
HAL Id: hal-02894310
https://hal.science/hal-02894310

Submitted on 8 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cacol: a zero overhead and non-intrusive double caching
mitigation system

Grégoire Todeschi, Boris Teabe, Alain Tchana, Daniel Hagimont

To cite this version:
Grégoire Todeschi, Boris Teabe, Alain Tchana, Daniel Hagimont. Cacol: a zero overhead and non-
intrusive double caching mitigation system. Future Generation Computer Systems, 2020, 106, pp.14-
21. �10.1016/j.future.2019.11.035�. �hal-02894310�

https://hal.science/hal-02894310
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/ 2 6403

To cite this version:

Todeschi, Grégoire and Djomgwe Teabe, Boris and Tchana, Alain and

Hagimont, Daniel Cacol: a zero overhead and non-intrusive double caching
mitigation system. (2020) Future Generation Computer Systems, 106. 14-21. ISSN
0167-739X.

Official URL:

https://doi.org/10.1016/j.future.2019.11.035

Open Archive Toulouse Archive Ouverte

Cacol: A zero overhead and non-intrusive double cachingmitigation
system
Grégoire Todeschi a,∗, Boris Teabe a, Alain Tchana b, Daniel Hagimont a

a IRIT, University of Toulouse, France
b I3S, University of Nice Sophia Antipolis, France

Keywords:
Page cache
Virtualization
Double caching

a b s t r a c t

In a virtualized server, a page cache (which caches I/O data) is managed in both the hypervisor and the
guest Operating System (OS). This leads to a well-known issue called double caching. Double caching
is the presence of the same data in both the hypervisor page cache and guest OS page caches. Some
experiments we performed show that almost 64% of the hypervisor page cache content is also present
in guest page caches.

Therefore, double caching is a huge source of memory waste in virtualized servers, particularly
when I/O disk-intensive workloads are executed (which is common in today’s data centers). Knowing
that memory is the limiting resource for workload consolidation, double caching is a critical issue.

This paper presents a novel solution (called Cacol) to avoid double caching. Unlike existing
solutions, Cacol is not intrusive as it does not require guest OS modification and induces very little
performance overhead for user applications. We implemented Cacol in KVM hypervisor, a very popular
virtualization system. We evaluated Cacol and compared it with Linux default solutions. The results
confirm the advantages (no guest modification and no overhead) of Cacol against existing solutions.

1. Introduction

Today cloud’s popularity has been made possible thanks to
virtualization which allows the sharing of resources, thus reduce
costs for Cloud clients. Cloud clients benefit from an isolated
environment, called virtual machine (VM) in which runs an oper-
ating system (OS) called the guest OS. An hypervisor, a software
layer similar to an OS, is responsible for the management and
sharing of hardware resources between all VMs on a physical
machine. The main challenge for cloud providers is to efficiently
allocate resources on demand while meeting client requirements.
Research has shown that memory is the most used resource in
data centers (DCs) [1] and therefore a bottleneck for cloud per-
formance. Hence, cloud providers must avoid as much as possible
any kind of memory waste.

Most of modern OSs implement a cache system called page
cache to minimize read and write latencies on storage devices by
storing data into the main memory. The page cache is used to
store in the main memory, blocks of data from storage devices
to avoid expensive I/O operations (requests). Generally, in OSs
and particularly in Linux, all unused memory is used for the page

∗ Corresponding author.

cache. In virtualized environments, things get complicated in the
management of the page cache. In fact, in such environments,
both guest OSs and the hypervisor possess a page cache. The
guest OS (which is a standard OS, therefore manages a page
cache) in a VM usually performs I/O operations through a virtual
storage device emulated by the hypervisor, the latter redirects
these operations to physical storage devices. As a result, VMs’
I/O requests are not only stored in their page cache but also into
the hypervisor page cache. The outcome is a two-level page cache
environments: (1) at the guest OS level and (2) at the hypervisor
level.

Challenges tackled in this paper lies in the management of
these two levels of page cache. We observe that there is no
coordination in the handling of these two levels of cache: they
act independently. As is, this inexorably leads to a well-known
problem which is double caching. Double caching is a situation
where the data in the cache at one level is also present at another
level. It is also called page duplication. As we can see in Fig. 1,
pages 2 and 6 of VM2 are saved in the VM page cache, but also in
the hypervisor’s one. We are therefore witnessing a double use
of physical memory to store the same data. They are two direct
consequences of double caching.

• Waste of memory. As we said earlier, memory is a criti-
cal resource in DCs. With duplicated data in two different
caches, there is a waste of memory.

E-mail addresses: gregoire.todeschi@enseeiht.fr (G. Todeschi),
boris.teabedjomgwe@enseeiht.fr (B. Teabe), Alain.Tchana@enseeiht.fr
(A. Tchana), hagimont@enseeiht.fr (D. Hagimont).

4.2. Implementation

One of the difficulty encounters during the implementation
was to simply modify Linux kernel as the default eviction policy
is tightly tied to the whole memory management system. Apart
from that, other difficulties discussed here are how to identify
and differentiate correctly a page from a VM to other pages, how
to keep track the number of time a page is accessed, and how to
define and ensure fairness between VMs.

Identification. Cacol needs to identify pages that belong to a
VM without accessing the VM. Therefore, Cacol stores a reference
to the virtual disk image inode in a list when a VM starts. Thus,
when a syscall occurs, it can check if the calling inode is in the
list, and therefore identify the VM.

Tracking access. Cacol needs to count how many time a page
have been accessed so it can apply its policy. To do that, Cacol
uses a hash table to store references to VM pages. This hash
table is defined in the address_space structure, which is a
linear representation of a file or a block device. A file is divided
into pages of size of 4096 bytes, so each page is defined by a
unique offset, or more simply put, by an index ranging from 0
to file_size_in_bytes/4096 − 1. Hence, to keep track of VM pages
access with the hash table, Cacol uses the page index as the key,
and stores the number of accesses as the value.

On a page request, Cacol checks the value associated with the
page index in the table. There are two possibilities from there:

– It is 0, thus the page is requested for the first time. Its count
is updated to 1, and the page is served to whoever requested
it but it is not kept in the cache.

– It is 1 or more, meaning the page has already been accessed
in the past. The page is stored in the cache if not already
present, and it is served to the requester.

It is important to note that the whole address_space struc-
ture is deleted when the file or block device is closed, thus
resetting the access count. In our case, this is not an issue because
a Qemu process always keeps its virtual disk open while it is
running.

LFU management. As Cacol is implemented on the host side,
it is used as a second chance cache. Thus, we decide to use a Least
Frequently Used (LFU) algorithm to order pages in the cache as it
yields better performance [14].

One issue with frequency-based eviction policy is when a page
is accessed a lot of time during a short period, and then is never
accessed again. Such page will stay inside the cache longer than it
should. To alleviate this problem, during can to evict pages from
cache, if a scanned page cannot be evicted due to its elevated
count, Cacol decreases its access count and puts it back in the
cache. Thus, after a finite numbers of scan, it will be finally
evicted.

Fairness. To guarantee host page cache fairness between each
VM, Cacol needs to preserve a minimum part of host page cache
each VM can use and not letting one VM use all of the cache. Thus,
LFU management of the cache is divided and managed on per VM
basis.

Memory is also controlled to not be entirely used by one VM.
For instance, the remaining free memory is split into two equal
parts, the first one would provides usable page cache for all pro-
cess, and the second one will be shared fairly among all the VM.
For example, 4 VM running on the same host would have 12.5% of
the page cache available exclusively to them. Those exclusivities
materialize as low watermarks that Cacol cannot reclaim above.

On memory pressure, Cacol reclaims pages from cache. To do
so, Cacol first has to choose from which VM to reclaim. It excludes
VM which have reached their low watermark, as explained pre-
viously. Then, Cacol selects the least recently used VM to evict
page from, until there is enough free memory or that particular

VM reaches its watermark. A VM is considered the least recently
used if its most recently accessed page have been seen before
other VMs most recently used page.

Runtime management. In addition to this, we added an in-
terface in Linux to be able to change the cache eviction policy
at runtime. The default policy set and implemented in Linux is
LRU-2 which is a derivative of LRU-K [4].

5. Evaluations

This section presents Cacol evaluation. Objectives of this eval-
uation are twofold:
1. to show that Cacol can reduce the number of duplicates pages
between the two-level page caches.
2. to show that the fairness policy implemented by Cacol allows
the fair sharing of the hypervisor page cache across all VMs.

5.1. Experimental environment and methodology

Experimental environment. Our setup is composed of one
machine with 8 GB of memory and 8 Intel i7-4800MQ cores. The
guest OS is an Ubuntu server 16.04 with a Linux kernel 4.4.0. The
host runs an Ubuntu 16.04, Qemu version 2.11.50, and a modified
Linux kernel 4.4.0 that incorporates Cacol.

Table 1 presents the list of used benchmarks. We compared
Cacol with two solutions:
– the default implementation of the page cache in KVM (noted
Default),
– and a naive solution (noted Naive) which consists in disabling
the host page cache.
Otherwise specified, the experimental protocol is as follows. Each
benchmark is executed alone, meaning that it is the only appli-
cation inside the VM and the latter runs alone on the physical
machine. The VM is configured with 4 vCPUs and 4 GB of memory
unless otherwise specified. Each experiment is repeated 10 times.

Evaluation metrics. The evaluation metrics are as follows: (1)
the amount of memory wasted due to double caching, (2) and
application performances in VMs.

Profiling host page cache. Cacol includes a small kernel mod-
ule to profile and get statistics from the hypervisor page cache.
The most important point is to acquire statistics exclusively from
VM activities. To do so, Cacol counts page access directly in I/O
kernel code path and exposes them to the kernel module. This
might create an overhead to do such an accounting, but we
used the accounting tool provided by Linux kernel, therefore the
induce overhead is nil.

We also used the vmtouch [15] utility to double-check VM
activity and presence in cache. It gives the number of pages the
VM virtual disk has in cache via the mincore syscall.

5.2. Results with single benchmark

Memory waste due to double caching and application per-
formances. Fig. 4 presents the amount of wasted memory due
to double caching and Fig. 5 presents the performance of our
benchmarks. Higher is better for Fig. 5 interpretation. Error bars
represent the standard deviation of multiple executions of the
same benchmark for both figures. Obviously, the naive solution
leads to zero memory waste and there are no duplicate pages
because it does not use the hypervisor page cache, this is why
we did not present it on Fig. 4. On Fig. 4, we can observe that
Cacol leads to almost zero memory waste for some workloads; dd
and gzip. For the other benchmarks despite Calcol, there are still
duplicated pages in caches. To ensure non-intrusiveness in VMs,
Cacol only relies on access information available in the hypervi-
sor on guest page caches (Section 4.1). With these informations

Fig. 7. Host cache usage in percentage with 2 VMs running concurrently.

Table 2
Two VMs running concurrently and impact on each other.

Workload dd (Read speed) Kernbench (Compile time)

Linux 46.9 MB/s 1536 s (std dev 2.27)
Cacol 46.2 MB/s 1427 s (std dev 2.85)

Cacol supervises cache utilization as described in Section 4.2,
and prevents flooding of host page cache by one VM. Fig. 7(b)
highlights this, as we can see the low watermark that guarantees
each VM a proportion of host cache. For instance, we can see
around 22 s that kernbench hits this watermark, and then pages
from dd start being reclaimed.

In terms of performance, Table 2 show that kernbench per-
formance is improved by 7.6%, because it has more memory
resources available. However, dd performance is degraded by
only 1.5%. Hence, Cacol sacrificed a little bit of an intensive
workload performance to improve fairness.

Overall, resources are better shared among all VMs which
guarantees better fairness between them in the use of host page
cache.

6. Related work

A solution is considered intrusive if it needs to modify the
VM operating system (guest OS). This is the case for example for
exclusive cache [12] which provides a demote operation for VM
to call the host. Intrusiveness can also be defined differently and
is stated in this case.

Singleton [16] is a KVM-based system addressing the problem
of double caching. Singleton relies on KSM [17] (Kernel Samepage
Merging) to identify the duplicated pages. It scans the memory at
regular intervals, keeps a hash of each page in a table and when
it detects a duplicate, the system merges the two pages to keep
only one copy and tags this page as Copy-On-Write. This solution
is intrusive because it scans the memory of the VM.

Per-VM page cache [18] proposes to partition the file system
cache (the host cache) into several ones, one for each VM on
the physical machine. This reduces interference in the host page
cache. [18] also allows you to define a policy for each cache.
However, it does not provide a module to infer the type of policy
to use for each VM, which must be defined by the administrator.

Sky [19] is an extension of a VM monitoring system. [19]
gathers clues about file size, meta-data, and clues about the
content of files, by intercepting system calls. This allows Sky to
give priority on which page to put in the cache first.

Moirai [20] is a system that takes into account VM load pro-
files and provides tools for the cloud provider to manage the
datacenter-wide cache infrastructure. It also allows you to define
a cache replacement policy for each layer, i.e. in the virtual ma-
chine, on the physical host, and on the shared file system (NFS).
Like Per-VM [18], Moirai relies on the administrator to configure
each layers of the cache.

Multi-Cache [21] is a multi-layer cache management system
that uses a combination of different types of cache to ensure a
minimum quality of service. In particular, it suggests an optimal
combination of cache types for different speed disks (e.g. HDD or
SSD) to ensure a client defined quality of service. Multi-cache fo-
cuses primarily on optimizing latency from the raw performance
of hardware components.

The works presented here try in some way to answer the
problem of double caching. However, the solutions chosen are
either intrusive for the guest OS, or do not have dynamic cache
management following the VM activity.

7. Conclusion

This paper presented Cacol, a non-intrusive and dynamic cache
management policy to mitigate the double caching issue in virtu-
alized environments. Cacol uses a frequency-based eviction policy
and isolation between identified virtual machine pages in the
cache to achieve a significant reduction of duplicate pages. Using
various workloads and benchmarks, we demonstrated that our
solution yields similar performance for virtual machines’ appli-
cations while shrinking cache utilization significantly. Fairness is
also preserved between virtual machines which do not interfere
with each others.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] N. Vlad, T. Boris, F. Leon, T. Alain, H. Daniel, StopGap: elastic VMs
to enhance server consolidation, in: Proceedings of the Symposium on
Applied Computing, SAC 2017, Marrakech, Morocco, April 3–7, 2017, 2017,
pp. 358–363, http://dx.doi.org/10.1145/3019612.3019626, URL http://doi.
acm.org/10.1145/3019612.3019626.

[2] F. Bellard, QEMU, a fast and portable dynamic translator, in: USENIX
Annual Technical Conference, FREENIX Track, Vol. 41, 2005, p. 46.

[3] R. Love, Linux Kernel Development (Novell Press), Novell Press, 2005.

[4] E.J. O’Neil, P.E. O’Neil, G. Weikum, The LRU-K page replacement algorithm
for database disk buffering, SIGMOD Rec. (1993) http://dx.doi.org/10.1145/
170036.170081, URL http://doi.acm.org/10.1145/170036.170081.

[5] Linux programmer’s manual CGROUPS(7), 2018, URL http://man7.org/
linux/man-pages/man7/cgroups.7.html.

[6] IOzone, IOzone benchmark, 2016, URL http://www.iozone.org/.
[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C.

Kaynak, A.D. Popescu, A. Ailamaki, B. Falsafi, Clearing the clouds: A study
of emerging scale-out workloads on modern hardware, in: Proceedings
of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2012, URL http://
infoscience.epfl.ch/record/173764.

[8] T. Palit, Y. Shen, M. Ferdman, Demystifying cloud benchmarking, in: 2016
IEEE International Symposium on Performance Analysis of Systems and
Software, ISPASS, 2016, pp. 122–132.

[9] C. Bienia, Benchmarking Modern Multiprocessors (Ph.D. thesis), Princeton
University, 2011.

[10] C. Kolivas, Kernbench v0.50, 2012, URL http://ck.kolivas.org/apps/
kernbench/kernbench-0.50/.

[11] V. Tarasov, Filebench, 2019, URL https://github.com/filebench/filebench.
[12] T.M. Wong, J. Wilkes, My cache or yours? Making storage more exclusive,

in: Proceedings of the General Track of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’02, USENIX Association, 2002, URL
http://dl.acm.org/citation.cfm?id=647057.713858.

[13] J. Park, Q. Wang, J. Li, C. Lai, T. Zhu, C. Pu, Performance interference
of memory thrashing in virtualized cloud environments: A study of
consolidated n-tier applications, in: 2016 IEEE 9th International Conference
on Cloud Computing, CLOUD, 2016, pp. 276–283, http://dx.doi.org/10.1109/
CLOUD.2016.0045.

[14] Y. Zhou, J. Philbin, K. Li, The multi-queue replacement algorithm for second
level buffer caches, in: USENIX Annual Technical Conference, General Track,
2001, pp. 91–104.

[15] D. Hoyte, Vmtouch - the virtual memory toucher, 2018, URL https://
hoytech.com/vmtouch/.

[16] P. Sharma, P. Kulkarni, Singleton: System-wide page deduplication in
virtual environments, in: Proceedings of the 21st International Symposium
on High-Performance Parallel and Distributed Computing, HPDC ’12, ACM,
2012, http://dx.doi.org/10.1145/2287076.2287081, URL http://doi.acm.org/
10.1145/2287076.2287081.

[17] A. Arcangeli, I. Eidus, C. Wright, Increasing memory density by using KSM,
in: Proceedings of the Linux Symposium, Citeseer, 2009, pp. 19–28.

[18] P. Sharma, P. Kulkarni, P. Shenoy, Per-VM page cache partitioning for
cloud computing platforms, in: 2016 8th International Conference on
Communication Systems and Networks, COMSNETS, 2016, http://dx.doi.
org/10.1109/COMSNETS.2016.7439971.

[19] L. Arulraj, A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, Improving virtualized
storage performance with sky, SIGPLAN Not. (2017) http://dx.doi.org/10.
1145/3140607.3050755, URL http://doi.acm.org/10.1145/3140607.3050755.

[20] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Ballani, T.
Karagiannis, A. Rowstron, T. Talpey, Software-defined caching: Managing
caches in multi-tenant data centers, in: ACM Symposium on Cloud
Computing, SOCC 2015, ACM, 2015, URL https://www.microsoft.com/en-
us/research/publication/software-defined-caching-managing-caches-in-
multi-tenant-data-centers/.

[21] S. Rajasekaran, S. Duan, W. Zhang, T. Wood, Multi-cache: Dynamic, efficient
partitioning for multi-tier caches in consolidated VM environments, in:
2016 IEEE International Conference on Cloud Engineering, IC2E, 2016,
http://dx.doi.org/10.1109/IC2E.2016.10.

Grégoire Todeschi received a Master degree from
Polytechnic National Institute of Toulouse in 2016. He
then started a Ph.D. course in 2016 at Polytechnic Na-
tional Institute of Toulouse, France. His main research
interests are in Virtualization, Cloud Computing, and
Operating System.

Boris Teabe received his Ph.D. from Polytechnic Na-
tional Institute of Toulouse in 2017. Since 2017 he
is an research engineer at IRIT lab, Toulouse France.
His main research interests are in Virtualization, Cloud
Computing, and Operating System.

Alain Tchana received his Ph.D. in computer science
in 2011, at the IRIT laboratory, Polytechnic National
Institute of Toulouse, France. In September 2013, he
joined Polytechnic National Institute of Toulouse as a
Associate Professor. Since 2018, he is a Professor at
University of Nice Sophia Antipolis. His main research
interests are in Virtualization, Cloud Computing, and
Operating System.

Daniel Hagimont is a Professor at Polytechnic National
Institute of Toulouse, France and a member of the IRIT
laboratory, where he leads a group working on oper-
ating systems, distributed systems and middleware. He
received a Ph.D. from Polytechnic National Institute of
Grenoble, France in 1993. After a postdoctorate at the
University of British Columbia, Vancouver, Canada in
1994, he joined INRIA Grenoble in 1995. He took his
position of Professor in Toulouse in 2005.

