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A B S T R A C T

We introduce an epidemic spreading model on a network using concepts from percolation theory. The model is
motivated by discussing the standard SIR model, with extensions to describe effects of lockdowns within a popu-
lation. The underlying ideas and behaviour of the lattice model, implemented using the same lockdown scheme
as for the SIR scheme, are discussed in detail and illustrated with extensive simulations. A comparison between
both models is presented for the case of COVID-19 data from the USA. Both fits to the empirical data are very
good, but some differences emerge between the two approaches which indicate the usefulness of having an alter-
native approach to the widespread SIR model.

© 2020

1. Introduction

The study of epidemics spreading in human populations has a long
history both on the mathematical aspects (see e.g. [2,4,14]), as well
as on the modelling of outbreak and control of their evolution
([1,6,11,12,20]). Spreading phenomena has been studied extensively
also in the realm of statistical physics of disordered systems (e.g.
[3,5,17]).

In this paper, we introduce a lattice network model for epidemics
spreading based in part on concepts taken from percolation theory. To
motivate the network approach to spreading, we first discuss the SIR
model ([14]), also extending it to encompass the effects of lockdowns
mimicked by using a time decaying reproduction number. To assess the
usefulness of the lattice model, we consider COVID-19 data from the
USA and compare the results of the simulations with SIR predictions,
both in the presence of lockdowns.

The paper is organized as follows: We start out in Section. 2 with
a brief review of the SIR model, with emphasis on some analytical
results and its extension to the description of lockdown effects. Illus-
trative examples are shown, together with a motivation for the need
of going beyond a ‘mean-field’ approach. The network model is then
discussed in detail in Section. 3, and the percolation ideas, relevant
to the present case, are discussed. Extensive
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(Monte Carlo) simulations are shown to illustrate the advantages and
difficulties typically associated with such lattice models. In Section. 4,
we apply it to the current case of COVID-19 USA data, by comparing the
network results with the predictions of the SIR model. The paper ends
with our concluding remarks in Section. 5.

2. SIR models with extensions to lockdown effects

Infection spreading is typically modelled by the SIR model, intro-
duced by [14]. We briefly review it for the purpose of introducing the
notation and presenting extensions to describe lockdown effects. We fol-
low standard terminology in epidemic literature1

We consider a population with a fixed number of individuals, N. To
describe the outbreak of an infectious disease, the population can be di-
vided into the following four categories: Susceptible (S), Infected (I), Re-
covered (R) and Dormant (D). The number of individuals in each of the
first three categories depends on time t, so that we will indicate them as
S(t), I(t) and R(t), while the number of Dormant D remains constant dur-
ing the whole process. Susceptible are initially healthy but can become
infected; infected people carry the infection and can transmit it to sus-
ceptible ones, while recovered people are infected who have healed or
have died, thus they do not spread the infection any further. The fourth
category,

1 It is widespread usage in epidemiology (see e.g. [16]) to refer to ‘Susceptible’, ‘In-
fected’ and ‘Recovered’, rather than using longer phrases such as ‘population of suscepti-
ble individuals’ or ‘the susceptible category’. Here, we add the ‘Dormant’ category, refer-
ring to individuals who temporally do not interact with others.

https://doi.org/10.1016/j.chaos.2020.110077
0960-0779/© 2020.
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D, includes non-susceptible (perhaps immune individuals to the specific
disease), and in general healthy subjects who do not get in contact with
infected ones during the whole spreading process (Fig. 1). The reason
for introducing the fourth category will become clearer when discussing
solutions of the SIR system of equations.

At any time t, the number of individuals in each category must obey
the conservation equation,

(1)
where we have denoted . We assume the unit of time to be one
day.!

The SIR model is described by a set of three differential equations for
the time variation of the number of individuals in each category, S(t),
I(t) and R(t), which, upon taking into account the condition Eq. (1),
read,

(2)

(3)

(4)

where is the effective number of in-
dividuals taking part in the process, β is the infection (or contact) rate
between infected and susceptible subjects, is the effective
infection rate in the presence of dormant, and γ is the healing (or im-
munization) rate of infected. It is convenient to work with normalized
quantities, and so that
the SIR equations become,

(5)

(6)

Fig. 1. Structure of a population of N individuals before the outbreak of the disease: Sus-
ceptible, versus non-susceptible or dormant, N0. The latter are assumed to be in-
accessible to the infection and being disseminated uniformly within the population. Al-
though this classification is apparently superfluous within a SIR approach, it becomes use-
ful for spreading phenomena on networks.

(7)

The above equations have exactly the same form as in the case
. The idea of considering explicitly a fraction of the whole population
not taking part in the spreading phenomenon, (0 ≤ f0 ≤ 1),
allows us to interpret the so-called reproduction number, R0, as com-
posed of two factors, a purely ‘biological’ one, ~ β/γ, and a ‘structural’
one denoted as, . The second factor rep-
resents the effect of dormant non-in-contact with others, thus ‘hinder-
ing’ or slowing down the spreading process. The fraction f0 can change
in time, but for simplicity we assume it constant. Within the realm of
the SIR model dormant people do not seem necessary, however, they
play a prominent role within the context of network models of infection
spreading, as we will discuss in detail in Section. 3. More generally,
dormant subjects can be considered as those individuals who interact
very weakly with others, thus representing a subset of the population
being in a sort of ‘quarantine’ from others.

One can derive some general relations between the categories by
considering ratios between the SIR differential equations (Eqs. (5,6,7)).
First, divide (6) by (5), yielding,

(8)

and dividing (5) by (7), we find,

(9)

By specifying the conditions, and
Eq. (8) becomes,

(10)

which can be written as,

(11)

Notable limits are, when and when
. Also Eq. (6)admits a partial solution when in par-

ticular at i.e. at the peak of the infected curve, yielding,

(12)

Lockdown effects can be modelled using an exponential time depen-
dence of β (see e.g. [15]). Here, we employ a softer decay that appears
to work very well, i.e.

(13)

and for t ≤ τ0, where τ0 is the time at which lockdown starts,
and q > 0 is a parameter. This means we deal with a time decaying re-
production number, . Using this form in Eq. (6), we can
obtain the time tlock at which the infected curve displays its new maxi-
mum. The condition is, which, together with Eq.
(12), yields,
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(14)

since s(tlock) > s(tpeak), as there are more susceptible subjects in the
presence of lockdowns than otherwise. Illustrative examples are re-
ported in Fig. (2), for (with and ) and
.

In the upper panel, we show the standard case, with γ represent-
ing the inverse of a typical COVID-19 healing period. We show also for
comparison the case (dashed lines). In this case, Eq. (11) pre-
dicts s(∞)≅0, clearly consistent with the numerical data. As is apparent
from the upper panel of Fig. (2), the effect of f0 > 0 is to shift the in-
fected peak at longer times by keeping a still high reproduction number.
The effects of lockdowns, using relation Eq. (13), are displayed in the
lower panel of the figure, for the typical cases days and .
Notice that Eq. (14) predicts days, in agree-
ment with the numerical results, and the infected peak is reduced by a
factor of about 4.

Let us return to Eq. (11). In the language of random graph theory
([4,9,10]), Eq. (11) is formally equivalent to the self-consistent re-
lation for the fraction of nodes, belonging to the giant
component of random graphs with a finite mean node degree < k > ,
given by,

(15)

where 0 < p < 1 is the probability of occupancy of a link between two
nodes. It can be shown that a giant cluster exists when

Fig. 2. (Upper panel) SIR model for and
yielding and . The case (dashed lines) is shown for compari-
son. (Lower panel) SIR model with distancing effects for with and

. The dashed lines represent the solution without lockdowns, and are shown for com-
parison.

. This model is also related to the mean-field theory of ran-
dom spin glasses with finite coordination number (see e.g. [13]).
Clearly, P(∞) → 1 if c → ∞, while for with 0 ≤ ε ≪ 1 we find,

(16)

The correspondence with Eq. (11) is achieved if we take and as-
sume which is the case since s(0) ≈ 1 in our spreading model.
Using we find,

(17)

This correspondence is actually not surprising since the SIR equations
are valid in a mean-field sense, where fluctuations and correlations
among the categories are neglected. This analogy suggests us that we
should go beyond mean-field theory by studying infectious spreading on
a network where correlations can be implemented. This is done in the
following Section.

3. Spreading phenomena on random graphs: Percolation concepts

Tracing infected people in a population and how they move is essen-
tial to make an accurate assessment of the extent a virus has spread in a
region, country or the whole world, in order to implement effective lock-
downs in each particular place (see e.g. [7]). Here we discuss a simple
network model defined on a two dimensional square lattice. The sites of
the lattice represent individuals belonging to one of the four categories
(S, I, R, D), which we will distinguish with different colours in the plots,
i.e. green, red, blue, and yellow, respectively.

Two individuals are said to be connected, i.e. transmission of the dis-
ease can occur, if they are nearest-neighbours (NN) on the lattice, rep-
resenting a ‘short-range’ contact interaction. The NN choice is done just
for convenience, and it can be relaxed in other versions of the model.
The bonds between sites represent therefore the links in the graph, and
the coordination number of 4 gives the maximum node degree, under
‘static’ conditions. The latter mean that the individuals are considered
to be at rest in their lattice locations, initially, while the virus can move
around from site to site if the following rules are obeyed: (1) The virus
can cross a bond from an infected site to a susceptible one; (2) no virus
transmission occurs otherwise; (3) infected sites heal after τH days, be-
coming recovered sites, so that they can neither infect others nor being
infected again (immune sites); and (4) dormant sites do not participate
in the spreading process.

It is essential to consider additional links ‘dynamically’ as the
spreading goes on. This is done in order to describe those individuals
who move around for different reasons. Thus, any infected site can reach
sites that are not NN to it, and the infection can spread according to the
above rules. In this case, the infection is transmitted with a probability

with τL > t0, and day, provided the target site is a sus-
ceptible one.

In summary, we have taken a two dimensional lattice to facili-
tate the visualization of the network, and considering both NN trans-
missions as well as long-range ones, though with a lower probabil-
ity. Since the extra links are not determined from the beginning, but
are added dynamically, we do not show them in the plots, facilitat-
ing the identification of the categories. Another reason for choosing
a square lattice is that the percolation threshold for site percolation
(in this case the susceptible sites) is about 0.6, meaning that if we
take say, there are not percolating (‘infinite’) clusters of sus-
ceptible subjects on the lattice. This ‘hindering’ effect
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is useful when implementing lockdowns, since the remaining susceptible
clusters (of connected NN sites) are disconnected from each other (they
are indeed ‘finite’). One can say that ‘long-range’ links can connect dif-
ferent susceptible clusters, which otherwise would remain disconnected.

We show in Fig. 3 and 4 results of simulations for a single configu-
ration, without and with lockdowns, respectively, on a (100x100) lattice
for times t ≤ 100 days. Fixed boundary conditions are employed. The
starting configuration has a random distribution of either susceptible or
dormant sites, chosen with probability . The initial conditions
include a single infected site right at the centre of the lattice, and no
recovered subject. We keep track of the existing infected sites, each car-
rying a clock that starts ticking when the site gets infected. After a time
τH it becomes recovered (immune). Death sites are not implemented, but
they can be estimated simply as a fraction of recovered ones.

We count the number of dynamical links generated during the
spreading, from which we can determine, a posteriori, the effective
mean node degree, < keff > , in our network. We find < keff > ≅2.22
without lockdowns (Fig. 3) and < keff > ≅2.03 with lockdowns
(Fig. 4), indicating an effective reproduction num

ber . It turns out that the relatively small reduction of
the mean node degree in the presence of lockdowns is sufficient to re-
duce the number of infected subjects considerably, as one can see from
the very different structure of recovered clusters from both figures. The
time evolution of the three categories are displayed in Fig. 5, and look
qualitatively similar to those from the SIR model in Fig. 2. We should
mention that a single lattice simulation takes few seconds on a typical
laptop, even for lattices of size (400x400), allowing to obtain accurate
mean values by averaging over several configurations if required.

4. Analysis of COVID-19 USA data

As an application of the present ideas we consider COVID-19 USA
data (see also [8,18,19]), from the point of view of both SIR and net-
work models. In order to do so, and due to the complexity of the data,
we need to introduce additional features in particular for the SIR model.

For the USA data (Fig. 6), the lockdown regime can be described by
the Ansatz, similar to Eq. (13),

(18)

Fig. 3. The graph of connected individuals used in the simulation. Each site of the (100x100) square lattice represents an individual belonging to one of the four categories: (S) Susceptible
(green), (I) Infected (red), (R) Recovered (blue), (D) Dormant (yellow). Panels: (Upper left) Starting configuration ( ) for with and ; (Upper
right) ; (Lower left) ; (Lower right) . The model parameters are: (transmission time) and (healing time) and yielding
and (long range transmission time) yielding . Times are expressed in days. The average node degree for the starting configuration is while additional links are
added dynamically as the network evolves in time. The newly created links yield an additional mean degree corresponding to an effective mean node degree

. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Same as in Fig. 3 in the case of lockdowns: Panels: (Upper left) Starting lockdowns ( ); (Upper right) ; (Lower left) ; (Lower right) . The model parameters
are: (start of lockdowns) and (no long range transmissions) yielding . The average node degree for the starting configuration is while additional links are
added dynamically until . The newly created links yield an additional mean degree corresponding to an effective mean node degree .

where with, in general, a time dependent expo-
nent q(t).

Let us consider first the case of the SIR model (upper panel in
Fig. 6). For the latter, we use the decreasing function with time,

with the constant value . This feature was
needed in order to reproduce the slowly decreasing behaviour of the
daily cases (blue circles in Fig. 6). In addition, a rather complicated
form for the factor d(t) determining the time evolution of deaths, Deaths

was required. We find that the form
reproduces the curve of deaths quite well

(black circles in Fig. 6), but the results might be improved using more
parameters. This remains to be understood. The whole fitting curves
were shifted in time by an amount days, that is, the initial data
were actually discarded from the fits.

In the case of the network model (lower panel in Fig. 6), the sit-
uation is simpler since all parameters can be taken as constants; the
values depending on the regime under consideration. Regarding lock-
downs (t ≥ τ0), the value works rather well, while we take
a finite long-range transmission probability i.e. 4 times
smaller than its value (t < τ0), suggesting that indeed the
lockdowns are not fully implemented and few additional infected sub-
jects are still moving around. Also the number of deaths can be es-
timated from the actual recovered ones using a single

value (6%). As well as in the case of SIR, also here we used
times lags for the fits, i.e. for the cases and for deaths.

5. Conclusions

We have introduced a network model for the spreading of an in-
fectious disease in a population based on random graph and percola-
tion theory concepts. The model is conveniently defined on a square
lattice allowing a simple visualization of the four different categories
in the problem: Infected, susceptible, recovered and dormant subjects.
The first three groups form the core of the widely used SIR model,
while the fourth one is introduced here for representing those individ-
uals who are disconnected to some extent from the rest of the popu-
lation. They do not participate in the spreading phenomena but their
presence acts as an effective slowing down of spreading by blocking
an otherwise direct transmission between infected and susceptible peo-
ple. In the language of percolation theory, the ‘connected’ suscepti-
ble subjects form finite clusters on the lattice that are separated from
each other. To allow the spreading to overcome these ‘connection gaps’
as the process evolves in time, we allow infected people to reach any
other susceptible site in the lattice, and infect it with a relatively lower
probability than inside a finite cluster via NN contacts. We denote
these new links, not present initially in the ‘lattice graph’, dynami
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Fig. 5. Time evolution of the normalized SIR functions for the lattice network-spread-
ing model. (Upper panel) No lockdowns (Fig. 3). (Lower panel) Lockdowns:
(Fig. 4).

cal links. This dynamical approach allows us to describe lockdown ef-
fects in terms of the slowing down or total lacking of the dynamical
links.

We have assessed the performance of the network model by fitting
COVID-19 USA data and compared the results with predictions using the
SIR model. The network model works very well by just using constant
parameters, while the SIR model requires more involved time dependent
parameters to achieved similar fitting accuracy. We conclude that the
present network model can become a valuable technique to complement
the widely used SIR model.
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Fig. 6. Time evolution of COVID-19 in the USA. SIR model (upper panel):
; Lockdowns:

. Time lag . Network model (lower panel):

and ; Lockdowns: . Time lag
for cases and for deaths. Data up to May 25, 2020.
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