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We introduce wavelet phase harmonics (WPH) statistics: interpretable low-dimensional statistics that
describe 2D non-Gaussian fields. These statistics are built from WPH moments, which were recently
introduced in the data science and machine learning community. We apply WPH statistics to projected 2D
matter density fields from the Quijote N-body simulations of the large-scale structure of the Universe. By
computing Fisher information matrices, we find that the WPH statistics place more stringent constraints on
four of five cosmological parameters when compared to statistics based on the combination of the power
spectrum and bispectrum. We also use the WPH statistics with a maximum entropy model to statistically
generate new 2D density fields that accurately reproduce the probability density function, the mean and
standard deviation of the power spectrum, the bispectrum, and Minkowski functionals of the input density
fields. Although other methods are efficient for either parameter estimates or statistical syntheses of the
large-scale structure, WPH statistics are the first statistics that achieve state-of-the-art results for both tasks
as well as being interpretable.

DOI: 10.1103/PhysRevD.102.103506

I. INTRODUCTION

The evolution of the large-scale structure (LSS) of the
Universe illustrates how nonlinearities can affect the stat-
istical properties of a field. The fluctuations of the density
field are Gaussian in the early Universe, and then grow into

*Corresponding author.
erwan.allys@ens.fr

†Corresponding author.
tanguy.marchand@ens.fr

PHYSICAL REVIEW D 102, 103506 (2020)
Editors' Suggestion

2470-0010=2020=102(10)=103506(22) 103506-1 © 2020 American Physical Society

https://orcid.org/0000-0003-3755-7593
https://orcid.org/0000-0002-2015-1178
https://orcid.org/0000-0002-4816-0455
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.103506&domain=pdf&date_stamp=2020-11-06
https://doi.org/10.1103/PhysRevD.102.103506
https://doi.org/10.1103/PhysRevD.102.103506
https://doi.org/10.1103/PhysRevD.102.103506
https://doi.org/10.1103/PhysRevD.102.103506


a complex structure containing walls, filaments, nodes, and
voids—the cosmic web. These structures are direct
signatures of the coupling of the different scales in the
cosmic web.
No generic and efficient statistical characterization of the

LSS exists, in contrast to the cosmic microwave back-
ground (CMB) for which we have statistically extracted
most of the information on the cosmological model.
Indeed, we can characterize the primary temperature
anisotropies of the CMB by a Gaussian field and describe
them fully by their power spectrum. In other words, for a
homogeneous and isotropic Gaussian field such as the
CMB, there is no interaction between different scales, and
the amplitudes of its Fourier modes entirely characterize the
field. Conversely, the LSS field is a non-Gaussian field with
long-range interactions. The power spectrum alone cannot
describe the couplings between different scales of the LSS.
A standard method to capture the nonlinearity of the LSS

is to compute n-point correlation functions, which corre-
spond to polyspectra when expressed in terms of Fourier
modes. In particular, various studies in recent decades rely
on the bispectrum (polyspectrum for n ¼ 3) to study the
LSS (e.g., see [1–3]). One difficulty of directly using the
Fourier bispectrum is its large number of terms, which
generally must be reduced in some way. This typically
leads to the construction of tailored bispectrum estimators
(e.g., see [4]). In addition, bispectrum estimators, as with
any high-order moments, are very sensitive to outliers and
thus may suffer high empirical variance [5].
Alternatively, other studies have developed new statistics

to go beyond bispectrum analysis of the LSS fields. For
example, [6–8] use the line correlation function (LCF) to
characterize the LSS and to perform cosmological param-
eter inference. The LCF computes pure phase information
in Fourier space and is particularly efficient for describing
filamentary structures, especially when used in addition to
the power spectrum and bispectrum [2,9]. There is also an
abundant literature on other statistics, such as the distri-
bution of peaks [10] or of voids [11] in the cosmic web.
Non-Gaussian fields such as the LSS contain coherent

structures at different scales that are well localized in space
and in frequency. This feature motivates a hierarchical
multiscale approach, such as the wavelet transform, rather
than a description in terms of Fourier modes, which are not
localized in space. The wavelet transform decomposes a
process at different scales and locations and often leads to a
sparse spatial description [12–16].
However, the wavelet transform in itself does not

characterize interactions between scales. Indeed, second-
order moments of a wavelet transform depend solely on the
power spectrum [15,17,18]. To capture the interactions
between scales, we have to compute correlations between
nonlinear transforms of the wavelet coefficients. This
approach leads to statistical descriptors characterizing the
dependences across different scales that are signatures of
the coherent structures of the field.

Recently, [19] introduced a novel low-dimensional
statistical description following these principles called
wavelet phase harmonics (WPH) statistics. The authors
applied a nonlinear operator, the phase harmonic operator,
to the multiscale wavelet transform of a field. This operator
acts on the complex phase of a field independently of the
amplitude and enables alignment of the phase information
across different scales. The building block of WPH
statistics are WPH moments, i.e., covariances of wavelet
transforms whose spatial frequencies have been made
synchronous by means of the phase harmonic operator.
WPH statistics are able to capture coupling between scales
and can efficiently reproduce various textures [20].
Moreover, they achieve competitive classification results
on data sets as challenging as ImageNet [21].
Building upon these recent results, we design in this paper

low-dimensional WPH statistics suited to the matter density
field of the LSS.1At present, weworkwith a 2Dprojection of
the LSS matter density field. We validate our newly con-
structed statistics by applying them to two complementary
tasks: (i) measuring cosmological information and (ii) gen-
erating statistical syntheses. For the first task,we compute the
Fisher information contained in these statistics with respect
to five cosmological parameters. For the second task, we
generate statistical syntheses of the 2D projected LSS matter
density field by building a maximum-entropy generative
model. Such a model generates new realizations of the field
that are conditioned on the WPH statistics, while being as
general as possible. That is, the new realizations include no
additional implicit or explicit constraints. We assess the
quality of the syntheses by checking howwell they reproduce
standard cosmological statistics such as the power spectrum,
bispectra, and Minkoswki functionals.
We obtain state-of-the-art results for both these tasks,

which is the main result of this paper. Although previous
approaches have been successful for one or the other of
these tasks, to the best of our knowledge this is the first time
that use of a single low-dimensional statistical description
has achieved such performance on both of them.
Additionally, we demonstrate the interpretability of

WPH statistics: they provide better physical insight into
the structure of the LSS matter density field. In particular,
we see which features of the LSS are related to interactions
between near and distant scales. We also discuss the relative
impact on the different cosmological parameters of the
coupling between different scales.
Outline of the paper.—We base our work on two-

dimensional projected matter density fields from the
Quijote N-body simulations of the LSS [23]. We present
in Sec. II the general form of the low-dimensional WPH
statistical description that we use throughout the paper. In
Sec. III, we briefly describe the Quijote simulations, and

1This work was done simultaneously and independently of that
presented in [22], where the authors apply a different but related
technique, the wavelet scattering transform, to perform cosmo-
logical parameter inference in the context of weak lensing.

E. ALLYS et al. PHYS. REV. D 102, 103506 (2020)

103506-2



present Fisher analysis results for five cosmological para-
meters based on the fields from these simulations. In
Sec. IV, we present the microcanonical maximum entropy
generative model that we use, and we assess the quality of
the statistical syntheses generated from WPH statistical
constraints. Finally, we discuss in Sec. V the physical
interpretation of the WPH coefficients, and their link with
standard summary statistics. Appendix A specifies some
mathematical details, including the form of the mother
wavelet and the bispectrum statistics. Appendix B specifies
the complete parameters of theWPH representations used to
perform the cosmological Fisher analysis and statistical
syntheses.
Notation.—We use ρðx⃗Þ to denote the random 2D field

under study. We assume that ρðx⃗Þ has homogeneous
statistical properties, i.e., that the statistical distribution
of the associated process is translation invariant. We also
assume that this field has periodic boundary conditions. We
work on a Cartesian grid of size N ¼ 256, so the position x⃗
is defined in ½0; N½2. The Fourier transform of Aðx⃗Þ is Âðk⃗Þ,
and A� is the complex conjugate of A. A � B denotes the
convolution of A and B. The expected value of a stochastic
process X is written hXi, and the covariance between X and
Y is CovðX; YÞ ¼ hXY�i − hXihY�i.
A public version of the code used in this article is

available at https://github.com/Ttantto/wph_quijote.

II. WAVELET PHASE HARMONICS

A. Wavelet transform

WPH statistics are based on the wavelet transform,
which is an efficient tool for locally separating the multi-
scale variability of a given process. Wavelets have been
used successfully across a wide range of physics research
(see, for instance, [14]). A wavelet transform of a field
consists of its convolution with a set of wavelets that probe
specific structures. With appropriately chosen wavelets, the
transform leads to a sparse spatial description of the
structures at different scales. In this paper, we use bump
steerable wavelets [19], which characterize localized direc-
tional oscillations and have been used to efficiently
synthesize physical fields [20].
The complex bump steerable wavelets ψ j;lðx⃗Þ are labeled

by two integers j andl. The integer j takes J values from0 to
J − 1 and specifies a characteristic wavelength of oscillation
of order 2jþ1 in pixel space. In this paper, we take J ¼ 8 so
that this wavelength ranges from 2 to 256 pixels. The integer
l characterizes the oscillation’s orientation, indexing an
angle of 2πl=L with respect to the reference axis. In this
paper, we divide 2π into L ¼ 16 angles. We can obtain all
these wavelets ψ j;lðx⃗Þ by a dilation and a rotation of one
complex mother wavelet ψðx⃗Þ:

ψ j;lðx⃗Þ ¼ 2−jψð2−jr−lx⃗Þ; ð1Þ
where rl is the rotation of angle 2πl=L, and ψðx⃗Þ is defined
in Appendix A 1. Figure 1 shows the real part of such a
wavelet, as well as the Fourier transform of one.

The Fourier transform of each bump steerable wavelet
ψ̂ j;lðk⃗Þ is real and samples a limited region of the Fourier
plane. The mother wavelet is defined with a central
frequency ξ⃗0 ¼ ðξ0; 0Þ, and each child wavelet ψ j;l has a
central frequency

ξ⃗ ¼ 2−jrlξ⃗0; ð2Þ
which we also use as a wavelet index in place of ðj;lÞ,
writing ψξ⃗ instead of ψ j;l. When the integers j span all the
possible values for a given image (i.e., when 2J is the size
of the image), the ψ̂ ξ⃗ðk⃗Þwavelet spectral bands for all j and
l values cover the whole Fourier plane.
The bump steerable wavelet transform of a field ρðx⃗Þ is

defined as its convolution with the set of wavelets defined
above, that is, the J × L convolutions ρ � ψξ⃗ðx⃗Þ. Each of
these convolutions corresponds to a local filtering of the
field ρ on the frequency support of ψξ⃗, around the

frequency ξ⃗. Figure 2 shows two such convolutions on
matter density fields of the LSS from the Quijote simu-
lations. Notice how each wavelet picks up the filamentary
structures at a given scale and orientation. The values of the
resulting filtered fields peak at only a few spatial positions,
illustrating the sparsity of the wavelet transform.

B. Covariance of wavelet transforms

To characterize the dependency between the field ρ
filtered at two scales [i.e., ρ � ψξ⃗1

ðx⃗Þ and ρ � ψξ⃗2
ðx⃗Þ], we

could consider the following covariance:

Cξ⃗1;ξ⃗2
ðτ⃗Þ ¼ Cov½ρ � ψξ⃗1

ðx⃗Þ; ρ � ψξ⃗2
ðx⃗þ τ⃗Þ�: ð3Þ

For a stationary field this quantity does not depend on x⃗ but
only on the spatial shift τ⃗. However, Cξ⃗1;ξ⃗2

ðτ⃗Þ carries no

more information than the power spectrum2 Sðk⃗Þ of ρ since
they are related by [20]:

FIG. 1. Two-dimensional bump steerable wavelets. The real
part of ψ4;2ðx⃗Þ (left) and the Fourier transform ψ̂1;2ðk⃗Þ (right).
Axes are labeled with the units used when applying these
wavelets to density maps of the large scale structure (LSS).

2Sðk⃗Þ is the complete power spectrum, not the isotropic one.
For a stationary process ρ, it is defined as the Fourier transform of
the two-point correlation function sðτ⃗Þ ¼ Cov½ρðu⃗Þ; ρðu⃗þ τ⃗Þ�.
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Cξ⃗1;ξ⃗2
ðτ⃗Þ ¼

Z
Sðk⃗Þψ̂ ξ⃗1

ðk⃗Þψ̂�
ξ⃗2
ðk⃗Þe−ik⃗·τ⃗dk⃗: ð4Þ

Equation (4) shows that Cξ⃗1;ξ⃗2
ðτ⃗Þ cannot actually capture

the couplings between different scales and angles. Indeed,
this equation implies that Cξ⃗1;ξ⃗2

ðτ⃗Þ ¼ 0 if the supports of
ψξ⃗1

and ψξ⃗2
in the Fourier plane do not overlap. This result

is illustrated in Fig. 3, which shows two convolutions of a
typical LSS field by wavelets probing different spatial

frequencies ξ⃗1 and ξ⃗2. Since the covariance of those maps is
basically their scalar product,3 it is negligible because the
maps oscillate at different spatial frequencies. These results
imply that the descriptor Cξ⃗1;ξ⃗2

ðτ⃗Þ cannot capture any
coupling between different scales or angles. Thus, this
descriptor cannot distinguish between processes that have

FIG. 2. Left: typical projected 2D density map of the LSS from the Quijote simulations [23]. Center and right: real part of the same
map convolved with wavelets ψ1;þ2ðx⃗Þ and ψ1;−2ðx⃗Þ, respectively. The dashed white circles highlight filaments captured by the first
wavelet, the dotted red circles a filament captured by the second wavelet, and the plain black circles an intersection of filaments captured
by both wavelets.

FIG. 3. Illustration of wavelet phase harmonics (WPH) moments computation. A typical Quijote density field ρ (far left) is convolved
with two wavelets ψξ⃗1

and ψξ⃗2
, with ðj1;l1Þ ¼ ð3; 0Þ and ðj2;l2Þ ¼ ð4; 0Þ. The amplitude and phase of each convolution is shown in the

central panel. From their phase, one sees that the ρ � ψξ⃗i
fields oscillate with different characteristic scales 2j1 and 2j2 , respectively. Their

covariance is therefore negligible. By applying the phase harmonic operator to ρ � ψξ⃗2
, using harmonic exponent p ¼ ξ1=ξ2 ¼ 2j2=2j1 ,

one obtains a new field of the same amplitude but with a phase of characteristic scale 2j1 (lower right). As the fields ρ � ψξ⃗1
and

½ρ � ψξ⃗2
�ξ1=ξ2 have the same characteristic wavelength, their covariance may be non-negligible. This covariance is a WPH moment

characterizing the relative phase alignment between the ρ � ψξ⃗1
and ρ � ψξ⃗2

fields. This type of WPH moment computation is illustrated
in Fourier space in the left panel of Fig. 13.

3The mean values of the wavelet convolutions vanish, and
CovðA; BÞ ¼ hAB�i when hAi ¼ 0 ¼ hBi.
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the same power spectrum, even if their higher order
statistics differ. In particular, it cannot distinguish a
Gaussian process from a highly non-Gaussian one.

C. Phase harmonics and coupling between scales

To capture the statistical dependence between nonover-
lapping scales, we must use nonlinear operators. We
therefore use the phase harmonic operator introduced in
[19]: given a complex number z, with modulus jzj and
phase argðzÞ, its pth phase harmonic is defined as

½z�p ¼ jzj · eip argðzÞ: ð5Þ

When applied to a two-dimensional complex map, this
operator accelerates the map’s spatial frequency of oscil-
lation by a factor p, while keeping the modulus unchanged.
This operator therefore modifies the Fourier spectrum of
ρ � ψξ⃗ fields without modifying the spatial localization of
their features. The spectral band of ρ � ψξ⃗ is localized

around frequency ξ⃗, while the ½ρ � ψξ⃗�p field mainly

contains frequencies around pξ⃗. Figure 3 illustrates this
nonlinear operation: a suitable phase harmonic applied to
wavelet transforms ρ � ψξ⃗i

produces a nonvanishing covari-
ance, which enables the dependency between different
scales of the field to be captured.
Therefore we define the WPH moments as

Cξ⃗1;p1;ξ⃗2;p2
ðτ⃗Þ¼Covð½ρ�ψξ⃗1

ðx⃗Þ�p1 ; ½ρ�ψξ⃗2
ðx⃗þ τ⃗Þ�p2Þ: ð6Þ

Cξ⃗1;p1;ξ⃗2;p2
ðτ⃗Þ probes the coupling between ξ⃗1 and ξ⃗2

frequencies. Nonvanishing WPH moments arise only when
the frequency bands of ½ρ � ψξ⃗1

ðx⃗Þ�p1 and ½ρ � ψξ⃗2
ðx⃗Þ�p2

overlap. This condition is guaranteed if

p1ξ⃗1 ≃ p2ξ⃗2; ð7Þ

as illustrated in Fig. 3. Because of the spectral width of the
½ρ � ψξ⃗�p field, other moments defined by Eq. (6) with
overlapping frequency bands can also be constructed when
p1 or p2 is equal to zero [20].
A key property of phase harmonics is their robustness.

Phase harmonics ½z�p and standard moments zp capture the
same phase couplings. However, the estimation of phase
harmonics is more robust than that of standard moments
because their modulus is not raised to the pth power.4 For
instance, to couple the characteristic scales of 4 and
32 pixels using standard moments, we would have to raise
the field to the eighth power, which makes the standard
moments extremely susceptible to outliers. The variance of
the WPH moments is bounded more favorably than that of

the standard n-point statistics (see [20] for a theoretical
analysis).
The WPH statistics introduced in this paper are built

from a collection of WPH moments as given in Eq. (6).
Constructing a set of WPH statistics boils down to selecting
an ensemble of WPH moments, which are specified by
ðξ⃗1; p1; ξ⃗2; p2Þ parameters. We tailor this selection depend-
ing on the field ρ and the purpose of the statistics.

D. Symmetries and spatial shift discretization

Symmetries and invariant WPH description.—If the
physical phenomenon under study possesses some sym-
metries (i.e., if its statistical properties are invariant under
certain groups of transformations), we can take them into
account and lower the dimension of theWPH statistics. Note
that we have already implicitly assumed that the field is
invariant under translation when we defined Cξ⃗1;p1;ξ⃗2;p2

ðτ⃗Þ.
If the field is invariant under rotations, the WPH

moments have angular dependency on only δl ¼l2−l1.
Similarly, the field may be invariant under parity, which
corresponds in two dimensions to invariance when one of
the axes of an image is flipped. This symmetry also
expresses that a clockwise and an anticlockwise rota-
tion cannot be distinguished. When both parity and rota-
tional invariance hold, the WPH moments depend on
only jδlj ¼ jl2 − l1j.
The matter density field from Quijote simulations is

expected to be invariant under translations, rotations,
and parity. These symmetries allow construction of parity-
invariantWPHmoments, whichwe label Cisopar and define as

Cisoparj1;p1;j2;p2;δl
ðτ⃗Þ ¼ hCj1;l1;p1;j2;l2;p2

ðτ⃗Þijl2−l1j¼δl; ð8Þ

where hi stands for an angular average (over l1 and l2),
δl ≥ 0, and themoment Cj1;l1;p1;j2;l2;p2

refers to the standard

WPH moment Cξ⃗1;p1;ξ⃗2;p2
of Eq. (6) with the ξ⃗ and ðj;lÞ

indices related by Eq. (2) in the usual way. These invariant
Cisopar moments significantly reduce the dimension of the
WPH statistics, which reduces the variance of their
estimators.
Discretization of spatial shift and spectral resolution.—

Since a convolved field ρ � ψξ⃗i
has been filtered at a 2jiþ1

scale, we gain little or no additional information from
sampling it at a finer scale. This allows us to consider
discrete sets of translations τ⃗, which also is in accord
with the discretized approach in general. We use different
sets of translations depending on the application (see
Appendix B). Using a large number of spatial shifts τ⃗
improves the spectral resolution of the statistics, but
increases the number of WPH moments. There is therefore
a trade-off between the number of WPH moments and the
spectral resolution; see Sec. VA for further discussion.
WPH statistics used in this paper.—Defining a set of

WPH statistics for a particular field and purpose amounts to4Indeed, j½z�p − ½z0�pj ≤ maxðjpj; 1Þjz − z0j. See [19].
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selecting a set of fξ⃗1; p1; ξ⃗2; p2; τ⃗g parameters and a set of
symmetries (such as rotational invariance). Appendix B
describes the specific WPH statistics used in this paper, first
to estimate Fisher information about cosmological param-
eters in Sec. III and then to produce realistic statistical
syntheses in Sec. IV. We base our choice of WPH moments
on numerical experiments and also on the physical inter-
pretation of the WPH moments, as will be discussed
in Sec. V.

III. FISHER INFORMATION ON COSMOLOGICAL
PARAMETERS

We evaluate in this section the ability of WPH statistics
to infer cosmological parameters. To do so, we compute
their Fisher information with respect to five cosmological
parameters for 2D matter density fields from the Quijote
simulations. First, we describe the Quijote simulations and
the density fields used. Next, we outline the Fisher analysis
that is performed. Finally, we show how our results using
WPH statistics compare to state-of-the-art results obtained
with two widely used summary statistics: the standard
power spectrum, and the joint power spectrum and
bispectrum.

A. Quijote simulations

The physical LSS field we study in this paper is the
spatial distribution of the underlying matter density field,
ρðx⃗Þ, which we obtain from the Quijote simulations [23].
The Quijote simulations are a set of 43100 full N-body
simulations of the LSS, tracing the evolution of spatial
fluctuations from redshift z ¼ 127 to z ¼ 0. The initial
conditions at z ¼ 127 are computed using 2LPT with
CAMB [24], while the dynamics of the simulations that
follows the evolution of the dark matter particles relies on
the TreePMþ SPH code Gadget-III, an improved version
of Gadget-II [25]. See [23] for further details on these
simulations.
In this paper, we use 2Dmatter fields of 256 × 256 pixels,

which are generated as follows: first, for each realization we
compute a 3D density field with 2563 voxels by assigning
particle positions to the grid using the cloud-in-cell mass
assignment scheme. Then we take a slice of 256 × 256 × 64

and project to 2562 pixels by computing the average along
the third axis. The resulting field represents a region with an
area of 1000 × 1000ðh−1 MpcÞ2. The matter density fields
ρðx⃗Þ are normalized to satisfy ρ̄ ¼ 1. In the following section,
we study both the matter density field and its logarithm.
Figure 3 provides an example of such a field.
We consider different cosmologies with five varying

cosmological parameters: the matter density parameter Ωm,
the baryon density parameterΩb, the dimensionless Hubble
parameter h, the scalar spectral index ns, and finally σ8, the
average rms matter fluctuation smoothed at 8h−1 Mpc
scale. We denote these parameters collectively as θα.

We use two different sets of simulations. The first set
contains 15000 simulations of the Planck fiducial cosmol-
ogy [26], for cosmological parameters θfidα (see Table I).
The second set of simulations is devised to numerically
compute partial derivatives with respect to the five cos-
mological parameters. For each cosmological parameter θα,
this set contains 1000 simulations for θfidα � Δθα (i.e., 500
for each sign), the other parameters being held fixed at the
fiducial values (see [23] for more details). See Table I for
the values of Δθα.

B. Fisher matrix analysis

For a given set of statistics, we can quantify the
information that they contain (on average) with respect
to the cosmological parameters θα by computing the Fisher
information matrix of the parameters. Specifically, consider
a set fΦ1ðρÞ;…;ΦdðρÞg of d scalar statistics (such as WPH
moments) computed from a realization ρ of the field. We
denote by μiðθαÞ the expected value of ΦiðρÞ, and by
ΣijðθαÞ the covariance of ΦiðρÞ andΦjðρÞ when ρ is drawn
under θα. If the statistics are jointly Gaussian and their
covariance matrix Σ does not depend on θα, the Fisher
information matrix boils down to [27]

Fαβ ¼
X
i

X
j

∂μi
∂θα ðΣ

−1Þij
∂μj
∂θβ : ð9Þ

From this Fisher matrix we can compute the Cramér-
Rao bound, which gives the asymptotically lowest
possible variance δθ2α for any unbiased estimator of θα
based on Φ:

δθα ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

q
: ð10Þ

In this paper, we numerically estimate the Fisher matrices
(for each set of summary statistics considered) for the
cosmological parameters θα corresponding to the Planck
fiducial cosmology. We estimate the covariance matrices
from the 15000 fiducial Planck simulations, while each
partial derivative appearing in Eq. (9) is evaluated with the
two sets of 500 simulations at θfidα � Δθα. We checked
the convergence of these estimates by verifying that the
Cramér-Rao bounds changed only at the percent level when
using 10000 (350) simulations to compute the covariance
matrices (partial derivatives).

TABLE I. Fiducial values θfidα and finite deviations Δθα of the
cosmological parameters used in our simulations.

Parameter Ωm Ωb h ns σ8

θfidα 0.3175 0.049 0.6711 0.9624 0.834
Δθα 0.01 0.002 0.02 0.02 0.015
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C. Fisher matrix results

We compare in this section the results obtained with
three sets of summary statistics: the standard isotropic
power spectrum (Pk), the power spectrum plus a set of
isotropic bispectrum triangles (Pk þ Bk), and a set of WPH
statistics. Appendix A 3 describes the bispectrum triangle
ensemble, which contains flattened, squeezed, and equi-
lateral triangles. The WPH statistics are constructed from
the WPH moments given in Eq. (8), which are invariant
under rotations and parity. Appendix B 2 provides a

complete description of these moments, which characterize
all the scales of the image with 327 coefficients. A plot of a
subset of moments from these WPH statistics are given in
Fig. 9, and their covariance in Fig. 10. Note however that
these figures use notations introduced in Sec. V.
For each of these descriptors, we evaluated the posterior

distributions of the cosmological parameters obtained using
the matter density field and its logarithm from the Quijote
simulations. We expect the logarithm to make the density
field more Gaussian, while transferring information from

FIG. 4. Fisher matrix constraints for five cosmological parameters, based on WPH statistics (green), power spectrum (Pk, red), and
joint power spectrum and bispectrum (Pk þ Bk, blue). These constraints were computed from ð1 Gpc=hÞ2 maps of the projected matter
density field (bottom) and its logarithm (top). Contours mark 95% confidence intervals. WPH statistics provide the best constraints for
each parameter except σ8, which is more tightly constrained by Pk þ Bk on the matter density field (bottom row).
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high-order correlations to the power spectrum [28–30]. See
[31] for a similar case of a nonlinear transform applied to
Quijote simulations.
Table II andFig. 4, respectively, show themarginal and full

posterior distributions of cosmological parameters obtained
with the Fisher analysis. For all five cosmological param-
eters, the WPH statistics contain more information than the
power spectrum. The improvement of forecast errors ranges
from 20% to a factor larger than 3. The relative improvement
is generally larger for the matter density field than for its
logarithm. This may be because the logarithm of the field is
more Gaussian and the power spectrum suffices to character-
ize a Gaussian stationary field.
Compared to the power spectrum plus bispectrum, the

WPH statistics provide better constraints on four of the
cosmological parameters, the exception being σ8. For those
four parameters, the absolute improvement from Pk þ Bk to
WPH is similar to the improvement from Pk alone to
Pk þ Bk.
Table III shows the Fisher information results for joint

WPHþ Pk and WPHþ Bk statistics. Except for σ8 with
WPHþ Bk statistics, only limited additional information is
gained by adding these statistics to those built solely on
WPH moments.
Numerous works (e.g., [2]) study the LSS field using the

power spectrum together with bispectrum. For instance,

[32–34] provide bispectrum forecasts for full sets of
cosmological parameters. In particular, [3] computes from
theN-body Quijote simulations the full information content
of the redshift-space halo bispectrum for six cosmological
parameters. However, the particular two-dimensional pro-
jected matter density field that we use here makes it
difficult to quantitatively compare our results with those
obtained in these earlier works. Reference [35] performs a
similar analysis for weak-lensing surveys. They show the
improvements gained by adding the bispectrum to the
power spectrum and obtain results similar to our results for
Pk and Pk þ Bk. Given the widespread use of the bispec-
trum in cosmological parameter inference, current bispec-
trum results can be taken as a generic benchmark. Thus, we
claim that the results obtained with WPH statistics compare
favorably to state-of-the-art results obtained with these
other summary statistics. A more quantitative comparison
is deferred to later work, since it requires WPH statistics to
be extended to 3D fields.

IV. STATISTICAL SYNTHESES WITH WPH
STATISTICS

In this section, we show that WPH statistics embed a
wide range of summary statistics commonly used in
cosmology. For that purpose, we estimate WPH statistics
on a subset of Quijote simulation maps, and generate from
them synthetic maps based on a microcanonical maximum
entropy principle. Then we compare these statistical
syntheses to the whole sample of Quijote maps, using as
summary statistics the power spectrum, bispectrum, prob-
ability density function (PDF), and Minkowski functionals.
Previous studies have considered similar syntheses based

on either WPH statistics [20,23] or the related wavelet
scattering transform [36–38], but they reported only quali-
tative assessments, mostly from visual inspection. In
contrast, in Sect. IV B below we report much more
stringent quantitative tests based on a wide set of statistics
commonly used in astrophysics.

A. Microcanonical maximum entropy model

In this section we outline our generative algorithm for
drawing sample realizations of a microcanonical maximum
entropy model. A maximum entropy model is a probability
distribution p that satisfies a set of statistical constraints,
while being as general as possible otherwise. This means
that it maximizes the Shannon entropy HðpÞ ¼
−
R
pðρÞ log ½pðρÞ�dρ. In this paper, we consider micro-

canonical models, which are defined as follows. Let ρ̃ denote
a realization of the process under study and letΦðρ̃Þ be a set
of statistics computed on this realization. We define the
microcanonical set Ωε of width ε conditioned by ρ̃ as

Ωε ¼ fρ∶d½ΦðρÞ;Φðρ̃Þ� ≤ εg; ð11Þ

TABLE III. Marginalized errors on cosmological parameters
obtained with Fisher analysis using WPH, joint WPHþ Pk, and
joint WPHþ Bk statistics. These results were obtained with the
matter density field (columns 2 to 4), and its logarithm (primes;
final 3 columns).

Φ WPH þPk þBk WPH0 þP0k þB0
k

Size 327 454 513 327 454 513

Ωm 0.11 0.11 0.10 0.102 0.096 0.094
Ωb 0.075 0.073 0.070 0.064 0.063 0.062
h 0.71 0.68 0.65 0.50 0.50 0.48
ns 0.20 0.20 0.19 0.11 0.11 0.11
σ8 0.018 0.018 0.0095 0.0097 0.0096 0.0086

TABLE II. Marginalized errors on cosmological parameters
obtained with Fisher analysis of the matter density field (columns
2 to 4) and its logarithm (primes; final three columns). The
analysis used power spectrum (Pk), joint power spectrum and
bispectrum (Pk þ Bk), and WPH statistics.

Φ Pk Pk þ Bk WPH P0k P0k þ B0
k WPH0

Size 127 313 327 127 313 327

Ωm 0.15 0.12 0.11 0.15 0.12 0.10
Ωb 0.16 0.12 0.075 0.12 0.097 0.064
h 1.5 1.1 0.71 0.99 0.78 0.50
ns 0.74 0.52 0.20 0.25 0.20 0.11
σ8 0.024 0.013 0.018 0.012 0.0097 0.0097
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where d½ΦðρÞ;Φðρ̃Þ� is a measure of the discrepancy
between ΦðρÞ and Φðρ̃Þ. The microcanonical maximum
entropymodel is the model of maximal entropy defined over
Ωε. This implies that it has a probability distribution that is
uniform on Ωε. See [39,20] for the exact definition of
d½ΦðρÞ;Φðρ̃Þ� and further explanation.
We could sample from microcanonical maximum

entropy models with Monte Carlo techniques, but such
methods tend to be quite computationally expensive for a
large number of statistical constraints [40]. We therefore
rely on a different approach, introduced in [39]. To produce

one realization of the microcanonical model, we start from
a realization ρ of an homogeneous and isotropic Gaussian
field, which is then modified iteratively by gradient descent
with respect to the loss function L ¼ d½ΦðρÞ;Φðρ̃Þ�. Care
must be taken that the descent preserves the key symmetries
of the starting point: homogeneity and isotropy.
For this paper, we implement the microcanonical maxi-

mum entropy sampling in PYTHON using the PyTorch
library [41] to compute the gradient of the loss and we
perform the loss descent using the L-BFGS-B [42] imple-
mentation of Scipy [43].

FIG. 5. Comparisons of the logarithm of the matter density field logðρÞ in Quijote simulation maps and in our statistically synthesized
maps, showing how well the syntheses reproduce the statistical properties of logðρÞ in the Quijote maps. The error bars correspond to the
realization-per-realization dispersion. (a) A map of logðρÞ from the Quijote simulations. (b) A map of logðρÞ synthesized based on WPH
statistics of a sample of 30 Quijote maps (see Sec. IVA). (c)–(h) Statistics for logðρÞ estimated using 300 maps from the Quijote
simulations (orange lines) and 300 syntheses (dashed blue lines). (c) Power spectrum, (d) standard deviation of the power spectrum,
(e) pixel value PDF on a linear scale, (f) bispectrum in the flattened triangle configuration, Bðk=2; k=2; kÞ, (g) bispectrum in the
squeezed triangle configuration, Bðk; k; k3Þ, for k3 ≪ 1, and (h) pixel value PDF on a logarithmic scale.
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B. Statistical validation of the syntheses

We now assess the quality of the syntheses generated by
the maximal entropy model. Rather than working with the
matter density field itself, we chose to work with its
logarithm. As the matter density field roughly follows a
log-normal distribution, the distribution of its logarithm
should be well approximated by a normal distribution.
Indeed, we found that it was better reproduced by our
maximal entropy model. We refer to Appendix C for further
explanations on this choice.
The WPH statistics used in this section, and detailed in

Appendix B 3, contain 6676 coefficients, significantly
more than the 327 coefficients used for Fisher analysis
in Sec. III. The increase occurs because the WPH moments
used here are not invariant under rotations: they are
constructed from Eq. (6) rather than from the isotropized
version (8). We found that this choice led to better
syntheses: even though syntheses based on isotropic
moments (8) are visually indistinguishable from syntheses
based on anisotropic moments (6), the various validation
statistics presented below are better reproduced with
anisotropic moments. This is likely due to the Cartesian
grid breaking the rotational symmetry, especially at small
scales. The other difference from the statistics of Sec. III is
that here we use low-pass filters rather than WPH moments
to constrain the scales at j ≥ 6.
As sketched in Sec. IVA, the principle of the synthesis of

a map ρ is to adjust its pixels in order for its WPH moments
ΦðρÞ to match those estimated from Quijote simulations.
However, something slightly different is implemented in
practice so some details are in order. Regarding the target
WPH moments, they are collected in a vector Φtarget

obtained by averaging (a sample version of) Eq. (6) over

a set of Nlearn ¼ 30 Quijote maps with periodic boundary
conditions. Each Quijote map has a surface area of
1 ðGpc=hÞ2 and is sampled on a grid of 256 × 256 pixels.
We found empirically that a set ofNlearn ¼ 30mapswas large
enough to estimate theWPH coefficients up to J ¼ 6with an
accuracy sufficient for our purposes. We could have used a
larger training set but we restrained ourselves to Nlearn ¼ 30
in order to illustrate that our method performs well with a
small number of examples.
Regarding the synthesis process itself, maps are not

produced individually but in batches of Nbatch maps. We
start from Nbatch maps ρ1;…; ρNbatch

of size 256 × 256

obtained as independent Gaussian white noise realizations.
Then, their pixel values are adjusted by minimizing the
joint loss

Lðρ1;…; ρNbatch
Þ ¼

XNbatch

i¼1

dðΦðρiÞ;ΦtargetÞ ð12Þ

rather than minimizing the individual loss dðΦðρiÞ;ΦtargetÞ
independently for each map ρi. The motivation for this
variant is that criterion (12) demands that the WPH
statistics be matched on average over Nbatch maps rather
than for every map, thereby allowing some variability in the
synthesis.5 In this paper, we chose Nbatch ¼ 30 because it
worked well in our syntheses and also because it was the
practical upper limit imposed by the size of GPU memory.
For our experiments, we ran 10 optimizations of (12) using
the same Φtarget, hence producing 10 × Nbatch ¼ 300

FIG. 6. Left: comparison of the bispectrum of logðρÞ in the equilateral configuration computed from 300 Quijote simulations (orange)
and 300 syntheses (dashed blue). The error bars correspond to the realization-per-realization dispersion. Right: plot of the absolute value
of the same quantities in logarithmic scale. Orange dashed vertical lines show the change of sign of the bispectrum of the Quijote
simulation and blue dotted lines the change of sign of the bispectrum of the syntheses. Please notice the change of the vertical order of
the lines due to the absolute value.

5Such a variability is needed at large scales which have much
fewer degrees of freedom. This issue will be the subject of future
research.
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synthetic maps, taking about 50 GPU hours.6 Figures 5(a)
and 5(b) show one Quijote map and one synthesized map.
To assess the quality of the syntheses, we performed a

variety of statistical analyses, comparing the 300 synthetic
maps to an independent sample of 300 Quijote maps. In
particular, we computed several n-point statistics for n up to
4 on both these sets of maps. We compared the pixel
distributions (n ¼ 1), power spectra (n ¼ 2), bispectra
(n ¼ 3), and the standard deviation and correlation matrix

of the empirical power spectrum (n ¼ 4). We also com-
puted three Minkowski functionals (MFs) for both sets of
300 maps. Figures 5–7 present these results.
For isotropic homogeneous fields, the bispectrum is

defined by three wave-vectors ðk⃗1; k⃗2; k⃗3Þ satisfying the
triangle inequalities, and therefore representing the lengths
of the edges of a triangle. We focus on three configurations:
squeezed triangles (k⃗1 ≃ k⃗2 and k3 ≪ k1), flattened triangles
(k⃗1 ¼ k⃗2 ¼ k⃗3=2), and equilateral triangles (k1 ¼ k2 ¼ k3).
Figures 5(f) and 5(g) show the results for flattened and
squeezed triangles, and Fig. 6 shows those for equilateral
triangles. Appendix A 3 describes the bispectrum computa-
tion in greater detail.

FIG. 7. Further comparisons of logðρÞ in 300 Quijote maps and our 300 syntheses, showing how well the syntheses reproduce the
statistical properties of the Quijote maps. (a) Correlation matrix of the power spectrum of logðρÞ in Quijote maps (left) and syntheses
(right). Notice that this matrix is mainly diagonal because we consider logðρÞ. The correlation matrix of the power spectrum of ρ is
highly nondiagonal, as also seen on Fig (3) of [23]. (b) First, second, and third Minkowski functionals of Quijote maps (thick orange
lines) and syntheses (dashed blue lines). The error bars correspond to the realization-per-realization dispersion. The error bars have been
inflated by a factor of 5 in these three plots in order to be visible. (c) Histograms of the distribution of the power spectrum, at the
frequencies k ¼ 0.1, 0.17, and 0.32 h/Mpc for Quijote maps (orange) and syntheses (blue).

6The GPU used was a GPU Nvidia Tesla P100 with 16Go
of RAM.

NEW INTERPRETABLE STATISTICS FOR LARGE-SCALE … PHYS. REV. D 102, 103506 (2020)

103506-11



Minkowski functionals are statistics capturing the top-
ology of the level sets of the field. They are used in
cosmology to probe the non-Gaussianity of the CMB [44],
to probe departures from general relativity of the LSS [45],
and to study lensing convergence maps [46]. In two
dimensions, there are three MFs that depend on a threshold
ν, denoted V0ðνÞ, V1ðνÞ, and V2ðνÞ. Their definitions are
recalled in Appendix A 4. The MFs of the sets of maps are
shown in Fig. 7(b).
The results of these comparisons show that the syntheses

from WPH statistics presented in this section perform
remarkably well in reproducing the statistical properties
of the logarithm of the Quijote LSS matter density field.
Indeed, our syntheses reproduce the mean of the empirical
power spectrum, its standard deviation, and its correlation
within 5%, 10%, and 10%, respectively. They also repro-
duce the squeezed and flattened bispectra within 10% and
20%, respectively, at spatial frequencies higher than
k ¼ 0.1 hMpc−1, and within 40% below this spatial fre-
quency. The whole pixel PDF is also very well reproduced,
including the tails down to 4 orders of magnitude below the
peak. There is no particular discrepancy between the
synthetic and the Quijote distributions of the empirical
power spectrum, as shown in Fig. 7 at three arbitrary
frequencies. Finally, the syntheses reproduce the three MFs
to within 0.5%, 0.05%, and 0.02%, respectively.
Note that the syntheses do not accurately reproduce the

equilateral bispectrum (Fig. 6), although they do capture its
general shape and changes of sign. This result may be
related to the fact that equilateral bispectrum configurations
correspond to correlations between three clearly separate
frequencies, k⃗1, k⃗2, k⃗3. Thus moments built from con-
volutions of only two wavelets cannot directly characterize
them. Extending theWPH construction to characterize such
couplings is left to future work.
Previous works have used convolutional neural net-

works, and especially GANs, to produce syntheses of
astrophysical fields. For example, [47] uses a GAN to
emulate accurate high-resolution features from computa-
tionally cheaper low-resolution cosmological simulations.
Similarly, in [48], the authors use GANs to generate maps
representing the interstellar medium. More recently, [49]
trained GANs to reproduce both weak lensing convergence
maps and dark matter over-density fields. All these works
assess the quality of the syntheses as in the present paper,
i.e., by computing histograms, power spectra, bispectra,
and Minkowski functionals. Our results are of similar
quality to these earlier works.
However, because our method relies on explicit con-

struction of statistics, it is not subject to the usual caveats of
neural network methods. First of all, the WPH statistics can
be physically interpreted (see Sec. V). Second, neural
network methods must learn a large number of parameters
(weights) from a huge training dataset, whereas we used
only 30 Quijote maps for our syntheses. Also, the use of

GANs to generate new realizations of a given process can
suffer from mode collapse, i.e., the omission of certain
object classes in the generated images and loss of the
associated statistical features [50]. These points underline
the advantages of maximum entropy syntheses built with a
suitably tailored statistical description such as the WPH
moments.

V. PHYSICAL INTERPRETATION OF THE WPH
STATISTICS

This section discusses the physical meaning of the
various WPH moments and their relation to other summary
statistics. It complements the discussion of symmetries of
Sec. II D. See also Appendix B for the full specification of
the WPH statistics.
To identify the physical properties encoded in the WPH

moments, we organize the moments into five categories. We
define each category by selecting a set of fξ⃗1; p1; ξ⃗2; p2g
parameters. The first three categories contain moments that
each have only a single spectral wavelet band (i.e., ξ⃗1 ¼ ξ⃗2;
see Sec. VA below), while the other two contain moments
describing a coupling between two wavelet bands of central
frequencies ξ⃗1 and ξ⃗2 (see Sec. V B).
To study these different categories of moments, we

progressively include them in our analysis, and build five
nested sets of statistics that we call model I to model V.
While model I merely contains power spectrum informa-
tion, model V corresponds to the WPH statistics used in
Secs. III and IV. Using each of these models, we compute
the Fisher information for the Quijote simulated LSS matter
density field ρ and also for logðρÞ, and perform statistical
syntheses of logðρÞ.

A. Terms related to a single wavelet frequency band

Let us first consider WPHmoments that describe a single
spectral wavelet band. Thus we start from the moments
Cξ⃗1;p1;ξ⃗2;p2

ðτ⃗Þ given in Eq. (6), and restrict to cases where

ξ⃗1 ¼ ξ⃗2. Hence, we focus on moments of the form

Sðp1;p2Þ
ξ⃗1

ðτ⃗Þ ¼ Cξ⃗1;p1;ξ⃗1;p2
ðτ⃗Þ; ð13Þ

and we consider three such terms obtained by taking the
phase exponents ðp1; p2Þ equal to (1,1), (0,0), or (0,1).
Explicitly, these are

Sð1;1Þ
ξ⃗1

ðτ⃗Þ ¼ Covðρ � ψξ⃗1
ðx⃗Þ; ρ � ψξ⃗1

ðx⃗þ τ⃗ÞÞ; ð14Þ

Sð0;0Þ
ξ⃗1

ðτ⃗Þ ¼ Covðjρ � ψξ⃗1
ðx⃗Þj; jρ � ψξ⃗1

ðx⃗þ τ⃗ÞjÞ; ð15Þ

Sð0;1Þ
ξ⃗1

ðτ⃗Þ ¼ Covðjρ � ψξ⃗1
ðx⃗Þj; ρ � ψξ⃗1

ðx⃗þ τ⃗ÞÞ: ð16Þ
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Note that Sð1;1Þ corresponds to the covariance of wavelet
transforms presented in Sec. II B.
Model I: Sð1;1Þ moments; power spectrum.—As shown in

Sec. II B, the Sð1;1Þ moments, which form model I WPH
statistics, only depend on the power spectrum of ρ. Thus we
see that syntheses from model I generate fields close to
Gaussian (see Fig. 8). These fields have in particular a
Gaussian PDF (see Fig. 11) and the ensemble mean of their
bispectra is null.
With these moments we can also see the impact on the

spectral resolution of the number of relative spatial trans-
lations τ⃗ used [see Eq. (B9) of Appendix B]. Figure 12
illustrates this property by showing the power spectrum of
the model I syntheses for two cases: the imprints of the
wavelet spectral bands are clearly visible when no trans-
lations are used (i.e., τ⃗ ¼ 0 only, which corresponds to
Δn ¼ 0), while they are reduced when Δn ¼ 2 (i.e., two
nonzero translations τ⃗ in each direction). We obtained
similar results for the Fisher analysis of cosmological
parameters. Indeed, the amount of information on cosmo-
logical parameters carried by model I WPH statistics
increases with the number of retained values of τ⃗,

eventually converging to the information contained in
the standard power spectrum.
Model II: Sð0;0Þ moments and sparsity.—We build model

II by adding the moments Sð0;0Þ to model I. These moments
allow us to quantify the ratio between the L1 andL2 norms
of the wavelet transform of ρ. This ratio characterizes the
sparsity of the field in the wavelet basis (see [20] for a more
detailed discussion). In the Quijote LSS simulations, these
coefficients indicate that the small scales are sparser than
the large ones, and as the scale increases the sparsity
converges to that of a Gaussian field, see Fig. 9. We expect
such a result, since the LSS density fields are expected to
become Gaussian at scales larger than 100 Mpc=h (about
25 pixels in our maps).
The amount of Fisher information with respect to the

cosmological parameters is significantly higher in model II
than in model I, as shown by Figs. 8(a) and 8(b). Similarly
to model I, increasing the number of spatial shifts τ⃗ in
model II substantially improves the Fisher information with
respect to the cosmological parameters.
The Sð0;0Þ moments do not substantially improve the

synthesis results, as can be seen in the maps in Fig. 8.

FIG. 8. Left: improvement in the marginalized errors on cosmological parameters obtained with Fisher analysis using models I to Vof
WPH statistics, applied to (a) the projected matter density field ρ and (b) its logarithm. In both cases, the results are normalized by those
obtained with power spectrum statistics of the projected matter density field. Right: syntheses of logðρÞ for models I to IV [see Fig. 5(b)
for the corresponding model V synthesis]. Both the Fisher analysis and the syntheses improve as the WPH statistics expand from
model I to model V.
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Model III: Sð0;1Þ moments and first structures.—To build
the third model of WPH statistics, we add the Sð0;1Þ
moments to model II. These moments measure a covariance
between wavelet coefficients that undergo two different
operations (namely, modulus and identity). Hence they
mainly describe couplings between different spatial
frequencies within a single wavelet band, see Sec. II C.
Thus, they probe the impact of the interaction between
neighboring scales.
The Sð0;1Þ moments significantly improve the syntheses

generated. The model III map in Fig. 8 illustrates this,
where the familiar foamy structure of the LSS is

recognized. In Fig. 11 we see that model III (unlike models
I and II) reproduces the main shape of the PDF of the
Quijote simulations. Similarly, the model III syntheses
reproduce the Minkowski functionals and the flattened
bispectrum, but not the squeezed bispectrum. This last
result is due to the fact that squeezed bispectrum triangles
characterize the joint information between Fourier modes
of wave vectors of very different sizes.
In spite of these results, model III makes only minor

improvements to the Fisher information regarding cosmo-
logical parameters. This is especially noticeable for the LSS
matter density field [Fig. 8(a)], and less so for its logarithm

FIG. 9. Subset of WPH moments, estimated on the logarithm of the matter density fields from Quijote simulations at fiducial
cosmology (solid orange line, 15000 maps), and from model I (top) or model V (bottom) syntheses (blue dashed line, 300 maps). The
model I syntheses are a good approximation of a Gaussian field (see Sec. VA). The model V corresponds to the WPH statistics used in
Sec. IV, which accordingly reproduce those of the Quijote simulation. The error bars, which characterize the variability of WPH
moments from one map to another, have been multiplied by a factor of 3 for readability reasons. These moments are a subset of those
used to estimate cosmological Fisher information in Sec. III. For S-type moments, all j1 ¼ j2 values are given. C-type moments are
drawn for j1 ¼ 1 and j1 ¼ 2 only and for j1 < j2 ≤ 7. All plotted coefficients satisfy δl ¼ 0 and n ¼ 0, see Appendix B 2 for details.
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[Fig. 8(b)]. These results emphasize that although the
interactions between nearby scales are important statistics
for qualitatively reproducing the web structure of the LSS,
they do not seem efficient for discriminating between
different cosmological parameter values.

B. Couplings between wavelet frequency bands

The second type of moment that we consider character-
izes couplings between two wavelet spectral bands with
central spatial frequencies ξ⃗1 and ξ⃗2. We consider three
kinds of such couplings based on the moments Cξ⃗1;p1;ξ⃗2;p2

,

with different values of pi. In each case, the two phase
harmonics of wavelet transforms contain common spatial
frequencies of oscillation. For each term, we set ξ2 ≤ ξ1
(corresponding to spatial scales 2j2 ≥ 2j1), without loss of
generality. Similarly to the definition of Eq. (13), we define

Cðp1;p2Þ
ξ⃗1;ξ⃗2

ðτ⃗Þ ¼ Cξ⃗1;p1;ξ⃗2;p2
ðτ⃗Þ: ð17Þ

For the first two types of moment, we consider ðp1; p2Þ ¼
ð0; 0Þ and (0,1). Explicitly, those are

Cð0;0Þ
ξ⃗1;ξ⃗2

ðτ⃗Þ ¼ Covðjρ � ψξ⃗1
ðx⃗Þj; jρ � ψξ⃗2

ðx⃗þ τ⃗ÞjÞ; ð18Þ

Cð0;1Þ
ξ⃗1;ξ⃗2

ðτ⃗Þ ¼ Covðjρ � ψξ⃗1
ðx⃗Þj; ρ � ψξ⃗2

ðx⃗þ τ⃗ÞÞ: ð19Þ

For ξ⃗1 ¼ ξ⃗2, the Cð0;0Þ and Cð0;1Þ moments are identical to
Sð0;0Þ and Sð0;1Þ defined in the previous section. Note that
Cð0;1Þ is not symmetric under exchange of ξ⃗1 and ξ⃗2, but it is
negligibly small when ξ2 > ξ1, as discussed below.
These moments can be interpreted as follows. First, Cð0;0Þ

quantifies the correlation between local levels of oscilla-
tions at ξ⃗1 and ξ⃗2 spatial frequencies. Then, Cð0;1Þ evaluates
the correlation between the amplitude of the local level of
oscillation at the ξ⃗1 frequency and the oscillation at the ξ⃗2
frequency. For this second moment, since ρ � ψξ⃗1

is filtered

at a 2j1 wavelength, it is clear that the correlation of its
amplitude with a ρ � ψξ⃗2

term gives a negligible result if this
second convolution oscillates at a characteristic scale
2j2 < 2j1 .

FIG. 10. Correlation matrix of a subset of WPH moments,
estimated on the logarithm of the matter density field from
Quijote simulations at fiducial cosmology (15000 maps). The
WPH moments are those described in Fig. 9, with the same order,
and the reader is referred to this figure for more details.

FIG. 11. Probability density function of statistical syntheses of
logðρÞ as performed with models I to V, along with the PDF of the
initial Quijote field. Each line is estimated from 300 maps, as in
Fig. 5(h).

FIG. 12. Improvement of the power spectrum of model I
syntheses of logðρÞ as the number Δn of spatial translations in
each direction is increased from 0 to 2. The imprint of the wavelet
spectral bands are clearly visible at Δn ¼ 0 (i.e., no spatial
translation) and are greatly reduced at Δn ¼ 2. The error bars
correspond to the realization-per-realization dispersion.
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Our last coupling uses ðp1; p2Þ ¼ ð1; ξ1=ξ2Þ. We define

Cphase
ξ⃗1;ξ⃗2

ðτ⃗Þ ¼ Cξ⃗1;1;ξ⃗2;ξ1=ξ2ðτ⃗Þ
¼ Covðρ � ψξ⃗1

ðx⃗Þ; ½ρ � ψξ⃗2
ðx⃗þ τ⃗Þ�ξ1=ξ2Þ: ð20Þ

For ξ⃗1 ¼ ξ⃗2, this moment is equivalent to Sð1;1Þ. The
computation of such WPH moments is illustrated in
Fig. 3 and was discussed in Sec. II C. Computed from
fields filtered at different scales which are made synchro-
nous, such terms are designed to characterize the relative
phase shift between different scales.
These three coupling terms can also be understood from

a Fourier space point of view. For each of them, Fig. 13
illustrates how the phase harmonics operator modifies the
spectral support of the ρ field convolved with the ξ⃗1 and ξ⃗2
wavelets. The three coupling terms correspond to different
ways of achieving a (possibly partial) spectral overlap by
bandpassing followed by the phase operation.
Models IV and V: couplings between different wavelet

bands.—We define model IV by adding the Cð0;0Þ and Cð0;1Þ
moments to model III. Finally, we define model V by
adding the Cphase moments. Note that these models include
terms for which ξ⃗1 and ξ⃗2 have the same norm but different
orientations. Model V corresponds to the statistical descrip-
tions used in Secs. III and IV.
The syntheses generated from model IV are significantly

better than those of model III. This model reproduces the
squeezed bispectrum triangles, as well as the tails of the
PDF (with results that are better than model III by a factor
close to 5). This result underlines that Cð0;0Þ and Cð0;1Þ
moments are related to couplings between scales that are far
apart. In particular, the PDF result exhibits how the precise
distribution of peaks of the LSS seems to be related to
couplings between different scales that sum up together in a
coherent way. By contrast, model V does not significantly
improve the syntheses compared to model IV.

For cosmological parameter inference, Fig. 8 shows how
both models IV and V noticeably improve the forecast
errors. These improvements are generally significantly
larger than those obtained with the local coupling added
in model III. It is interesting to see that while the Cphase

moments play only a minor role in reproducing the standard
statistics in syntheses, they do contain a substantial amount
of information about cosmological parameters. This result
could indicate that the Cphase moments are not directly
related to the summary statistics we used to validate the
syntheses.
Importance of the ratio between coupled scales.—For a

given set of WPH statistics, the value Δj ¼ jmax − jmin
quantifies the maximum scale difference being character-
ized by the moments. Indeed, the maximum ratio between
such scales is 2jmax=2jmin ¼ 2Δj . Similarly, the ratio between
the norm of the more distant spatial frequencies that are
coupled is ξ1=ξ2 ¼ 2Δj .
For nonlinear physical processes, this parameter is of

major importance. Indeed, nonlinearity implies a statistical
interaction between different scales. The more nonlinear a
given process is, the stronger we expect distant scales to be
coupled [51]. We also expect different nonlinear couplings
to have distinct signatures in the way scales decouple from
one another when the ratio between scales increases.
Let us illustrate the importance of Δj. For cosmological

parameter inference, one can compute how the Fisher
forecast errors evolve for model V as we increase Δj from
0 (which corresponds to model III). As shown in Fig. 14,
we find that significant information is contained in the
coupling between different scales. The Fisher results keep
improving even when we add terms with Δj ≥ 5, repre-
senting coupling between scales that are very far apart (e.g.,
2 and 64 pixels). This especially contrasts with the minor
improvements brought about by the inclusion of couplings
between nearby scales.
The increase of the Fisher information with Δj is

different for each cosmological parameter. In particular,

FIG. 13. Coupling terms depicted in Fourier space for (from left to right) the Cphase, Cð0;0Þ, and Cð0;1Þ types of coupling. In each case the
frequency support of the filtered fields (filled circles) are modified by the phase harmonic operator to share common frequencies (dotted
circles). Note that this figure is for explanatory purposes only, since in practice the spectral support of a filtered field and its modulus
overlap.

E. ALLYS et al. PHYS. REV. D 102, 103506 (2020)

103506-16



this improvement is only modest for Ωm, and especially
small for σ8 above Δj ¼ 2. Note that Ωm and σ8 are the two
parameters for which the WPH statistics do not characterize
much more information than the power spectrum (see
Table II). This indicates that these particular parameters
do not especially impact the way distant scales couple. This
result seems rather natural for σ8, since it is merely a
normalization of the matter fluctuation power spectrum.
The importance of Δj also appears for the syntheses.

Even though the cosmic web structure visually appears
with a model where Δj ¼ 0 (see the model III map in
Fig. 8), larger values of Δj are needed to properly
reproduce the tails of the PDF, which for instance character-
ize the distribution of peaks of the LSS. This can be seen by

carefully comparing tails of the models III, IV, and V
results in Fig. 11. Similarly, larger values of Δj must be
included to reproduce the squeezed triangle bispectrum of
the Quijote LSS field (see Fig. 15). This result is, however,
completely to be expected, since those triangles character-
ize couplings between very different scales.

VI. CONCLUSION

In this paper, we introduced low-dimensional WPH
statistics to analyze and synthesize two-dimensional matter
density fields from the Quijote LSS simulations. We built
the WPH statistics from WPH moments, which were
recently introduced in data science. The WPH moments
correspond to the covariance of wavelet coefficients whose
spatial frequencies are made synchronous by means of a
nonlinear operator called the phase harmonic operator.
The main result of this paper is the construction of

specific low-dimensional WPH statistics that achieve state-
of-the-art results for both capturing cosmological informa-
tion and producing statistical syntheses. We obtained these
results by computing the Fisher information of these
statistics with respect to five cosmological parameters,
and by producing maximum-entropy syntheses that were
validated by means of classic summary statistics. To our
knowledge, it is the first time that state-of-the-art results
have been obtained for both of these tasks from the same
statistical description. We also illustrated the interpretabil-
ity of WPH statistics by discussing the types of information
described by distinct subsets of WPH moments.
In this paper, we applied the WPH statistics to the

projected LSS matter density field. However, their con-
struction is not specific to this process, and they can
therefore be used to study other non-Gaussian physical
fields. A natural extension is to apply this method to

FIG. 14. Improvements of the marginalized errors on cosmological parameters obtained with Fisher analysis for model V of WPH
statistics with increasing Δj values, for the LSS matter density field (left) and its logarithm (right). Errors are normalized by those
obtained with Δj ¼ 0. When limited to Δj ¼ 0, model V characterizes only local couplings and corresponds to model III.

FIG. 15. Squeezed-triangle bispectrum of logðρÞ of the Quijote
simulation (orange) and its syntheses from model V of WPH
statistics with Δj ¼ 2 (green) and Δj ¼ 5 (blue). The Δj ¼ 2
synthesis does not characterize the couplings between distant
scales of the LSS that are needed to reproduce this bispectrum.
The error bars correspond to the realization-per-realization
dispersion.
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three-dimensional fields, which is left for future work.
This would allow a direct comparison with results obtained
from other summary statistics or from machine learning
methods.
The quality of the statistical syntheses produced in this

paper validates the relevance of using WPH statistics to
study the LSS. Moreover, this work shows that WPH
statistics can serve as a generative model for non-Gaussian
fields. They could be used to generate mock syntheses, or
to perform data augmentation for machine learning pur-
poses. The syntheses can be performed from a limited
training set (here, we used 30 Quijote maps), and therefore
we could train our model directly on observational data.
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APPENDIX A: MATHEMATICAL
SPECIFICATIONS

1. Bump steerable mother wavelet

The multiscale bump steerable wavelets ψ j;l used for the
wavelet transform described in Sec. II A are built from a
mother wavelet ψ . Following [19], which first introduced
bump steerable wavelets, we define ψ via its Fourier
transform ψ̂ðk⃗Þ as

ψ̂ðk⃗Þ ¼ c · exp

�
−ðjjk⃗jj − ξ0Þ2

ξ20 − ðjjk⃗jj − ξ0Þ2
�
· 1½0;2ξ0�ðjjk⃗jjÞ

× cosL=2−1ðargðk⃗ÞÞ · 1½0;π=2�ðjargðk⃗ÞjÞ; ðA1Þ

where ðξ0; 0Þ is the central frequency of the wavelet, c is a
normalization constant, L is the number of angles used in
the multiscale wavelet family, and 1AðxÞ is the indicator
function that returns 1 if x ∈ A and 0 otherwise. Following

[20], we use ξ0 ¼ 1.7π, and c ¼ 1.29−12L=2−1 ðL=2−1Þ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL=2ÞðL−2Þ!

p
with L ¼ 16.

2. Scaling functions

We also consider convolutions of the field ρ with a
family of low-pass filters φj called scaling functions. These
low-pass filters are built from an initial Gaussian window φ
defined as

φ̂ðk⃗Þ ¼ exp

�
−
jjk⃗jj2
2σ2

�
: ðA2Þ

The individual φj are obtained from φ by dilations of 2j:

φjðx⃗Þ ¼ 2−jφð2−jx⃗Þ; ðA3Þ

φ̂jðk⃗Þ ¼ 2jφ̂ð2jk⃗Þ: ðA4Þ

Again following [20], we use σ ¼ 0.248 × 2−0.55ξ0.

3. Bispectrum estimates

For our bispectrum computations, we have adapted the
method described in [52] by which a smoothed isotropic
bispectrum is estimated as a 3-point correlation between
three filtered versions of the field. Specifically, we use
isotropic filters hi which select only frequencies k⃗ such that
kk⃗k ¼ ki, and we define ρi ¼ ρ � hi. The bispectrum
Bðk1; k2; k3Þ is then estimated from hρ1ðx⃗Þρ2ðx⃗Þρ3ðx⃗Þi.
In particular, we use

hiðk⃗Þ ¼
1

σ
ffiffiffiffiffiffi
2π

p exp

�
−kk⃗ − k⃗ik2

2σ2

�
: ðA5Þ

We define kN ¼ 1=256 hMpc−1 as a reference value for
wave numbers, and we use σ ¼ 4kN in Eq. (A5) for the
bispectrum computations used to validate the syntheses
in Sec. IV.
In Sec. III, we use σ ¼ 2kN , and we specify the following

set of bispectrum statistics to compute Fisher information
about cosmological parameters:
(1) All flattened triangle configurations Bðk; k=2; k=2Þ,

with k ¼ ð2nþ 1ÞkN for n between 1 and 62.
(2) All equilateral triangle configurations Bðk; k; kÞ,

with k ¼ ð2nþ 1ÞkN for n between 1 and 62.
(3) All squeezed triangle configurations Bðk; k; ksÞ,

with k ¼ ð2nþ 1ÞkN for n between 1 and 62,
and ks ¼ 4kN .

This set contains 62 triangles of each type, for a total of 186
bispectrum terms.

4. Minkowski functionals

We use three Minkowski functionals (V0, V1, V2) to
assess the quality of the syntheses in Sec. IV B. Given a
threshold ν, these are respectively the area, the perimeter,
and the genus defined by the threshold. More precisely,
for a field Iðx⃗Þ defined on an area Atot, let us define

E. ALLYS et al. PHYS. REV. D 102, 103506 (2020)

103506-18



Γ<ν ¼ fx⃗∶Iðx⃗Þ < νg and similarly for Γ≥ν and Γ>ν. Let Aν

be the area of Γ≥ν, Sν its perimeter, and C<ν (C>ν) the
number of connected components of Γ<ν (Γ>ν). Then:

V0ðνÞ ¼
Aν

Atot
; V1ðνÞ ¼

Sν
Atot

; V2ðνÞ ¼
C>ν − C<ν

Atot
:

ðA6Þ

APPENDIX B: SPECIFICATIONS OF WPH
MODELS

1. WPH Statistics

We build the specific WPH statistics used in this paper
for Fisher analysis and statistical syntheses from two types
of WPH moments: S moments describing a single wavelet
frequency band and C moments describing two. Both are
built from the basic WPH moments discussed in Sec. II C
and defined by Eq. (6), which we repeat here for reference:

Cξ⃗1;p1;ξ⃗2;p2
ðτ⃗Þ ¼ Covð½ρ � ψξ⃗1

ðx⃗Þ�p1 ; ½ρ � ψξ⃗2
ðx⃗þ τ⃗Þ�p2Þ;

ðB1Þ

where ξ⃗i are wavelet frequencies, ½�p denotes the pth phase
harmonic as defined in Eq. (5), and τ⃗ is a spatial shift.
The moments used for our statistics are these:

Sðp1;p2Þ
ξ⃗1

ðτ⃗Þ ¼ Cξ⃗1;p1;ξ⃗1;p2
ðτ⃗Þ; ðB2Þ

Cðp1;p2Þ
ξ⃗1;ξ⃗2

ðτ⃗Þ ¼ Cξ⃗1;p1;ξ⃗2;p2
ðτ⃗Þ; ðB3Þ

Cphase
ξ⃗1;ξ⃗2

ðτ⃗Þ ¼ Cξ⃗1;1;ξ⃗2;ξ1=ξ2ðτ⃗Þ: ðB4Þ

Specifically, we use moments Sð1;1Þ, Sð0;0Þ, Sð0;1Þ, Cð0;0Þ,
Cð0;1Þ, and Cphase, and we restrict to ξ2 ≤ ξ1. The physical
significance and motivation for using these moments is
discussed in Sec. V.
We also define WPH moments Sisopar and Cisopar that are

invariant under rotation and parity, based on the invariant
WPH moments discussed in Sec. II D,

Cisoparj1;p1;j2;p2;δl
ðτ⃗Þ ¼ hCj1;l1;p1;j2;l2;p2

ðτ⃗Þijl2−l1j¼δl; ðB5Þ

where δl ≥ 0 is an absolute angle, hi denotes an angular
average (over l1 and l2), and the moment Cj1;l1;p1;j2;l2;p2

refers to the standard WPH moment Cξ⃗1;p1;ξ⃗2;p2
of Eq. (6)

with the ξ⃗ and ðj;lÞ indices related by Eq. (2) in the usual
way. Specifically, the invariant moments for our statistics
are these:

Sðp1;p2Þ
isopar;j1

ðτ⃗Þ ¼ Cisoparj1;p1;j1;p2;0
ðτ⃗Þ; ðB6Þ

Cðp1;p2Þ
isopar;j1;j2;δl

ðτ⃗Þ ¼ Cisoparj1;p1;j2;p2;δl
ðτ⃗Þ; ðB7Þ

Cphaseisopar;j1;j2;δl
ðτ⃗Þ ¼ Cisoparj1;1;j2;2j2−j1 ;δl

ðτ⃗Þ; ðB8Þ

with the restriction j1 ≤ j2.
To construct these statistics, we consider only a discrete

set fτn;αg of spatial translations labeled by an integer n and
an angle α. Translation τn;α is defined with respect to the
wavelet ψ j;l of largest characteristic wavelength appearing
in Eq. (6), and is oriented at an angle α relative to the
direction of oscillation of this wavelet:

τn;α ¼ n2je⃗ð2πl=LÞþα; ðB9Þ
where e⃗ is the unit vector in the specified direction. We use
integer values n ranging from 0 to Δn, with various choices
of Δn ≤ 5 depending on the specific type of moment and
the values of j1, j2. For the invariant (isopar) statistics, we
use α ¼ 0. Otherwise we restrict α to integer multiples of
π=4. Note that these translations are redundant when larger
than half of the size of the fields (128 pixels in this paper).

2. Models for Fisher analysis

We present in this section the WPH statistics used for the
Fisher analysis of Secs. III and V. These statistics have
integer j values from 0 and 7, corresponding to wave-
lengths from 2 to 256 pixels. Thus, all the scales of the
matter density fields are characterized with WPHmoments.
These WPH statistics are also invariant under rotation and
parity, and characterize couplings between all wavelet
bands, with Δj ¼ 7. They are defined as follows:

(1) For Sð1;1Þ
isopar, S

ð0;0Þ
isopar, and Sð0;1Þ

isopar moments, we consider
all j1 values from 0 to 7. For each j1 value, we
consider all possible translations τn;α with α ¼ 0

and 0 ≤ n ≤ Δnðj1Þ, where ½Δnð0Þ;…;Δnð7Þ� ¼
½5; 5; 5; 5; 3; 1; 0; 0�.

(2) For Cð0;0Þisopar, C
ð0;1Þ
isopar, and C

phase
isopar, we consider all ðj1; j2Þ

pairs satisfying 0 ≤ j1 ≤ j2 ≤ 7. For j2 ¼ 7, we take
only δl ¼ 0. For j2 < 7, we take 2πδl=L ∈
f0; π=4; π=2g when j1 ∈ f0; 1g, and we take
2πδl=L ∈ f0; π=2g otherwise. Finally, we consider
translations τn;α with n ∈ f0; 1g if 0 ≤ j1 ¼ j2 ≤ 5

and δl ¼ 0, and no translations otherwise (i.e., we
keep n ¼ 0 only). Note that C moments with j1 ¼ j2
and δl ¼ 0 are equal to S moments and are therefore
omitted to avoid double counting.

These WPH statistics contain a total of 327WPHmoments.
In Sec. V, we divide these WPH statistics into a set of five
nested models, model I to model V, to assess how the Fisher
information about cosmological parameters increases as
WPH moments with different properties and physical
significance are included. These models are summarized
in Table IV.
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3. Models for statistical syntheses

This section presents the WPH statistics used to perform
syntheses in Sec. IV and V. The WPH statistics used in the
syntheses of Sec. IV have integer j values from 0 to 5,
corresponding to wavelengths up to 64 pixels. They thus do
not characterize in terms of WPH moments the largest
scales of the matter density fields, but describe couplings
between all scales up to j ¼ 5, with Δj ¼ 5. The moments
used for these statistics are not required to be invariant
under rotation and parity, contrary to those used for Fisher
analysis. They are defined as follows:
(1) For Sð1;1Þ, Sð0;0Þ, and Sð0;1Þ moments, we consider all

j1 values from 0 to 5 and l1 values from 0 to 15. For
each j1 value, we consider for Sð1;1Þ and Sð0;0Þ all
possible translations τn;α with 0 ≤ n ≤ Δn ¼ 2
and α ∈ f−π=4; 0; π=4; π=2g. No translations are
applied to Sð0;1Þ.

(2) For Cð0;0Þ, Cð0;1Þ, and Cphase, we consider all ðj1; j2Þ
pairs satisfying 0 ≤ j1 ≤ j2 ≤ 5, and all l1 values
0 ≤ l1 < L ¼ 16. We take δl≡ l2 − l1 ¼ 0 for
Cphase, and 2πjδlj=L ∈ f0; π=8; π=4; 3π=8; π=2g for
Cð0;0Þ and Cð0;1Þ. For Cð0;1Þ and Cphase, when δl ¼ 0,
we apply all possible translations τn;α with 0 ≤ n ≤
Δn ¼ 2 and α ∈ f−π=4; 0; π=4; π=2g. No transla-
tions are applied (i.e., we take Δn ¼ 0) for Cð0;1Þ

when δl ≠ 0, or for Cð0;0Þ with any δl. C moments
with j1 ¼ j2 and δl ¼ 0 are omitted because they
are equal to S moments.

To complete these WPH statistics and better constrain
the scales that are not probed by WPH moments as well as
the probability density function, we also consider

convolutions of the field ρ with a family of low-pass filters
φjðx⃗Þ called scaling functions, defined in Appendix A 2.
We therefore added the following scaling moments Lj;p to
the WPH moments:

Lj;0 ¼ Cov½jρ � φjj; jρ � φjj�; ðB10Þ

Lj;p ¼ Cov½ðρ � φjÞp; ðρ � φjÞp� ðfor p > 0Þ; ðB11Þ

with j between 2 and 5 and p ∈ f0; 1; 2; 3g, yielding 16
scaling moments.
This model (which corresponds to model V of Sec. IV)

contains overall 6660 WPH moments and 16 scaling
moments. In Sec. V we consider syntheses using nested
models, as summarized in Table V.

APPENDIX C: LIMITATIONS OF THE MODEL
AND DIRECT SYNTHESES OF THE FIELD ρ

We applied the method presented in section IV to
directly generate syntheses of the raw density field ρ
(instead of its logarithmic value). However, this field ρ
is strictly positive, with a wide dynamic range. The
resulting syntheses did not reproduce the sharp constraint
ρ > 0. An example of these syntheses and their histogram
is provided in Fig. 16. This figure, however, shows that the
filamentary structure of the LSS density field is never-
theless recovered.
Another possibility to obtain strictly positive syntheses

of the density field ρ is to take the exponential of the
syntheses of log ρ presented in Sec. IV. The histograms and

TABLE IV. The WPH moments included in the nested models
of Sec. V to perform Fisher analysis.

Model I II III IV V

Moments Sð1;1Þ
isopar þSð0;0Þ

isopar þSð0;1Þ
isopar þCð0;0Þisopar, C

ð0;1Þ
isopar þCphaseisopar

Total size 32 64 96 252 327

TABLE V. The WPH moments included in the nested models
of Sec. V to perform statistical syntheses.

Model I II III IV V

Moments Sð1;1Þ þSð0;0Þ þSð0;1Þ þCð0;0Þ, Cð0;1Þ þLj;p, Cphase

Total size 677 1349 2021 5412 6676

FIG. 16. Left: histogram of the Quijote density field ρ and of the syntheses of ρ. The syntheses are not strictly positive, contrary to the
initial maps. Middle: example of a syntheses of ρ shown in logarithmic scales. The white pixels correspond to negative value of the field.
Right: example of a Quijote simulation ρ.
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the Minkowski functionals of the resulting syntheses
reproduce the statistics of the simulations with an accuracy
similar to the results presented in Sec. IV B. However, the
other statistics are not well recovered. For example, the

mean and the standard deviation of the power spectrum
of the syntheses differ from those of the simulations by
respectively 30% and 50% for most of the spatial fre-
quency k.
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