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Key Points 

*Key objective: we aimed to evaluate the feasibility and utility of a machine-learning recommender 

system to predict drug development outcome in Oncology and therefore to support early go/no-go 

decision as soon as phase I trials completion. 

*Knowledge generated: RESOLVED2 is a Lasso-penalized Cox regression model. To train 

RESOLVED2, we developed a new metric, namely Food and Drug Administration approval free 

survival (FDA-aFS), defined by the time between publication of the first early clinical trial (ECT) 

reporting clinical effect of a drug, and FDA approval, censored by date of last news. From simple 

pharmacological data and ECT’s PubMed abstract, RESOLVED2 can accurately predict the time to 

FDA approval of a new antineoplastic agent. 

*Relevance: our work demonstrates machine learning approaches can enhance drug development in 

Oncology by supporting early go/no-go decisions.  
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Abstract 

Purpose 

Drug development in Oncology is currently facing a conjunction of increasing number of anti-

neoplastic agents (ANA) candidate for phase I clinical trials (P1CT) and an important attrition rate for 

final approval. We aimed to develop a machine learning algorithm (RESOLVED2) predicting drug 

development outcome, which could support early go/no-go decisions after P1CT, by better selection 

of drugs suitable for further development.  

Methods 

PubMed abstracts of P1CT reporting ANA were used together with pharmacological data from 

DrugBank5.0 database to model time to US Food & Drug Administration (FDA) approval (FDA 

approval-free-survival, FDA-aFS) since the first P1CT publication. RESOLVED2 model was trained 

with machine learning methods. Its performances were evaluated on an independent test set with 

weighted concordance index (IPCW). 

Results 

We identified 462 ANA from PubMed matching with DrugBank5.0 database (P1CT publication dates: 

1972-2017). Among 1411 variables, 28 were used by RESOLVED2 to model the FDA-aFS with an 

IPCW of 0.89 on the independent test set. RESOLVED2 outperformed a model based on 

efficacy/toxicity (IPCW=0.69). In the test set, at 6 years of follow-up, 73% (95%CI[49%;86%]) of drugs 

predicted approved were approved while 92% (95%CI[87%;98%]) of drugs predicted non-approved 

were still not approved (log-rank p-value<10
-10

). A predicted approved drug was 16 times more likely 

to be approved compared to a predicted non-approved drug (Hazard ratio=16.4; 95%CI [8.40; 32.2]). 

Conclusion 

As soon as P1CT completion, RESOLVED2 can accurately predict the time to FDA approval. We 

provide the proof of concept that drug development outcome can be predicted by machine learning 

strategies.   
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INTRODUCTION 

Drug development in Oncology is a fast-evolving field with numerous challenges1: 

more than 1,000 antineoplastic agents (ANA) are under investigation in 20182. 

Oncology had the highest overall attrition rate for Food and Drug Administration 

(FDA) approval from phase I trial (95% between 2006 and 2015), phase II (92%) and 

phase III trials (67%)3, 4. The community aims at limiting the recruitment of patients in 

phase II and/or large phase III studies evaluating treatment that won’t be approved 

for various reasons: it impairs recruitment of patients in other studies, it slows down 

the whole drug development process, and obviously results in substantial financial 

loss for pharmaceutical industry and academic institutions5. Exposure of patients to 

ineffective treatments and financial loss currently urge the pharmaceutical industry 

and academic investigators to develop new tools to enhance drug development 

strategies6, such as computer-assisted decisions. 

Phase I trials in oncology are usually dedicated to safety analysis and meanwhile 

can provide early signals of efficacy of the compounds7. Classical strategies to 

improve research & development5 are the use of surrogate markers of efficacy 

(overall response rate as a surrogate of overall survival)8, 9 or predictive biomarkers 

of efficacy (molecular alterations from the tumor or liquid biopsy)10, 11. Biomarker-

based strategy used in phase I can indeed significantly increase response rate and 

the likelihood of FDA approval12.  

A tool to individually predict FDA approval for new compounds based on early 

clinical data is still lacking. Pharmacological data may be a cornerstone to perform 

such predictions for compounds with original targets or new mechanisms of action. 

High-volume pharmacological data are currently available in open-source databases 

such as DrugBank5.013.  
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In the present study, we aimed to demonstrate the feasibility and utility of a 

recommender system based on machine-learning that could enhance drug 

development (RESOLVED2) in Oncology by supporting early go/no-go decision as 

soon as phase I trial completion. 

MATERIALS & METHODS 

Antineoplastic agents: identification and selection 

We extracted all PubMed abstracts in English and related to phase I trials in 

Oncology evaluating ANA for adult patients (package RISMed on R v3.3.3), without 

limitation for date of publication (Supplementary Method 1.A). Drug names were 

extracted from the titles of PubMed articles by regular expressions using the R 

package stringr. Drug names were identified by their suffix: for example, all 

monoclonal antibody names were queried from the “-mab” suffix (suffix list: 

Supplementary Method 1.B). For encoded drug names, we extracted drug code 

using the following regular expression: get any word with 2 to 4 numerical 

characters, optionally followed by 1 to 8 digital character (“\\b[:alpha:]{2,4}-

?[:digit:]{1,8}\\b”). 

All article titles where no drug or code was identified were manually checked. 

PubChem database14 and Chemical Identifier Resolver15 were download to annotate 

all identified drugs with all available alias. Individual drug names/codes were 

manually confirmed with search on NCI drug dictionary16, PubChem14, and Google, 

and to get alias for drug code, when available.  

Antineoplastic agents’ annotations: pharmacological data 

To use pharmacological characteristics in modeling, we matched drugs identified 

from the PubMed abstract corpus to DrugBank5.0 database identifiers13. From 

DrugBank5.0 we extracted drug pharmacological category and drug molecular 
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target17. Briefly, *.xml database file was download and processed using a Python-

based program (ElementTree module). Each drug being annotated with features lists 

of various lengths, each feature was transformed as binary-encoded dummy 

variables (Supplementary Data 1-2). Scripts are available at 

https://github.com/DITEP/RESOLVED2.  

Results of early clinical trial data 

For each ANA, the earliest phase I trial (without ANA combination) was selected as 

follow: first clinical study reporting observations of tolerability in human, or first phase 

I trial, or first-in-human trial, regardless of the inclusion criteria. Drugs for which the 

earliest phase I trial abstract was not available were excluded. We selected only 

drugs initially developed as ANAs (i.e. antibiotics or anti-rheumatoid agents 

subsequently developed as ANAs were not retained). Additionally, when only phase 

II trial publications were available on PubMed, congress abstracts reporting dose-

escalation results from phase I were considered (Abstract identifier list: 

Supplementary Method 2). 

The following variables were manually extracted from abstracts: primary tumor sites; 

study enrichment with a specific tumor site; mention of: drug target, dose expansion 

cohort, molecular, pathological, or circulating biomarkers, dose limiting toxicity (DLT) 

or maximum tolerated dose (MTD), anti-tumor clinical activity, complete tumor 

response, objective response rate, occurrence of common terminology criteria for 

adverse events (CTCAE) 4.0 grade V treatment-related adverse event, treatment-

related cardiac or neuro-psychological adverse events (Variable definitions: 

Supplementary Method 3).  

Primary outcome of interest: Food and Drug Administration approval-free-

survival 

https://github.com/DITEP/RESOLVED2
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We considered time to FDA approval as a right-censored variable in order to 

consider the unknown probability of future approval for drugs under follow-up. FDA 

approval database (Drugs@FDA) was extracted from the FDA portal on 2018, July 

30th, thus considered as the date of point for the non-approved drugs18. FDA 

approval was considered as an event, whereas drugs without FDA approval were 

censored at time of date-point. We defined FDA approval-free-survival (FDA-aFS) as 

the time between the first publication date of the earliest phase I trial to the date of 

first FDA approval, censored by date of last news.  

Statistical analysis: machine learning model and performances evaluation 

Descriptive statistics were used to describe earliest phase I trial data (absolute value 

and percent for binary variables; median and interquartile range [Q1-Q3] for 

continuous variables). FDA-aFS follow-up was described using the 1-Kaplan-Meier 

method, with median, range, and [Q1-Q3]. 

Statistical analyses were performed on R v3.3.3 (Scripts: 

https://github.com/DITEP/RESOLVED2. The dataset was randomly split using the 

package caret in a training set (70% - for model training) and a test set (30% - for 

model performances evaluation) with similar time-distribution. The test set remained 

unused during all the training. All DrugBank categorical features were encoded as 

binary variables. Finally, all features were binary variables. In order to maximize the 

number of drugs with complete annotation, variables were rejected rather than drugs 

when missing data were >2.5%. 

A multivariable Cox model with Lasso penalization was trained to predict the FDA-

aFS for each ANA19. To avoid overfitting and to allow feature selection, inverse 

performance of the Lasso (L1 normalization) penalization parameter (λ value) was 

https://github.com/DITEP/RESOLVED2
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minimized on a 100-fold cross validation set derived from the training set with the 

package glmnet20.  

Performances of the RESOLVED2 predictions for FDA-aFS were estimated by the 

concordance index (C-index) using both non-weighted (survcomp package), and 

weighted (the inverse of the probability of censoring weighted estimate (IPCW), pec 

package) methods. The area under curve (AUC) of Receiver Operating 

Characteristic (ROC) curve (AUROC) was computed using the predicted 

probabilities and censored survival data at cut-off of t-years (survivalROC package).  

We compared RESOLVED2 predictions to predictions based on variables  frequently 

used to estimate the success of a phase I trial: clinical activity detected (yes/no), are 

complete response(s) reported, and identification of DLT or MTD reached. The so-

called EffTox model was trained using the same method and split rules than 

RESOLVED2, without penalization. 

To facilitate interpretability and applicability of RESOLVED2, a binary classification 

model was computed from the previously computed scores. The main objective was 

to identify and therefore prevent the development of predicted non-approved drugs, 

to improve the current important attrition rate in drug development (i.e. drugs that will 

fail to be approved after phase III trials). The training set was used to identify the cut-

off that maximized the difference in observed FDA-aFS between predicted approved 

drugs versus predicted non-approved drugs (corresponding to minimizing the log-

rank-derived p-value). 

FDA-aFS was described using Kaplan-Meier curves and t-year event rate 

estimations. Significance was defined as p-value<0.05. 

 

RESULTS 
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FDA approval-free-survival of antineoplastic agents 

On the basis of MESH-term search, 2606 PubMed entries were identified as early 

clinical trials that assessed ANAs (Figure S1). Among these, 2415 publication titles 

were found to quote one drug or more (Figure 1). There were 619 compounds 

matching to 551 DrugBank entries (Supplementary List 1). Sixty-eight compounds 

derived from a parent compound were not registered in DrugBank (i.e. liposomial-

encapsulated drugs, pegylated drugs, modified galenic forms etc…), or were 

prodrugs/compounds not used as therapeutic agents (Floxuridine for fluorouracil; 

exisulind for sulindac; adenosine 5'-triphosphate), and 314 drugs did not match any 

DrugBank entry (Supplementary List 2). Among the 551 DrugBank entries, 486 

(88%) were developed initially as ANAs. For 24 drugs, earliest phase I trial 

publications were identified but abstract were not available (Figure 1: flow chart). 

Finally, 462 drugs were selected, for which earliest phase I trial dates of publication 

ranged from June 1972, to October 2017, with 368 (80%) trials published after 2000. 

Based on abstract text, most phase I trials included all cancer types (68%), 

mentioned a drug target (80%), at least one DLT observed or MTD reached (77%) 

and a clinical activity of efficacy (69%). Few abstracts mentioned dose expansion 

cohort (16%) or a molecular biomarker (9%) (Table 1). 

The median follow-up was 134 months (range: [1-425]; [Q1-Q3]: [77-203]). At 3 and 

6 years of follow-up, 13% (95% confidence interval (95%CI) [10%;16%]) and 20% 

(95%CI [16%;24%]) of drugs have been approved, respectively. Overall, we 

observed that 131 out of the 462 drugs obtained FDA approval (28%; 95%CI 

[24%;32%]). The non-approved drug with the shortest follow-up was depatuxizumab 

mafodotin (10 months) while the longest was observed for treosulfan (495 months). 

Training of the models to predict FDA approval 
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PubMed abstract data and DrugBank annotations resulted in 1411 binary variables. 

Ten drugs were removed because of unavailable data for clinical activity or DLT 

identified/MTD reached. The overall response rate was not considered because of 

too much unavailable data (Table 1). 

The multivariable Cox model was penalized with the Lasso procedure, thus 

facilitating features selection by filtering on non-zero learned coefficients (Figure S2, 

S3). Twenty-eight features were finally selected (Figure 2, Table S1). Relevant 

treatment targets (PDGFRα1, PD-L1, HDAC1), pharmacokinetic properties (CYP450 

substrates/modulators; P-glycoprotein ABCB1 substrates/modulators), and drug 

categories (Kinase Inhibitors, Purine Analogues, Antibodies, Proteins) were among 

best predictors of FDA-aFS. Phase I trial results with complete response reported 

and trial designs such as tumor type enrichment or selection, dose expansion cohort, 

and molecular biomarker (Figure 2) were also identified as important features 

(DrugBank5.0 features definitions: Table S2; drugs annotations with model features: 

Table S3). 

The predictive score for FDA-aFS was used for classification. The cut-off found in 

the training set that maximized FDA-aFS difference between predicted approved 

drugs and predicted non-approved drugs (Figure S4; Figure 3A) was further applied 

and evaluated in the independent test set.    

Generalization of predicted FDA approval on the test set 

The predictions of RESOLVED2 were highly related with the observed FDA-aFS of 

ANAs included in the previously unseen test set. For the time-dependent scores, the 

non-weighted C-index was 0.90 and the weighted C-index (IPCW) was 0.89. 

Moreover, the AUROC based on Kaplan-Meier curves were 0.97 and 0.94 at 3 and 6 

years, respectively (Figure S5.A, S5.C). 
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As a comparison, performances of the EffTox model in the test set (Figure S6) were 

lower in term of concordance (C-index = 0.79; IPCW = 0.69) and in term of sensitivity 

and specificity (survival AUROC were 0.76 and 0.84 at 3 and 6 years, respectively) 

(Figure S5.B, S5.D). 

The classifier version of RESOLVED2 predicted that 81% of ANA from the test set 

would be non-approved. Predictions were strongly related with observed FDA-aFS 

(Figure 2.B). For example, at 3 years of follow-up, 95% (95%CI [91%;99%]) of 

predicted non-approved drugs were not approved, while 50% (95%CI [27%;66%]) of 

predicted approved drugs were indeed approved. For a later follow-upof 6 years, we 

found that 92% (95%CI [87%; 98%]) of predicted non-approved drugs were still not 

approved, while 73% (95%CI [49%; 86%]) of predicted approved drugs were indeed 

approved. A predicted approved drug was 16 times more likely to be approved 

compared to a predicted non-approved drug (Hazard ratio=16.4; 95%CI [8.40; 32.2]; 

p<10-10). Proportional hazard assumption was verified (cox.zph R function). 

Applications of RESOLVED2  

We applied RESOLVED2 on recent examples of early drug development (Table 2, 

Table S4). Rovalpituzumab Tesirine (Roval-T) is a bi-specific antibody developed in 

a hard-to-treat cancer type, namely small cell lung cancer. Epacadostat is an IDO 

inhibitor developed in combination with immune checkpoint blockers in melanoma. 

Based on available data from single-agent phase I publication (Epacadostat being 

not yet indexed in DrugBank5.0), RESOLVED2 found that Roval-T had a probability 

of FDA approval within 6 years of 73% while epacadostat had a 92% risk of failure. 

Only longer follow-up will confirm or not these predictions. We also applied 

RESOLVED2 predictions for treatments with relatively complex development and 

finally approved (Table 2). Interestingly, 4 out of 5 treatments were indeed predicted 
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approved and the one missed by RESOLVED2 had nevertheless a relatively high 

score. Several false-positive of the classifier should be mentioned (N=14 drugs 

predicted non-approved but finally approved, among 109 predicted non-approved 

drugs in the test set), however, scores of these 14 drugs were also relatively high, 

close to the classifier threshold (Table S5). 

 

DISCUSSION 

Given the limited success rate of recent ANA development in oncology, improving 

early go/no-go decision after phase I clinical trial is a timely challenge. RESOLVED2 

used the earliest phase I PubMed abstracts and simple pharmacological 

characteristics to predict the likelihood of FDA approval for individual ANA. When 

RESOLVED2 was used for classification, it was highly correlated with time-to-

approval in the independent evaluation test set: within the first 6 years of follow-up, 

RESOLVED2 predictions were right for 73% of approved drugs and 92% of non-

approved drugs. RESOLVED2 could potentially reduce by 81% the number of ANA 

undergoing further development and that would fail to achieve FDA approval.  

Features included in the RESOLVED2 model supported its external validity. For 

instance, we found that targeting the immune checkpoint PD-L1 was associated with 

successful developments21 22. The model also included drug characteristics related 

to antibodies, such as Complement C1q subcomponent subunit A target, Antibodies, 

and Proteins, or related to targeted therapies, such as Kinase inhibitors and known 

targets (Platelet derived growth factor receptor alpha 1, Histone deacetylase 1). Trial 

designs also played an important role in RESOLVED predictions, such as the use of 

molecular biomarker, cohort enrichment with specific tumor types, and a dose 

expansion cohort. These findings are consistent with the positive impact of 
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biomarker-based strategies in oncology10, along with the rise of precision medicine, 

both in clinics23, 24, and in the drug development landscape1, 25. Features describing 

cytotoxic chemotherapy targets or categories were also found as predictive of drug 

approval, such as Purine Analogues and DNA interacting agents. Overall, 

RESOLVED2 used features describing therapeutic breakthrough, which could 

suggest that the development of innovative drugs should be preferred to 

development of “me-too” drugs”.  

Some limitations should be stressed. Regarding the data used, among 619 ANAs 

retrieved in PubMed, 314 were not recorded in DrugBank5.0. The approval rate in 

our cohort was 28%, which was higher than the 5% of likelihood of approval reported 

elsewhere3. s. This could be explained by the selection of compounds reported both 

in PubMed and DrugBank databases.. A publication bias could have also influenced 

our model (i.e delayed phase I publication reporting promising drug; restriction to 

English-written abstract). To date, RESOLVED2 provides a probability of approval 

for compounds given in mono-therapy. Predicting approval for treatment 

combinations is a current challenge that would require dedicated data and/or a 

flexible modeling approach that can be derived from RESOLVED2.  

As reported in 2018, FDA approval regulations evolve quickly28 to improve the 

balance between enhanced drug access and patient safety29, 30. The Cox model 

assumes that the strength of predictors is constant over time. Because it has been 

trained on data from a long time-interval (1972-2017), RESOLVED2 predictions may 

have been influenced by approval rules evolution. Despite the good performances of 

RESOLVED2 were confirmed on an independent test set with a similar time-

distribution, it would benefit from future independent prospective validation. Another 

assumption of the Cox model is that events are independent: here, “drug A approval” 
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could have influence “drug B approval”. Nevertheless, the strength of such 

dependencies is arguable. For example, “me-too” drugs are equivalently approved 

for the treatment of tumor types such as: kidney cancers (N = 4 anti-angiogenic 

ANA), BRAF-mutated melanomas (N = 2 BRAF inhibitors) and EGFR-mutated lung 

adenocarcinomas (N = 6 small molecules) 

(https://www.nccn.org/professionals/physician_gls/default.aspx, 31). On the other 

hand, me-too drugs can also fail to obtain approval because of poor activity or 

safety: for example, panitumumab has failed approval in Head and Neck cancers 

while cetuximab is a long-standing standard of care32. To evaluate the added value 

of RESOLVED2 compared to the current approach, we designed EffTox as a proxy 

based on variables most frequently used to estimate the success of a phase 1, when 

limited information on a drug is available. Despite the final approval decision is highly 

contextual and uses more information, standardized decisions in this context are 

becoming more frequent33, 34. A basic approach as EffTox and an advanced 

approach as RESOLVED2 could be applied to support decision in this context. 

Using a model for censored data to predict drug approval is new, accounts for 

heterogeneity in follow-up and maximizes the amount of data used, including recent 

examples. Lasso-penalized Cox model offers the advantage of only one 

hyperparameter to train, which is valuable in the context of a limited number of 

examples. Moreover, it facilitates the interpretation of the model by automated 

features selection and generation of hazard ratios per feature, which is valuable 

compared to ensemble modeling technics or neural networks, for example35. 

Regarding the choice of data , numerous drug databases with various topic and aims 

are available26,27: DrugBank5.0 had the advantage to provide qualitative, accurate, 

and manually curated annotations on pharmacological properties and drug targets13. 

https://www.nccn.org/professionals/physician_gls/default.aspx
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In conclusion, the seminal RESOLVED2 experience showed that machine-learning 

models could efficiently support early go/no-go decision, before phase II/III trials36,37. 

Such models could improve the current landscape of drug development for patients, 

academic centers and pharmaceutical industry.   
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Figure legends 

Figure 1. Flow-chart for drug selection. 

ANA: antineoplastic agents; ECT: early clinical trial. 

Figure 2. RESOLVED2 model: Beta coefficients from Lasso-penalized Cox model. 

For features definitions, see Table S2 and Supplementary Method 3. The best Lasso penalization 

parameter (λmin value) was determined using a 100-fold cross-validated Cox regression model on the 

training set (Figure S3). Evolution of penalized β coefficients with λ values are depicted in Figure S4. 

A Cox regression model L1 (Lasso)-penalized with the λmin value identified by cross validation 

(6.59.10-2) was fit allowing feature selection and associated β coefficients computation. 

Figure 3. Food and Drug Administration approval-free-survival. 

Kaplan-Meier curves of Food and Drug Administration (FDA) approval-free-survival. A (left): FDA 

approval-free-survival according to the RESOLVED classification in the training set. Predicted 

approved and non-approved ANA refer to binary predictions performed using the RESOLVED2 

classifier based on RESOLVED2 scores. In the present plot, the training set was split using the 

optimal cut-off calibrated on minimal log-rank derived p-value (see Methods). B (right): FDA approval-

free-survival according to the RESOLVED classification in the test set. The test set was split using the 

optimal cut-off in RESOLVED2 scores, identified in the training set (see Methods).  

For Supplementary Tables, Figures, and Methods, please refers to Supplementary Material list. 

 


