
HAL Id: hal-02894478
https://hal.science/hal-02894478

Submitted on 9 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Auto-CNNp: a component-based framework for
automating CNN parallelism

Soulaimane Guedria, Noel de Palma, Felix Renard, Nicolas Vuillerme

To cite this version:
Soulaimane Guedria, Noel de Palma, Felix Renard, Nicolas Vuillerme. Auto-CNNp: a component-
based framework for automating CNN parallelism. 2019 IEEE International Conference on
Big Data (Big Data), Dec 2019, Los Angeles, United States. pp.3330-3339, �10.1109/Big-
Data47090.2019.9006175�. �hal-02894478�

https://hal.science/hal-02894478
https://hal.archives-ouvertes.fr

Auto-CNNp: a component-based framework for
automating CNN parallelism

Soulaimane Guedria1,2, Noël De Palma1, Félix Renard1,2 , and Nicolas Vuillerme2,3

1Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
2Univ. Grenoble Alpes, AGEIS, Faculté de Médecine, 38700 La Tronche, France

3Institut Universitaire de France, Paris, France
Email: {soulaimane.guedria, noel.depalma, felix.renard, nicolas.vuillerme}@univ-grenoble-alpes.fr

Abstract—Effectively training of Convolutional Neural
Networks (CNNs) is a computationally intensive and
time-consuming task. Therefore, scaling up the training of CNNs
has become a key approach to decrease the training duration
and train CNN models in a reasonable time. Nevertheless,
introducing parallelism to CNNs is a laborious task in practice.
It is a manual, repetitive and error-prone process. In this paper,
we present Auto-CNNp, a novel framework that aims to address
this challenge by automating CNNs training parallelization
task. To achieve this goal, the Auto-CNNp introduces a key
component which is called CNN-Parallelism-Generator. The
latter component aims to streamline routine tasks throughout
(1) capturing cumbersome CNNs parallelization tasks within a
backbone structure while (2) keeping the framework flexible
enough and extensible for user-specific personalization. Our
proposed reference implementation provides a high level of
abstraction over MPI-based CNNs parallelization process,
despite the CNN-based imaging task and its related architecture
and training dataset. We introduce the design and the core
building blocks of Auto-CNNp. We further conduct an extensive
assessment of our proposal that not only shows its effectiveness
in accelerating the process of scaling up CNNs training, but also
its generalization for a wider variety of use cases.

I. INTRODUCTION

Deep neural networks (DNNs) and particularly
convolutional neural networks (CNNs) trained on large
datasets are getting great success across a plethora of
paramount applications such as medical image analysis
[1], [2], speech recognition [3], video processing [4] and
many other interesting fields. These recent deep learning
breakthroughs have been achieved thanks to the increasing
computing power that is available nowadays. However,
training CNNs is time- and resource-intensive task. In a
typical CNN training process, multiple CNN architectures
have to be investigated. Concurrently, an hyperparameters
optimization process [5] has to be performed for every CNN
candidate architecture. The hyperparameters optimization
task aims to select the optimal set of hyperparameters
in order to optimize the CNN performance. It involves
performing various hyperparameters optimization strategies
[6] which generally require executing multiple training runs.
For instance, training GoogleNet with the ImageNet dataset
requires a total of 21 days using a single Nvidia K20 GPU
[7]). Therefore, decreasing the training duration of CNNs
throughout scaling up the training process has become one

of the most active areas of research making deep learning
converge to high performance computing (HPC) problems.
Nonetheless, setting up distributed training of CNNs is a
tedious task entailing a significant degree of experience
and expertise in both (1) deep learning and (2) distributed
optimization approaches. Moreover, introducing parallelism
to CNNs training is a manual, redundant, time-consuming
and error-prone process. For instance, even though Tensorflow
natively includes a standard built-in parallelization approach1,
going distributed using it is a laborious and challenging task
[8]: It requires a large amount of knowledge from the user of
a considerable low level abstractions of Tensorflow and a lot
of manual code modifications. The aforementioned problems
led us to realize the importance and the need for not only
automating routine tasks to avoid duplication of effort while
scaling up CNNs training, but also to adopt a component
reuse approach while considering the software extensibility
principle.

We alleviate the aforementioned issues by introducing
Auto-CNNp (Automatic CNN parallelization), a
component-based framework that fully automates scaling up
CNNs training task in order to bring skill-intensive distributed
deep learning to non-experts users. As far as we know, the
present work is the first that aims to tackle this challenge by
introducing a new component-based approach. We present
the design and the core building blocks of our proposed
framework. The CNN-Parallelism-Generator component
encapsulates and hides typical CNNs parallelization routine
tasks while being extensible for user-specific customization.
The user defines the specific framework behavior through an
easy-to-understand configuration file.

Our contribution lies within the proposal of a standard
component-based approach to parallelize CNNs training
regardless of the (1) CNN-based image processing task,
(2) its corresponding CNN architecture and (3) training
dataset. Furthermore, although our proposed Auto-CNNp
Proof-of-Concept (POC) reference implementation is based
on both (1) Ring-Allreduce parallelism approach and (2) MPI
communication protocol, it is indeed possible to port the
framework to additional CNN parallelism and communication

1More information on distributed Tensorflow: https://www.tensorflow.org/
guide/distribute strategy

https://www.tensorflow.org/guide/distribute_strategy
https://www.tensorflow.org/guide/distribute_strategy

approaches as the framework’s fundamentals remain valid.
The evaluation result of our proposed automated

component-based approach on a couple of medical imaging
segmentation [9] use cases are promising. It shows that a
significant speedup in the CNN parallilization task has been
achieved to the detriment of a negligible framework execution
time, compared to the classic manual parallelization strategy.

This paper is organized as follows: Section II provides
background information on distributed deep learning training
approaches and reviews some related work. Section III
describes our approach to automatize the parallelization of our
POC MPI-based CNNs training. We present the evaluation of
our proposal in Section IV, and conclude in Section V.

II. BACKGROUND AND RELATED WORK
In this section, we first introduce some basic background

terminologies. After that, we present the main approaches for
distributed DNN training, before reviewing some related work.

A. Terminology

Throughout this paper, the term ’CNN architecture’ refers
to the global structure of the neural network (i.e., the
number, order, size, etc., of each network’s layer). The term
’hyperparameter’ refers to a variable which is required to be
defined before the CNN training task begins. Also, the term
’CNN model’ denotes the output of the training process of a
specific CNN architecture on a particular training dataset and
hyperparameters.

B. Distributed Training of Deep Neural Networks

Distributed training approaches of DNNs are mainly divided
into three different categories: model, data and hybrid
parallelism techniques.

1) Model Parallelism: Some deep neural network models
have a considerable size, and hence, they are not adapted to
the memory size of an individual training device (one GPU
for instance) [10]. These models require to be partitioned
across all the nodes in the distributed system and every node
trains a different part of the model on the whole training
dataset. For instance, as can be seen in Figure 1, every node
performs the training of only a specific subset of the model.
This parallelization schema is known as model parallelism
technique [11]–[13].

2) Data Parallelism: The second distributed training
strategy of deep neural networks is called data parallelism
approach. As illustrated in Figure 2, all nodes in the distributed
system in have the same complete copy of the model.
However, the training is done independently on each node
using a different subset of the whole training dataset, at the end
of every training iteration, the results of computations from
all the nodes are combined using different synchronization
approaches [11]–[13].

3) Hybrid Parallelism: It is possible to combine both
previously mentioned distributed training approaches (i.e.
model parallelism for every node and data parallelism across
nodes [13]). However, data parallelism is the most used
parallelization strategy in practice [13]–[17].

Node 1

Node 2

Node 4

Node 3

Fig. 1. Model parallelism

Node 1 Node 2 Node 3

Fig. 2. Data parallelism

4) Other parallelism approaches: The Stochastic Gradient
Descent (SGD) optimization algorithm (i.e., which is a
variant of the gradient descent [18] optimization algorithm)
is widely-used for the distributed deep learning training
process. It is also important to denote that the subsequent
introduced fundamentals for the DNN parallelism using
SGD remain valid also for a set of popular optimization
algorithms (e.g., Adam [19]). Actually, scaling up the
training of DNNs evolves around strategies that aim to
parallelize the computation and synchronization of the
gradient during the SGD [18] optimization method. Hence,
distributed training of DNNs approaches can be also roughly
classified depending on the model consistency synchronization
strategies [13] (e.g., synchronous [20], stale-synchronous
[21] and asynchronous [12] techniques) and the parameter
distribution and communication centralization methods [13]
(e.g., Parameter Server (PS) [22], Shared PS [23] and
decentralized strategies [24]).

C. Related Work

Component-based Software engineering (CBSE) [25] is far
from being a recent research area. Indeed, it aims to build
software systems by composition of software components
building blocks. It has become a paramount approach to
accelerate the development, deployment, management of
large and complex software systems. The component-based
approaches have been adopted in a wide range of relevant
fields of applications, such as e-commerce [26], robotics
software [27] and web applications development [28].

Component-based parallel systems development is a not
a novel concept neither. Bramley et al. [29] introduced a
component-based approach to build scientific and engineering
applications. Also, COMDES-II [30] is a framework to develop
parallel real-time control applications.

Other parallel systems implementations tools exist. For
instance, JaSkel [31] is a Java framework for parallel and grid
applications implementation. It shares some common concepts
with Auto-CNNp. Particularly, encapsulating recurring
parallelism routines and hiding low-level implementation
details. Yet, JaSkel is not a component-based system.

The previously cited systems are not DNN-based solutions.
However, With the recent growing interest to deep learning,
a lot of distributed deep learning frameworks have emerged
(e.g., TensorFlow, Horovod2, DL4J3, BigDL4). Nevertherless,
to the best of our knowledge, no existing solution offers all
the features of Auto-CNNp. In particular:

• Auto-CNNp adds an additional high level of abstraction
over MPI-based CNNs parallelism techniques by fully
automating the scaling up process for various CNN-based
image processing task, regardless of its corresponding
CNN architecture and training dataset.

• Our proposal is the first easily extensible
component-based deep learning parallelism framework.

Hence, our proposed framework accelerates the research
in the CNN-based field by prototyping and exploring
cutting-edge and not yet investigated CNN configurations and
architectures through an iterative and adaptive experimentation
approach.

III. SYSTEM DESCRIPTION

This section describes Auto-CNNp our proposed
framework. First, we provide a global overview on
Auto-CNNp main scope, design and system architecture,
before diving into the details of its building blocks and core
components.

A. Framework Scope

Figure 4 pinpoints the overall scope into which Auto-CNNp
operates. Indeed, the operating-system-level environment
deployment on the training nodes is currently out of scope
of the Auto-CNNs framework. We suppose that the training is
performed on an all-set, already deployed distributed system
environment (i.e., in the context where the operating system
was already sat up on beforehand using tools like SaltStack 5

or Puppet 6).
Also, we take advantage of a containerization technique

to package the distributed deep learning application with its
related default runtime environment (i.e., libraries, binaries
and dependencies). It is indeed within this specific range of
execution context where our proposed framework operates.

2https://eng.uber.com/horovod/
3https://deeplearning4j.org/
4https://bigdl-project.github.io
5More informations can be found at https://www.saltstack.com/
6More informations can be found at https://puppet.com/

Particularly, Auto-CNNp provides a backbone for a new
way to automatically configure and customize the specific
libraries of a distributed CNN-based application runtime
environment (i.e., mainly by (1) setting up the configuration of
communication libraries and (2) establishing the related deep
learning user-specific execution schema).

Regarding the distributed deep learning application level,
and as stated previously in section II, multiple CNN
parallelism approaches exist. We decided to adopt a
decentralized synchronous Ring-Allreduce data parallelism
strategy for our proposed reference implementation for the
following reasons:

• Considering that the level of scalability of the
data parallelism method is naturally determined by
the minibatch hyperparameter size [13], and since
recent published works [15], [17] have succeeded
to considerably increase the minibatch size without
significant segmentation accuracy loss, data parallelism
has become the most common distributed training
approach when the the model size complies with the
training device’s memory size constraint.

• We decided to adopted a synchronous parallelism
approach. Our selection criterion for the latter chosen
strategy is the trade-off between the CNN model accuracy
and the training speedup. In fact, synchronous methods
achieve better results regarding the accuracy of the CNN
models compared to the asynchronous approaches [13],
[32], particularly, with a short synchronization period
[33].

• The Ring-Allreduce algorithm (see Figure 3) is built
on a HPC approach proposed in 2009 by Patarasuk
and Yuan [34]. It is a highly scalable and bandwidth
optimal approach as it remarkably reduces the network
communications overhead [8]. Moreover, Since the
network bandwidth is classified among the rarest
resources in datacenters [35], and even if the centralized
parameter server is one of the popular approaches in
distributed machine learning with better fault tolerance, it
suffers from a bandwidth bottleneck especially with large
scale systems [13], [35].

Also, we adopted MPI as a communication protocol
for the framework reference implementation. Indeed,
MPI communication libraries have achieved remarkable
performances in distributed deep learning applications due to
the similar characteristics between distributed deep learning
and HPC applications [13].

Nevertheless, as stated previously, it is possible to port
and extend the framework implementation to support other
parallelism approach and communication mechanisms as the
framework’s core principals remain well-founded. However,
further modifications should be applied due to the eventual
dependencies between the CNN training parallelism methods
and the adopted communication protocols. These dependencies
will be further discussed in subsection III-D.

https://eng.uber.com/horovod/
https://deeplearning4j.org/
https://bigdl-project.github.io
https://www.saltstack.com/
https://puppet.com/

CNN
segmentation
architecture

CNN
segmentation
architecture

CNN
segmentation
architecture

CNN
segmentation
architecture

CNN
segmentation
architecture

Gradients

Gradients

Gradients

Gradients

Gradients

Send

Send

Send

Send

Minibatch0_0

Minibatch0_1

Minibatch0_2Minibatch0_3

Minibatch0_4

Send

Receive

Receive

Receive

Receive

Receive

Fig. 3. Ring-Allreduce Algorithm.

Distributed Infrastructure

Operating System

Container Engine

Distributed DL App

Distributed DL Container Auto-CNNp

Runtime Environment

Libraries/Binaries (1)

(2)

Fig. 4. Auto-CNNp operating scope: (1) runtime environment configuration
and (2) user-specific deep learning execution schema definition.

B. Framework Architecture

As illustrated in Figure 5 which shows an overview of the
architecture of our proposed system, Auto-CNNp framework
follows a modular design. Its different building blocks are as
follows:

• The Engine is the Auto-CNNp controller (i.e., it manages
the framework’s control flow). It is the central access
point operating as an orchestrator of the framework’s
components interactions.

• The CNN-Parallelism-Generator is the core
component of Auto-CNNp framework. It aims to
simplify the task of scaling up CNNs training by
separating typical parallelization strategies patterns
from task-specific CNN applications. To achieve
this goal, the CNN-Parallelism-Generator component
captures common routine tasks (i.e., which are shared
by all MPI-based deep learning distributed training
approaches) and enables users to customize the

remaining applications-specific parts.
• The Run & Manage component applies the final

execution schema of the framework once all the training
agents are ready for the distributed training. Indeed, the
Run & Manage component is activated by the engine
in order to initiate and launch the distributed training
process.

• The Training Config File contains a set of an rules used
by the engine to govern the execution mechanism of the
Auto-CNNp framework.

• As its name suggests, the distributed training
infrastructure is the execution infrastructure for the
distributed training of CNNs.

Further details regarding the aforementioned Auto-CNNp
core components are given later in this section.

C. Framework Execution Flow

The Auto-CNNp framework is a configuration-driven
framework. The framework’s execution flow steps are the
followings.

1) The framework user provides an XML-based training
configuration file.

2) The framework’s engine parses the aforementioned
configuration file and extracts the user-specific
application behavior.

3) The CNN-Parallelism-Generator component is deployed
and/or updated on all the training agents. Concurrently,
the run & manage component is only deployed on the
training node which initiates the training.

4) Lastly, when all the training nodes are ready, the
end-user activates the run & manage component through
the engine in order to start the distributed training.

D. Component Detail: The CNN-Parallelism-Generator

The CNN-Parallelism-Generator is the paramount
component of the Auto-CNNp framework. It encapsulates and
hides reusable CNNs training parallelization patterns
to the framework end users in order to provide a
higher level of abstraction. As shown in Figure 6, the
CNN-Parallelism-Generator has a linear design following
the typical workflow of steps to parallelize our MPI-based
CNNs (presented in greater detail later). It is composed of a
tree of hierarchically classified building blocks. The different
abstractions used in the CNN-Parallelism-Generator are:

• Components are the building blocks of the
CNN-Parallelism-Generator. They are classified into
two categories : either (1) modules or (2) composites
components. The modules do not contain other
components while composites components might be
composed of one or several composites components
and/or modules. Also, components are connected by
so-called binding connectors. Composite components
are a standalone components which can be reused and
replaced without affecting the framework’s fundamentals.

• As stated previously, modules are a primitives
components. They contains a set of task-related

Training
config	file

Training	Data
(4)	Activate

(1)	Parse

(3)
Deploy/Update(2)	Inject

(1)	Load

Distributed	training
infrastrcuture

CNN-Parallelism-
Generator

Run	&	Manage

Engine

Legend
Workflow

InfrastructureComponent Data
Control	Flow

Fig. 5. Auto-CNNp System Architecture Overview.

CNN-Parallelism-Generator

Model	Definition

Environnement	Definition	

Parallelism	Definition

Training	Strategy	Tuning	

Architecture	Injection Dataset	Injection

Task	Definition

Injection module

Communication	Init

Processes	Device	Placement	
&	Memory	Allocation

Legend

Non-extensible
Action

Extensible	Action
Workflow

Composite
Component

Module
Binding

Distributed	Optimizer

Training	Checkpoints

Hyperparameters	Injection

Fig. 6. CNN-Parallelism-Generator Component-Based Architecture.

actions cooperating towards a particular CNNs
MPI-based parallelization milestone. Modules present
an inter non-functional dependencies within each others
In other words, overwriting modules requires the user to
change/adjust the corresponding related modules within
the same component.

• Actions are a standard collective parallelization steps.
They may be classified according to their expandability
property into (1) non-extensible actions and
(2) extensible actions. The non-extensible
actions constitutes a set of generic functionalities
which have a unique and static implementation. They are
independent from the CNNs parallelization schema, can
be parametrized but cannot be extensible by the user.
On the other hand, the extensible actions can
further support extensibility throughout specific plugins
which can be defined and customized by the framework’s
end user in order to expand or override the framework’s

supported functionalities.
As illustrated in Figure 6, the CNN-Parallelism-Generator

is a composite of two components (Parallelism Definition and
Model definition). The latter are in turn are a composite of the
followings couple and single modules respectively.

1) Module Details: Environment Definition:
• Communication Init is a non-extensible action

that initializes the adopted communication approach. In
our POC implementation, it initializes the MPI default
supported protocol.

• Processes Device Placement & Memory Allocation is
a non-extensible action which establishes the
custom TensorFlow-based processes device placement
strategy on the training agents alongside with he adopted
memory allocation strategy 7.

2) Module Details: Training Strategy Tuning:

7more informations at https://www.tensorflow.org/guide/using gpu

https://www.tensorflow.org/guide/using_gpu

• Distributed Optimizer is an extensible action
which establishes the adopted CNN parallelism strategy.
The default supported approach is the Ring-Allreduce
algorithm. However, it is possible to adopt another
approach (e.g, Parameter Server) strategy, etc.). An
example of the required modifications to change the
parallelism strategy is detailed in the next section.

• Training Checkpoints is an extensible action. It
enable the Framework’s user to set up the custom
TensorFlow-based training checkpoints.

• Hyperparameters Injection is a non-extensible
action training hyperparameters. It specifies the
user-specific training hyperparameters.

3) Module Details: Injection Module:
• Task Definition is a non-extensible action which

determines the CNN-based image processing task (e.g.,
segmentation or classification).

• Architecture and Dataset Injection are
non-extensible actions. They enable an easy
loading of the CNN architecture from its corresponding
config file alongside with the training dataset path.

E. Component Detail: The Engine

As illustrated in Figure 5, the architecture of Auto-CNNp is
based around the engine. The latter implementation has to be
fast, to decrease the overhead of the framework to the utmost
possible degree. Its functionalities are fourfold. In particular
(1) parsing the configuration file, (2) based on that, the engine
establishes the CNN-Parallelism-Generator final shape (i.e.,
its final comprising sub-components and modules). In order
to do so, the engine parameterizes, customizes and loads the
CNN-Parallelism-Generator building blocks. Next, the engine
deploys/updates the cnn-parallelism-generator on the training
nodes. Lasty, it activates the run & manage component in
order to start the distributed training task.

F. Component Detail: The Training Config File

As stated previously, the training config file defines the
control flow of the system. In particular, it contains:

• The CNN-Parallelism-Generator structure definition and
the interaction policy of its inner modules.

• The CNN description.
• The CNN training hyperparameters [5].
• The training dataset metadata (e.g., the training data file

system location path, the format)
Listing 1 shows an example of a training config file of

Auto-CNNp for an image segmentation use case. The config
file defines the final shape of the CNN-Parallelism-Generator:
(1) The training runtime environment is customized (e.g., we
consider local rank strategy for the device placement and soft
placement as memory allocation approach) (2) We adopt the
default supplied Ring-Allreduce CNN parallelism approach
and extend the training checkpoints with a specific plugin. (3)
We define the training, validation and test datasets alongside
with the CNN architecture (through python keras-based

CNN description) and the training hyperparameters that
will be loaded/injected into their adequate location in the
CNN-Parallelism-Generator structure.

<system config>
<task name=”imaging segmentation”>
<parallelism−degree>3</parallelism−degree>
<CNN archi><path>/archi/U−Net.py</path></CNN archi>
<CNN−Parallelism−Generator>
<module name=”train env def”>
<action class=”non extensible” type=”device placement”>
<value>local rank</value>

</action>
<action class=”non extensible” type=”memory allocation”>
<value>soft placement</value>

</action>
</module>
<module name=”train srategy def”>

<action class=”extensible” type=”dist strategy”>
<value>ring allreduce</value>

</action>
<action class=”extensible” type=”Tr Checkpoint”>
<value name=”LRSchedule”>
<path>/data/checkpoint/ckpt1.py</path>

</value>
</action>

</module>
</CNN−Parallelism−Generator>
<data>

<train><path>/data/brain−train</path></train>
<valid><path>/data/brain−validation</path></valid>
<test><path>/data/brain−test</path></test>

</data>
<hyperparameters>

<property name=”lr”>1e−5</property>
<property name=”optimiser”>SGD</property>
<property name=”loss”>dice</property>
<property name=”minibarch size”>10</property>
<property name=”start epoch”>0</property>
<property name=”end epoch”>120</property>

</hyperparameters>
</task>

</system config>

Listing 1. Training config file example

IV. EVALUATION

In this section, We first introduce our experimental
environments and case studies. Afterwards, we conduct a (1)
quantitative and (2) qualitative evaluation of our proposal.

A. Experimental Environments

1) Hardware: We accomplished the distributed training
experiments on the Nancy Grid’5000 [36] testbed site. The
experiments were conducted on Grele GPU cluster which
contains Dell PowerEdge R730 physical machines where each
node is equipped with 2 Nvidia GeForce GTX 1080 Ti
GPUs. We use the Grid’5000 Network File System (NFS) to
share the training dataset and the CNN-Parallelism-Generator
component between all training agents. The nodes are
interconnected using InfiniBand [37] high-speed interconnect.

2) Software: We have chosen Python as a programming
language for Auto-CNNp reference implementation. Indeed,
Auto-CNNp prototype is concurrently built on top of
Tensor-Flow and Keras deep learning libraries. We take

advantage also of the Horovod [8] implementation of
the Ring-Allreduce algorithm in order to introduce the
latter adopted synchronous data parallelism approach. In
addition, we consider Open MPI [38] implementation of
the MPI standard as a communication library. Also, we
use Beautiful Soup python library for the xml config file
parsing. Furthermore, to ensure research reproducibility, the
CNN-Parallelism-Generator component alongside with its
runtime environment are containerized into a debian 9
stretch-based docker8 image. Lastly, we use docker swarm for
the container orchestration task.

3) Evaluation case studies: To asses our component-based
automatic training parallelism approach, we consider U-Net
[39] and FCN [40] as a baseline CNN architectures applied to
tackle two different medical imaging use cases, in particular:

1) The first one is a brain tumor segmentation [9] task
which was proposed during the decathlon medical
segmentation challenge 9. As illustrated in Figure 7,
it involves isolating the different tumor tissues in the
brain from healthy ones [41]. It is a crucial and
challenging task in medical image analysis because it
plays an influential role in early diagnosis of brain
tumors which in turn enhance treatment planning and
raise the survival rate of the patients. Yet, it is a
tedious and time consuming task because when it
can take hours when it is manually performed by
expert radiologists. The dataset which has been provided
during the aforementioned segmentation challenge for
the brain tumors segmentation task is a mix of two other
datasets that have been initially made publicly available
during the Multimodal Brain Tumor Segmentation
Challenge (MICCAI BRATS) [42] 2016 and 2017. It
contains multimodal MRI scans (i.e., 4D MRI scans
[43]) of complex and heterogeneously-located brain
tumors that were captured using multiple distinct MRI
acquisition protocol [43] from 19 different institutional
data contributors [42]. The BRATS datasets have
been initially manually segmented by one to four
raters, using the same annotation protocol. After
that, the multimodal brain tumor MRI scans along
with all their corresponding ground truth labels were
manually-reexamined and approved by experienced
neurologists [42].

2) The second use case is a left atrial segmentation
task. It consists in isolating the left atrium body
from its surrounding organs structures [44]. It plays
a key role during the treatment protocol of patients
with atrial fibrillation disease [44] which is the
most frequent cardiac electrical disorder provoked by
abnormal electrical discharges in the left atrium. The
dataset has been made publicly available by Philips
Technologie GmbH, Hamburg, DE, and King’s College

8More information can be found at https://www.docker.com/
9More informations on the decathlon segmentation challenge can be found

at the following links: http://medicaldecathlon.com/ and https://decathlon.
grand-challenge.org/

2D-MRI slice of BRATS training dataset Corresponding brain tumor ground-truth
annotation

Fig. 7. brain tumor segmentation task

London during the 2013 LASC challenge 10. Unlike the
BRATS datasets, the left atrium segmentation dataset is a
small one with wide quality levels variability as it only
includes 30 mono-modal 3D cardiac MRI scans. The
dataset was split such that 20 MRI scans were provided
with their corresponding ground truth annotations for
the training and the validation steps. The remaining 10
MRI scans were supplied as a test set. The ground-truth
masks were initially annotated using automatic model
based segmentation. Afterwards, a manual corrections
were performed by human experts [44].

4) Quantitative evaluation: We assess the cost benefit
trade-off of automating CNNs parallelization task through
a quantitative assessment approach. In order to do so, we
measure the execution time of the Auto-CNNp engine for the
previsouly mentioned two evaluation case studies tackled by
a couple of widely used CNN architectures (U-Net and FCN).
For reliability reasons, we run each experimental setup 100
times and we consider the average of the measured execution
duration as our reference results. The execution times were
measured using the linux /usr/bin/time. The outputs of
the latter command are threefold: (1) real metric stands for the
overall execution time from start to finish of the call, (2) user
metric denotes the amount of CPU time spent in user-mode
and (3) sys metric is the CPU time spent in kernel mode by
the program.

Figure 8 depicts the evaluation results for the framework’s
engine execution time. It shows that the execution times for
the four setups are approximately similar which confirms the
generalizability of our proposal. The engine’s real execution
time is about 139 ms which is a negligible time compared
to the typical time-consuming CNN training task duration (21
hours and 40 minutes for U-Net and 35 hours and 40 minutes
for FCN for a single Nvidia GTX 1080 GPU based training).
The difference between the real execution time and the sum of
both of user and sys times is almost 18 ms. It is due to the fact
that the engine is blocked on disk I/O during the deployment

10The left atrium segementation dataset is available at the following link
https://www.cardiacatlas.org/challenges/left-atrium-segmentation-challenge/

https://www.docker.com/
http://medicaldecathlon.com/
https://decathlon.grand-challenge.org/
https://decathlon.grand-challenge.org/
https://www.cardiacatlas.org/challenges/left-atrium-segmentation-challenge/

Fig. 8. : Auto-CNNp engine execution time evaluation (a) U-Net CNN
architecture and (b) FCN CNN architecture for brain tumor and cardiac left
atrium case studies segmentation tasks

1 2 4 6 8 10 12 14 16 18
GPUs Number

5

10

15

20

25

Ti
m

e
to

 tr
ai

n
(H

ou
rs

)

Dataset
Left Atrium
Brats
Linear Scaling

Fig. 9. Training time evolution with scale for U-Net CNN architecture for
brain tumor segmentation task

or update step of the CNN-Parallelism-Generator component
on all training agents through the NFS server.

Furthermore, in order to evaluate the framework’s impact
on the CNN-based task performances, we compare the
obtained segmentation accuracy when scaling up CNNs
training manually with the segmentation accuracy we get
after using Auto-CNNp. In order to do so, we first perform
the distributed training of U-Net CNN architecture for brain
tumor and left atrium segmentation on 18 GPUs without using
Auto-CNNp. We ran each experimental setup 10 times and
we considered the average of the measured metrics as our
reference results. As shown in Figure 9, we achieved an almost
perfect linear scaling and 17.5x speed-up than single-node
based training for both segmentation tasks with a segmentation
dice score of 0.886 and 0.794 for brain tumor and left atrium
segmentation respectively. We achieved exactly the same
results after performing the U-Net CNN parallelization using
Auto-CNNp for both evaluation case studies. Hence, using
Auto-CNNp does not impact the performances of the CNN
parallelization process compared to the manual approach.

5) Qualitative evaluation: Auto-CNNp intents to offer a
high level of abstraction over MPI-based CNN parallelism
by instrumenting common routines. In order to do so,

the framework is driven throughout a high level training
config file. To qualitatively evaluate Auto-CNNp reaches, we
investigate the impact of the framework in reducing the burden
of practically scaling up CNNs training.

We consider the Listing 1 as a starting training config
file. We adopt U-Net CNN architecture and Ring-Allreduce
parallelism strategy to tackle our first evaluation use case
which is the brain tumor segmentation task. After that, we
aim to test a different CNN architecture (FCN) to deal with
the same evaluation use case. In order to do so, we only need
to change the <CNN_archi> tag in the config file and its
related CNN architecture file. Also, if the framework’s end
user wants to tackle a different segmentation use case using the
same initial CNN architecture, he exclusively needs to change
the <data> tag siblings in the config file. All of this shows
the easiness with which the framework’s user can switch from
one training dataset use case to another and/or to test different
CNN architectures by minimal code changes.

As mentioned earlier, the adopted Ring-Allreduce algorithm
constitutes a POC example for our proposal implementation.
It is indeed possible to adopt another CNN parallelism
approach. In order to do so, the Distributed Optimizer
extensible action needs to be overwritten alongside
with its corresponding Training Strategy tuning module.
Also, the Environment Definition module might require to be
replaced since it shares the same CNN-Parallelism-Generator
component as the Training Strategy tuning module. Yet, the
Model Definition component can be reused to generate the
new component-based CNN-Parallelism-Generator. Finally,
the operating-system-level environment might need to be
adapted but as discussed earlier in subsection III-A, it is out
of scope of our proposed framework.

V. CONCLUSION AND FUTURE WORK

We presented Auto-CNNp, a framework which permits
to automate CNNs distributed training task. Our proposed
system offers a high level of abstraction over talent-intensive
distributed deep learning by introducing a component-based
approach. The latter provides a generic tool that encapsulates
many common CNNs parallelism patterns while being
sufficiently flexible to be extensible for user-specific
customization. We described a POC reference implementation
of Auto-CNNp while justifying our design choices. The
quantitative and qualitative evaluations of our proposal on a
couple of case studies confirm its validity and transferability
to other use cases.

In the future, we plan to support additional CNN-based
tasks by introducing the automated distributed training of other
CNN-based applications (e.g., CNN-based text classification
task). Also, we are in the process of porting Auto-CNNp
in order to support other platforms and libraries (e.g.,
PyTorch 11). Finally, we aim to integrate some infrastructure
configuration management tools (e.g., SaltStack or Puppet) to
the Auto-CNNp ecosystem.

11More informations can be found at https://pytorch.org/

https://pytorch.org/

ACKNOWLEDGMENTS

This work was supported by the French National Research
Agency in the framework of the “Investissements d’avenir”
program (ANR-10-AIRT-05), the Virtual Studio RA FEDER
EU project, the FSN Hydda project, EIT Health and Institut
Carnot LSI. Experiments presented in this paper were carried
out using the Grid’5000 testbed, supported by a scientific
interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] N. Sharma and L. Aggarwal, “Automated medical image segmentation
techniques,” Journal of Medical Physics, vol. 35, no. 1, pp. 3–14, 2010.

[2] H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest editorial
deep learning in medical imaging: Overview and future promise of
an exciting new technique,” IEEE Transactions on Medical Imaging,
vol. 35, pp. 1153–1159, May 2016.

[3] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with
deep recurrent neural networks,” CoRR, vol. abs/1303.5778, 2013.

[4] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent
convolutional networks for visual recognition and description,” CoRR,
vol. abs/1411.4389, 2014.

[5] I. Loshchilov and F. Hutter, “Cma-es for hyperparameter optimization
of deep neural networks,” arXiv preprint arXiv:1604.07269, 2016.

[6] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[7] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Firecaffe:
near-linear acceleration of deep neural network training on compute
clusters,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2592–2600, 2016.

[8] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” CoRR, vol. abs/1802.05799, 2018.

[9] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, pp. 888–905, Aug. 2000.

[10] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s
neural machine translation system: Bridging the gap between human and
machine translation,” CoRR, vol. abs/1609.08144, 2016.

[11] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado,
J. Dean, and A. Y. Ng, “Building high-level features using large
scale unsupervised learning,” in Proceedings of the 29th International
Coference on International Conference on Machine Learning, ICML’12,
(USA), pp. 507–514, Omnipress, 2012.

[12] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y.
Ng, “Large scale distributed deep networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, (USA), pp. 1223–1231, Curran Associates Inc.,
2012.

[13] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” CoRR,
vol. abs/1802.09941, 2018.

[14] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed
parameter servers,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, (New York, NY,
USA), pp. 463–478, ACM, 2017.

[15] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677, 2017.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25 (F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, eds.), pp. 1097–1105, Curran
Associates, Inc., 2012.

[17] S. L. Smith, P. Kindermans, and Q. V. Le, “Don’t decay the learning
rate, increase the batch size,” CoRR, vol. abs/1711.00489, 2017.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Intelligent Signal Processing,
pp. 306–351, IEEE Press, 2001.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[20] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in International conference on
machine learning, pp. 1337–1345, 2013.

[21] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed
parameter servers,” in Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 463–478, ACM, 2017.

[22] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, (Berkeley, CA, USA), pp. 583–598, USENIX Association,
2014.

[23] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system,”
in 11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14), pp. 571–582, 2014.

[24] N. Strom, “Scalable distributed dnn training using commodity gpu cloud
computing,” in INTERSPEECH, 2015.

[25] G. T. Heineman and W. T. Councill, “Component-based software
engineering,” Putting the pieces together, addison-westley, p. 5, 2001.

[26] P. Fingar, “Component-based frameworks for e-commerce,”
Communications of the ACM, vol. 43, no. 10, pp. 61–61, 2000.

[27] C. More, L. Colaco, and R. Sardinha, “Application of component-based
software engineering in building a surveillance robot,” in Proceedings of
the 3rd International Conference on Frontiers of Intelligent Computing:
Theory and Applications (FICTA) 2014, pp. 651–658, Springer, 2015.

[28] A. Brown, S. Johnston, and K. Kelly, “Using service-oriented
architecture and component-based development to build web service
applications,” Rational Software Corporation, vol. 6, pp. 1–16, 2002.

[29] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi,
B. Temko, and M. Yechuri, “A component based services architecture for
building distributed applications,” in Proceedings the Ninth International
Symposium on High-Performance Distributed Computing, pp. 51–59,
Aug 2000.

[30] X. Ke, K. Sierszecki, and C. Angelov, “Comdes-ii: A component-based
framework for generative development of distributed real-time control
systems,” in 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA 2007),
pp. 199–208, IEEE, 2007.

[31] J. F. Ferreira, J. L. Sobral, and A. J. Proença, “Jaskel: A java
skeleton-based framework for structured cluster and grid computing,”
in Sixth IEEE International Symposium on Cluster Computing and the
Grid (CCGRID’06), vol. 1, pp. 4–pp, IEEE, 2006.

[32] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,
G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient pipeline
parallel dnn training,” arXiv preprint arXiv:1806.03377, 2018.

[33] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-sgd
for distributed deep learning,” in Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI’16,
pp. 2350–2356, AAAI Press, 2016.

[34] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms
for clusters of workstations,” Journal of Parallel and Distributed
Computing, vol. 69, no. 2, pp. 117–124, 2009.

[35] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,” in
Advances in Neural Information Processing Systems, pp. 19–27, 2014.

[36] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing
and Services Science (I. I. Ivanov, M. van Sinderen, F. Leymann, and
T. Shan, eds.), vol. 367 of Communications in Computer and Information
Science, pp. 3–20, Springer International Publishing, 2013.

[37] G. M. Shipman, T. S. Woodall, R. L. Graham, A. B. Maccabe, and P. G.
Bridges, “Infiniband scalability in open mpi,” in Proceedings 20th IEEE
International Parallel & Distributed Processing Symposium, pp. 10–pp,
IEEE, 2006.

https://www.grid5000.fr

[38] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
et al., “Open mpi: Goals, concept, and design of a next generation
mpi implementation,” in European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, pp. 97–104, Springer, 2004.

[39] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.

[40] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015.

[41] L. Zhao and K. Jia, “Multiscale cnns for brain tumor segmentation
and diagnosis,” Comp. Math. Methods in Medicine, vol. 2016,
pp. 8356294:1–8356294:7, 2016.

[42] B. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby,
Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner,
M.-A. Weber, T. Arbel, B. Avants, N. Ayache, P. Buendia, L. Collins,
N. Cordier, J. Corso, A. Criminisi, T. Das, H. Delingette, C. Demiralp,
C. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker,
P. Golland, X. Guo, A. Hamamci, K. Iftekharuddin, R. Jena, N. John,
E. Konukoglu, D. Lashkari, J. Antonio Mariz, R. Meier, S. Pereira,
D. Precup, S. J. Price, T. Riklin-Raviv, S. Reza, M. Ryan, L. Schwartz,
H.-C. Shin, J. Shotton, C. Silva, N. Sousa, N. Subbanna, G. Szekely,
T. Taylor, O. Thomas, N. Tustison, G. Unal, F. Vasseur, M. Wintermark,
D. Hye Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and
K. Van Leemput, “The Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS),” IEEE Transactions on Medical Imaging, vol. 34,
pp. 1993–2024, Oct. 2014.

[43] A. Isin, C. Direkoglu, and M. Sah, “Review of mri-based brain tumor
image segmentation using deep learning methods,” Procedia Comput.
Sci., vol. 102, pp. 317–324, Dec. 2016.

[44] C. Tobon-Gomez, Geers, et al., “Benchmark for algorithms segmenting
the left atrium from 3d ct and mri datasets,” IEEE transactions on
medical imaging, vol. 34, no. 7, pp. 1460–1473, 2015.

