX2,Y

Last
2

.

As a consequence of Theorems 3.2 and 3.3 we have the following result.

Corollary 3.4. If X1 ≥hr X2, X1 ≥rh X2 and one of the following conditions holds

a) Y1 ≤hr Y2 and X1 ∈ IFR or X2 ∈ IFR,

b) Y1 ≥hr Y2 and X1 ∈ DFR or X2 ∈ DFR,

then τX1,Y1 ≥Lt τX2,Y2 .

Example 7. Let us suppose that

X1 ≥hr X2, X1 ≥rh X2 and X1 ∈ IFR. (30)

Then, using Corollary 3.4 we get τX1,Y ≥Lt X2, for every random variable Y . From a practical point
of view this means that any replacement policy implemented will increase the lifetime of the system
in the sense of Laplace order. Conditions in (30) holds for example in the following cases (see Table
1):

• Xi ∼ Gamma(αi, βi), for i = 1, 2, satisfying α1 ≥ α2, β1 ≤ β2. Moreover, we must demand
α1 ≥ 1 for X ∈ IFR to hold.

• Xi ∼Weibull(α, βi), for i=1,2, satisfying β1 ≤ β2 and α ≥ 1.
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Comparing mean lifetimes and stationary pointwise availabilities

We next proceed to compare the mean lifetimes of systems with replacement at random time. Taking
s = 0 in (28) we obtain

E[τX,Y ] =
E[X ∧ Y ]

P[Y > X]
. (31)

Consider the following result,

Lemma 3.5. Let X and Y be independent random variables with survival functions F and G,
respectively. Then,

E [X ∧ Y ] = E
[
(HG)(X)

]
. (32)

= E
[
(HF )(Y )

]
, (33)

where H is the integral operator satisfying

(Hh)(x) =

x∫

0

h(u)du, for all x ≥ 0.

Proof. Note that

E [X ∧ Y ] =

∞∫

0

G(x)F (x)dx =

∞∫

0

F (x) d




x∫

0

G(u)du




=

∞∫

0




x∫

0

G(u)du


dF (x) = E

[
(HG)(X)

]
.

Equality (33) is analogously proved.

In order to compare the mean values of τX1,Y1 and τX2,Y2 we have the following proposition.

Proposition 3.6. If X1 ≥st X2, Y1 ≤lr Y2 (Y1 ≥lr Y2) and X1 ∈ DMTTF or X2 ∈ DMTTF
(X1 ∈ IMTTF or X2 ∈ IMTTF), then E [τX1,Y1 ] ≥ E [τX2,Y2 ].

Proof. Suppose first that X1 =st X2 =st X ∈ DMTTF and Y1 ≤lr Y2. Using (31) and (33) we get

E [τXi,Yi ] =
E
[
(HF )(Yi)

]

E[F (Yi)]
.

Thus, the inequality E[τX1,Y1 ] ≥ E[τX2,Y2 ] is equivalent to

E
[
F (Y1)F (Y2)

(HF )(Y1)

F (Y1)

]
≥ E

[
F (Y1)F (Y2)

(HF )(Y2)

F (Y2)

]
. (34)

Consider φ(x, y) = F (x)F (y)

∫ y

0

F (u)du

F (y)
. As X1 ∈ DMTTF we have that

φ(x, y)− φ(y, x) = F (x)F (y)




∫ y

0

F (u)du

F (y)
−

∫ x

0

F (u)du

F (x)


 ≥ 0,

for all x ≥ y. Thus, the inequality (34) is equivalent to E[φ(Y1, Y2)] ≤ E[φ(Y2, Y1)] for φ ∈ Glr, which
holds from part b) of Proposition 1.1.

Suppose now that Y1 =st Y2. A sufficient condition for the inequality E[τX1,Y1 ] ≥ E[τX2,Y2 ] to
hold is E[X1 ∧ Y1] ≥ E[X2 ∧ Y2] and P[Y1 > X1] ≤ P[Y2 > X2]. It is not difficult to check that these
inequalities hold when X1 ≥st X2.

In the general case let us assume, without lost of generality, that X1 ∈ DMTTF. Then E[τX1,Y1 ] ≥
E[τX1,Y2 ] using a), and E[τX1,Y2 ] ≥ E[τX2,Y2 ] using b). Consequently, E[τX1,Y1 ] ≥ E[τX2,Y2 ].

Note that when X1 =st X2 =st X ∈ DMTTF, then for any Y1 ≤lr Y2 we get E [τX,Y1 ] ≥
E [τX,Y2 ]. Thus, Proposition 3.6 generalizes the aging notion of the class DMTTF showing that the
expected lifetime of the systems with replacement at random time increases when the times between
replacement are ordered in the likelihood ratio sense.

Let us assume we only can detect if the system is not working when a replacement is done. After
a system failure, when the next replacement takes place, a renewal occurs and the system starts to
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work. Thus, at every instant there is a probability that the system is working or not. We define
the pointwise availability of the system at instant t, denoted by AX,Y (t) as the probability that it
is working at the instant t. The stationary pointwise availability, denoted by AX,Y , is defined as
the limit of AX,Y (t) as t tends to infinity. Let us denote by F and G the survival functions of the
random variables X and Y , respectively, and assume X and Y have finite means. Then, the following
integral equation holds,

AX,Y (t) = F (t)G(t) +

t∫

0

AX,Y (t− x) dG(x). (35)

Thus, using the well-known Key Renewal Theorem, see e.g. Theorems 3.4.2 and 3.4.4 in [35], we get

AX,Y =

∞∫

0

F (x)G(x)dx

∞∫

0

G(x)dx

=
E [X ∧ Y ]

E [Y ]
. (36)

Consider the random variable asymptotic equilibrium age, denoted by Y e, associated to a random
variable Y with finite mean, which has distribution function

Ge(t) =

∫ t

0

G(x)dx

E[Y ]
.

The ordering Y ≤hmrl Y is equivalent to Y e
1 ≤st Y

e
2 (cf. [36, Theorem 2.B.2]). We highlight that there

is no implications between the harmonic mean residual lifetime and the usual stochastic orderings of
two random variables. See e.g. [36] for more details about the asymptotic equilibrium age.

The following theorem deals with the comparison of the pointwise stationary availabilities of two
systems with different distributions of lifetimes and replacement times.

Theorem 3.7. If X1 ≥icv X2 and Y1 ≤hmrl Y2, then AX1,Y1 ≥ AX2,Y2 .

Proof. Consider X1 =st X2 =st X and Y1 ≤hmrl Y2. By (36), the inequality AX1,Y1 ≥ AX2,Y2 is
equivalent to

∫ ∞

0

F (x)
G1(x)

E [Y1]
dx = E

[
F (Y e

1 )
]
≥ E

[
F (Y e

2 )
]

=

∫ ∞

0

F (x)
G2(x)

E [Y2]
dx. (37)

The stochastic ordering Y e
1 ≤st Y

e
2 is equivalent to E [φ(Y e

1 )] ≤ E [φ(Y e
2 )] for all increasing function

φ such that the expectations exist (cf. [36]). As F is decreasing, the inequality (37) holds because
Y1 ≤hmrl Y2, which is equivalent to Y e

1 ≤st Y
e
2 .

Now assume Y1 =st Y2. In this case, the inequality AX1,Y1 ≥ AX2,Y2 , using (36), is equivalent
to E [X1 ∧ Y1] ≥ E [X2 ∧ Y2]. From the proof of Proposition 3.6 we know that this inequality holds
when

E [X1 ∧ Y1] = E[(HG)(X1)] ≥ E[(HG)(X2)] = E [X2 ∧ Y2] .

Note that HG is increasing and concave. Moreover, X1 ≥icv X2 is equivalent to E[φ(X1)] ≥ E[φ(X2)]
for every real function φ increasing and concave such that the expectation exists (cf. [36]). Thus,
AX1,Y1 ≥ AX2,Y2 holds. The general result is obtained by transitivity.

Example 8 (Lifetimes and times until replacements with Gamma distribution). Consider Xi ∼
Gamma(αi, βi) and Yi ∼ Gamma(γi, µi), for i = 1, 2. According to Table 1, we have that the
ordering X1 ≥icv X2 holds when it is satisfied one of the following two conditions:

• α1 ≥ α2 and β1 ≤ β2 (which actually imply X1 ≥lr X2), or

• β1 ≥ β2 and α1/β1 ≥ α2/β2.

Note that if Y1 ≤mrl Y2, we get Y1 ≤hmrl Y2. Those, according to Table 1, the ordering Y1 ≤mrl Y2

holds when

• γ1 ≤ γ2 and µ1 ≥ µ2 (which actually imply X1 ≤lr X2), or

• γ1 ≥ γ2 and γ1/µ1 ≤ γ2/µ2.

Using Proposition 3.6 and Theorem 3.7 we can compare two systems with replacement at random
time in the sense of the mean lifetime and the stationary availability under weaker conditions that
those of Corollary 3.4, which ensures a stochastic ordering in the Laplace sense. This is one of the
reasons why this comparison becomes interesting. Note also that when X1 ≥st X2, Y1 ≤lr Y2 and
X1 ∈ DMTTF or X2 ∈ DMTTF we get both E [τX1,Y1 ] ≥ E [τX2,Y2 ] and AX1,Y1 ≥ AX2,Y2 , but we
cannot ensure that τX1,Y1 ≥Lt τX2,Y2 holds.
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4 Conclusions

Standing out as a novelty concerning previous research on this topic, and, consequently filling a
gap on the matter, this paper continues the research on the aging properties of the lifetime of the
classical system with age replacement using properties of the lifetimes of the working units. We
mainly focused on the aging class to which the lifetime of the system belongs, according to the
aging properties of the lifetime of the working unit. As a matter of fact, Theorem 2.8 extends the
comparisons of the lifetimes of systems with age replacement to other notions of stochastic orders
than the previous considered. Moreover, in Theorem 2.9 we also compare the lifetimes of the systems
with age replacement using comparisons between the number of replacements and the lifetimes of
the working units conditioned to be less or equal than the replacement time, which seems interesting
from the practical point of view. Moreover, using these results we provide several examples. In
particular, our approach allow us to establish stochastic orderings between parallel systems with
age replacement with a constant or random number of components. As possible extensions of these
results, we believe that the recent developments on stochastic ordering for the lifetimes of coherent
systems could be used to establish stochastic ordering between more complicated systems with age
replacement, as the K-out-of-n system considered by Ito et al. [11].

Finally, we have additionally worked upon the lifetimes of systems with age replacement, studying
the case where the replacement time is random. In this concern, our results include usual stochastic
orderings, Laplace transform orderings and comparisons of the expected lifetimes and the stationary
availabilities. The existence of stronger stochastic orderings for this model is a topic of further
research.
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