
HAL Id: hal-02894345
https://hal.science/hal-02894345

Submitted on 9 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Piecewise Deterministic Limit for a Multiscale
Stochastic Spatial Gene Network

Arnaud Debussche, Mac Jugal Nguepedja Nankep

To cite this version:
Arnaud Debussche, Mac Jugal Nguepedja Nankep. A Piecewise Deterministic Limit for a Multiscale
Stochastic Spatial Gene Network. Applied Mathematics and Optimization, 2021, 84 (S2), pp.1731-
1767. �10.1007/s00245-021-09809-0�. �hal-02894345�

https://hal.science/hal-02894345
https://hal.archives-ouvertes.fr


A PIECEWISE DETERMINISTIC LIMIT FOR A

MULTISCALE STOCHASTIC SPATIAL GENE NETWORK

By Arnaud Debussche1 and Mac Jugal Nguepedja Nankep1

Abstract

We consider multiscale stochastic spatial gene networks involving chemical re-
actions and diffusions. The model is Markovian and the transitions are driven
by Poisson random clocks. We consider a case where there are two different spa-
tial scales: a microscopic one with fast dynamic and a macroscopic one with slow
dynamic. At the microscopic level, the species are abundant and for the large pop-
ulation limit a partial differential equation (PDE) is obtained. On the contrary
at the macroscopic level, the species are not abundant and their dynamic remains
governed by jump processes. It results that the PDE governing the fast dynamic
contains coefficients which randomly change. The global weak limit is an infinite
dimensional continuous piecewise deterministic Markov process (PDMP). Also, we
prove convergence in the supremum norm.

1 Introduction

Within the last decades, spatial and stochastic modeling has been widely used for
systems of biochemical reactions. Commonly used models describe systems where reac-
tants undergo chemical reactions and can diffuse in the considered spatial domain. They
are used either deterministically or stochastically.

Deterministic models are reaction-diffusion equations, which are partial differential
equations (PDEs). These equations are solved analytically, and/or simulated numerically
in which case results are obtained relatively fast. However, these models capture a
macroscopic dynamic and are valid only in high concentrations contexts. When some of
the interacting species are present in small quantity, a stochastic description seems more
accurate but the direct computation of stochastic models is extremely time consuming.
This problem is typical for multiscale systems. A remedy is to compute abundant species
as continuous variables that follows deterministic motions. Species in low number remain
stochastic and are directly simulated, one talks about hybrid approximation. Lately,
hybrid algorithms have been proposed for the simulation of multiscale spatial models
arising from cellular biology or related fields. We refer for instance to [AD16] for cell
regulatory networks and enzyme cascades, or [NCS15] for molecular communication.

Stochastic hybrid systems, and especially piecewise deterministic Markov processes
(PDMPs), form a class of systems that has get very popular throughout the past decade,
as it proposes a quite natural simplification of multiscale systems.

On the mathematical side, the theory of PDMPs was initiated in finite dimension
by Davis [Dav84, Dav93]. Finite dimensional PDMPs are suited to model spatially
homogeneous situations. Recently, Buckwar and Riedler [BR11, Rie11] have extended
PDMPs to the infinite dimensional case, in order to model the propagation of action
potentials in neurons (see also [RTW12, Gén13]). Mathematical results about stochastic
hybrid systems concern existence, well-definiteness, Markov property . . .

1Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
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On another hand, very few results exist on the mathematical validity of these hybrid
models. Do they really approximate correctly or not multiscale stochastic sytems ?

In many situations, laws of large numbers hold for one scale systems - homogeneous or
with spatial dependence. Among the numerous existing references, let us quote [Kur70]
pioneering work in homogeneous framework, [AT80], [Blo92] in the context of chemical
reactions with spatial diffusion modeling, or more recently [NPY19] for a compartmen-
tal SIR epidemic model. These allow to approach one scale stochastic systems, under
the assumption of a large size of individuals, by a corresponding deterministic version.
Central limit theorems results have also been proved, as well as large or moderate devia-
tions results. See, among others, [Kot86] - for chemical reaction-diffusion models - with
respect to the former group of results, and [Yeo19] - for epidemic models - with respect
to the latter group of results.

Radulescu, Muller and Crudu in [RMC07], then Crudu, Debussche and Radulescu in
[CDR09] have proposed hybrid approximations by finite dimensional PDMPs, for some
multiscale stochastic homogeneous gene networks. Then a rigorous justification has been
given in [CDMR12]. The question is more complicated in the spatially inhomogeneous
case, where there are much more possibilities of modeling, as can be seen in a previous
work ([DN17]), and in [NN18], chapter 4 - or equivalently - [KK19], chapter 3. The
authors of the two latter references have proved a law of large numbers and large deviation
inequalities in a common work on a spatial model of cholera epidemic.

In the previous work [DN17], a multiscale system with spatial dependance was con-
sidered. As usual, the spatial domains is divided in a finite number of cells and in each
cell two species are present but one - the continuous - is much more abundant. However
one - the discrete - has only few individuals in each cells. It is proved in this work that
the limit is a reaction-diffusion PDE for the continuous component modeling continuous
species, coupled to an ordinary differential equation (ODE) driving the discrete compo-
nent modeling species in low numbers. This may seem surprising and one might expect
a PDMP at the limit but this is in fact natural because, even though the discrete specie
is less abundant, its global number is of the order of the number of cells and grows to
infinity and stochastic effects disappear.

Another situation is considered in the present paper. We consider the case when
the discrete species have also a different spatial scale: their size is macroscopic. This
may correspond to cells or to group of cells, depending on the context of application.
Then their number remains small and stochasticity remains at the limit. The limit is a
continuous infinite dimensional PDMP whose continuous component satisfies, between
the jumps of its discrete component, a reaction-diffusion equation parametrized by the
value of the discrete component between the considered jumps, see section 2.3 for the
precise derivation of the stochastic model and section 2.4.1 for a formal derivation of the
limit model.

The rest of this article is organized as follows. In section 2, we briefly recall the
definition of an infinite dimensional PDMP and collect useful results about it. Then,
we develop our model of interest and present heuristics allowing to identify its limit.
The main result of convergence is stated and proved in section 3. The tightness of
the process is proved first thanks to similar arguments as in [DN17], then the limit is
rigorously identified through the martingale problem, and we conclude by a truncation
argument. This step is more difficult than in [DN17], new difficulties appear. Section 4
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contains the proof of uniqueness of the solution of a martingale problem associated to
infinite dimensional PDMPs, a crucial result used in section 3.
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2 Modeling and asymptotics

2.1 Notation

Let (Z, ‖ · ‖Z) and (Z̃, ‖ · ‖Z̃ be Banach spaces. The product space Z × Z̃ is equipped
with the norm ‖·‖Z+‖·‖Z̃ . The space of continuous linear maps from Z to Z̃ is denoted
by L(Z, Z̃). If Z = Z̃, one simply writes L(Z). The operator norm is denoted ‖ · ‖Z→Z̃

and when there is no risk of confusion, we denote it ‖ · ‖. For Z̃ = R, Z ′: the space of
continuous linear forms on Z, i.e. the topological dual of Z.

B(Z) (resp. Bb(Z)) is the space of Borel-measurable (resp. bounded Borel-measurable)
real valued functions on Z. The space Bb(Z) is endowed with the supremum norm

‖f‖Bb(Z) = sup
x∈Z

|f(x)| = ‖f‖∞.

Ck
b (Z), k ∈ N is the space of real valued functions of class Ck, i.e. k-continuously

Fréchet differentiable, on Z which are bounded and have uniformly bounded succesive
differentials. It is equipped with the norm

‖f‖Ck
b
(Z) =

k∑

i=0

∥∥Dif
∥∥
∞
,

where Dif is the i-th differential of f ∈ Ck
b (Z), and C

0
b (Z) = Cb(Z) is the set of bounded

continuous real valued functions on Z.
C l,0(Z ×K), l, k ∈ N, for a set K is the space of real valued functions ϕ of class C l

w.r.t. the first variable and measurable w.r.t. the second. For (z, k) ∈ Z×K, we denote
by Dlϕ(z, k) the (Fréchet) differential of ϕ, of order l w.r.t. z, computed at (z, k). A
subscript b can be added - to obtain C l,0

b (Z ×K) - in order to specify that the functions
and their succesive differentials are uniformly bounded.

D(I) is the space of right-continuous, left-limited (or càdlàg1) real valued functions
defined on I = [0, 1], it is endowed with the Skorohod topology; C(I) (resp. Ck(I)) is
the space of periodic continuous (resp. Ck) real valued functions defined on I = [0, 1];
C
(
[0, T ], Z

)
(resp. C

(
R

+, Z
)
) is the space of continuous processes defined on [0, T ] (resp.

R
+) with values in Z; D

(
[0, T ], Z

)
(resp. D

(
R

+, Z
)
is the space cadlag processes defined

on [0, T ] (resp. R+) with values in Z. It is endowed with the Skorohod topology.

1From French continu à droite et admettant une limite à gauche.
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2.2 Infinite dimensional Piecewise Deterministic Processes

Piecewise deterministic Markov processes (PDMPs) form a class of processes that
has been formalized in the finite dimensional case in [Dav84, Dav93] among others.
We briefly define infinite dimensional (continuous) PDMPs and give some useful results
about them. We refer to [Rie11] or [BR11] for an in depth presentation.

Consider a Banach space B endowed with a norm ‖ · ‖B, a countable set of iso-
lated states K equipped with the discrete topology, and set E := B × K. Then, let(
Ω,F, (Ft)t≥0,P

)
denote a filtered probability space satisfying the usual conditions.

In this article, a standard ”continuous” PDMP with values in E is a non exploding
càdlàg stochastic process

{
u(t) = (uC(t), uD(t)), t ≥ 0

}
, determined by its four charac-

teristics:

(1)-(2)Linear and nonlinear operators: for every ν ∈ K, there is given an abstract
evolution equation

d

dt
uC(t) = LνuC(t) + Fν(uC(t)), (2.1)

where Fν : B → B is a (possibly nonlinear) operator and Lν : B → B is an unbounded
linear operator, which is m−dissipative with dense domain. Let {Sν(t) := eLν t, t ≥ 0}
be the semigroup generated by Lν . We assume that there exists a unique global mild
flow φν( · , α) to (2.1), satisfying φν( · , α) ∈ C

(
R+, B

)
and

φν(t, α) = Sν(t)α +

∫ t

0

Sν(t− s)Fν
(
φν(s, α)

)
ds,

for periodic boundary conditions, every initial value α ∈ B, and all ν ∈ K. We often
use the notations Lν(α) = L(α, ν), Fν(α) = F (α, ν) and φν( · , α) = φ( · , α, ν).

(3)A jump rate: Λ : E → R+, which is measurable, and such that for all (α, ν) ∈ E,
the function t 7→ Λ

(
φν(t, α), ν

)
is integrable over every finite time interval, but divergent

over R+. In other words, for all (α, ν) ∈ E and T > 0,

∫ T

0

Λ
(
φν(t, α), ν

)
dt <∞ while

∫ ∞

0

Λ
(
φν(t, α), ν

)
dt = ∞.

Also, we often use the notation Λν
(
φν(t, α)

)
= Λ

(
φν(t, α), ν

)
.

(4)A transition measure: Q : E −→ P (K) which is measurable, such that for every
fixed A ⊂ K, the function (α, ν) 7→ Qν(A;α) is measurable, and satisfies Qν

(
{ν};α

)
= 0

for all (α, ν) ∈ E. Again, we often denote Qν(A;α) = Q(A;α, ν).
The second component uD of the PDMP takes (discrete) values in K, and is called

the discrete component. It has right continuous piecewise constant sample paths and
is often denoted the piecewise constant or jump component. The first component uC
takes (continuous) values in B, and is called the continuous component. It has contin-
uous sample paths and justifies the name ”continuous” PDMP. The mechanism which
governs the evolution of the process is as follows. While uD is constant with uD = ν,
uC evolves according to the flow determined by the operators Lν and Fν through (2.1).
Then, a jump occurs at a random time with the jump rate Λ, and the target state after
that jump is determined by the transition measure Q.
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Construction. A càdlàg sample path
{
v(t), t ≥ 0

}
starting at

v(0) =
(
vC(0), vD(0)

)
= (α, ν) = v0 ∈ E

can be constructed for such a process as follows.

• For all t ∈ [0, T1),
v(t) =

(
φν(t, α), ν

)
,

where T1 is the first jump time of vD. Denote by τ1 the waiting time of the first transition.
Then τ1 = T1, and, conditionally to the starting point, τ1 has an exponential distribution.
Its survivor function Hν : R+ × B → R+, is defined by

Hν(t, α) := Pv0

{
τ1 > t

}
= exp

(
−
∫ t

0

Λ
(
φν(s, α), ν

)
ds

)
. (2.2)

It is often convenient to use the notation H(t, α, ν) = Hν(t, α).
• At time T−

1 ,
v(T−

1 ) =
(
φν(T1, α), ν

)
.

• A transition occurs at time T1. The target state v(T1) =
(
vC(T1), vD(T1)

)
satisfies

vC(T1) = φν(T1, α) = vC(T
−
1 ) = α1,

and vD(T1) has the distribution

Pv0

{
vD(T1) ∈ A

∣∣T1 = t
}
= Qν

(
A;φν(t, α)

)
,

for every measurable subset A ⊂ K, and t > 0.
• After that first transition, the jump component vD remains constant and equal to

the chosen target state vD(T1) = ν1, until its next jump. The continuous component
vC then evolves according to the ”updated” abstract evolution equation, starting from
vC(T1) = α1 with vD = ν1. The procedure is repeated independently starting from
(α1, ν1), and the process is recursively constructed. One obtains a sequence τ1, τ2, · · ·
of independent transition waiting times and a sequence of jump times T1, T2, · · · , with
Ti = τ1 + · · ·+ τi for all i ≥ 1.

The constructed process is a ”continuous” PDMP. The number of jumps that occur
between times 0 and t is

Nt =
∑

i≥1

1(Ti≤t).

The non explosion of the process is usually refered to, as the regularity of the PDMP.
It means an almost sure finite number of jumps until finite times, and is characterized
by Ti → ∞ as i→ ∞. However, that condition is not easy to check in practice. Still, it
is satisfied in particular when the expected number of jumps is finite on any finite time
interval (see [Dav93], p.60). Therefore, in order to make sure our PDMP is regular, we
assume, as part of the standard conditions, that

Assumption 2.1. E(α,ν)

[
Nt

]
<∞, ∀(α, ν) ∈ E, t ≥ 0.
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Next, a PDMP characterized by a quadruple (L, F,Λ, Q) can be constructed as above
in some probability space, to be a strong Markov càdlàg process ([BR11], Theorem 4). It
is then called a PDMP, meaning piecewise deterministic Markov process. Only standard
PDMPs are considered in the sequel.

The full generator and the martingale probem. Consider a PDMP v = (vC , vD)
with the characteristics (L, F,Λ, Q) and let (Pt) ≡ (Pt)t≥0 be the corresponding semi-
group on E = B ×K. For all t ≥ 0, Pt : Bb(E) → Bb(E), and

Ptϕ(α, ν) = E(α,ν)

[
ϕ(u(t))

]

for all ϕ ∈ Bb(E), (α, ν) ∈ E. We have denoted by E(α,ν) the conditional expectation
given v(0) = (α, ν). Clearly, (Pt) is a semigroup of contraction and is measurable in the
sense that the map t 7→ Ptϕ is measurable for all ϕ ∈ Bb(E). Associated with (Pt) is its
full generator

Â =

{
(ϕ, ψ) ∈ Bb(E)×Bb(E) : Ptϕ− ϕ =

∫ t

0

Psψds

}
.

This operator is in general multi-valued, i.e. given any ϕ, there needs not be a unique
ψ such that (ϕ, ψ) ∈ Â. Hence, for a given semigroup, the associated full generator can
not be viewed as an operator on Bb(E) in general. Find more details in [EK86], Part 1,
Section 5. However, we see below that the situation is simpler for PDMPs.

Now, denote by Pv0 the law of the PDMP v when it starts from v0 ∈ E. It is well
known that Pv0 is a solution of the martingale problem associated with Â in the sense:

ϕ(w(t))− ϕ(v0)−
∫ t

0

ψ(w(s))ds

defines a Pv0-martingale, for all (ϕ, ψ) ∈ Â. We have denoted by
{
w(t), t ≥ 0

}
the

canonical process on the probability space
(
D(R+, E),DE, Pv0

)
. An equivalent formula-

tion is:

Nϕ(t) := ϕ(v(t))− ϕ(v0)−
∫ t

0

ψ(v(s))ds (2.3)

defines a Pv0-martingale, for all (ϕ, ψ) ∈ Â. One is easily convinced that the full gen-
erator Â is exactly the subset of all the couples (ϕ, ψ) ∈ Bb(E)×Bb(E) for which the
martingale problem above is satisfied.

The extended generator. We notice that the martingale problem is an essential tool
for characterizing the law of a PDMP. However, it is directly related to the full generator
of the process, which in turn is very often not easy to determine explicitely. With that
idea in mind, the extended generator associated with the PDMP is considered, which is
the operator Ā, whose domain is

D(Ā) :=
{
ϕ ∈ B(E), ∃ψ ∈ B(E) : Nϕ(t) defines a Pv0 − local martingale

}
,

where again

Nϕ(t) := ϕ(v(t))− ϕ(v0)−
∫ t

0

ψ(v(s))ds. (2.4)

6



Clearly, it is an extension of the full generator. This justifies the name ”extended”
generator.

It should be emphasized, see [Dav93] pp 32-33, that the extended generator is a
single-valued operator on B(E), up to sets of zero potential, these are sets A ⊂ B(E)
such that ∫ ∞

0

1A(v(s))ds = 0 Pv0 − a.s. for every v0 ∈ E.

The process ”spends no time” in A, regardless of the starting point. Thus, we can set:
Āϕ = ψ.

Therefore, the full generator is in particular also single-valued up to sets of zero
potential. Thus, it may be considered as an operator Â on B(E), with the domain

D(Â) =

{
ϕ ∈ B(E) : Ptϕ− ϕ =

∫ t

0

PsÂϕds
}
.

Furthermore, if the test function ϕ is such that Nϕ(t) given by (2.4) is bounded, then
Nϕ(t) defines a martingale and hence, the restriction of Ā to such test functions coincides

with Â.
The domain of the extended generator is characterized in [Dav93], Theorem 26.14,

for finite dimensional PDMPs. The infinite dimensional case is considered in [BR11],
Theorem 4. Following their arguments, we know that, for well chosen test functions ϕ,
the generator may be identified with the operator

Aϕ(α, ν) =
〈
D1,0ϕ(α, ν), L(α, ν) + F (α, ν)

〉

+Λ(α, ν)

∫

K

[
ϕ(α, ξ)− ϕ(α, ν)

]
Q(dξ, α, ν),

(2.5)

where 〈·, ·〉 is the duality paring between B and its topological dual B′, and D1,0ϕ(α, ν)
the Fréchet differential of ϕ w.r.t. its first variable.

In the case when there is an underlying Hilbert space H such that B ⊂ H , one
identifies D1,0ϕ(α, ν) with the corresponding gradient, and the duality paring with the
inner product 〈·, ·〉 of H . The main difference with the finite dimensional case is that
the expression above contains an unbounded operator and in general L(α, ν) is not in B.
We need to restrict the test functions so that the duality pairing

〈
D1,0ϕ(α, ν), L(α, ν)

〉

is meaningful. Another possibility is to restrict the values of α to a smaller space than
B.

Below, we identify a subset E of the domain of A such that for ϕ ∈ E equation (2.5)
holds.

2.3 Multiscale stochastic spatial regulatory networks with a

slow dynamic independent of the space discretization

Molecules of two species C andD are submitted to reactions and diffusions in the unit
interval, the spatial domain I. Following [AT80], we devide I into N smaller intervals,
called sites, of equal length N−1: Ij =

(
(j − 1)N−1, jN−1

]
, for j = 1, · · · , N . Molecules

are produced (birth) or removed (death) on sites at rates which depend on the local
current number of particles. Moreover, molecules of C can diffuse between sites by
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simple random walks (one at once), with jump rates proportional to N2 and linearly
depending on the current local state. In this framework, an event can be either an
onsite chemical reaction or a diffusion. We often say ”reaction” for ”event”, and use the
super/subscript C (resp. D) in reference to C (resp. D).

The species C has a large population size scale while that of D is small. Molecules
of D do not diffuse. As in [CDMR12], we divide the set R of possible onsite reactions
in three disjoint subsets:

R = RC ∪RDC ∪RD.

Reactions in RC (resp. RD) involve only reactants and products of type C (resp. D),
whereas, reactions in RDC involve both types of reactants and/or products. Also,

• XN,C
j

(
resp.XN,D

j

)
is the number of molecules of C (resp. D) on the site j;

• XN
C :=

(
XN,C
j

)
1≤j≤N

, XN
D :=

(
XN,D
j

)
1≤j≤N

and XN :=
(
XN
C , X

N
D

)
∈ N

2N .

For simplicity, we consider periodic boundary conditions: XN
j+N = XN

j , ∀j. Hence, the

molecular composition of the system XN :=
{
XN(t), t ≥ 0

}
is a N

2N -valued Markov
process with the transitions:




(
XN
C , X

N
D

)
−→

(
XN
C + γCj,rej , X

N
D

)
at rate λr

(
XN,C
j

)
, for r ∈ RC ,

(
XN
C , X

N
D

)
−→

(
XN
C + γCj,rej , X

N
D + γDj,rej

)
at rate λr

(
XN,C
j , XN,D

j

)
, for r ∈ RDC ,

(
XN
C , X

N
D

)
−→

(
XN
C , X

N
D + γDj,rej

)
at rate λr

(
XN,D
j

)
, for r ∈ RD,

(
XN
C , X

N
D

)
−→

(
XN
C + ej−1 − ej , X

N
D

)
at rate N2XN,C

j , for a diffusion j → j + 1,(
XN
C , X

N
D

)
−→

(
XN
C + ej+1 − ej , X

N
D

)
at rateN2XN,C

j , for a diffusion j → j − 1,

where {ej, j = 1, · · · , N} is the canonical basis of R
N , and γCj,r, γ

D
j,r ∈ Z, ∀r ∈ R,

∀1 ≤ j ≤ N .

Scaling and Density dependence. On every site, the initial average number of
molecules for C is of order µ with µ large. Namely, if M = MC +MD is the total initial
number of molecules, then MC ≈ N × µ. The size of MD is precised below.

Then, we make the

Assumption 2.2.
(i) Density dependence holds for the rates of reactions in RC. That is, for all r ∈ RC ,

there exists λ̃r satisfying

λr

(
XN,C
j

)
= µλ̃r

(
XN,C
j

µ

)
for all j = 1, · · · , N.

(ii) Reactions r ∈ R are spatially homogeneous: γCj,r = γCr , γ
D
j,r = γDr .

(iii) The molecules of C diffuse, while those of D do not.

It follows that reactions in RC are fast, while reactions in RD are slow. Below, we
distinguish two types of mixed reactions in RDC , some will be fast.
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For notational convenience, we omit the tilde for reaction rates obtained by density
dependence, as described in Assumption 2.2 (i). Moreover, we consider the parameter µ
as a function of N which goes to infinity with N , and omit to mention the dependance on
µ. The assumption of spatial homogeneity is not essential. It allows simpler notations.

Then, we rescale XN and define

UN,C
j =

XN,C
j

µ
, UN,D

j = XN,D
j ; UN

C =
(
UN,C
j

)
1≤j≤N

, UN
D =

(
UN,D
j

)
1≤j≤N

,

and
UN =

(
UN
C , U

N
D

)
∈ R

N ×N
N .

Since UN
C (resp. UN

D ) has continuous (resp. discrete) values, C (resp. D) is said to be
continuous (resp. discrete). The generator of the new scaled process UN is given by

AN
0 ϕ(U) :=

d

dt
EU

[
ϕ
(
UN (t)

)]∣∣∣∣
t=0

:= lim
t→0

1

t
EU

[
ϕ
(
UN (t)

)
− ϕ(U)

]

=

N∑

j=1

{
∑

r∈RC

[
ϕ

(
UC +

γCr
µ
ej , UD

)
− ϕ(UC , UD)

]
µλr

(
UC
j

)

+
∑

r∈RDC

[
ϕ

(
UC +

γCr
µ
ej, UD + γDr ej

)
− ϕ(UC , UD)

]
λr
(
UC
j , U

D
j

)

+
∑

r∈RD

[
ϕ
(
UC , UD + γDr ej

)
− ϕ(UC , UD)

]
λr
(
UD
j

)
}

+
N∑

j=1

{[
ϕ

(
UC +

ej−1 − ej
µ

, UD

)
+ ϕ

(
UC +

ej+1 − ej
µ

, UD

)
− 2ϕ(UC , UD)

]
µN2UC

j

}
,

on the domain Bb

(
R

2N
)
(see [Kur71] or [EK86] pp162-164).

In order to achieve a pointwise modeling over the whole spatial domain, we introduce
the step function

uN(t, x) =
N∑

j=1

UN
j (t)1j(x), t ≥ 0, x ∈ Ij, (2.6)

where 1j(·) := 1Ij(·) is the indicator function of the j−th site Ij . Note that for all t ≥ 0,
the function uN(t) = uN(t, ·) can be identified with the vector UN(t) of R2N . It is a
1−periodic function, since UN

j+N = UN
j for all j. Now, let H

N denote the subspace of
L2(I) which consists in real-valued step functions defined on I, and constant on every
site Ij , 1 ≤ j ≤ N . We extend functions in H

N to be periodic. Moreover, consider the
canonical projection

PN : L2(I) −→ H
N

u 7−→ PNu =
N∑

j=1

uj1j , with uj := N

∫

Ij

u(x)dx.
(2.7)

Then,

uNC (t, x) =

N∑

j=1

uN,Cj (t)1j(x) and uND(t, x) =

N∑

j=1

uN,Dj (t)1j(x),

9



where

uN,Cj (t) := PNu
N
C (t) = N

∫

Ij

uNC (t, x)dx = UN,C
j (t),

and a similar relation holds for D. The process, uN :=
{
uN(t), t ≥ 0

}
is a H

N × H
N -

valued càdlàg Markov process, with the transitions:





(
uNC , u

N
D

)
−→

(
uNC +

γCr
µ
1j, u

N
D

)
, at rate µλr

(
uN,Cj

)
, for r ∈ RC ,

(
uNC , u

N
D

)
−→

(
uNC +

γCr
µ
1j, u

N
D + γDr 1j

)
, at rate λr

(
uN,Cj , uN,Dj

)
, r ∈ RDC ,

(
uNC , u

N
D

)
−→

(
uNC , u

N
D + γDr 1j

)
, at rate λr

(
uN,Dj

)
, for r ∈ RD,

(
uNC , u

N
D

)
−→

(
uNC +

1j−1 − 1j

µ
, uND

)
, at rate µN2uN,Cj ,

(
uNC , u

N
D

)
−→

(
uNC +

1j+1 − 1j

µ
, uND

)
, at rate µN2uN,Cj .

(2.8)
Such a Markov process does exist and is unique (see [Kot88], which is based on [EK86])
until a possible blow-up time. In addition, under natural assumptions on the reaction
rates, we have uN(t) ≥ 0 for all t, as soon as uN(0) ≥ 0.

We now specify the description of the mixed reactions r ∈ RDC .

Assumption 2.3. In some S1 ⊂ RDC , reactions are spatially homogeneous, fast and do
not affect the discrete species:

• γDr = 0 and the rate is λr

(
uN,Cj , uN,Dj

)
= µλ̃r

(
uN,Cj , uN,Dj

)
, for r ∈ S1 (fast mixed

reactions).

Again, below we omit the tildes.

This model leads to mathematical difficulties as explained in [DN17]. Unless uN,Dj

is zero for almost all j, the discrete species are in fact also abundant since the total
number is of order N , hence they also converge to a continuous model. The limit model
is expected to be a PDE for uC coupled to an ODE for uD. As explained in [DN17],
the difficulty is that the convergence seems to hold in bad topologies and this limit
is probably difficult to justify for nonlinear reaction rates. Thus, in [DN17], a spatial
correlation in the reaction involving the discrete species has been introduced and the
limit model is described by a PDE coupled to a nonlocal differential equation.

In this paper, we introduce another situation where the discrete species remain dis-
crete at the limit. We introduce an assumption of spatial multiscaling: the spatial
domain I is split into a finite number of macrosites J1, . . . , Jk, where k is a fixed finite
number, and uD is constant in each Jℓ. This describes a situation where the discrete
species are of much larger size than the continuous species. For instance the discrete
species are constant in alls cells, while the continuos ones are varying inside each cell.
Similarly, the multi-scaling could be between groups of cells and cells

In order to avoid complicated notations, we assume for simplicity that all Jℓ has the
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same length and consider N as multiples of k. Thus each Jℓ is the union of microsites:

Jℓ =

Nℓ⋃

j=Nℓ−1+1

Ij , ℓ = 1, . . . , k,

with Nℓ =
ℓN
k
. On each Jℓ, u

N
D is constant and takes the value uN,Dℓ :

uND(t, x) =
k∑

ℓ=1

uN,Dℓ (t)1ℓ(x),

where 1
ℓ = 1Jℓ is the indicator function of the ℓ−th macrosite Jℓ.

It is then natural to consider that when there is a slow reaction between discrete and
continuous species, i.e. in RDC\S1, on Jℓ, it may affect uC on all Jℓ:

(
uNC , u

N
D

)
−→


uNC +

γCr
µ

Nℓ∑

j=Nℓ−1+1

brj,N1j, u
N
D + γDr 1

ℓ


 ,

for some non negative brj,N . Below we use the notation:

γC,Nr,ℓ = γCr

Nℓ∑

j=Nℓ−1+1

brj,N1j.

We choose brj,N = N
∫
Ij
br(x)dx for some positive function br ∈ C([0, 1]).

We also assume that the rate of such reaction depends on uN,Dℓ , and on uNC (considered
all over Jℓ) through a local average. In other words, the rate of such reaction is of

the form λr

(∑Nℓ

j=Nℓ−1+1 a
r
j,Nu

N,C
j , uN,Dℓ

)
where arj,N are non negative numbers summing

to 1:
∑Nℓ

j=Nℓ−1+1 a
r
j,N = 1. We choose arj,N =

∫
Ij
ar(x)dx for some positive function

ar ∈ C([0, 1]) such that
∫ 1

0
ar(x)dx = 1.

In this framework , (2.8) becomes




(
uNC , u

N
D

)
−→

(
uNC +

γCr
µ
1j, u

N
D

)
, at rate µλr

(
uN,Cj

)
, for r ∈ RC ,

(
uNC , u

N
D

)
−→

(
uNC +

γCr
µ
1j, u

N
D

)
, at rate µλr

(
uN,Cj , uN,Dℓj

)
, for r ∈ S1,

(
uNC , u

N
D

)
−→

(
uNC +

γC,Nr,ℓ

µ
, uND + γDr 1

ℓ

)
, at rate λr




Nℓ∑

j=Nℓ−1+1

arj,Nu
N,C
j , uN,Dℓ


,

for r ∈ RDC\S1,
(
uNC , u

N
D

)
−→

(
uNC , u

N
D + γDr 1

ℓ
)
, at rate λr

(
uN,Dℓ

)
, for r ∈ RD,

(
uNC , u

N
D

)
−→

(
uNC +

1j−1 − 1j

µ
, uND

)
, at rate µN2uN,Cj ,

(
uNC , u

N
D

)
−→

(
uNC +

1j+1 − 1j

µ
, uND

)
, at rate µN2uN,Cj ,

(2.9)
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where here and below ℓj is the upper integer part of jk
N
. In other words: Nℓj−1 + 1 ≤

j ≤ Nℓj .

Note that this system has a problem since it does not ensure positivity of uNC . In
general, this is ensured by the fact that the rate vanishes when the concentration vanishes.
But this is not possible for the type of rate considered for the mixed reactions in RDC\S1.
A more realistic rate for such reactions would be:

λr




Nℓ∑

j=Nℓ−1+1

arj,Nu
N,C
j , uN,Dℓ




Nℓ∏

j=Nℓ−1+1

1
uN,C
j +

γr
C

br
j,N
µ

≥0

When µ → ∞, this further factor converges to
∏Nℓ

j=Nℓ−1+1 1uN,C
j ≥0 or

∏Nℓ

j=Nℓ−1+1 1uN,C
j >0

depending on the sign of γrC . This extra factor has no effect at the limit since uC is
positive for µ = ∞. Indeed, positivity is ensured by the other reactions acting on the
continuous component.

Moreover, due to the lack of smoothness of the indicator function, we should replace
1u≥0 by a smooth function approximating it. This creates further notational complexity
but no mathematical problems (see [DN17]) and we do not consider such extra factor.

We follow the spatial distribution of the discrete component at the level of the
macrosites Jℓ. We may identify the space of such functions with R

k thanks to the
formula: uD(t, x) =

∑k
ℓ=1 u

D
ℓ (t)1

ℓ(x). Thus, with this new framework, the phase space
is HN ×N

k ⊂ H
N ×R

k and the infinitesimal generator for uN has the form

ANϕ(uC, uD)

=

N∑

j=1

{
∑

r∈RC

[
ϕ

(
uC +

γCr
µ
1j, uD

)
− ϕ(uC, uD)

]
µλr

(
uCj
)

+
∑

r∈S1

[
ϕ

(
uC +

γCr
µ
1j , uD

)
− ϕ(uC, uD)

]
µλr

(
uCj , u

D
ℓj

)}

+
N∑

j=1

{[
ϕ

(
uC +

1j−1 − 1j

µ
, uD

)
+ ϕ

(
uC +

1j+1 − 1j

µ
, uD

)
− 2ϕ(uC, uD)

]
µN2uCj

}

+

k∑

ℓ=1





∑

r∈RDC\S1

[
ϕ

(
uC +

γC,Nr

µ
, uD + γDr 1

ℓ

)
− ϕ(uC, uD)

]
λr




Nℓ∑

j=Nℓ−1+1

arj,Nu
C
j , u

D
ℓ




+
∑

r∈RD

[
ϕ
(
uC, uD + γDr 1

ℓ
)
− ϕ(uC, uD)

]
λr
(
uDℓ
)
}

(2.10)
on the domain Cb

(
H
N ×R

k
)
. It can be extended to an ÃN on Cb

(
L2(I)×R

k
)
by

ÃNϕ(uC, uD) = ANϕ(PNuC, uD). (2.11)

Again, we omit the tildes: ÃN = AN . Also we write P̃Nu :=
(
PNuC ,

∑k
ℓ=1 u

D
ℓ 1

ℓ) for
u = (uC , uD) ∈ L2(I)×R

k.
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2.4 Convergence tools

2.4.1 Formal limit of the generator

We seek for the asymptotic behavior of the process uN presented above, as N, µ→ ∞.
We first introduce some mathematical tools.

For f, g ∈ H
N , the L2 inner product reads 〈f, g〉2 = N−1

∑N
j=1 fjgj, and the supre-

mum norm is given by ‖f‖∞ = max1≤j≤N |fj |.

Proposition 2.1.

(i)
(
H
N , 〈·, ·〉2

)
is a finite dimensional Hilbert space with

{√
N1j, 1 ≤ j ≤ N

}
as an

orthonormal basis.
(ii) lim

N→∞
‖PNf − f‖2 −→ 0 for f ∈ L2,

(iii) lim
N→∞

‖PNf − f‖∞ −→ 0, for f ∈ C(I) .

Henceforth, HN ×R
k is endowed with the norm

‖(f, g)‖∞,∞ := ‖f‖∞ + ‖g‖∞, for f ∈ H
N , g ∈ R

k.

The discrete Laplace. For f ∈ D(I) and for x ∈ [0, 1], we set

∇+
Nf(x) := N

[
f

(
x+

1

N

)
− f(x)

]
and ∇−

Nf(x) := N

[
f(x)− f

(
x− 1

N

)]
.

Then, we define the discrete Laplace on D(I) by

∆Nf(x) := ∇+
N∇−

Nf(x)

= ∇−
N∇+

Nf(x) = N2

[
f

(
x− 1

N

)
− 2f(x) + f

(
x+

1

N

)]
.

If f ∈ H
N in particular, then

∆Nf(x) =
N∑

j=1

[
N2(fj−1 − 2fj + fj+1)

]
1j(x).

From the spectral analysis of ∆N , it is well known that, if N is an odd integer,
letting 0 ≤ m ≤ N − 1 with m even, letting ϕ0,N ≡ 1, ϕm,N(x) =

√
2cos

(
πmjN−1

)

and ψm,N (x) =
√
2sin

(
πmjN−1

)
for x ∈ Ij , then,

{
ϕm,N , ψm,N

}
are eigenfunctions of

∆N with eigenvalues given by −βm,N = −2N2
(
1− cos

(
πmN−1

))
≤ 0. If N is even, we

need the additional eigenfunction ϕN,N = cos(πj) for x ∈ Ij . The following (classical)
properties are derived from [Blo87], Lemma 2.12 p.12, [Blo92], Lemma 4.2 for the parts
(i)-(v), from [Kat66], Chapter 9, Section 3 for the part (vi), and from [Hen81], Chapter
1, Sections 1.3 and 1.4 for the parts (viii)-(ix). Consider f, g ∈ H

N and let TN(t) = e∆N t

denote the semigroup on H
N generated by ∆N .

Proposition 2.2. (i) The family {ϕm,N , ψm,N} forms an orthonormal basis of
(
H
N , 〈·, ·〉2

)
.

(ii) TN(t)f =
∑

m

e−βm,N t (〈f, ϕm,N〉2ϕm,N + 〈f, ψm,N 〉2ψm,N).
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(iii) 〈∇+
Nf, g〉2 = 〈f,∇−

Ng〉2 and TN(t)∆Nf = ∆NTN (t)f .

(iv) ∆N and TN (t) are self-adjoint on
(
H
N , 〈·, ·〉2

)
.

(v) TN(t) is a positive contraction semigroup on both
(
H
N , 〈·, ·〉2

)
and

(
H
N , ‖ · ‖∞

)
.

(vi) The projection PN commutes with ∆N , and for all f ∈ C2(I), t ≥ 0,




‖∆Nf −∆f‖∞ −→ 0 as N → ∞,

‖∆NPNf −∆f‖∞ −→ 0 as N → ∞,

‖TN (t)PNf − T (t)f‖∞ −→ 0 as N → ∞.

(vii) Let fN , f ∈ C2(I).

If lim
N→∞

‖fN − f‖C2(I) → 0, then lim
N→∞

‖∆NfN −∆f‖∞ → 0.

(viii) For all η ≥ 0, there exist a constant c1 = c1(η) > 0 independent of N , such that

∥∥TN (t)
(
−∆N

)η∥∥
L∞(I)→L∞(I)

≤ c1t
−η for t > 0.

(ix) For all 0 < η ≤ 1, there exists c2 = c2(η) > 0 independent of N , such that

∥∥∥(TN (t)− Id)
(
−∆N

)−η∥∥∥
L∞(I)→L∞(I)

≤ c2t
η for t ≥ 0.

We wish to identify the limit as N, µ → ∞, of our sequence uN of Markov processes
with generators A given by (2.10), we compute a formal limit of the sequence of the
extended generators defined by (2.10), for test functions ϕ ∈ C2,0

b (L2(I) × R
k). As

already mentioned the rigorous proof below is done for a stronger topology than L2(I),
but this latter space being Hilbert the formal argument is clearer.

We first proceed to a Taylor expansion at order 2 of ϕ for the part of the generator
corresponding to the fast dynamic, that is the first three terms in the right hand side of
(2.10). We identify the differential with the corresponding gradient, the debit functions
appear naturally. With the notation u = (uC, uD), we have:

First order terms.

T
(1)
fast(N) =

〈
D1,0ϕ

(
P̃Nu

)
,

N∑

j=1

(
∑

r∈RC

γCr λr
(
uCj
)
+
∑

r∈S1

γCr λr
(
uCj , u

D
ℓj

)
)
1j

〉

2

,

+

〈
D1,0ϕ

(
P̃Nu

)
,
N∑

j=1

N2 (1j−1 − 21j + 1j+1) u
C
j

〉

2

=
〈
D1,0ϕ

(
P̃Nu

)
, F
(
P̃Nu

)
+∆NPNuC

〉
2
.

Here ∆N is the discrete Laplace introduced above and corresponds to the debit function
corresponding to the diffusions. Its expression is obtained using a change of index and
periodicity. The function F is the debit related to fast onsite reactions. It also maps
D(I)×R

k on D(I), and is given by

F (uC, uD) =
∑

r∈RC

γCr λr (uC) +
∑

r∈S1

γCr λr (uC, uD) . (2.12)
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These allow to define the debit of the whole fast dynamic (uC, uD) 7→ ∆NPNuC+F
(
P̃Nu

)

on D(I)×R
k. If F is continuous, then formally for uC ∈ C2(I),

T
(1)
fast(N) −→

〈
D1,0ϕ(uC, uD),∆uC + F (uC , uD)

〉
2
=: A∞

fast (2.13)

as N → ∞, thanks to Proposition 2.2 (vi) and Proposition 2.1 (iii).

Second order terms. We give heuristics indicating that they converge to zero in the
L2(I) topology. For these heuristics, we assume that the concentration of the species
C is bounded (uniformly in N) on every site. Say 0 ≤ uC(x) ≤ ρ for all x ∈ I for
some ρ > 0. Then in particular, the rates of fast onsite reactions are bounded too, if
these latter are continuous. Let us introduce ej :=

√
N1j, for 1 ≤ j ≤ N . Since the

fonctions (1j)1≤j≤N are pairwise orthogonal in L2(I) and of norm ‖1j‖2 = N−1/2, the
family

{
ej , 1 ≤ j ≤ N

}
forms an orthonormal basis of

(
H
N , ‖ · ‖2

)
. Also, c denotes a

generic constant and ‖D2,0ϕ‖∞ denotes a uniform bound on the norm of D2,0ϕ(u) as a
bilinear operator on L2(I) for u ∈ L2(I)×R

k.
For fast onsite reactions, we have the following term for the second order term in the

Taylor expansion

T
(2)
fastOn(N) =

1

2

N∑

j=1

(
∑

r∈RC

D2,0ϕ
(
P̃Nu

)
·
〈
γCr
µ
1j,

γCr
µ
1j

〉

2

µλr
(
uCj
)

+
∑

r∈S1

D2,0ϕ
(
P̃Nu

)
·
〈
γCr
µ
1j,

γCr
µ
1j

〉

2

µλr

(
uCj , u

D
ℓj

))

≤ cγ̄2Cλ̄C
∥∥D2,0ϕ

∥∥
∞

1

Nµ

N∑

j=1

∥∥ej
∥∥2
2

≤ c

µ
−→ 0.

Here, γ̄C is an upper bound for the amplitudes of fast onsite reactions and λ̄C is an upper
bound for the rates of fast onsite reactions.

We now treat the diffusion part. From ‖1j+1 − 1j‖22 = 2N−1 = ‖1j−1 − 1j‖22,

T
(2)
fastDiff (N) =

1

2

N∑

j=1

[
D2,0ϕ

(
P̃Nu

)
·
〈
1j−1 − 1j

µ
,
1j−1 − 1j

µ

〉

2

]
µN2uCj

≤ cρ
∥∥D2,0ϕ

∥∥
∞

N2

µ

N∑

j=1

‖1j−1 − 1j‖22

≤ cµ−1N2 −→ 0,

if µ−1N2 → 0 as N, µ→ ∞. The other term related to diffusions converges to zero, using
the same argument. Below, we will see that the condition µ−1N2 → ∞ can be weakened.

Let us then treat the slow dynamic part. With our choice of brj,N , γ
C,N
r,ℓ are clearly

bounded and
γC,N
r,ℓ

µ
→ 0. Also, since ar is continuous, it is not difficult to see that if

uNC and uN,Dℓ converge to uC and uD,ℓ respectively, then λr

(∑Nℓ

j=Nℓ−1+1 a
r
j,Nu

N,C
j , uN,Dℓ

)

converges to λr

(∫
Jℓ
ar(x)uC(x)dx, uD,ℓ

)
. Since here, we work at a formal level, we do
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not need to precise in which sense the convergences hold.
We deduce the limit generator:

A∞ϕ(uC , uD) = 〈DuCϕ(uC , uD),∆uC + F (uC, uD)〉2

+

k∑

ℓ=1





∑

r∈RDC\S1

[
ϕ
(
uC, uD + γDr 1

ℓ
)
− ϕ(uC, uD)

]
λr

(∫

Jℓ

ar(x)uC(x)dx, uD,ℓ

)

+
∑

r∈RD

[
ϕ
(
uC , uD + γDr 1ℓ

)
− ϕ(uC, uD)

]
λr (uD,ℓ)

}

(2.14)
As seen above, this is the generator of a continuous PDMP.

2.4.2 The problem at the limit

From Section 2.2, we know that (2.14) is the (extended) generator of a continuous
PDMP v := {v(t) = (vC(t), vD(t)), t ≥ 0} as given by (2.5). The evolution of its discrete
component vD(t) is governed by the slow dynamic part in the limiting generator. It is
a jump process, and some of its jump rates depend on both components. The possible
values of vD(t) are of the form

vD = vD(0) +
M∑

m=1

∑

r∈(RDC\S1)∪RD

k∑

ℓ=1

αmℓ,rγ
D
r 1

ℓ,

where the coefficients αmℓ,r are integers. This describes a countable set denoted by K.
The continuous component vC(t) has values in C(I), and has continuous trajectories.

More precisely, for any value ν ∈ K of vD(t) —fixed between two consecutive jumps of
this latter—, vC(t) evolves according to

d

dt
vC(t) = ∆vC(t) + F (vC(t), ν) , (2.15)

the reaction-diffusion equation with a parameter ν. It is supplemented with periodic
boundary conditions. We consider the Laplace operator ∆ as an operator in the C-
theory framework, w.r.t. the terminology used in [CH98] (Chapter 2, Section 6). Dirich-
let boundary conditions are considered there, the case of periodic boundary conditions
considered here is similar. We use the same symbol ∆ for this operator on the domain:

{
u ∈ C(I) : ∆u ∈ C(I)

}
.

This latter domain is dense, and the Laplace is also m-dissipative. From Hille-Yosida-
Phillips theorem, it is well known that this operator generates a strongly continuous
semigroup of contraction on C(I), denoted by {T (t)} =

{
T (t) = e∆t, t ≥ 0

}
.

Assumption 2.4.
(i) For all y = (y1, y2) ∈ R

2, F (y) ≥ 0 if y1 = 0.
(ii) There exists ρ1 > 0 such that F (y) < 0 for all y ∈ R

2 satisfying |y1| > ρ1.
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Under Assumption 2.4, and given any initial condition vC(0) = vC,0 ∈ C(I) such that
0 ≤ vC,0(x) ≤ ρ2, for all x ∈ I, for some ρ2 > 0, there exists a unique global mild solution
vC to (2.15), satisfying vC ∈ C

(
R+;C(I)

)
, and 0 ≤ vC(t, x) < ρ = (ρ1 ∨ ρ2) + 1: for all

t ≥ 0, x ∈ I. We use the notation vC(t) = φν(t)vC,0 for the associated flow.
By mild solution, we mean for all t ≥ 0:

vC(t) = T (t)vC,0 +

∫ t

0

T (t− s)F (vC(s), ν)ds.

Recall that F is polynomial. Note that if vC,0 ∈ W 2,∞(I) then vC belongs to C([0, T ];W 2,∞(I)).
This can be seen from standard properties of the heat kernel. Moreover, there exists a
constant depending on ρ and F such that:

‖vC(t)‖W 2,∞ ≤ c(ρ, F, ‖vC,0‖W 2,∞), t ≥ 0. (2.16)

From the above discussion, we consider that the ”limiting” PDMP v = (vC , vD) starts
at v0 = (vC,0, vD,0) ∈ C(I)×R

k, has values in E := C(I)×K. Below, we denote by ‖·‖∞
the norm of C(I) × R

k. It has the following characteristics: the linear and nonlinear
operators are respectively the Laplace operator ∆ and the debit of fast onsite reactions
F given by (2.12), the transition rate Λ, defined by

Λ(uC, uD) :=
k∑

ℓ=1





∑

r∈RDC\S1

λr

(∫

Jℓ

ar(y)uC(y)dy, uD,ℓ

)
+
∑

r∈RD

λr (uD,ℓ)



 , (2.17)

and, the transition measure Q, defined by

∫

K

ϕ(uC , ν)Q
(
dν; (uC, uD)

)

=
1

Λ(uC, uD)

k∑

ℓ=1





∑

r∈RDC\S1

ϕ
(
uC, uD + γDr 1

ℓ
)
λr

(∫

Jℓ

ar(y)uC(y)dy, uD,ℓ

)

+
∑

r∈RD

ϕ
(
uC , uD + γDr 1

ℓ
)
λr (uD,ℓ)

}
.

(2.18)
We assume that Assumption 2.1 holds. Then, vD is a càdlàg process which is almost
surely in D([0, T ],Rk).

Below, during the proof, we see that we may assume that all reaction rates are
bounded. Then, arguing as in [Dav93] or [BR11], we prove that the law of (vC , vD)
solves the martingale problem in the sense that for all ϕ ∈ E :

ϕ(vC(t), vD(t))− ϕ(vC,0, vD,0)−
∫ t

0

A∞ϕ(vC(s), vD(s))ds

is a martingale. The set of test functions E is the set of functions ϕ on E = C(I)×R
k

which are bounded, continuous with respect to the second variable, differentiable with
bounded differential with respect to the first variable and such that the differential can

17



be extended continuously to H−1(I). Recall that this is the dual space of H1
0 (I), and

there exists cϕ such that

|DuCϕ(uC, uD) · h| = |〈DuCϕ(uC, uD), h〉2| ≤ cϕ‖h‖H−1(I)

for all (uC , uD) ∈ C(I) × R
k, h ∈ L∞(I). We denote by |ϕ|E the smallest constant cϕ

such that the above inequality holds and

‖ϕ‖E = ‖ϕ‖C1,0
b

(C(I)×Rk) + |ϕ|E .

The forthcoming result states that, under the boundedness assumption, the martin-
gale problem for A∞ is well-posed.

Theorem 2.1. Assume that the reaction rates are bounded, the (law of the) PDMP v is
the unique solution of the martingale problem associated with A∞ on E .

The proof is posponed to section 4. It generalizes the proof of Theorem 2.5 in
[CDMR12].

3 A Piecewise deterministic limit

The following is our main result.

Theorem 3.1. (Hybrid simplification)

Let uN =
(
uNC , u

N
D

)
define a sequence of Markov processes as above, starting at uN(0) =(

uNC (0), u
N
D(0)

)
∈ H

N × K, with the corresponding sequence of infinitesimal generators
AN , defined by (2.10). Assume the jump rates λr, r ∈ R are polynomial, and the rates
λr, r ∈ RC ∪ S1 are such that F satisfies Assumption 2.4.

Now, consider the E−valued PDMP v = (vC , vD) started from v0 = (vC0 , v
D
0 ) ∈

C2(I) × K, whose characteristics are
(
∆, F, λD, Q

)
. Assume Assumption 2.1 holds so

that the PDMP is standard.
In addition, assume that: (i) N, µ→ ∞ such that µ−1 logN −→ 0.

(ii)
∥∥uN(0)− v0

∥∥
∞

−→ 0 in probability.
Then for all T > 0,

uN =⇒ v in D ([0, T ];D(I)×K) ,

where =⇒ means convergence in law.

Proof. Relying on the proof of Theorem 3.1 in [CDMR12], we proceed as follows. We
first assume that reaction rates corresponding to onsite reactions are bounded, as well as
their derivatives with respect to their first variable. In this case, we prove tightness for
the sequence of Markov processes and identify its limit through the associated sequence
of martingale problems.

At the end of the proof, we relax the additional hypothesis of boundedness and
conclude by a truncation argument.

In the whole proof, T > 0 is fixed and every limit is taken as N → ∞ if there is no
further precision.
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3.1 Tightness for bounded reaction rates

We want to show that the family of processes
{
uN =

(
uNC , u

N
D

)}
N

is tight in the

Skorohod’s space D([0, T ], D(I)×R
k). This has to be understood in the sense that the

family {PN}N of their laws —where PN is the law of uN for all N— is tight in the space
P
(
D([0, T ], D(I) × R

k)
)
of probability measures (see [Bil99], page 8). We treat both

components one after another, starting with the continuous one.
We assume until section 3.3 that all reaction rates are bounded.

3.1.1 Tightness for the continuous component

We first prove that
{
uNC
}
N

is C-tight. That is (see [JS87], Chapter 6, Section 3,
Definition 3.25, page 351), the family is tight in D([0, T ], D(I)), and each converging
subsequence converges to a limit whose law has its support in C([0, T ], D(I)), i.e. the
limiting law charges only continuous trajectories. In fact we even prove that each limit
point has support in C([0, T ], C(I)).

From Proposition 2.1 of [Kur71], we know that uNC is solution to the SDE

uNC (t) := uNC (0) +

∫ t

0

∆Nu
N
C (s) + F

(
uN(s)

)
ds+ ZN

C (t),

where ZN
C is a H

N -valued martingale on [0, T ].
Duhamel’s formula yields

uNC (t) = TN(t)u
N
C (0) +

∫ t

0

TN(t− s)F
(
uN(s)

)
ds+ Y N

C (t),

where Y N
C (t) =

∫ t

0

TN (t− s)dZN
C (s) is a stochastic convolution.

As in [Blo92] and [DN17], we need to introduce a stopping time to control Y N
C . Define

vNC by

vNC (t) = TN(t)u
N
C (0) +

∫ t

0

TN(t− s)F
(
vNC (s), u

N
D(s)

)
ds. (3.1)

It is classical to prove that vNC exists on R
+ and since F is bounded and (TN (t))t is a

contraction semigroup, we have:

‖vNC (t)‖∞ ≤ ‖uNC (0)‖∞ + TMF , t ∈ [0, T ], (3.2)

where MF is a bound on F . Recall that F is defined in (2.12) and all reaction rates are
assumed to be bounded in this part of the proof.

We also introduce

ūNC (t) = TN(t)u
N
C (0) +

∫ t

0

TN (t− s)F
(
ūNC (s), u

N
D(s)

)
ds+ Y N

C (t)1t≤τN (3.3)

where the stopping time τN is defined by

τN = inf{t ≥ 0, ‖uNC (t)− vNC (t)‖∞ ≥ 1}.
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Using the same arguments as in [Blo92] and [DN17], we prove

sup
t∈[0,T∧τN ]

∥∥Y N
C (t)

∥∥
∞

−→ 0 in probability,

under the assumptions of Theorem 3.1. Using a Gronwall type argument, we deduce:

sup
t∈[0,T ]

‖ūNC (t)− vNC (t)‖∞ −→ 0 in probability. (3.4)

Then, we write

P

(
sup
t∈[0,T ]

‖ūNC (t)− uNC (t)‖∞ > ǫ

)
≤ P

(
sup
t∈[0,T ]

‖ūNC (t)− vNC (t)‖∞ ≥ 1

)
→ 0,

when N → ∞ and, by Lemma 3.31, Section 3, Chapter 6 of [JS87], tightness of {uNC }N
follows form tightness of {ūNC }N

Under our assumptions:

TN(t)u
N
C (0) → T (t)vC(0), in C(I)

so that by (3.4), it it suffices to prove tightness of

bN (t) :=

∫ t

0

TN(t− s)F
(
ūN(s), uND(s)

)
ds.

We use Arzelà-Ascoli theorem to get relative compactness and derive tightness from
Prohorov theorem, since C

(
[0, T ], D(I)

)
is separable and complete.

Equicontinuity (in time). Fix t1, t2 ∈ [0, T ]. Let Id be the identity operator on D(I),
and let 0 < η < 1 be a real number. We have

bN (t2)− bN (t1) =

∫ t1

0

(TN(t2 − t1)− Id)TN (t1 − s)F
(
ūNC (s), u

N
D(s)

)
ds

+

∫ t2

t1

TN(t2)F
(
ūNC (s), u

N
D(s)

)
ds

From Proposition 2.2 (iii), (viii) and (ix), and the boundedness of F :

∥∥bN (t2)− bN (t1)
∥∥
∞

≤
∫ t1

0

∥∥∥
(
TN(t2 − t1)− Id

)[(
−∆N

)−η][(−∆N

)η]
TN (t1 − s)F

(
ūNC (s), u

N
D(s)

)∥∥∥
∞
ds

+

∫ t2

t1

∥∥TN(t2)F
(
ūNC (s), u

N
D(s)

)∥∥
∞
ds

≤ c2|t2 − t1|ηMF

∫ t1

0

c1(t1 − s)−ηds+ |t2 − t1|MF , ∀0 < η < 1,

≤ c|t2 − t1|ηMF

(
t1−η1

1− η
+ |t2 − t1|1−η

)
, c = c1 ∨ c2 = max(c1, c2)
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≤ c|t2 − t1|η, c = (MF , c1, c2, T ),

and the family
{
bN
}
N

is uniformly equicontinuous.

Compactness (in space). Fix t ∈ [0, T ].
Using the contraction TN (t) property and boundedness of F , we get

sup
t∈[0,T ]

‖bN (t)‖∞ ≤ TMF =: c5.

Let i0 be such that (∇+
Nv)i0 = ‖∇+

Nv‖∞ and write:

(∇+
Nv)i0 = (∇+

Nv)i0−1 +N(∆Nv)i0

By [Bea09], Theorem 3.1, we know that for all t > 0, ‖∇+
NTN(t)‖L∞(I)→L∞(I) ≤ ct−1/2

for some constant c independent of N . Since F is bounded, we have

‖∇+
Nb

N (t)‖∞ ≤
∫ t

0

‖∇+
NTN (t− s)F (ūNC (s), u

N
D(s))‖∞ds

≤
∫ t

0

‖∇+
NTN (t− s)‖L∞(I)→L∞(I)|F (ūNC (s), uND(s))|ds

≤ cMF

∫ t

0

(t− s)−1/2ds

≤ cMF

√
t

Recall that bN (t) ∈ H
N , it is a piecewise constant function of the spatial variable. We

approximate it by a continuous function of the spatial variable b̃N (t) ∈ C(I), using
piecewise linear interpolation. Clearly:

∥∥∥b̃N (t)
∥∥∥
∞

=
∥∥bN (t)

∥∥
∞
.

Since b̃N (t) is piecewise linear with ∇b̃N (t) = ∇+
Nb

N (t), we deduce form the above
estimates that for each t, b̃N (t) is bounded in the space of Lipschitz functions on I and
is therefore compact in C(I).

It remains to write
∥∥∥bN (t)− b̃N(t)

∥∥∥
∞

≤ 1

N

∥∥∇+
Nb

N
C (t)

∥∥
∞

−→ 0,

as N → ∞ to get the compactness of
{
bN
}
N
in D(I)

It finally follows that
{
ũNC
}
N

is C−tight and as claimed the limit points are in
C([0, T ], C(I)).

3.1.2 Tightness for the discrete component

We prove that
{
uND
}
N
is tight. Let (Ω,F ,P) be the abstract probability space where

our stochastic processes uN are defined. Let
{
Yj+, Yj−, Yj,r, Yk,r, 1 ≤ j ≤ N, 1 ≤ k ≤

m, r ∈ R
}
be a family of independent standard Poisson processes. We know that for all
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N , the Markov process uN =
{
uN(t), t ≥ 0

}
is progressive, since it is càdlàg. Moreover,

its generator is AN . Thus, by Proposition 1.7, Part 4 of [EK86], uN is solution to the
martingale problem associated with AN (on the specified domain), in the sense that for
all measurable and bounded ϕ, the process Mϕ defined by

MN
ϕ (t) = ϕ

(
uN(t)

)
− ϕ

(
uN(0)

)
−
∫ t

0

ANϕ
(
uN(s)

)
ds (3.5)

for all t ≥ 0, is a P-martingale with respect to the (usual) natural associated filtration.
In addition, AN is bounded on the domain consisting of bounded measurable func-

tions, since reaction rates are bounded. Hence, by Theorem 4.1, Part 6, of [EK86], we
know that, there exists a sequence

(
ûN =

(
ûNC , û

N
D

))
N

of càdlàg stochastic processes in

D
(
[0, T ], D(I)×R

k
)
such that they have the same laws as uN = (uNC , u

N
D) and

ûND(t) = ûND(0) +

k∑

ℓ=1





∑

r∈RDC\S1

γDr 1
ℓYℓ,r



∫ t

0

λr




Nℓ∑

j=Nℓ−1+1

arj,N û
N,C
j (s), ûN,Dℓ (s)


 ds




+
∑

r∈RD

γDr 1
ℓYℓ,r

(∫ t

0

λr

(
ûN,Dℓ (s)

))
ds

}
.

and a similar expression hold for ûNC . Since we are only interested in the laws of the
processes, we omit the hat.

Let us show that for each ℓ, r, the laws of ZN
ℓ,r(t) = Yℓ,r(

∫ t
0
λ̃Nr (s)ds) for N ∈ N

are tight in D
(
[0, T ],R

)
where λ̃Nr (s) is either λr

(∑Nℓ

j=Nℓ−1+1 a
r
j,Nu

N,C
j (s), uN,Dℓ (s)

)
or

λr

(
uN,Dℓ (s)

)
.

From Theorem 1.3, Section 1, Chapter 1 of [Bil99], we know that the law Yℓ,r is tight
in D([0, T ];R) for all T ≥ 0. Hence, for every ε > 0, there exists a compact set KT

ε in
D([0, T ];R) such that

P(Yℓ,r ∈ KT
ε ) ≥ 1− ǫ.

From Theorem 6.3, Remark 6.4, part 3 in [EK86], we may assume that

KT
ε = {f ∈ D([0, T ];R) : |f(t)| ≤MT

ε , w
′(f, δ, T ) ≤ αTε (δ) for all δ > 0},

with limδ→0 α
T
ε (δ) = 0. The modulus of continuity w′ is defined in section 6, part 3 of

[EK86]. Since w′(ZN
ℓ,r, δ, T ) ≤ w′(Yℓ,r, λ̄δ, λ̄T ), where λ̄ is an upper bound of all reaction

rates, we deduce that
P(ZN

ℓ,r ∈ K̃T
ε ) ≥ 1− ǫ

with

K̃T
ε = {f ∈ D([0, T ];R) : |f(t)| ≤MT

ε , w
′(f, δ, T ) ≤ αλ̄Tε (λ̄δ) for all δ > 0}

which is a compact set in D([0, T ];R).
Since uND(0) converges in probability, we deduce that the laws of uND for N ∈ N are

tight in D
(
[0, T ],Rk

)
.
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3.1.3 Conclusion about tightness

From Corollary 3.33, Section 3, Chapter 6 of [JS87],
{
uN =

(
uNC , u

N
D

)}
N

is tight in

D
(
[0, T ], D(I)

)
×D

(
[0, T ],Rk

)
≡ D

(
[0, T ], D(I)×R

k
)
. In other words,

{
PN
}
N
is tight

in P
(
D([0, T ], D(I)×R

k)
)
.

3.2 Identification of the limit

For all N , uN is a Markov jump process, and thus, is solution to the martingale
problem associated with its generator AN , in the sense given by (3.5). In particular,
for all ϕ ∈ E for all n ≥ 1, for all 0 ≤ t1, · · · , tn ≤ s ≤ t ≤ T , and for all ψ ∈
Cb((D(I)×R

k)n),

EP

[
MN

ϕ (t)ψ
(
uN(t1), · · · , uN(tn)

)]

= EP

[
Mϕ(s)

Nψ
(
uN(t1), · · · , uN(tn)

)]
,

where

MN
ϕ (t) = ϕ

(
uN(t)

)
− ϕ

(
uN(0)

)
−
∫ t

0

ANϕ
(
uN(s)

)
ds.

Since the family
{
PN
}
N
is tight in P

(
D([0, T ], D(I)×R

k)
)
, it is relatively compact there,

by Prohorov theorem. Therefore, there exists a subsequence
(
PNl

)
l
and a probability

measure P ∈ P
(
D([0, T ], D(I)×R

k)
)
, such that

PNl
=⇒ P (weakly) as l → ∞.

Equivalently, there exists a process u with sample paths in D
(
[0, T ], D(I) × R

k
)
and

whose law is P , such that the subsequence
(
uNl
)
l
satisfies uNl =⇒ u as l → ∞. The law

of uNl is denoted by PNl
for each l. The induced subsequence of martingale problems

reads

EP

[
MNl

ϕ (t)ψ
(
uNl(t1), · · · , uNl(tn)

)]

= EP

[
MNl

ϕ (s)ψ
(
uNl(t1), · · · , uNl(tn)

)]
.

(3.6)

There are several difficulties if we try to take the limit in (3.6), as l → ∞. In
particular,MNl

ϕ contains the diffusion term which is linear in uN . This creates difficulties
when taking limits inside the expectation since we do not have any estimates on the
moments of uN . Tightness was obtained through bounds in probability.

To avoid this problem, we consider the process wN = (vNC , u
N
C , u

N
D), where v

N
C was

introduced in Section 3.1.1. It is a Markov process. In fact it is a finite dimensional
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PDMP with generator

ÃNϕ(vNC , u
N
C , u

N
D)

=
〈
DvN

C
ϕ(vNC , u

N
C , u

N
D),∆Nv

N
C + F (vNC , u

N
D)
〉
2

+

N∑

j=1

{
∑

r∈RC

[
ϕ

(
vNC , u

N
C +

γCr
µ
1j, u

N
D

)
− ϕ(vNC , u

N
C , u

N
D)

]
µλr

(
uN,Cj

)

+
∑

r∈S1

[
ϕ

(
vNC , u

N
C +

γCr
µ
1j, u

N
D

)
− ϕ(vNC , u

N
C , u

N
D)

]
µλr

(
uN,Cj , uN,Dℓj

)}

+
N∑

j=1

{[
ϕ

(
vNC , u

N
C +

1j−1 − 1j

µ
, uND

)
− ϕ(vNC , u

N
C , u

N
D)

]
µN2uN,Cj

+

[
ϕ

(
vNC , u

N
C +

1j+1 − 1j

µ
, uND

)
− 2ϕ(vNC , u

N
C , u

N
D)

]
µN2uN,Cj

}

+

k∑

ℓ=1





∑

r∈RDC\S1

[
ϕ

(
vNC , u

N
C +

γC,Nr

µ
, uND + γDr 1

ℓ

)
− ϕ(vNC , u

N
C , u

N
D)

]

×λr




Nℓ∑

j=Nℓ−1+1

aj,Nu
N,C
j , uN,Dℓ




+
∑

r∈RD

[
ϕ
(
vNC , u

N
C , u

N
D + γDr 1

ℓ
)
− ϕ(vNC , u

N
C , u

N
D)
]
λr

(
uN,Dℓ

)}
.

The laws of wN are tight in D([0, T ];D(I) × D(I) × R
k). By the discussion of

the begining of Section 3.1.1, we know that the limit points are concentrated on the
set {(uC , vC , uD) ∈ C([0, T ];C(I) × C(I)) × D([0, T ];Rk) : uC = vC}. We repeat the
argument above for wN and deduce the existence of a subsequence such that wNl =⇒ w
as l → ∞

Using the representation theorem of Skorohod, there exist versions of the stochastic
processes, w̃Nl, w̃ on a probability space

(
Ω̃, F̃ , P̃

)
, such that

w̃Nl −→ w̃ P̃− a.s.2

in the Skorohod topology. Also, we know that w̃ is of the form (ũC , ũC, ũD) for some
processes ũC , ũD in C([0, T ];C(I)) and D([0, T ];Rk). Below, we write ṽ = (ũC, ũD).

Since we are interested in the laws of the processes, we consider these new versions
in the sequel, and conserve the initial notations (without the ”tilde”). Moreover, there
exists a subset Ω ⊂ Ω such that P(Ω) = 1 and for all ω ∈ Ω, wNk(ω) −→ w(ω) in the
Skorohod topology.

In addition, we know that ‖wNl(t)− w(t)‖∞ → 0 if w is continuous at t ∈ [0, T ] (see
Section 12, Chapter 3 of [Bil99]). Thus this holds almost everywhere in (t, ω) ∈ [0, T ]×Ω.
Also, from Lemma 1, Section 12, Chapter 3 of [Bil99], w is P-a.s. continuous at every t,
except for a countable set DP = DP(w). The set DP is the complementary of

TP = TP(w) :=
{
t ∈ [0, T ] : P

(
w(t) = w(t−)

)
= 1
}
.

2abbreviation for almost surely.
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Thus, for all t ∈ TP , there is a subset Ωt ⊂ Ω with P(Ωt) = 1, such that w(ω) is
continuous at t for all ω ∈ Ωt. Note that 0, T ∈ TP .

To consider the limit l → ∞, we consider particular test functions depending only on
vN = (vNC , u

N
D). For such functions we have the following expression for the generator:

ÃNϕ(vNC , u
N
C , u

N
D)

=
〈
DvN

C
ϕ(vNC , u

N
D),∆Nv

N
C + F (vNC , u

N
D)
〉
2

+
k∑

ℓ=1





∑

r∈RDC\S1

[
ϕ
(
vNC , u

N
D + γDr 1

ℓ
)
− ϕ(vNC , u

N
D)
]
λr




Nℓ∑

j=Nℓ−1+1

arj,Nu
N,C
j , uN,Dℓ




+
∑

r∈RD

[
ϕ
(
vNC , u

N
D + γDr 1

ℓ
)
− ϕ(vNC , u

N
D)
]
λr

(
uN,Dℓ

)}

(3.7)
In particular, for all ϕ ∈ E for all n ≥ 1, for all 0 ≤ t1, · · · , tn ≤ s ≤ t ≤ T , and for

all ψ ∈ Cb((D(I)×R
k)n),

EP

[
M̃N

ϕ (t)ψ
(
vN(t1), · · · , vN(tn)

)]
= EP

[
M̃ϕ(s)

Nψ
(
vN(t1), · · · , vN(tn)

)]
, (3.8)

where

M̃N
ϕ (t) = ϕ

(
vN(t)

)
− ϕ

(
vN(0)

)
−
∫ t

0

ÃNϕ
(
wN(s)

)
ds.

This follows from the fact that functions in E are in the domain of the finite dimensional
PDMP wN (see [CDMR12]).

For t1, · · · , tn, s, t ∈ TP , the set

Ω̃ =

(
n⋃

i=1

Ωti

)
∪
(
Ωs ∪ Ωt ∪ Ω

)

is of probability 1, and, for ω ∈ Ω̃, we have for l → ∞:

• ψ
(
vNl(t1), · · · , vNl(tn)

)
→ ψ

(
v(t1), · · · , v(tn)

)
, since vNk(ti) →l v(ti) for i = 1, · · · , n.

• vNl(0) → v(0) and ϕ
(
vNl(0)

)
→ ϕ

(
v(0)

)
, and, by (ii) of Theorem 3.1, v(0) = v0.

• vNl(t) → v(t) and ϕ
(
vNl(t)

)
→ ϕ

(
v(t)

)
. The same hold when t is replaced by s.

We cannot let l → ∞ directly in (3.8). Indeed ÃNlϕ
(
wNl(t)

)
contains ∆Nl

vNl

C (t)

which converges to ∆vC(t) but in bad topologies since the convergence of vNl

C holds only
in D(I). In order to overcome this difficulty, we first use regularized test functions.

Regularization. For all ϕ ∈ E and ε > 0, we introduce the linear operator Aε on D(I),
and the function ϕε : D(I)×R

k −→ R, defined by

Aε :=
(
Id − ε∆

)−2
and ϕε(uC , uD) := ϕ(AεuC , uD), (3.9)

It is well known that Aε is a bounded linear operator of contraction (see e.g. [CH98],
Chapter 2). Also, it commutes with ∆ and with ∆N . Moreover, it maps L∞(I), and in
particular D(I), into W 4,∞(I).
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Lemma 3.1.

For all gN , g ∈ D(I) such that ‖gN − g‖∞ −→ 0 as N → ∞,

(i) ‖AεgN − Aεg‖C2(I) −→ 0 as N → ∞,

(ii) ‖∆NAεgN −∆Aεg‖∞ −→ 0 as N → ∞.

The second point (ii) immediately follows from the first (i), thanks to Proposition 2.2
(vii). Point (i) is a consequence of the fact that Aε is a continuous operator from L∞(I)
to W 4,∞ and therefore to C2(I).

Let us consider (3.8), with the test function ϕε instead of ϕ:

EP

[
M̃Nl

ϕε
(t)ψ

(
vNl(t1), · · · , vNl(tn)

)]
= EP

[
M̃Nl

ϕε
(s)ψ

(
vNl(t1), · · · , vNl(tn)

)]
, (3.10)

where

M̃
ϕ
Nl
ε
(t) = ϕε

(
vNl(t)

)
− ϕε

(
vNl(0)

)
−
∫ t

0

ÃNlϕε
(
wNl(r)

)
dr.

We start keeping ε fixed, and let l → ∞. Clearly, ϕε is continuous on D(I). Since
s, t ∈ TP , it follows from the preceding discussion that





ϕε
(
vNl(0)

)
−→l ϕε(v0) a.s.

ϕε
(
vNl(s)

)
−→l ϕε

(
v(s)

)
a.s.

ϕε
(
vNl(t)

)
−→l ϕε

(
v(t)

)
a.s.

It is rather straightforward to prove that ÃNlϕε
(
wNl(t)

)
−→l A∞ϕε

(
v(t)

)
. Also, it is

uniformly bounded in N on [0, T ]. This follows form the boundedness of the reaction
rates, the bound (3.2) and the fact that Aε is a bounded operator on D(I).

Therefore, by dominated convergence, we may let l → ∞ in equation (3.10) and
obtain

EP

[
M∞

ϕε
(t)ψ

(
v(t1), · · · , v(tn)

)]
= EP

[
M∞

ϕε
(s)ψ

(
v(t1), · · · , v(tn)

)]
, (3.11)

with

M∞
ϕε
(t) = ϕε

(
v(t)

)
− ϕε(v0)−

∫ t

0

A∞ϕε
(
v(r)

)
dr, (3.12)

where A∞ is the generator defined by (2.14).
We now want to let ε → 0. Except for the one containing the Laplace operator, all

terms in the (3.11) are easily seen to converge. To treat the remaining term, we observe
that we may take the limit in equation (3.1) along the subsequence Nl and deduce that
uC satisfies almost surely:

uC(t) = T (t)vC,0 +

∫ t

0

T (t− s)F (uC(s), uD(s))ds, a.s.

The easiest way to do this is to take the limit in the weak form of the equation. From
the smoothing property of T (t):

‖T (t)‖L∞(I)→W 1,∞(I) ≤ c(t−
1

2 + 1), t ≥ 0,
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we deduce that uC(t) is bounded uniformly in W 1,∞(I), and in particular in H1
0 (I) for

t ∈ [0, T ] and ω ∈ Ω. We deduce that ∆uC(t) is bounded uniformly in H−1 and thanks to
the property of the differential of functions in E we may let ε→ 0 in the term containing
the Laplace operator.

We obtain for ϕ ∈ E :
EP

[
M∞

ϕ (t)ψ
(
v(t1), · · · , v(tn)

)]
= EP

[
M∞

ϕ (s)ψ
(
v(t1), · · · , v(tn)

)]
, (3.13)

with

M∞
ϕ (t) = ϕ

(
v(t)

)
− ϕ(v0)−

∫ t

0

A∞ϕ
(
v(r)

)
dr. (3.14)

Now, if any of t1, · · · , tn, s, t does not lie in TP , let us say t /∈ TP for instance, we
choose a sequence

(
tl
)
l
in TP such that tl →l t with tl > t. Since v is càdlàg, it is

right-continuous at t, and v
(
tl
)
−→l v(t). Then, we use (3.14) with tl instead of t, let

l → ∞ and deduce that (3.14) also holds for t /∈ TP .
We have proved that the probability measure P , the law of v, is a solution of the

martingale problem associated with the generator A∞ on the domain E . Since the reac-
tion rates are bounded as well as their derivatives, Theorem 2.1 holds and the martingale
problem for A∞ —restricted to E— admits a unique solution, which is the law Pv0 of the
PDMP v characterized by (∆, F, λD, Q), and which starts at v0. It follows that P = Pv0 ,
and the whole sequence of the laws of vN converges to Pv0 . This implies the convergence
of (PN)N to Pv0 .

3.3 Conclusion

Now, we get rid of the additional assumption of boundedness of the process, and
prove Theorem 3.1 by a truncation argument.

Let η ∈ C∞(R+) such that
{
η(y) = 1, y ∈ [0, 1],

η(y) = 0, y ∈ [2,∞).

For n ≥ 1 and r ∈ R, define

ηn(y) = η

( |y|2
n2

)
and λnr (y) = ηn(y)λr(y)

for y ∈ R
2. Since (we have in particular) y 7→ |y|2 belongs to C1(R2) and η ∈ C1

b (R+),
we also have ηn ∈ C1

b (R+). Furthermore, ηn and its derivative vanish outsite the compact
B̄(0, n), which is the closed ball in R

2 centered at 0 and of radius n. Then, the problem
with λnr instead of λr fulfills the additional asumptions of the previous steps.

We define uNn =
(
uN,nC , uN,nD

)
the (truncated) jump Markov process associated to the

(truncated) jump intensities λnr , and starting at uN(0). By the preceding results, we
know that, for all n ≥ 1,

uN,n =⇒N vn, in D(R+;E),

where vn is the (truncated) PDMP whose (truncated) characteristics (∆, Fn, λ
D
n , Qn) are

obviously defined, w.r.t. the truncation.
It remains to argue as in [CDMR12] in order to conclude and to end the proof of

Theorem 3.1. �
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4 Well-posedness of the martingale problem for the

generator of an infinite dimensional PDMP

Proof of Theorem 2.1. Let (Pt) := (Pt)t≥0 be the semigroup on E = C(I) × R
k

associated to the PDMP
{
v(t) =

(
vC(t), vD(t)

)
, t ≥ 0

}
starting at (vC,0, vD,0) We need

the following:

Lemma 4.1. For all t ≥ 0, ϕ ∈ E , Ptϕ is bounded differentiable with respect to the first
varibale on C(I) and satisfies:

‖Ptϕ‖∞ ≤ ‖ϕ‖∞, (4.1)

|DαPtϕ(α, ν) · h| ≤ c‖ϕ‖EeMt‖h‖∞, α ∈ C(I), ν ∈ R
k, h ∈ C(I) (4.2)

for some constants c and M depending only on the characteristics of the PDMP v.

Proof of Lemma 4.1. The part (4.1) immediately follows, from the definition of the
semigroup and the fact that the expectation is increasing. For ϕ ∈ E and ψ ∈ B(R+×E),
let us define

Gϕψ(t, u) := Eu [ϕ(v(t))1t<T1 + ψ(t− T1, v(T1))1t≥T1 ]

= ϕ(φν(t, α), ν)H(t, u)

+

∫ t

0

∫

K

ψ(t− s, α, ξ)Q(dξ;φν(s, α), ν)Λ(φν(s, α), ν)H(s, u)ds

for (t, u) ∈ R+ ×E, with u = (α, ν) and v the PDMP starting at u. Then, according to
Lemma 27.3 of [Dav93],

Gn
ϕψ(t, u) = Eu [ϕ(v(t))1t<Tn + ψ(t− Tn, v(Tn))1t≥Tn]

and
lim
n→∞

Gn
ϕψ(t, u) = Ptϕ(u),

where

Gn
ϕψ(t, u) := Gϕ

(
Gn−1
ϕ ψ(t, u)

)

= ϕ(φν(t, α), ν)H(t, u)

+

∫ t

0

H(s, u)

[∫

K

Λν(φν(s, α))G
n−1
ϕ ψ(t− s, α, ξ)Q(dξ;φν(s, α), ν)

]
ds.

Thus, our assumptions allow us to use dominated convergence, and we deduce

Ptϕ(u) = ϕ(φν(t, α), ν)H(t, u)

+

∫ t

0

∫

K

Pt−sϕ(α, ξ)Q(dξ;φν(s, α), ν)Λ(φν(s, α), ν)H(s, u)ds.
(4.3)

That is, P·ϕ : t 7→ Ptϕ is a fixed point of Gϕ.
For T > 0, we introduce the Banach space ET := L∞([0, T ], C1,0

b (C(I) × R
k), with

the norm
‖ψ‖ET = sup

t∈[0,T ]

e−βt(‖ψ(t, ·)‖∞ + ‖Dαψ(t, ·)‖∞),
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where β will be fixed hereafter.
For t ∈ [0, T ], (α, ν) ∈ E, set

qϕ(t, α, ν) = ϕ(φν(t, α), ν)H(t, α, ν).
We claim that

qϕ : t 7→ qϕ(t, ·) is in ET . (4.4)

Indeed, let 0 ≤ t ≤ T , u = (α, ν) ∈ E be fixed. Then

|H(t, α, ν)| ≤ 1,

from the definition of the survivor function H by (2.2). Since ϕ is bounded, we have

‖qϕ(t, ·)‖∞ ≤ ‖ϕ‖∞ and qϕ(t, ·) ∈ Bb(E).

Next, we show that qϕ(t, ·) ∈ E . Let Dα denote the differential operator w.r.t. the
variable α, and set

Ψν(t) · h = Dαφν(t, α) · h.
From our assumptions, F ∈ C1,0

b (E). It follows that for h ∈ C(I) the map t 7→ Ψν(t) · h
is a global mild solution of





∂

∂t
Ψν(t) · h = ∆Ψν(t) · h +DαFν

(
φν(t, α)

)
◦Ψν(t) · h

Ψν(0) · h = h.
(4.5)

It satisfies

Ψν(t) · h = T (t)h+

∫ t

0

T (t− s)DαFν
(
φν(s, α)

)
◦Ψν(s) · hds.

Since the semigroup {T (t)} of ∆ is of contraction, the Gronwall Lemma yield,

‖Ψν(t) · h‖∞ ≤ ‖h‖∞ + LF

∫ t

0

‖Ψν(s) · h‖∞ds ≤ eLF t‖h‖∞.

Thus,
‖Dαφν(t, α) · h‖∞ ≤ eLF t‖h‖∞.

The chain rule leads to

‖DαH(t, α, ν) · h‖∞ ≤
∫ t

0

∥∥Dα

[
Λ
(
φν(s, α), ν

)]
· h
∥∥
∞
ds ≤ LΛ

∫ t

0

‖Dαφν(s, α) · h‖∞ds

≤ LΛ

LF

(
eLF t − 1

)
‖h‖∞.

Therefore qϕ(t, ·) ∈ E , since

‖Dαqϕ(t, α, ν) · h‖∞ ≤ ‖Dαϕ(φν(t, α), ν) · h‖∞ + ‖DαH(t, α, ν) · h‖∞

≤
(
‖Dαϕ‖∞ +

LΛ

LF

(
eLF t − 1

))
‖h‖∞.
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Finally, for β > LF ,

‖qϕ‖ET ≤ ‖ϕ‖∞ +

(
‖Dαϕ‖∞ + ‖ϕ‖∞

LΛ

LF

)
. (4.6)

Similar arguments will allow us to get the upcoming upper bounds. If ψ ∈ ET , then
Gϕψ ∈ ET . In fact,

Gϕψ(t, α, ν) = qϕ(t, α, ν) + q̃ψ(t, α, ν),

with

q̃ψ(t, α, ν) =

∫ t

0

H(s, α, ν)

[
Λ
(
φν(s, α), ν

) ∫

K

ψ(t− s, α, ξ)Qν

(
dξ;φν(s, α)

)]
ds.

It is standard to prove that this defines a function in ET . Moreover, observing that
‖q̃ψ(t, ·)‖∞ ≤ MΛ‖ψ‖∞t ≤ c1t, and recalling the definition of Λ and Q (see (2.17) and
(2.18)), which in particular imply their differentiability,

‖Dαq̃ψ(t, α, ν) · h‖∞ ≤
∫ t

0

[
LΛ

LF

(
eLF s − 1

)
MΛ‖ψ(t− s, ·)‖∞ + LQ‖ψ‖ET

]
ds‖h‖∞,

it follows from (4.6) and (4.1) that

‖DαGϕψ(t, α, ν) · h‖∞ ≤
(
‖Dαϕ‖∞ + ‖ϕ‖∞

LΛ

LF
eLF t

+

(
LΛ

LF
MΛ +

LQ
LF

)
‖ϕ‖∞eLF t + LQ

∫ t

0

Lψ(t−s,·)ds

)
‖h‖∞,

which yields (using Gronwall lemma)

‖DαGϕψ(t, ·)‖∞ ≤ c‖ϕ‖C1,0
b

(C(I)×Rk)e
LF t+LQ

∫ t

0

‖Dαψ(s, ·)‖∞ds ≤ c‖ϕ‖C1,0
b

(C(I)×Rk)e
Mt,

(4.7)
and we conclude that Gϕ maps ET into itself. The constants c and M depend only on
(L, F,Λ, Q) and will turn out to be the constants appearing in (4.2).

Moreover, if ψ1, ψ2 ∈ ET , we prove similarly

‖Gϕψ1(t, ·)−Gϕψ2(t, ·)‖∞ ≤MΛ

∫ t

0

‖ψ1(t− s, ·)− ψ2(t− s, ·)‖∞ds,

‖DαGϕψ1(t, ·)−DαGϕψ2(t, ·)‖∞ ≤ κ1

∫ t

0

eLF s‖ψ1(t− s, ·)− ψ2(t− s, ·)‖C1,0
b

(C(I)×Rk)ds,

where κ1 is a constant depending only on (L, F,Λ, Q).
Then, it is not difficult to deduce that

‖Gϕψ1 −Gϕψ2‖ET
≤ κ2 supt∈[0,T ] e

−βt
(∫ t

0
eβ(t−s)ds+

∫ t
0
eβ(t−s)eLF sds

)
‖ψ1 − ψ2‖ET

≤ κ2

(
1
β
+ 1

β−LF

)
‖ψ1 − ψ2‖ET ,

where again, κ2 depends only on (L, F,Λ, Q). We now choose β sufficiently large and
deduce from the Picard theorem that Gϕ has a unique fixed point in ET . This fixed point
is the limit of Gn

ϕψ for any ψ ∈ ET . Thus, P·ϕ 7→ Ptϕ is that fixed point.
The Lipschitz constant LPtϕ of Ptϕ is obtained from (4.7), by taking ψ = P·ϕ. �
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Lemma 4.2. For all t ≥ 0, ϕ ∈ E , Ptϕ ∈ E and satisfies:

|DαPtϕ(α, ν) · h| ≤ c̃(t−
3

4 + 1)eM̃t‖ϕ‖E‖h‖H−1 , α ∈ C(I), ν ∈ R
k, h ∈ C(I) (4.8)

for some constants c̃ and M̃ depending only on the characteristics of the PDMP v.

Proof. If we prove (4.8), it follows that DαPtϕ can be extended to H−1(I) and using
Lemma 4.1 the result follows. The proof of (4.8) relies on the smoothing properties of
the heat kernel. Indeed, we have for t > 0

‖T (t)‖H−1(I)→L∞(I) ≤ c(t−
3

4 + 1)

for some constant c > 0. It follows:

‖Ψν(t) · h‖∞ ≤ c(t−
3

4 + 1)‖h‖H−1(I) + LF

∫ t

0

‖Ψν(s) · h‖∞ds

and by Gronwall Lemma:

‖Ψν(t) · h‖∞ ≤ c(t−
3

4 + 1)e(LF+1)t‖h‖H−1(I), t ∈ (0, T ].

We end the proof with similar computations as in the proof of Lemma 4.1. �

Remark 4.1. In fact, we have proved a slightly stronger result. Indeed, we have not
used that ϕ ∈ E but only that ϕ ∈ C1,0

b (C(I) × R
k). Therefore for t > 0, Pt maps

C1,0
b (C(I)×R

k) into E .

Corollary 4.1. (One more characterization of A∞)

(i) For all µ > 0, R(µ−A∞) = E , and

(µ−A∞)−1ϕ =

∫ ∞

0

e−µtPtϕdt ∀ϕ ∈ E .

(ii) If µ > K = max{M, M̃}, then for all ϕ ∈ E , ψ := (µ−A∞)−1ϕ ∈ E .

Proof. Since the domain of A∞ is E , under our assumption we already know that

Ā∞ϕ(u) = A∞ϕ(u) = Â∞ϕ(u), ∀ϕ ∈ E , u ∈ E.

Therefore, we conclude the part (i) by the Proposition 5.1, Section 5, Part 1 of [EK86],
since the semigroup (Pt) is measurable and of contraction on E by Lemma 4.1, and
observing that, thanks to Fubini theorem, the condition

Ps

∫ ∞

0

e−µtPtϕdt =

∫ ∞

0

e−µtPs+tϕdt

holds for all ϕ ∈ E , µ > 0 and s ≥ 0.
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Concerning part (ii), take ϕ ∈ E . From (i), it is clear that ψ := (µ − A∞)−1 is
bounded. Moreover, a derivation under the integral shows that ψ is of class C1 w.r.t. its
first variable. At last, for all α ∈ B and ν ∈ K, it follows from Lemma 4.1 that

|Dαψ(α, ν) · h| =
∣∣∣∣
∫ ∞

0

e−µtDαPtψ(α, ν) · hdt
∣∣∣∣

≤ c‖ψ‖E
(∫ ∞

0

e−(µ−M)tdt

)
‖h‖∞

≤ c‖ψ‖E
1

µ−M
‖h‖∞,

which yields boundedness for the differential of ψ. Similarly:

|Dαψ(α, ν) · h| ≤ c̃‖ψ‖E
(∫ ∞

0

(t−
3

4 + 1)e−(µ−M̃)tdt

)
‖h‖H−1(I)

≤ C‖ψ‖E
1

(µ− M̃)
1

4

‖h‖H−1(I),

for some constant C. �

We now use a classical argument to prove uniqueness. Let P̃u be another solution of
the martingale problem for A∞. Let ϕ ∈ E , µ ∈ K and ψ := (µ−A∞)−1ϕ. Then

ψ(v(t))− ψ(u)−
∫ t

0

A∞ψ(v(s))ds

is a P̃u−martingale. In particular,

Ẽu

(
ψ(v(t)−

∫ t

0

A∞ψ(v(s))ds

)
= ψ(u).

Multiply this identity by µe−µt and integrate on [0,∞) yield

Ẽu

(∫ ∞

0

e−µtϕ(v(t))dt

)
= ψ(u) =

∫ ∞

0

e−µtPtϕ(u)dt,

for µ > K, since A∞ is the full generator Â∞. By injectivity of the Laplace transform,
this implies

Ẽu[ϕ(v(t))] = Ptϕ(u) = Eu[ϕ(v(t))],

for almost all t ≥ 0.
We have proved that the laws of the solutions to the martingale problem are the same

at every fixed time t in a dense set of R+. This implies uniqueness for the martingale
problem (see [Bil99], Section 14), and the proof of Theorem 2.1 ends. �
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Curie, 2013.

[Hen81] D. Henry. Geometric theory of semilinear parabolic equations. In Lecture
Notes in Mathematics. Springer, 1981.

[JS87] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes.
Springer-Verlag, Berlin Heidelberg GmbH, 1987.

[Kat66] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin,
1966.
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