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We develop a new method, based on pluripotential theory, to study the transfer (Perron-Frobenius) operator induced on P k = P k (C) by a holomorphic endomorphism and a suitable continuous weight. This method allows us to prove the existence and uniqueness of the equilibrium state and conformal measure for very general weights (due to Denker-Przytycki-Urbański in dimension 1 and Urbański-Zdunik in higher dimensions, both in the case of Hölder continuous weights). We establish a number of properties of the equilibrium states, including mixing, K-mixing, mixing of all orders, and an equidistribution of repelling periodic points. Our analytic method replaces all distortion estimates on inverse branches with a unique, global, estimate on dynamical currents, and allows us to reduce the dynamical questions to comparisons between currents and their potentials.
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Notation. Throughout the paper, P k denotes the complex projective space of dimension k endowed with the standard Fubini-Study form ω FS . This is a Kähler (1, 1)-form normalized so that ω k FS is a probability measure. We will use the metric and distance dist(•, •) on P k induced by ω FS and the standard ones on C k when we work on open subsets of C k . We denote by B P k (a, r) (resp. B k r , D(a, r), D r ) the ball of center a and radius r in P k (resp. the ball of center 0 and radius r in C k , the disc of center a and radius r in C, and the disc of center 0 and radius r in C). Leb denotes the standard Lebesgue measure on a Euclidean space or on a sphere. The oscillation Ω(•), the modulus of continuity m(•, •), and the semi-norms • log p of a function are defined in Section 2.1. The currents ω n and their dynamical potentials u n are introduced in Section 2.4.

The pairing •, • is used for the integral of a function with respect to a measure or more generally the value of a current at a test form. If S and R are two (1, 1)-currents, we will write |R| ≤ S when ℜ(ξR) ≤ S for every function ξ : P k → C with |ξ| ≤ 1, i.e., all currents S -ℜ(ξR) with ξ as before are positive. Notice that this forces S to be real and positive. We also write other inequalities such as

|R| ≤ |R 1 | + |R 2 | if |R| ≤ S 1 + S 2 whenever |R 1 | ≤ S 1 and |R 2 | ≤ S 2 . Recall that d c = i
2π (∂ -∂) and dd c = i π ∂∂. The notations and stand for inequalities up to a multiplicative constant. The function identically equal to 1 is denoted by 1. We also use the function log ⋆ (•) := 1 + | log(•)|.

Consider a holomorphic endomorphism f : P k → P k of algebraic degree d ≥ 2 satisfying the Assumption (A) in the Introduction. Denote respectively by T , µ = T k , supp(µ) the Green

Introduction and results

Let f : P k → P k be a holomorphic endomorphism of the complex projective space P k = P k (C), with k ≥ 1, of algebraic degree d ≥ 2. Denote by µ the unique measure of maximal entropy for the dynamical system (P k , f ) [Lyu83; BD09; DS10a; BM01]. The support supp(µ) of µ is called the small Julia set of f . The measure µ corresponds to the equilibrium state of the system in the case without weight, i.e., when the weight is zero. In this paper, we will consider the case where the weight, denoted by φ, is not necessarily equal to zero. This problem has been studied for Hölder continuous weights using a geometric approach, in dimension 1, see, e.g., Denker-Przytycki-Urbański [Prz90; DU91a; DU91b; DPU96] and Haydn [START_REF] Haydn | Convergence of the transfer operator for rational maps[END_REF] just to name a few, and in higher dimensions, see Szostakiewicz-Urbański-Zdunik [UZ13; SUZ14]. We will develop here an analytic method which will allow us to obtain more general and more quantitative results. Many results are new even when for k = 1.

Throughout this paper, we make use of the following technical assumption for f :

(A) the local degree of the iterate

f n := f • • • • • f (n times) satisfies lim n→∞ 1 n log max a∈P k deg(f n , a) = 0.
Here, deg(f n , a) is the multiplicity of a as a solution of the equation f n (z) = f n (a). Note that generic endomorphisms of P k satisfy this condition, see [START_REF] Dinh | Equidistribution speed for endomorphisms of projective spaces[END_REF]. Our study still holds under a weaker condition that the exceptional set of f (i.e., the maximal proper analytic subset of P k invariant by f -1 ) is empty or more generally has no intersection with supp(µ) (in particular, this condition is superfluous in dimension 1). However, this situation requires more technical conditions on the weight φ. We choose not to present this case here in order to simplify the notation and focus on the main new ideas introduced in this topic. Our main goal in this paper is to prove the following theorem (see Theorem 3.1 and Section 4 for more precise statements).

Theorem 1.1. Let f be an endomorphism of P k of algebraic degree d ≥ 2 and satisfying the Assumption (A) above. Let φ be a real-valued log q -continuous function on P k , for some q > 2, such that Ω(φ) := max φ -min φ < log d. Then φ admits a unique equilibrium state µ φ , whose support is equal to the small Julia set of f . This measure µ φ is K-mixing and mixing of all orders, and repelling periodic points of period n (suitably weighted) are equidistributed with respect to µ φ as n goes to infinity. Moreover, there is a unique conformal measure m φ associated to φ. We have µ φ = ρm φ for some strictly positive continuous function ρ on P k and the preimages of points by f n (suitably weighted) are equidistributed with respect to m φ as n goes to infinity.

We say that a function is log q -continuous if its oscillation on a ball of radius r is bounded by a constant times (log ⋆ r) -q , see Section 2.1 for details. See also Section 4.1 for the K-mixing and mixing of all orders.

An equilibrium state as in the statement above is defined as follows, see for instance [Rue72; Wal00; PU10]. Given a weight, i.e., a real-valued continuous function, φ as above, we define the pressure of φ as P (φ) := sup Ent f (ν) + ν, φ , where the supremum is taken over all Borel f -invariant probability measures ν and Ent f (ν) denotes the metric entropy of ν. An equilibrium state for φ is then an invariant probability measure µ φ realizing a maximum in the above formula, that is,

P (φ) = Ent f (µ φ ) + µ φ , φ .
On the other hand, a conformal measure is defined as follows. Define the Perron-Frobenius (or transfer ) operator L with weight φ as (we often drop the index φ for simplicity)

(1.1) Lg(y) := L φ g(y) :=

x∈f -1 (y) e φ(x) g(x),

where g : P k → R is a continuous test function and the points x in the sum are counted with multiplicity. A conformal measure is an eigenvector for the dual operator L * acting on positive measures. Notice that, in the case where φ is Hölder continuous, a part of Theorem 1.1 was established by Urbański-Zdunik [START_REF] Urbański | Equilibrium measures for holomorphic endomorphisms of complex projective spaces[END_REF] (also under a genericity assumption for f ), see also [START_REF] Przytycki | On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions[END_REF][START_REF] Denker | Ergodic theory of equilibrium states for rational maps[END_REF][START_REF] Denker | On the existence of conformal measures[END_REF][START_REF] Denker | On the transfer operator for rational functions on the Riemann sphere[END_REF] for previous results in dimension k = 1. When φ is constant, the operator L reduces to a constant times the push-forward operator f * and we get µ φ = µ. For an account of the known results in this case, see for instance [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF].

A reformulation of Theorem 1.1 is the following: given φ as in the statement, there exist a number λ > 0 and a continuous function ρ = ρ φ : P k → R such that, for every continuous function g : P k → R, the following uniform convergence holds:

(1.2) λ -n L n g(y) → c g ρ for some constant c g depending on g. By duality, this is equivalent to the convergence, uniform on probability measures ν,

(1.3) λ -n (L * ) n ν → m φ ,
where m φ is a conformal measure associated to the weight φ. The equilibrium state µ φ is then given by µ φ = ρm φ , and we have c g = m φ , g .

To prove Theorem 1.1, in Section 3 we develop a new and completely different approach with respect to [START_REF] Urbański | Equilibrium measures for holomorphic endomorphisms of complex projective spaces[END_REF] and to the previous studies in dimension 1. As we will see in the second part of this work [START_REF] Bianchi | Equilibrium states of holomorphic endomorphisms of P k (Part 2)[END_REF], the flexibility of this method will allow for a more quantitative understanding of the convergences (1.2) and (1.3), and for the direct establishment of several statistical properties of the equilibrium states.

The main idea of our method is the following. Let us just consider for now the case where both of the functions g and φ are of class C 2 (the general case is technically quite involved and requires suitable approximations of g and φ by C 2 functions). Given such a function g, first we want to prove that the ratio between the maximum and the minimum of L n g stays bounded with n. This allows us to define the good scaling ratio λ and to get that the sequence λ -n L n g is uniformly bounded. Next, we would like to prove that this sequence is actually equicontinuous. This, together with other technical arguments, would imply the existence and uniqueness of the limit function ρ.

In order to establish the above controls, we study the sequence of (1, 1)-currents given by dd c L n g. First we prove that suitably normalized versions of these currents are uniformly bounded by a common positive closed (1, 1)-current R. This is the core of our method which replaces all controls on the distortion of inverse branches of f n in the geometric method of [UZ13] by a unique, global, and flexible estimate. Namely, for every n ∈ N we can get an estimate of the form

(1.4) dd c L n g c n ∞ j=0 e Ω(φ) d j (f * ) j ω FS d (k-1)j with c n := g C 2 ω k FS , L n 1 .
Here, ω FS denotes the usual Fubini-Study form on P k normalized so that ω k FS is a probability measure. Notice that the last infinite sum gives a key reason for the assumption Ω(φ) < log d made on the weight φ as the mass of the current (f * ) j ω FS is equal to d (k-1)j .

We will establish in Section 2 some general criteria, interesting in themselves, which allow one to bound the oscillation of c -1 n L n g in terms of the oscillation of the potentials of the current in the RHS of (1.4). This latter oscillation is actually controllable. Assumption (A) allows us to have a simple control which makes the estimates less technical but such a control exists without Assumption (A).

Combining all these ingredients, the existence and uniqueness of the equilibrium state and conformal measure, as well as the equidistribution of preimages and the equality P (φ) = log λ, follow from standard arguments that we recall in Sections 4.1 and 4.2 for completeness. We also prove that the entropy of µ φ is larger than k log d -Ω(φ) > (k -1) log d, and that all the Lyapunov exponents of µ φ are strictly positive, see Proposition 4.9. This also leads to a lower bound for the Hausdorff dimension of µ φ . In Section 4.3 we establish the equidistribution of repelling periodic points with respect to µ φ , see Theorem 4.10, which completes the proof of Theorem 1.1. This result is due to Lyubich [START_REF] Lyubich | Entropy properties of rational endomorphisms of the Riemann sphere[END_REF] (for k = 1) and Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF] (for any k ≥ 1) when φ = 0, and is new even for k = 1 otherwise.

In the second part of our study [START_REF] Bianchi | Equilibrium states of holomorphic endomorphisms of P k (Part 2)[END_REF], we will prove that the Perron-Frobenius operator and its complex perturbations admit spectral gaps, and deduce several statistical properties of the equilibrium states through a unified method.

Outline of the organization of the paper. In Section 2, we introduce some useful notions and establish comparison principles for currents and potentials that will be the technical key to prove Theorem 1.1. We also present the estimates on the sequence f n * ω FS (and on their potentials) that we will need in the sequel. Section 3 is dedicated to the proof of Theorem 3.1. For this purpose, we develop our method to get the uniform boundedness and equicontinuity for the sequence L n g, properly normalized, that lead to the good definition of the scaling ratio λ. Once this is done, we will complete the proof of Theorem 1.1 in Section 4.
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Dynamical potentials and some comparison principles

2.1. log p -continuous functions. We will use the following notations throughout the paper.

Definition 2.1. Given a subset U of P k or C k and a real-valued function g : U → R, define the oscillation Ω U (g) of g as Ω U (g) := sup g -inf g and its continuity modulus m U (g, r) at distance r as m U (g, r) := sup

x,y∈U : dist(x,y)≤r |g(x) -g(y)|.

We may drop the index U when there is no possible confusion.

Definition 2.2. The semi-norm • log p is defined for every p > 0 and g : P k → R as

g log p := sup a,b∈P k |g(a) -g(b)| • (log ⋆ dist(a, b)) p = sup r>0,a∈P k Ω B P k (a,r) (g) • (1 + | log r|) p ,
where B P k (a, r) denotes the ball of center a and radius r in P k .

The following technical lemma will be used in Section 3.

Lemma 2.3. For every log p -continuous function g : P k → R, p > 0, s ≥ 1, and 0 < ǫ ≤ 1, there exist continuous functions g

(1) ǫ and g

(2) ǫ such that

g = g (1) ǫ + g (2) ǫ , g (1) 
ǫ

C s ≤ c g ∞ e (1/ǫ) 1/p , and g (2) ǫ ∞ ≤ c g log p ǫ,
where c = c(p, s) is a positive constant independent of g and ǫ. In particular, for every n ≥ 1 there exist g

(1)

n of class C 2 and g

(2)

n continuous such that

g = g (1) n + g (2) n , g (1) 
n

C 2 ≤ c g ∞ e 1 2 n 2/p , and g (2) n ∞ ≤ c g log p n -2 .
Proof. Clearly, the second assertion is a consequence of the first one by taking ǫ = 2 p n -2 and replacing c by 2 p c. We prove now the first assertion. Using a partition of unity, we can reduce the problem to the case where g is supported by the unit ball of an affine chart C k ⊂ P k . Consider a smooth non-negative function χ with support in the unit ball of C k whose integral with respect to the Lebesgue measure is 1. For ν > 0, consider the function χ ν (z) := ν -2k χ(z/ν) which has integral 1 and tends to the Dirac mass at 0 when ν tends to 0. Define an approximation of g using the standard convolution operator g ν := g * χ ν , and define g

(1) ǫ := g ν and g

(2)

ǫ := g-g ν . We consider ν := e -1/(M ǫ) 1/p for some constant M > 0 large enough. It remains to bound g

(1) ǫ C s and g

(2) ǫ ∞ . By standard properties of the convolution we have, for some constant κ > 0,

g (2) ǫ ∞ m(g, κν) g log p (log ⋆ ν) -p g log p ǫ
and, by definition of g ν ,

g (1) ǫ C s g ∞ χ ν C s Leb(B k ν ) g ∞ ν -s g ∞ e (1/ǫ) 1/p ,
where we use the fact that M is large enough. This ends the proof of the lemma.

2.2. Dynamical potentials. Let T denote the Green (1, 1)-current of f . It is positive closed and of unit mass. Let S be any positive closed (1, 1)-current of mass m on P k . There is a unique function u S : P k → R ∪ {-∞} which is p.s.h. modulo mT and such that S = mT + dd c u S and µ, u S = 0.

Locally, u S is the difference between a potential of S and a potential of mT . We call it the dynamical potential of S. Observe that the dynamical potential of T is zero, i.e., u T = 0.

Recall that T has Hölder continuous potentials. So, u S is locally the difference between a p.s.h. function and a Hölder continuous one. The dynamical potential of S behaves well under the push-forward and pull-back operators associated to f . Indeed, because of the invariance properties of T , we have

f * S = md • T + dd c (u S • f ) and f * S = md k-1 • T + dd c (f * u S ),
which, together with the invariance properties of µ, imply

u f * S = u S • f and u f * S = f * u S .
We refer the reader to [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] for details. In this paper, we only need currents S such that u S is continuous.

Comparisons between currents and their potentials.

A technical key point in the proof of our main theorem will be based on the following general idea: if u and v are two functions on some domain in C k such that |dd c u| ≤ dd c v, then u inherits some of the regularity properties of v. This section is devoted to make this idea precise and quantitative for our purposes. We start with the simplest occurrence of this fact in the first case in terms of the sup-norm.

Lemma 2.4. There exists a positive constant A such that, for every positive closed (1, 1)current S 0 on P k of mass 1 and for every positive closed (1, 1)-current S on P k with S ≤ S 0 , we have Ω(u S ) ≤ A + Ω(u S 0 ), where u S 0 and u S denote the dynamical potentials of S 0 and S, respectively.

Proof. We assume that Ω(u S 0 ) is finite, since otherwise the assertion trivially holds. Observe that the mass m of S is at most equal to 1 because S ≤ S 0 . Recall that u S and u S 0 satisfy S = mT + dd c u S , S 0 = T + dd c u S 0 , µ, u S = 0, and µ, u S 0 = 0.

The last identity implies that sup u S 0 is non-negative. We first prove that u S is bounded above by a constant. As mentioned above, the correspondence between positive closed (1, 1)-currents and their dynamical potentials is a bijection. Moreover, we know that quasi-p.s.h. functions (i.e., functions that are locally difference between a p.s.h. and a smooth function) are integrable with respect to µ [DS10a, Th. 1.35]. Since the set of positive closed (1, 1)-currents of mass less than or equal to 1 is compact, u S belongs to a compact family of p.s.h. functions modulo mT . We deduce that there is a constant A > 0 independent of S such that u S ≤ A/2 on P k , see [DS10a, App. A.2] for more details. It follows that sup u S ≤ sup u S 0 + A/2 because sup u S 0 is non-negative.

Consider the current S ′ := S 0 -S which is positive closed and smaller than S 0 . By the uniqueness of the dynamical potential, we have u S ′ = u S 0 -u S , which implies u S = u S 0 -u S ′ . Since S ′ ≤ S, as above, we also have sup

u S ′ ≤ A/2. It follows that inf u S ≥ inf u S 0 -sup u S ′ ≥ inf u S 0 -A/2.
This estimate and the above inequality sup u S ≤ sup u S 0 + A/2 imply the lemma.

Corollary 2.5. There exists a positive constant A such that for every positive closed (1, 1)current S 0 on P k and for every continuous function g : P k → R with |dd c g| ≤ S 0 we have Ω(g) ≤ A S 0 + 3Ω(u S 0 ).

Proof. By linearity we can assume that S 0 is of mass 1/2. Define R := dd c g and write it as a difference of positive closed currents, R = (R + S 0 ) -S 0 . Since R + S 0 and S 0 belong to the same cohomology class, they have the same mass 1/2. We denote as usual by u R+S 0 and u S 0 the dynamical potentials of R + S 0 and S 0 respectively.

A direct computation gives dd c (g -u R+S 0 + u S 0 ) = 0 which implies that g -u R+S 0 + u S 0 is a constant function. Thus,

Ω(g) = Ω(u R+S 0 -u S 0 ) ≤ Ω(u R+S 0 ) + Ω(u S 0 ).
The assertion follows from Lemma 2.4 applied to R + S 0 , 2S 0 instead of S, S 0 . We use here the fact that R + S 0 = dd c g + S 0 ≤ 2S 0 and that 2S 0 is of mass 1. We also use a constant A which is equal to twice the one in Lemma 2.4.

The following result gives a quantitative control on the oscillation of u in terms of the oscillation of v. Notice in particular that it implies that, if v is Hölder or log p -continuous for some p > 0, then u enjoys the same property with possibly a loss in the Hölder exponent, but not in the log p -exponent.

Proposition 2.6. Let u and v be two p.s.h. functions on B k 3 such that dd c u ≤ dd c v and v is continuous. Then u is continuous and for every 0 < s ≤ 1 there is a positive constant A (independent of u and v) such that, for every 0 < r ≤ 1/2, we have

m B k 1 (u, r) ≤ m B k 2 (v, r s ) + Am B k 2 (u, r s )r 1-s ≤ m B k 2 (v, r s ) + AΩ B k 2 (u)r 1-s .
Proof. The continuity of u is a well-known property. Indeed, since dd c v -dd c u is a positive closed (1, 1)-current, there is a p.s.h. function u ′ such that dd c u ′ = dd c v -dd c u. So, both u + u ′ and v are potentials of dd c v. We deduce that they differ by a pluriharmonic function. Hence u + u ′ is continuous. We then easily deduce that both u and u ′ are continuous because both are p.s.h. (and hence u.s.c.).

We prove now the estimate in the lemma. Let x, y ∈ B k 1 be such that x -y ≤ r. We need to bound u(y) -u(x). Without loss of generality, we can reduce the problem to the case k = 1 by restricting ourselves to the complex line through x and y. Moreover, by translating and adding constants to u and v, we can assume that x = 0, |y| ≤ r, u(x) = v(x) = 0, and u(y) ≥ 0. It is then enough to prove that u(y) ≤ m D 1 (v, r s ) + AΩ D r s (u)r 1-s for some positive constant A and for u, v defined on D 2 . Note that Ω D r s (u) ≤ 2m D 1 (u, r s ).

Claim. We have, for some positive constant A,

u(y) ≤ 1 Leb(∂D r s ) |z|=r s u(z)d Leb(z) + AΩ D r s (u)r 1-s .
Assuming the claim, we first complete the proof of the lemma. Let u (resp. v) be the radial subharmonic function on D 2 such that u(z) (resp. v(z)) is equal to the mean value of u (resp. v) on the circle of center 0 and radius |z|. Using the Claim, in order to obtain the lemma, it is enough to show that u ≤ v.

Recall that v -u is a subharmonic function vanishing at 0. Therefore, v -u is a radial subharmonic function vanishing at 0. Radial subharmonic functions are increasing in |z|. Thus, v -u is a non-negative function and the lemma follows.

Proof of the Claim. Define u ′ (z) := u(zr s ) and y ′ := y/r s . We need to show that, for

|y ′ | ≤ r 1-s , u ′ (y ′ ) ≤ 1 Leb(∂D 1 ) ∂D 1 u ′ (z)d Leb(z) + AΩ D 1 (u ′ )r 1-s .
We can assume, without loss of generality, that y ′ = α ∈ R + and α ≤ r 1-s . Consider the automorphism Ψ of the unit disc given by Ψ(z) = z+α 1+αz . The map Ψ satisfies Ψ(0) = y ′ and moreover Ψ extends smoothly to ∂D 1 and tends to the identity in the

C 1 norm as α → 0. It follows that Ψ ±1 -id C 1 ≤ A ′ α ≤ A ′ r 1-s for some positive constant A ′ .
Define u ′′ := u ′ • Ψ and denote by ν the normalized standard Lebesgue measure on the unit circle. We deduce from the last inequalities that Ψ * ν -ν is given by a smooth 1-form on ∂D 1 and Ψ * ν -ν ∞ = O(r 1-s ). Applying the submean inequality to the subharmonic function u ′′ we get

u ′ (y ′ ) = u ′′ (0) ≤ ν, u ′′ = ν, u ′ • Ψ = Ψ * ν, u ′ = ν, u ′ + Ψ * ν -ν, u ′ .
Since Ψ * ν and ν are probability measures, the integral

Ψ * ν -ν, u ′ does not change if we add to u ′ a constant c. With the choice c = -inf D 1 u ′ (observe that u ′ is continuous on D 1 ) we get u ′ (y ′ ) ≤ ∂D 1 u ′ dν + sup D 1 |u ′ + c| O(r 1-s ) ≤ ∂D 1 u ′ dν + AΩ D 1 (u ′ )r 1-s
for some positive constant A. This implies the desired inequality.

Corollary 2.7. Let v be a continuous p.s.h. function on

B k 3 . Let u be a continuous real-valued function on B k 3 such that |dd c u| ≤ dd c v. Then for every 0 < s ≤ 1 we have for 0 < r ≤ 1/2 m B k 1 (u, r) ≤ 3m B k 2 (v, r s ) + A Ω B k 2 (u) + Ω B k 2 (v) r 1-s ,
where A is a positive constant independent of u and v.

Proof. Since |dd c u| ≤ dd c v, we have dd c (u + v) = dd c u + dd c v ≥ 0. So the function u + v is p.s.h.; observe also that dd c (u + v) = dd c u + dd c v ≤ 2dd c v.
Therefore, we can apply Proposition 2.6 to u + v, 2v instead of u, v. This gives

m B k 1 (u, r) ≤ m B k 1 (u + v, r) + m B k 1 (v, r) ≤ m B k 2 (2v, r s ) + AΩ B k 2 (u + v)r 1-s + m B k 2 (v, r) ≤ 3m B k 2 (v, r s ) + A Ω B k 2 (u) + Ω B k 2 (v) r 1-s ,
which is the desired estimate.

Corollary 2.8. Let S 0 be a positive closed (1, 1)-current on P k with continuous local potentials. Let F(S 0 ) denote the set of all continuous real-valued functions g on P k such that |dd c g| ≤ S 0 . Then F(S 0 ) is equicontinuous.

Proof. Let g be as in the statement. We cover P k with a finite family of open sets of the form Φ j (B k 1/2 ) where Φ j is an injective holomorphic map from B k 4 to P k . Write S 0 = dd c v j for some continuous p.s.h. function v j on Φ j (B k 4 ) and define V j := Φ j (B k 3 ). We apply Corollary 2.7 to g, v j restricted to V j instead of u, v and to s = 1/2. Taking into account the distortion of the maps Φ j , we see that for all r smaller than some constant r 0 > 0

m P k (g, r) ≤ 3 max j m V j (v j , c √ r) + A Ω P k (g) + max j Ω V j (v j ) √ r,
where c ≥ 1 is a constant. Since Ω P k (g) is bounded by Corollary 2.5, the RHS of the last inequality is bounded by a constant ǫ r which is independent of g and tends to 0 when r tends to 0. It is now clear that the family F(S 0 ) is equicontinuous.

2.4. Dynamical potentials of (f n ) * ω FS . In this section we consider the action of the operator (f n ) * on functions and currents. Some results and ideas here are of independent interest. Recall that we always assume that f satisfies the Assumption (A) in the Introduction.

We start by giving estimates on the potentials of the currents (f n ) * ω FS . As explained in the Introduction, these estimates will allow us to globally control the distortion of f n . Define

ω n := d -(k-1)n (f n ) * ω FS .
Recall that f * multiplies the mass of a positive closed (1, 1)-current by d k-1 . Therefore, all currents ω n have unit mass. We denote by u n the dynamical potential of ω n . In particular, u 0 is the dynamical potential of ω FS . It is known that u 0 is Hölder continuous, see [START_REF] Kosek | Hölder continuity property of filled-in Julia sets in C n[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF].

Observe that d -1 f * ω FS is a smooth positive closed (1, 1)-form of mass 1. Therefore, there is a unique smooth function v such that

dd c v = d -1 f * ω FS -ω FS and µ, v = 0.
Lemma 2.9. We have

u n = d -(k-1)n (f n ) * u 0 and u 0 = - ∞ n=0 d -n v • f n .
Proof. We prove the first identity. Denote by u ′ n the RHS of this identity, which is a continuous function. By the definition of u n and the invariance of T , we have

dd c (u n -u ′ n ) = (ω n -T ) -d -(k-1)n (f n ) * (ω FS -T ) = (ω n -T ) -(ω n -T ) = 0. Therefore, u n -u ′
n is pluriharmonic and hence constant on

P k . Moreover, the invariance of µ implies that µ, u ′ n = d -(k-1)n (f n ) * µ, u 0 = d n µ, u 0 = 0.
By the definition of u n , we also have µ, u n = 0. We deduce that u n = u ′ n , which implies the first identity in the lemma.

It is clear that the sum in the RHS of the second identity in the lemma converges uniformly. Therefore, this RHS is a continuous function that we denote by u ′ 0 . The invariance of µ also implies that µ, u ′ 0 = 0. A direct computation gives

dd c u ′ 0 = lim N →∞ - N -1 n=0 d -n dd c (v • f n ) = lim N →∞ ω FS -d -N (f N ) * ω FS = ω FS -T,
where the last identity is a consequence of the definition of T . Since dd c u 0 is also equal to ω FS -T , we obtain that u 0 -u ′ 0 is constant on P k . Finally, using that µ, u 0 = µ, u ′ 0 = 0, we conclude that u 0 = u ′ 0 . This ends the proof of the lemma.

In the sequel, we will need explicit bounds on the oscillation Ω(u n ) of u n . These are provided in the next result.

Lemma 2.10. For every constant A > 1, there exists a positive constant c independent of n such that u n ∞ ≤ cA n and Ω(u n ) ≤ cA n for all n ≥ 0.

Proof. Observe that the second assertion is deduced from the first one by replacing c with 2c. We prove now the first assertion. By Lemma 2.9 we have, for any given z ∈ P k ,

u n (z) = d -(k-1)n ((f n ) * u 0 ) (z) = δ z , d -(k-1)n (f n ) * u 0 = d n d -kn (f n ) * δ z , u 0 = d n d -kn (f n ) * δ z , - ∞ m=0 d -m v • f m = -d n d -kn (f n ) * δ z , n m=0 d -m v • f m -d -kn (f n ) * δ z , ∞ m=n+1 d -m+n v • f m .
The absolute value of the second term in the last line is bounded by

v ∞ because d -kn (f n ) * δ z is a probability measure. Observe that (f n ) * (v • f m ) = d km (f n-m ) * v for all n ≥ m. Hence, the absolute value of the first term is equal to (2.1) n m=0 d n-m δ z , d -k(n-m) (f n-m ) * v ≤ n j=0 d j d -kj (f j ) * v ∞ .

Under the Assumption

(A), it is known that d -kj (f j ) * v ∞ δ -j for every 0 < δ < d. Indeed, the Assumption (A) implies the property (A1) below, see [DS10b, Cor. 1.2].
(A1) Let g : P k → R be C 2 and such that µ, g = 0. For every constant 1 < δ < d, there is a positive constant c independent of g and n such that

d -kn (f n ) * g ∞ ≤ c g C 2 δ -n .
By choosing δ > d/A, we can bound the RHS of (2.1) by a constant times A n . This ends the proof of the lemma.

As an application of the previous estimates, we have the following lemma that can be used to study the regularity of functions g : P k → R.

Lemma 2.11. Let g : P k → R be a continuous function and 0 < β < 1 a constant such that

(2.2) |dd c g| ≤ ∞ n=0 β n ω n .
Then, for every q > 0, there is a positive constant c = c(q, β) independent of g such that

g log q ≤ c.
Proof. We bound the continuity modulus m(g, r) of g by means of Corollary 2.7. We only need to consider 0 < r ≤ 1/2. For this purpose, since T has Hölder continuous local potentials, it suffices to bound the continuity modulus of the dynamical potential of the RHS of (2.2). This dynamical potential is equal to

u := ∞ n=0 β n u n .
Fix a constant 1 < A < 1/β. By Lemma 2.10, we have u n ∞ A n . Hence, for every N , we have m(u, r)

n≤N β n m(u n , r) + n>N (Aβ) n n≤N β n m(u n , r) + (Aβ) N .
Applying [START_REF] Dinh | Equidistribution speed for endomorphisms of projective spaces[END_REF]Cor. 4.4] inductively to some iterate of f , we see that the Assumption (A) implies:

(A2) for every constant κ > 1, there are an integer n κ ≥ 0 and a constant c κ > 0 independent of n such that for all x, y ∈ P k and n ≥ n κ we can write f -n (x) = {x 1 , . . . , x d kn } and f -n (y) = {y 1 , . . . , y d kn } (counting multiplicity) with the property that dist(x j , y j ) ≤ c κ dist(x, y) 1/κ n for j = 1, . . . , d kn .

By definition, the function u 0 is γ-Hölder continuous for some Hölder exponent γ because T has Hölder continuous local potentials. The above property (A2) implies that (f n ) * u 0 is γκ -n -Hölder continuous for all n ≥ n κ . More precisely, we have

m(d -kn (f n ) * u 0 , r) ≤ c ′ r γκ -n and hence m(u n , r) ≤ c ′ d n r γκ -n
for some positive constant c ′ independent of n ≥ n κ and r. Observe also that for 0 ≤ n ≤ n κ all the u n are α κ -Hölder continuous for some α κ > 0. Indeed, as the multiplicity of f n at a point is at most d kn , we have (see again [START_REF] Dinh | Equidistribution speed for endomorphisms of projective spaces[END_REF]Cor. 4.4]):

(A2') there is a constant c 0 > 0 such that for every n ≥ 0, for all x, y ∈ P k , we can write f -n (x) = {x 1 , . . . , x d kn } and f -n (y) = {y 1 , . . . , y d kn } (counting multiplicity) with the property that dist(x j , y j ) ≤ c 0 dist(x, y) 1/d kn for j = 1, . . . , d kn .

Therefore, we have

(2.3) m(u, r) r ακ + nκ≤n≤N (βd) n r γκ -n + (Aβ) N .
Choose κ close enough to 1 so that 2q log κ < | log(Aβ)| and take

N = 1 2 log κ log |log r|
(recall that we only need to consider r ≤ 1/2). Then, the last term in (2.3) satisfies (Aβ) N = e N log(Aβ) < e -2N q log κ = | log r| -q .

It remains to prove that the sum in (2.3) satisfies a similar estimate. We have

n≤N (βd) n r γκ -n ≤ n≤N β n d N r γκ -N d N r γκ -N = e log d 2 log κ log|log r| e γ(log r)e -1 2 log | log r| = | log r| log d 2 log κ e γ √ | log r| •
The last expression is smaller than a constant times | log r| -q because e t ≫ t M when t → ∞ for every M ≥ 0. This, together with the above estimates, gives m(u, r) | log r| -q and ends the proof of the lemma.

Existence of the scaling ratio and equilibrium state

In this section we prove the existence of a good scaling ratio λ, see Theorem 3.1 below.

3.1. Main statement and first step of the proof. Recall that the Perron-Frobenius operator L is defined as in (1.1). A direct computation gives

L n (g)(y) = f n (x)=y e φ(x)+φ(f (x))+•••+φ(f n-1 (x)) g(x).
Theorem 3.1. Let f and φ be as in Theorem 1.1. There exist a number λ > 0 and a continuous function ρ > 0 on P k such that for every continuous function g : P k → R the sequence λ -n L n (g) is equicontinuous and converges uniformly to c g ρ, where c g is a constant depending linearly on g. Moreover, if g is strictly positive, then c g is strictly positive and the sequence L n (g) 1/n converges uniformly to λ as n tends to infinity.

We will first study the case where g is equal to 1. The general case will be deduced from this particular case. Define 1 n := L n (1). Denote by ρ + n and ρ - n the maximum and the minimum of 1 n , respectively. Consider also the ratio θ n := ρ + n /ρ - n and the function 1 * n := (ρ - n ) -1 1 n . Observe that the last function satisfies min 1 * n = 1. The following result will be crucial for us. Proposition 3.2. Under the hypotheses of Theorem 3.1, the sequence {θ n } is bounded and the sequence of functions {1 * n } is uniformly bounded and equicontinuous. The proof of this result will be given in Section 3.3 and uses the technical tools that were presented in Section 2. Before giving it, we need to first introduce some auxiliary objects.

By Lemma 2.3 applied to φ instead of g, we can find functions φ n and ψ n such that

(3.1) φ = φ n + ψ n , φ n C 2 ≤ c φ ∞ e 1 2 n 2/q , and ψ n ∞ ≤ c φ log q n -2 .
Consider two integers J ≥ 0 and N ≥ 0, whose values will be specialised later. Define for

n ≥ N + 1 (3.2) Ln (g)(x) := f n (x)=y e φ n+J (x)+φ n+J -1 (f (x))+•••+φ J +N+1 (f n-N-1 (x)) g(x).
This operator will be used to approximate L n . The gain here is the fact that the involved functions φ m have controlled C 2 norms. As above, we define 1n := Ln 1, ρ+ n := max 1n , ρn := min 1n , θn := ρ+ n /ρ - n , and 1 *

n := (ρ - n ) -1 1n .
The following lemma allows us to reduce our problem to the study of the functions 1n .

Lemma 3.3. There exists a positive constant c = c(N ) such that, for all n > N ≥ 0 and J,

c -1 ≤ ρ + n /ρ + n ≤ c and c -1 ≤ ρ - n /ρ - n ≤ c.
In particular, the sequence θn is bounded if and only if the sequence {θ n } is bounded.

Proof. We have

ρ + n = max 1 n = max y f n (x)=y e φ(x)+φ(f (x))+•••+φ(f n-1 (x))
= max

y f n (x)=y e φ n+J (x)+•••+φ J +N+1 (f n-N-1 (x)) • e ψ n+J (x)+•••+ψ J +N+1 (f n-N-1 (x)) • e φ(f n-N x))+•••+φ(f n-1 (x))
and similarly for ρ - n . So, both ρ + n /ρ + n and ρ - n /ρ - n are bounded from above and below by e N max φ C n,N,J and e N min φ /C n,N,J respectively, where

C n,N,J := e ψ n+J ∞ + ψ n+J -1 ∞ + ••• + ψ J +N+1 ∞ .
It follows from the estimate on ψ n given above that C n,N,J is bounded from above by a positive constant which does not depend on n, J and N . Therefore, both ρ + n /ρ + n and ρ - n /ρ - n are bounded from below and above by positive constants as in the statement. The lemma follows.

An estimate for dd c

1n . Proposition 3.2 will be obtained using the following crucial estimate for dd c 1n . We will see here the role of the estimate of the C 2 norm of φ n . Recall that q > 2, see Theorem 1.1. We also refer to Section 2.4 for notation.

Proposition 3.4. There exists a sub-exponential function η(t) = ct 3 e (t+J) 2/q with a positive constant c = c( φ log q , φ ∞ ) independent of n, J and N such that for all n > N ≥ 0 we have

dd c 1n ≤ n-N m=N +1 η(m)e m max φ ρ+ n-m d (k-1)m ω m + n m=n 0 d kN η(m)e (n-N ) max φ d (k-1)m ω m ,
where n 0 := max(n -N + 1, N + 1).

Recall that the function 1n is given by 1n (y) =

f n (x)=y e φ n+J (x)+φ n+J -1 (f (x))+•••+φ J +N+1 (f n-N-1 (x)) .
In order to estimate dd c 1n , we will use a now classical construction due to Gromov [START_REF] Gromov | On the entropy of holomorphic maps[END_REF]. Define the manifold Γ n ⊂ (P k ) n+1 by Γ n := (x, f (x), . . . , f n (x)) : x ∈ P k , which can also be seen as the graph of the map (f, f 2 , . . . , f n ) in the product space (P k ) n+1 . Consider the function h on (P k ) n+1 given by h(x 0 , . . . , x n ) := e φ n+J (x 0 )+φ n+J -1 (x 1 )+•••+φ J +N+1 (x n-N-1 ) .

The function 1n on P k is equal to the push-forward of the function h |Γn to the last factor P k of (P k ) n+1 . Indeed, denoting by π n the restriction of the projection x → x n to Γ n , we have

(π n ) * (h)(y) = (x 0 ,...,xn)∈Γn : xn=y h(x) = x∈f -n (y) e φ n+J (x)+•••+φ J +N+1 (f n-N-1 (x)) = 1n (y).
Recall that, since dd c 1n is real, estimating |dd c 1n | means finding a good positive closed (1, 1)current S on P k such that both S ± dd c 1n are positive. According to the identities above, we have

dd c 1n = (π n ) * dd c h .
Thus, we need to estimate dd c h on (P k ) n+1 and Γ n . We define ω (m) as the pullback of the Fubini-Study form ω FS to (P k ) n+1 by the projection x → x m . Equivalently, ω (m) is a (1, 1)-form on (P k ) n+1 such that ω (m) (x) = ω FS (x m ).

Lemma 3.5. There exists a sub-exponential function η(t) = ct 3 e (t+J) 2/q with a positive constant c = c( φ log q , φ ∞ ) independent of n, J, and N such that

|dd c h| ≤ h n-N -1 m=0 η(n -m)ω (m) .
Proof. A direct computation gives

i∂ ∂h = h n-N -1 m=0 i∂∂φ n+J-m (x m ) + n-N -1 m,m ′ =0 i∂φ n+J-m (x m ) ∧ ∂φ n+J-m ′ (x m ′ ) .
For the first sum, observe that

|i∂∂φ n+J-m (x m )| φ n+J-m C 2 ω (m) (x) e (n+J-m) 2/q ω (m) (x).
For the second sum, consider m ′ ≤ m ≤ n -N -1. By using Cauchy-Schwarz's inequality, we have

|i∂φ n+J-m (x m ) ∧ ∂φ n+J-m ′ (x m ′ )| (3.3) ≤ (m -m ′ + 1) -2 i∂φ n+J-m (x m ) ∧ ∂φ n+J-m (x m ) +(m -m ′ + 1) 2 i∂φ n+J-m ′ (x m ′ ) ∧ ∂φ n+J-m ′ (x m ′ ) (m -m ′ + 1) -2 φ n+J-m 2 C 1 ω (m) (x) + (m -m ′ + 1) 2 φ n+J-m ′ 2 C 1 ω (m ′ ) (x) (m -m ′ + 1) -2 e (n+J-m) 2/q ω (m) (x) + (n -m ′ + 1) 2 e (n+J-m ′ ) 2/q ω (m ′ ) (x).
This and the fact that ∞ j=1 j -2 is finite imply that

0≤m ′ ≤m≤n-N -1 i∂φ n+J-m (x m ) ∧ ∂φ n+J-m ′ (x m ′ ) (3.4) n-N -1 m=0 e (n+J-m) 2/q ω (m) (x) + n-N -1 m ′ =0 (n -m ′ + 1) 3 e (n+J-m ′ ) 2/q ω (m ′ ) (x) n-N -1 m=0 (n -m) 3 e (n+J-m) 2/q ω (m) (x).
We obtain by symmetry a similar estimate for the case where m < m ′ ≤ n -N -1.

Finally, combining all the above identities and estimates we get

|i∂ ∂h| h n-N -1 m=0 (n -m) 3 e (n+J-m) 2/q ω (m) .
The lemma follows.

Proof of Proposition 3.4. We are only interested in the restriction of h to the graph Γ n . We deduce from Lemma 3.5 that (m) .

(3.5) dd c 1n = |(π n ) * dd c h| ≤ n-N -1 m=0 η(n -m)(π n ) * hω
We split the last sum into the two sums corresponding to m < N and m ≥ N . Note that when n ≤ 2N , in the sum in (3.5) we always have m < N and the first sum in the statement of the proposition vanishes. So, for simplicity, we assume that n > 2N and we will see in the proof below that the arguments also work when n ≤ 2N .

For m < N , using the definition of φ m we have φ -

φ m ∞ = ψ m ∞ ≤ c ′ m -2
and hence max φ m ≤ max φ + c ′ m -2 for some positive constant c ′ which may depend on φ log q . It follows that h e (n-N ) max φ . Then, using the definition of Γ n , we have for m < N

(π n ) * hω (m) e (n-N ) max φ (π n ) * ω (m) = e (n-N ) max φ d km (f n-m ) * (ω FS ) = e (n-N ) max φ d km d (k-1)(n-m) ω n-m .
Thus,

N -1 m=0 η(n -m)(π n ) * hω (m) N -1 m=0 η(n -m)e (n-N ) max φ d km d (k-1)(n-m) ω n-m ≤ n m=n-N +1 d kN η(m)e (n-N ) max φ d (k-1)m ω m . (3.6)
The last expression is the second sum in the statement of the present proposition (this step also works for n ≤ 2N but in this case the above sums N -1 0 and n n-N +1 are replaced by n-N -1 0

and n N +1 respectively). In order to finish the proof, it is enough to have a similar estimate for m ≥ N (this step is superfluous when n ≤ 2N , see (3.5)).

As above, using the definition of h and the estimates on max φ m and φ -φ m ∞ , we have h e (n-m) max φ e φ(x 0 )+φ(x 1 )+•••+φ(x m-N-1 ) e (n-m) max φ h ′ with h ′ := e φ m+J (x 0 )+φ m+J -1 (x 1 )+•••+φ J +N+1 (x m-N-1 ) . Note that the sum in the definition of h ′ contains m -N terms while the one of h contains n -N terms. The specific choice of h ′ is convenient for our next computation as it is related to the function 1m .

Consider the map π ′ : Γ n → (P k ) n-m+1 defined by π ′ (x) := x ′ := (x m , . . . , x n ). Denote by Γ ′ the image of Γ n by π ′ . It is the graph of the map (f, . . . , f n-m ) from P k to (P k ) n-m . We also have for

x ′ ∈ Γ ′ π ′-1 (x ′ ) = y, f (y), . . . , f m-1 (y), x ′ with y ∈ f -m (x m ) . So π ′ : Γ n → Γ ′ is a ramified covering of degree d km .
Consider the map π ′′ : Γ ′ → P k defined by π ′′ (x ′ ) := x n . We have, for

x n ∈ P k , π ′′-1 (x n ) = z, f (z), . . . , f n-m (z) with z ∈ f -n+m (x n ) .
So π ′′ : Γ ′ → P k is a ramified covering of degree d k(n-m) . We have

π n = π ′′ • π ′ . Observe that π ′ * (h ′ ω (m) ) is a (1, 1)-form on Γ ′ such that π ′ * (h ′ ω (m) )(x ′ ) = y∈f -m (xm) e φ m+J (y)+•••+φ J +N+1 (f m-N-1 (y)) ω FS (x m ) ≤ ρ+ m ω FS (x m ) =: ρ+ m ω ′ (x ′
), where we define ω ′ as the pull-back of ω FS to Γ ′ by the map x ′ → x m . We also have

π ′′ * (ω ′ )(x n ) = xm∈f -n+m (xn) ω FS (x m ) = (f n-m ) * (ω FS )(x n ) = d (k-1)(n-m) ω n-m (x n ).
Thus,

(π n ) * (hω (m) ) e (n-m) max φ π ′′ * π ′ * (h ′ ω (m) ) ≤ e (n-m) max φ ρ+ m d (k-1)(n-m) ω n-m and n-N -1 m=N η(n -m)(π n ) * hω (m) n-N -1 m=N η(n -m)e (n-m) max φ ρ+ m d (k-1)(n-m) ω n-m = n-N m=N +1 η(m)e m max φ ρ+ n-m d (k-1)m ω m . (3.7)
Finally, we deduce the proposition from (3.5), (3.6), and (3.7) by multiplying η with a large enough constant.

3.3. Proof of Proposition 3.2. We are working under the hypotheses of Theorem 3.1. We will obtain Proposition 3.2 using Lemmas 3.6 and 3.7 below.

Lemma 3.6. Under the hypotheses of Theorem 3.1, given an integer J ≥ 0, we have θn ≤ d kN for all n > N , with N large enough. In particular, the sequences (θ n ) and ( θn ) are bounded for all J ≥ 0 and N ≥ 0.

Proof. Observe that the last assertion is a consequence of the first one. Indeed, we can first fix J and N satisfying the first assertion of the lemma. Then, by Lemma 3.3, the sequence (θ n ) is bounded. Applying again Lemma 3.3 for arbitrary J and N gives that the sequence ( θn ) is also bounded. We prove now the first assertion in the lemma with J fixed and N large enough.

Observe that, by the definition of ρ± n , θn , and Ω(•), for every K ≥ 1 the two inequalities θn ≤ K and Ω( 1n ) ≤ (K -1)ρ - n are equivalent. Hence, in order to get the first assertion in the lemma, it is enough to show that Ω( 1n )/ρ - n ≤ d kN /2. The constants that we use below are independent of N and n. Fix a constant δ such that e Ω(φ) < δ < d. By the estimate on ψ n ∞ in (3.1), for every j sufficiently large, we have Ω(φ j ) ≤ Ω(φ) + Ω(ψ j ) < log δ. Since we assume that N is large enough, the last inequality holds for all j ≥ N .

We use Proposition 3.4 and Corollary 2.5 in order to estimate Ω( 1n ) in terms of Ω(u m ). Recall that u m is the dynamical potential of ω m . We also use Lemma 2.10, which gives Ω(u m ) d m δ ′-m for any δ ′ such that δ < δ ′ < d. More precisely, we obtain from those results that Ω( 1n )

n-N m=N +1 η(m)e m max φ d km δ ′-m ρ+ n-m + n m=max(n-N +1,N +1) d kN η(m)e (n-N ) max φ d km δ ′-m .
Since δ < δ ′ and N is large, the fact that η is sub-exponential and independent of n and N implies that

(3.8) Ω( 1n ) n-N m=N +1 e m max φ d km δ -m ρ+ n-m + n m=max(n-N +1,N +1)
d kN e (n-N ) max φ d km δ -m .

We now distinguish two cases.

Case 1. Assume that N < n ≤ 2N . In this case, the first sum in (3.8) is empty. We thus deduce from (3.8) that 

Ω( 1n ) d kN e (n-N ) max φ d k(N +1) δ N +1 + • • • + d kn δ n d kN e (n-
Ω( 1n ) ρ- n d kN e (n-N )Ω(φ) δ n ≤ d kN e nΩ(φ) δ n •
Hence, Ω( 1n )/ρ - n ≤ d kN /2 because N is chosen large enough and δ > e Ω(φ) . The lemma in this case follows.

Case 2. Assume now that n > 2N . By induction on n and the previous case, we can assume that Ω( 1m )/ρ - m ≤ d kN /2, which implies ρ+ m ≤ d kN ρm , for all m < n. We need to prove the same inequality for m = n. From (3.8) and the induction hypothesis, we have

Ω( 1n ) d kN n-N m=N +1 e m max φ d km δ -m ρ- n-m + d kN n m=n-N +1 e (n-N ) max φ d km δ -m d kN n-N m=N +1 e m max φ d km δ -m ρ- n-m + d kN e (n-N ) max φ d kn δ -n .
This and the second inequality in (3.9) imply that

Ω( 1n ) d kN n-N m=N +1 e mΩ(φ) δ -m ρ- n + d kN e (n-N ) max φ d kn δ -n .
Then, by the first inequality in (3.9) and using that δ > e Ω(φ) and n > 2N , we obtain

Ω( 1n ) ρ- n d kN n-N m=N +1 e mΩ(φ) δ -m + d kN e (n-N )Ω(φ) δ -n d kN e N Ω(φ) δ -N .
Recall that all the constants involved in our computations do not depend on n and N . Since N is chosen large enough, we obtain that Ω( 1n )/ρ - n ≤ d kN /2. This ends the proof of the lemma.

Lemma 3.7. Under the hypotheses of Theorem 3.1, for all J ≥ 0, N ≥ 0, and p > 0, the sequence 1 * n log p is bounded. In particular, the sequence of functions 1 * n is equicontinuous.

Proof. We only need to consider n > 2N , and the implicit constants below may depend on N . We will use Lemma 2.11 and need to estimate dd c 1 * n . By Lemma 3.6 the sequence ( θn ) is bounded. This and Proposition 3.4 imply that

dd c 1 * n 1 ρ- n n-N m=N +1 η(m)e m max φ ρ- n-m d (k-1)m ω m + n m=n-N +1 η(m)e (n-N ) max φ d (k-1)m ω m .
Then, using the two inequalities in (3.9), we obtain

dd c 1 * n n-N m=N +1 η(m)e mΩ(φ) d -m ω m + n m=n-N +1 η(m)e (n-N )Ω(φ) d (k-1)m-kn ω m ∞ m=0 η(m)e mΩ(φ) d -m ω m .
Finally, since η is sub-exponential and e Ω(φ) < d, Lemma 2.11 implies the result.

End of the proof of Proposition 3.2. By Lemma 3.6, we already know that the sequence (θ n ) is bounded. Since min 1 * n = 1, we have max 1 * n = θ n , hence the sequence (1 * n ) is uniformly bounded. In order to show that this sequence is equicontinuous, it is enough to approximate it uniformly by an equicontinuous sequence.

Take N = 0. Fix an arbitrary constant 0 < ǫ < 1. Since φ -φ m ∞ m -2 by (3.1), we can choose an integer J large enough so that for every n ≥ 0 we have

(1 -ǫ) 1n ≤ 1 n ≤ (1 + ǫ) 1n . This implies 1 -ǫ 1 + ǫ 1 * n ≤ 1 * n ≤ 1 + ǫ 1 -ǫ 1 * n .
Therefore, |1 * n -1 * n | is bounded uniformly by a constant times ǫ. By Lemma 3.7, the sequence ( 1 * n ) is equicontinuous. We easily deduce that the sequence (1 * n ) is equicontinuous as well.

3.4. Proof of Theorem 3.1. We first define the scaling ratio λ. By definition of ρ + n , we easily see that the sequence (ρ + n ) is sub-multiplicative, that is, ρ + n+m ≤ ρ + m ρ + n for all m, n ≥ 0. It follows that the first limit in the following line exists

λ := lim n→∞ ρ + n 1/n = lim n→∞ ρ - n 1/n ,
where the last identity is due to the fact that (θ n ) is bounded, see Lemma 3.6. We have the following lemma.

Lemma 3.8. The sequences (λ -n ρ + n ) and (λ -n ρ - n ) are both bounded above and below by positive constants. In particular, the sequence λ -n 1 n is uniformly bounded and equicontinuous.

Proof. It is clear that the second assertion is a consequence of the first one and Proposition 3.2. We prove now the first assertion. Since the sequence ρ + n is sub-multiplicative, it is well-known that inf n (ρ + n ) 1/n is equal to λ. Hence, we have λ -n ρ + n ≥ 1. Since θ n is bounded, we have ρ + n ρ - n . It follows that both λ -n ρ ± n are bounded from below by positive constants. Similarly, the sequence ρ - n is super-multiplicative, i.e., ρ - n+m ≥ ρ - m ρ - n for all m, n ≥ 0, and we deduce that that both λ -n ρ ± n are bounded from above by positive constants. The lemma follows. We can extend the above result to all continuous test functions. Lemma 3.9. Let F be a uniformly bounded and equicontinuous family of real-valued functions on P k . Then the family F N := {λ -n L n (g) : g ∈ F, n ≥ 0} is also uniformly bounded and equicontinuous. Proof. By Lemma 3.8, the family F N is uniformly bounded. We prove now that it is equicontinuous. Given any constant ǫ > 0, using a convolution, we can find for every g ∈ F a smooth function g ′ such that g -g ′ ∞ ≤ ǫ and g ′ C 2 is bounded by a constant depending on ǫ. Denote by F ′ the family of these g ′ . Observe that

|λ -n L n (g) -λ -n L n (g ′ )| = |λ -n L n (g -g ′ )| ≤ ǫλ -n 1 n ≤ ǫλ -n ρ + n
and the last expression is bounded by a constant times ǫ. Therefore, in order to prove the lemma, it is enough to show that the family F ′ N , defined in a similar way as for F N , is equicontinuous. For simplicity, we replace F by F ′ and assume that g C 2 is bounded by a constant for g ∈ F. The constants involved in the computation below do not depend on g ∈ F.

We continue to use the notation introduced above. Consider an arbitrary constant ǫ > 0. Take N = 0 and choose J large enough depending on ǫ. From the definitions of L and Ln (see (3.2)) and the fact that φ -φ m ∞ m -2 we obtain that

|λ -n L n (g)(x) -λ -n Ln (g)(x)| ≤ ǫλ -n f n (x)=y e φ(x)+φ(f (x))+•••+φ(f n-1 (x)) |g(x)|.
This and Lemma 3.8 imply that

λ -n L n (g) -λ -n Ln (g) ∞ ≤ ǫλ -n ρ + n g ∞ ǫ.
So, in order to prove that the family λ -n L n (g) is equicontinuous, it is enough to show the same property for the family λ -n Ln (g). We will use the same idea as in Proposition 3.4 and Lemma 3.5. Instead of the function h, we need to consider the following slightly different function (recall that N = 0)

H(x 0 , . . . , x n ) := e φ n+J (x 0 )+φ n+J -1 (x 1 )+•••+φ J +1 (x n-1 ) g(x 0 ) = h(x 0 , . . . , x n )g(x 0 ).
We have i∂∂H = (i∂∂h)g(x 0 ) + h(i∂∂g(x 0 )) + i∂h ∧ ∂g(x 0 ) -i∂h ∧ ∂g(x 0 ).

Applying Cauchy-Schwarz's inequality to the last two terms, and since g has a bounded C 2 norm, we obtain

|i∂∂H| ≤ |(i∂∂h)g(x 0 )| + |h(i∂∂g(x 0 ))| + ih -1 ∂h ∧ ∂h + ih∂g(x 0 ) ∧ ∂g(x 0 ) |i∂∂h| + hω FS (x 0 ) + ih -1 ∂h ∧ ∂h + hω FS (x 0 ) |i∂∂h| + hω FS (x 0 ) + ih -1 ∂h ∧ ∂h.
We claim that the last sum satisfies

|i∂∂h| + hω FS (x 0 ) + ih -1 ∂h ∧ ∂h h n-1 m=0 η(n -m)ω (m) .
Lemma 3.5 shows that the first term |i∂∂h| of the LHS is bounded by the RHS. The second term clearly satisfies the same property (consider m = 0 in the above sum). For the last term, by Cauchy-Schwarz's inequality and using a computation as in the proof of Lemma 3.5, we have (recall that N = 0)

ih -1 ∂h ∧ ∂h = h n-1 m,m ′ =0 i∂φ n+J-m (x m ) ∧ ∂φ n+J-m ′ (x m ′ ) h n-1 m=0 η(n -m)ω (m) .
This implies the claim and gives a bound for |i∂∂H|.

Since Ln (g) = (π n ) * (H), we obtain as in the proof of Proposition 3.4 that

|dd c λ -n Ln (g)| λ -n n m=1 η(m)e m max φ ρ+ n-m d (k-1)m ω m .
By Lemmas 3.3 and 3.8 we have ρ±

n-m ρ ± n-m
λ n-m . Therefore, we obtain

|dd c λ -n Ln (g)| n m=1 η(m)e m max φ λ -m d (k-1)m ω m .
Finally, since λ ≥ d k e min φ by definition of λ, the last estimate implies that

|dd c λ -n Ln (g)| n m=1 η(m)e mΩ(φ) d -m ω m .
Lemma 2.11 and the fact that d > e Ω(φ) imply the result.

We now construct the density function ρ on P k . Recall that the sequence λ -n 1 n is uniformly bounded and equicontinuous. Therefore, the Cesaro sums

1 n := 1 n n-1 j=0 λ -j 1 j
also form a uniformly bounded and equicontinuous sequence of functions. It follows that there is a subsequence of 1 n which converges uniformly to a continuous function ρ. Observe that ρ ≥ inf n λ -n ρ - n . Hence, by Lemma 3.8, the function ρ is strictly positive. A direct computation gives

λ -1 L( 1 n ) -1 n = 1 n (λ -n 1 n -1 0 ).
Since λ -n 1 n is bounded uniformly in n, the last expression tends uniformly to 0 when n tends to infinity. We then deduce from the definition of ρ that λ -1 L(ρ) = ρ.

End of the proof of Theorem 3.1. Observe that we only need to show that λ -n L n (g) converges to c g ρ for some constant c g . The remaining part of the theorem is then clear. Let G denote the family of all limit functions of subsequences of λ -n L n (g). By Lemma 3.9, the sequence λ -n L n (g) is uniformly bounded and equicontinuous. Therefore, by Arzelà-Ascoli theorem, G is a uniformly bounded and equicontinuous family of functions which is compact for the uniform topology. Observe also that G is invariant under the action of λ -1 L. Define M := max{l(a)/ρ(a) : l ∈ G, a ∈ P k }.

We first prove the following properties.

Claim 1. We have max P k (l/ρ) = M for every l ∈ G.

Assume by contradiction that there is a sequence λ -n j L n j (g) which converges uniformly to a function l ∈ G such that l ≤ (M -2ǫ)ρ for some constant ǫ > 0. Then, for j large enough, we have λ -n j L n j (g) ≤ (M -ǫ)ρ. Fix such an index j. For n > n j we have

λ -n L n (g) = λ -n+n j L n-n j (λ -n j L n j (g)) ≤ (M -ǫ)λ -n+n j L n-n j (ρ) = (M -ǫ)ρ.
Since this is true for every n > n j , we get a contradiction with the definition of M . This ends the proof of Claim 1.

Claim 2. We have l/ρ = M on the small Julia set supp(µ) for every l ∈ G.

Consider an arbitrary function l ∈ G and define l

n := λ -n L n (l) ∈ G. By Claim 1, there is a point a n ∈ P k such that l n (a n ) = M ρ(a n ). By definition of M , we have l ≤ M ρ and hence M ρ(a n ) = l n (a n ) = λ -n L n (l)(a n ) ≤ λ -n L n (M ρ)(a n ) = M ρ(a n ).
So the inequality in the last line is actually an equality. This and the definition of L imply that l/ρ = M on f -n (a n ). Observe that when n tends to infinity, the limit of f -n (a n ) contains supp(µ), see, e.g., [START_REF] Dinh | Equidistribution speed for endomorphisms of projective spaces[END_REF]Cor. 1.4]. By continuity, we obtain l/ρ = M on supp(µ). This ends the proof of Claim 2.

Applying the above claims to the function -g instead of g, we obtain that l/ρ is equal on supp(µ) to min P k (l/ρ). We can now conclude that l = M ρ on P k for every l ∈ G. Define c g := M . We obtain that λ -n L n (g) converges uniformly to c g ρ. This completes the proof of the theorem.

Properties of equilibrium states

In this section we conclude the proof of Theorem 1.1. In Sections 4.1 and 4.2, we deduce the main properties of the equilibrium states in Theorem 1.1 from Theorem 3.1. In Section 4.3 we prove the equidistribution of repelling periodic points, which concludes the proof of Theorem 1.1. 4.1. Equidistribution of preimages and mixing properties. We have seen that the operator L acts on the space of continuous functions g : P k → R. It is also positive, i.e., L(g) ≥ 0 when g ≥ 0. Therefore, L induces by duality a linear operator L * acting on the space of measures and preserving the cone of positive measures.

Proposition 4.1. Under the assumptions of Theorem 1.1, there exists a unique conformal measure associated with φ, that is, there exists a unique probability measure m φ which is an eigenvector of L * . We also have L * (m φ ) = λm φ , supp(m φ ) = supp(µ), and if ν is a positive measure, λ -n (L n ) * (ν) converges to ν, ρ m φ when n tends to infinity. Moreover, if F is a uniformly bounded and equicontinuous family of functions on P k , then λ -n L n (g)-c g ρ converges to 0 when n goes to infinity, uniformly on g ∈ F, where c g := m φ , g . Proof. For any probability measure m φ as in the first assertion, there is a constant λ ′ > 0 such that L * (m φ ) = λ ′ m φ . It follows that, for every continuous function g,

m φ , g = lim n→∞ λ ′-n (L n ) * (m φ ), g = lim n→∞ m φ , λ ′-n L n (g) .
We necessarily have λ ′ = λ because we know from the end of the proof of Theorem 3.1 that λ -n L n (g) converges uniformly to c g ρ and c g is not always 0. We conclude that m φ , g = c g m φ , ρ . Since m φ , g = c g = 1 when g = 1 (because m φ is a probability measure) we deduce that m φ , ρ = 1 and hence m φ , g = c g for every continuous function g. This gives the uniqueness of m φ .

Consider now an arbitrary probability measure ν on P k . We have

λ -n (L n ) * (ν), g = ν, λ -n L n (g) → ν, c g ρ = ν, ρ m φ , g .
It follows that λ -n (L n ) * (ν) converges to ν, ρ m φ . If ν is supported by supp(µ) and g vanishes on supp(µ), by definition of L, the function L n (g) also vanishes on supp(µ) and the last computation implies that m φ , g = 0. Equivalently, the measure m φ is supported by supp(µ).

In order to show that supp(m φ ) = supp(µ), we assume by contradiction that there is a continuous function g ≥ 0 on P k such that g > 0 on some open subset U of supp(µ) and m φ , g = 0. The λ -1 L * -invariance of m φ implies that m φ , L n g = λ n m φ , g = 0 and the definition of L implies that L n (g) > 0 on f n (U ). It follows that m φ has no mass on f n (U ) and hence on ∪ n≥0 f n (U ). On the other hand, we have for every x ∈ P k that d -kn (f n ) * (δ x ) converges to µ, see, e.g., [START_REF] Dinh | Equidistribution speed for endomorphisms of projective spaces[END_REF]Cor. 1.4]. Therefore, f -n (δ x )∩U = ∅ for some n or equivalently x ∈ ∪ n≥0 f n (U ). So we have ∪ n≥0 f n (U ) = P k . This contradicts the fact that m φ has no mass on this union. So we have supp(m φ ) = supp(µ) as desired.

For the last assertion of the proposition, we can replace g with g -c g ρ in order to assume that c g = 0 for g ∈ F. By Lemma 3.9, the family F N is uniformly bounded and equicontinuous. So the limit of the sequence of sets λ -n L n (F) is a compact, uniformly bounded and equicontinuous family of functions that we denote by F ∞ . This family is invariant by λ -1 L and we also have c g = 0 for g ∈ F ∞ . We want to show that it contains only the function 0.

Define

M := max{l(a)/ρ(a) : l ∈ F ∞ , a ∈ P k }.
Choose a function l ∈ F ∞ and a point a such that l(a)/ρ(a) = M . There are an increasing sequence of integers (n j ) and a sequence (g j ) ⊂ F such that λ -n j L n j (g j ) converges uniformly to l. For every n ≥ 0, choose a limit function l -n of the sequence λ -n j +n L n j -n (g j ). We have

l = λ -n L n (l -n ) and l -n ∈ F ∞ .
As in the end of the proof of Theorem 3.1, we obtain that l -n /ρ = M on the set f -n (a) and if l -∞ is a limit of the sequence l -n then l -∞ belongs to F ∞ and l -∞ /ρ = M on the small Julia set supp(µ). Since m φ is supported by the small Julia set and m φ , g = c g = 0 for g ∈ F ∞ , we conclude that M = 0. Using the same argument for -g with g ∈ F, we obtain that the minimal value of the functions in F ∞ is also 0. So F ∞ contains only the function 0. This ends the proof of the proposition. Proposition 4.1 in particular gives the following equidistribution result for the (weighted) preimages of a given point.

Corollary 4.2. Under the assumptions of Theorem 1.1, for every x ∈ P k the points in f -n (x), with suitable weights, are equidistributed with respect to the conformal measure m φ when n tends to infinity. More precisely, if δ a denotes the Dirac mass at a, then

lim n→∞ λ -n f n (a)=x e φ(a)+•••+φ(f n-1 (a)) δ a = ρ(x)m φ for every x ∈ P k .
Proof. Denote by µ n the measure in the LHS of the last identity. Let g be any continuous function on P k . We have

µ n , g = λ -n f n (a)=x e φ(a)+•••+φ(f n-1 (a)) g(a) = λ -n (L n g)(x).
The last expression converges to c g ρ(x) = ρ(x) m φ , g . The result follows.

For our convenience, define the operator L by L(g) := (λρ) -1 L(ρg). Define also the positive measure µ φ by µ φ := ρm φ . We have the following lemma.

Lemma 4.3. For any continuous function g : P k → R, the sequence L n (g) converges uniformly to the constant c ρg = µ φ , g = m φ , ρg . We also have that µ φ is an f -invariant probability measure such that supp(µ φ ) = supp(µ).

Proof. Define g ′ := ρg. We have c g ′ = m φ , ρg = µ φ , g . The first assertion is a direct consequence of the fact that λ -n L n (g ′ ) converges uniformly to c g ′ ρ.

For the second assertion, we have seen in the proof of Proposition 4.1 that m φ , ρ = 1. It follows that µ φ is a probability measure. Moreover, we obtain from the λ -1 L * -invariance of m φ that

µ φ , g • f = m φ , ρ(g • f ) = λ -1 L * (m φ ), ρ(g • f ) = m φ , λ -1 L(ρ(g • f )) = µ φ , L(g • f ) .
Using that λ -1 L(ρ) = ρ and the definition of L, we can easily check that L(g • f ) = g. So the previous identities imply that µ φ , g • f = µ φ , g . Hence, µ φ is an invariant measure. The assertion on the support of µ φ is clear because supp(m φ ) = supp(µ) by Proposition 4.1 and ρ is strictly positive.

The operator L can also be extended to a continuous operator on L 2 (µ φ ) and L 2 (m φ ). Since µ φ = ρm φ and ρ is positive and continuous, these two spaces are actually the same and the corresponding norms are equivalent.

Lemma 4.4. Under the assumptions of Theorem 1.1, the operator L extends to a linear continuous operator on L 2 (m φ ) whose norm is bounded by λe 1 2 Ω(φ) . Moreover, there exists a positive constant c such that λ -n L n L 2 (m φ ) ≤ c for all n ≥ 0.

Proof. By Cauchy-Schwarz's inequality and using the λ -1 L * -invariance of m φ , we have

m φ , |L n g| 2 ≤ m φ , (L n 1) • (L n |g| 2 ) ≤ ρ + n m φ , L n |g| 2 = ρ + n λ n m φ , |g| 2 for every g ∈ L 2 (m φ )
and n ≥ 0. The second assertion of the lemma follows because ρ + n λ n .

For positive real numbers q, M , and Ω with q > 2 and Ω < log d, consider the following set of weights P(q, M, Ω) := φ : P k → R : φ log q ≤ M, Ω(φ) ≤ Ω and the uniform topology induced by the sup norm. Observe that this family is equicontinuous.

In the two lemmas below, we study the dependence on φ ∈ P(q, M, Ω) of the objects introduced in this section. Therefore, we will use the index φ or parameter φ for objects which depend on φ, e.g., we will write λ φ , L φ , ρ φ , 1 n (φ) instead of λ, L, ρ and 1 n .

Lemma 4.6. Let q, M , and Ω be positive real numbers such that q > 2 and Ω < log d. The maps φ → λ φ , φ → m φ , φ → µ φ , and φ → ρ φ are continuous on φ ∈ P(q, M, Ω) with respect to the standard topology on R, the weak topology on measures, and the uniform topology on functions.

In particular, ρ φ is bounded from above and below by positive constants which are independent of φ ∈ P(q, M, Ω). Moreover, λ -n φ L n φ ∞ is bounded by a constant which is independent of n and of φ ∈ P(q, M, Ω).

Proof. Fix q, M, and Ω as above. Observe that when we add to φ a constant c the scaling ratio λ φ and the operator L φ are both changed by a factor e c . It follows that the operator λ -1 φ L φ , the measures m φ , µ φ , and the density function ρ φ do not change. So, for simplicity, it is enough to prove the lemma for φ in the family

P 0 (q, M, Ω) := φ : P k → R : min φ = 0, φ log q ≤ M, Ω(φ) ≤ Ω .
Notice that this family is compact for the uniform topology.

Consider two weights φ and φ ′ in this space. From the definition of λ φ and λ φ ′ , we have

e -φ-φ ′ ∞ ≤ λ φ /λ φ ′ ≤ e φ-φ ′ ∞ . It follows that φ → λ φ is continuous. When φ ′ → φ, any limit value of m φ ′ is a probability measure invariant by λ -1 φ L * φ thanks to the invariance of m φ ′ by λ -1 φ ′ L * φ ′ .
Since m φ is the only probability measure which is invariant by λ -1 φ L * φ , this limit value must be m φ . Thus, φ → m φ ′ is continuous.

We deduce from the proof of Proposition 3.2 that θ n (φ) = ρ + n (φ)/ρ - n (φ) is bounded by a constant independent of n and φ. Moreover, the family of functions 1 * n (φ) with n ≥ 0 and φ ∈ P 0 (q, M, Ω) is uniformly bounded and equicontinuous. Recall that 1 * n (φ) = (ρ - n (φ)) -1 1 n (φ) and ρ - n (φ) ≤ λ n φ ≤ ρ + n (φ), see the proof of Lemma 3.8. It follows that λ -n φ 1 n (φ) belongs to a uniformly bounded and equicontinuous family of functions.

From the definition of ρ φ and ρ φ ′ , we also see that these functions belong to a uniformly bounded and equicontinuous family of functions. When φ ′ → φ, if ρ ′ is any limit of ρ φ ′ , then ρ ′ is continuous and invariant by λ -1 φ L φ because ρ φ ′ satisfies a similar property. It follows from Theorem 3.1 that ρ ′ = cρ φ for some constant c. On the other hand, since µ φ ′ = ρ φ ′ m φ ′ is a probability measure, any limit of ρ φ ′ m φ ′ is a probability measure. Thus, ρ ′ m φ = cµ φ is a probability measure and hence c = 1. We conclude that ρ φ ′ → ρ φ and also µ φ ′ → µ φ . In other words, the maps φ → µ φ and φ → ρ φ are continuous. Since ρ φ is strictly positive and the family P 0 (q, M, Ω) is compact, we deduce that ρ φ is bounded from above and below by positive constants independent of φ.

The last assertion in the lemma is also clear because λ

-n φ L n φ ∞ = λ -n φ 1 n (φ) ∞ ≤ θ n (φ)
. This ends the proof of the lemma.

Lemma 4.7. Let q, M , and Ω be positive real numbers such that q > 2 and Ω < log d. Let F be a uniformly bounded and equicontinuous family of real-valued functions on P k . Then the family λ -n φ L n φ (g) : n ≥ 0, φ ∈ P(p, M, Ω), g ∈ F is equicontinuous. Moreover, λ -n φ L n φ (g) -m φ , g ∞ tends to 0 uniformly on φ ∈ P(p, M, Ω) and g ∈ F when n goes to infinity. Proof. As in Lemma 4.6, we can assume that φ ∈ P 0 (p, M, Ω). The first assertion is clear from the proof of Lemma 3.9. We prove now the second assertion. By Lemma 4.6, m φ belongs to a compact family of probability measures. It follows that | m φ , g | is bounded by a constant independent of φ and g. It follows that the family F ′ N := λ -n φ L n φ (g) -m φ , g : n ≥ 0, φ ∈ P 0 (p, M, Ω), g ∈ F is uniformly bounded and equicontinuous. Denote by F ′ ∞ the set of all functions l ′ obtained as the limit of a sequence

h j := λ -n j φ j L n j φ j (g j ) -m φ j , g j in F ′ N with n j → ∞.
By taking a subsequence, we can assume that φ j converges uniformly to some function φ ∈ P 0 (p, M, Ω). Since m φ j , h j = 0, we also obtain that m φ , l ′ = 0 by the continuity of φ → m φ . Now, as in the end of the proof of Proposition 4.1, we obtain that Proposition 4.8. The probability measure µ φ is a unique equilibrium state associate to φ. Moreover, the pressure P (φ) is equal to log λ.

l ′ = λ -n φ L n φ (l ′ -n ) for some l ′ -n ∈ F ′ ∞ and
Proof. We follow the approach in [PU10, Th. 5.6.5]. To simplify the notation, set S n (g) :=

n-1 j=0 g • f j for any function g : P k → R. Recall that, given φ ′ : P k → R with φ ′ log q < ∞ and Ω(φ ′ ) < log d, we denote by λ φ ′ , ρ φ ′ the objects associated to L φ ′ .

Claim 1. We have Ent f (µ φ ′ ) + µ φ ′ , φ ′ = P (φ ′ ) = log λ φ ′ for all φ ′ : P k → R such that φ ′ log q < ∞ and Ω(φ ′ ) < log d. Proof of Claim 1. The proof of the inequality P (φ ′ ) ≤ log λ φ ′ is an adaptation of Gromov's proof of the fact that the topological entropy of f is bounded above by k log d, see [START_REF] Gromov | On the entropy of holomorphic maps[END_REF]. We refer to [UZ13, Th. 6.1] for the complete details. To complete the proof, it is enough to show that Ent f (µ φ ′ ) + µ φ ′ , φ ′ ≥ log λ φ ′ .

It follows from [START_REF] Parry | Entropy and Generators in Ergodic Theory[END_REF] that Ent f (µ φ ′ ) ≥ µ φ ′ , log J µ φ ′ , where J µ φ ′ is defined as the Radon-Nikodym derivative of f * µ φ ′ with respect to µ φ ′ (when this derivative exists). In our setting, it follows from a straightforward computation that J µ φ ′ is well defined and given by

J µ φ ′ = λ φ ′ ρ -1
φ ′ e -φ ′ (ρ φ ′ • f ). Indeed, denoting by J ′ the RHS in the above expression, for every continuous function g : P k → R, we have

µ φ ′ , J ′ g = λm φ ′ , e -φ ′ (ρ φ ′ • f )g = L * φ ′ m φ ′ , e -φ ′ (ρ φ ′ • f )g = m φ ′ , L φ ′ (e -φ ′ (ρ φ ′ • f )g) = m φ ′ , ρ φ ′ L φ ′ (e -φ ′ g) = µ φ ′ , f * g = f * µ φ ′ , g , which proves that J ′ = J µ φ ′ . We then have, using the f * -invariance of µ φ ′ , Ent f (µ φ ′ )+ µ φ ′ , φ ′ ≥ µ φ ′ , log J µ φ ′ + µ φ ′ , φ ′ = µ φ ′ , log(ρ φ ′ • f ) -log ρ φ ′ +log λ φ ′ = log λ φ ′
and the proof is complete.

Claim 2. Let M and Ω be positive real numbers such that Ω < log d, and g : P k → R a continuous function. Then, for every y ∈ P k , we have (4.1)

1 n

f n (x)=y S n (g)(x)e Sn (φ ′ )(x) L n φ ′ 1(y) → µ φ ′ , g
where the convergence is uniform on φ ′ ∈ P(q, M, Ω).

Proof of Claim 2. Observe that the LHS of (4.1) is equal to

1 n λ -n φ ′ f n (x)=y S n (g)(x)e Sn (φ ′ )(x) λ -n φ ′ L n φ ′ 1(y)
.

The denominator of the last quotient converges to ρ φ ′ (y) and the numerator satisfies

(4.2) λ -n φ ′ f n (x)=y S n (g)(x)e Sn(φ ′ )(x) = λ -n φ ′ n-1 j=0 L n φ ′ (g • f j )(y) = λ -j φ ′ n-1 j=0 λ j-n φ ′ L n-j φ ′ (g • L j φ ′ 1)(y).
It follows from Lemma 4.7 that

(4.3) λ j-n φ ′ L n-j φ ′ (g • L j φ ′ 1) → m φ ′ , g • L j φ ′ 1 ρ φ ′ as n -j → ∞,
where the convergence is uniform on φ ′ ∈ P(q ′ , M, Ω). We deduce from (4.2), (4.3), and the fact that λ -j φ ′ L j φ ′ 1 → ρ φ ′ as j → ∞ that, as n → ∞, the LHS in (4.1) tends to

lim n→∞ 1 n n-1 j=0 λ -j φ ′ m φ ′ , g • L j φ ′ 1 = m φ ′ , g • ρ φ ′ = µ φ ′ , g .
The proof is complete.

Claim 3. For every ψ : P k → R such that ψ log q < ∞ the function t → P (φ + tψ) is differentiable in a neighbourhood of 0.

Proof of Claim 3. Fix y ∈ P k and set

P n (t) := 1 n log L n φ+tψ 1(y) and Q n (t) := d dt P n (t) = 1 n f n (x)=y S n (ψ)(x)e Sn(φ+tψ)(x)
L n φ+tψ 1(y)

.

Notice that Ω(φ+tψ) < log d for t sufficiently small. A direct computation and Claim 2 (applied with φ + tψ, ψ instead of φ ′ , g) imply that Q n (t) → µ φ+tψ , ψ as n → ∞, locally uniformly with respect to t. We also have P n (t) → log λ φ+tψ = P (φ + tψ), where the convergence follows from Lemma 3.8 and the equality from Claim 1 applied with φ ′ instead of φ + tψ. We deduce that the pressure function P , in a neighbourhood of t = 0, is the uniform limit of the C 1 functions P n (t), whose derivatives Q n (t) are also uniformly convergent. Thus, the function P is differentiable in a neighbourhood of t = 0, with derivative at t equal to µ φ+tψ , ψ .

It follows from Claim 1 that µ φ is an equilibrium state. By [PU10, Cor. 3.6.7], the fact that the pressure function t → P (φ + tψ) is differentiable at t = 0 with respect to a dense set of continuous functions ψ implies the uniqueness of the equilibrium state for the weight φ. Since this property holds by Claim 3 for all ψ such that ψ log q < ∞, the proof is complete.

In the second part of this work, we will prove that, when φ and ψ are Hölder continuous, the pressure function P (t) defined above is actually analytic, see [BD20, Theorem 1.3].

We conclude this section with the following properties of the equilibrium state µ φ that we will use in the next section. Proposition 4.9. Under the assumptions of Theorem 1.1, the metric entropy Ent f (µ φ ) of µ φ is strictly larger than (k -1) log d. In particular, µ φ has no mass on proper analytic subsets of P k , its Lyapunov exponents are strictly positive and at least equal to 1 2 (Ent f (µ φ ) -(k -1) log d), and the function log | Jac Df | is integrable with respect to µ φ . Moreover, the Hausdorff dimension of µ φ satisfies

dim H (µ φ ) ≥ (k -1) log d λ 1 + Ent f (µ φ ) -(k -1) log d λ k • Proof. Since µ φ maximizes the pressure and Ent f (µ) = k log d, we have Ent f (µ φ ) + µ φ , φ ≥ Ent f (µ) + µ, φ ≥ k log d + min φ.
Since by assumption we have Ω(φ) < log d, it follows that

Ent f (µ φ ) ≥ k log d + min φ -µ φ , φ ≥ k log d -Ω(φ) > (k -1) log d.
The Lyapunov exponents of every ergodic invariant probability measure satisfying this property are bounded below as in the statement, and in particular the function log | Jac | is integrable with respect to it, see de Thélin [De 08] and Dupont [START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF]. The bound on the Hausdorff dimension of µ φ is then a consequence of [START_REF] Dupont | On the dimension of invariant measures of endomorphisms of CP k[END_REF], see also [START_REF] De | On the measures of large entropy on a positive closed current[END_REF]. Let now X be a proper analytic subset of P k . Assume by contradiction that m := µ φ (X) > 0. We choose such an X which is irreducible and of minimal dimension p. So, for all n ≥ 0, f n (X) is also an irreducible analytic set of dimension p. We have

µ φ (f n (X)) = µ φ (f -n (f n (X))) ≥ µ φ (X) = m. It follows that µ φ (f n (X) ∩ f n ′ (X)) > 0 for some n ′ > n ≥ 0. The minimality of the dimension p implies that f n (X) = f n ′ (X).
Replacing X, f , and φ by f n (X), f n ′ -n , and φ

+ • • • + φ • f n ′ -n-1
we can assume that X is invariant and µ φ (X) > 0. Since µ φ is mixing, it is ergodic. We then deduce that µ φ (X) = 1. Therefore, the metric entropy of µ φ is smaller than the topological entropy of f on X. But this is a contradiction because the last one is at most equal to p log d, see [DS10a, Th. 1.108 and Ex. 1.122]. The result follows. 4.3. Equidistribution of periodic points and end of the proof of Theorem 1.1. Because of Proposition 4.1, Corollary 4.2, Lemma 4.3, and Propositions 4.5 and 4.8, to prove Theorem 1.1 it only remains to establish the equidistribution of (weighted) repelling periodic points of period n with respect to µ φ , as n → ∞.

Theorem 4.10. Let f : P k → P k be a holomorphic endomorphism of P k of algebraic degree d ≥ 2 and satisfying Assumption (A). Let φ : P k → R satisfy φ log q < ∞ for some q > 2 and Ω(φ) < log d. Let µ φ be the unique equilibrium state associated to φ, and λ the scaling ratio. Then for every n ∈ N there exists a set P ′ n of repelling periodic points of period n in the small Julia set such that

(4.4) lim n→∞ λ -n y∈P ′ n e φ(y)+φ(f (y))+•••+φ(f n-1 (y)) δ y = µ φ .
Note that a related equidistribution property for Hölder continuous weights was proved by Comman-River-Letelier [START_REF] Comman | Large deviation principles for non-uniformly hyperbolic rational maps[END_REF] for (hyperbolic and) topologically Collect-Eckmann rational maps on P 1 .

To prove Theorem 4.10, we follow a now classical strategy due to Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF] for the measure of maximal entropy (which corresponds to the case φ ≡ 0). We employ a trick due to X. Buff which simplifies the original proof. An extra difficulty with respect to the case φ ≡ 0 is due to the fact that there is no a priori upper bound for the mass of the left hand side of (4.4) when P ′ n is replaced by the set of all repelling periodic points of period n. Given any point x ∈ P k we denote by µ x,n the measure

µ x,n := λ -n ρ(x) -1 f n (a)=x e φ(a)+φ(f (a))+•••+φ(f n-1 (a)) ρ(a)δ a .
It follows from Corollary 4.2 that, for every continuous function g : P k → R, we have

µ x,n , g = λ -n ρ(x) -1 f n (a)=x e φ(a)+φ(f (a))+•••+φ(f n-1 (a)) ρ(a)g(a) → ρ(x) -1 ρ(x)m φ , ρg = µ φ , g
as n → ∞. This means that, for all x ∈ P k , we have µ x,n → µ φ as n → ∞. Lemma 4.12. For every 0 < L < L 1 there exist two measurable functions η L : X → (0, 1] and S L : X → (1, +∞) such that, for μφ -almost every x ∈ X, the map f -n x is defined on B P k (x 0 , η L (x)) with Lip(f -n

x ) ≤ S L (x)e -nL for every n ∈ N. Sketch of proof. The statement is a consequence of Proposition 4.9. A direct proof in the case φ = 0 is given in [BD99, Sec. 2] and [BDM08, Thm. 1.4(3)]. The case n = 1 comes from a (quantitative) application of the inverse mapping theorem, which is then iterated to get functions η L and S L valid for all n. The main point in the proof is an application of the Birkhoff ergodic theorem to the function log | Jac Df |. This function is integrable with respect to the measure of maximal entropy µ 0 , which has continuous potentials, because of the Chern-Levine-Nirenberg inequality [START_REF] Shiing-Shen Chern | Intrinsic norms on a complex manifold[END_REF]. Since this function is integrable with respect to µ φ by Proposition 4.9, the same proof applies in our setting.

Proof of Lemma 4.11. Since ρ is continuous and strictly positive, we only need to check that, for µ φ -almost every x ∈ P k , every sufficiently small ball B centred at x satisfies µ (m) B,n ≥ 1 -1/m for every n sufficiently large.

Let us consider the disintegration of the measure μφ with respect to µ φ and the projection π 0 . We denote by μx φ the conditional measure on {x 0 = x}. The measure μx φ is uniquely defined for µ φ -almost all x ∈ X and characterized by the identity μφ , g = µ φ , u(x) , where u(x) := μx φ , g for all bounded measurable functions g : X → R. Since (π 0 ) * μφ = µ φ , μx φ is a probability measure for µ φ -almost every x.

We will need a more explicit description of the conditional measures μx φ . For n > 0 and x ∈ X we consider the measure μx n on X defined as follows. First, let us consider the projection X → X n+1 given by πn := (π -n , . . . , π -1 , π 0 ).

For every element (y -n , . . . , y 0 ) ∈ X n+1 we choose a representative ẑ ∈ X such that z j = y j for all -n ≤ j ≤ 0. For any given y 0 and any n > 0 we then have d kn distinct such representatives, and we denote by Ẑn their collection. We then set μx n := λ -n ρ(x) -1 ẑ∈ Ẑn : z 0 =x e φ(z -n )+φ(z -n+1 )+•••+φ(z -1 ) ρ(z -n )δ ẑ .

Since this is a finite sum, the measures μx n are well defined on X. Claim. We have lim n→∞ μx n = μx φ for µ φ -almost every x ∈ X.

Proof. It is enough to check the assertion on the cylinders A -i,B for i ≥ 0 and B ⊆ P k a Borel set. It is clear that, for all n > 0, we have μx n (A 0,B ) = δ x (B), which implies that μx n (A 0,B )µ φ (x) = δ x (B)µ φ (x) = µ φ (B).

Moreover, for all n > i, using the invariance of ρ by λ -1 L we have μx n (A -i,B ) = μx n (A -i,B ∩ π -1 0 (x)) = λ -n ρ(x) -1 ẑ∈ Ẑn : z 0 =x e φ(z -n )+φ(z -n+1 )+•••+φ(z -1 ) ρ(z -n )δ ẑ (A -i,B ) = λ -n ρ(x) -1 ẑ∈ Ẑi : z 0 =x (L n-i ρ)(z -i )e φ(z -i )+φ(z -i+1 )+•••+φ(z -1 ) δ ẑ (A -i,B ) = λ -i ρ(x) -1 ẑ∈ Ẑi : z 0 =x ρ(z -i )e φ(z -i )+φ(z -i+1 )+•••+φ(z -1 ) δ ẑ (A -i,B ) = μx i (A -i,B ).

In order to conclude it is enough to prove that μx i (A -i,B )µ φ (x) = µ φ (B) for all i > 0.

We have μx i (A -i,B )µ φ (x) = λ -i ρ(x) -1 ẑ∈ Ẑi : z 0 =x e φ(z -i )+φ(z -i+1 )+•••+φ(z -1 ) ρ(z -i )δ ẑ (A -i,B ) µ φ (x) = λ -i ρ(x) -1 f i (a)=x e φ(a)+φ(f (a))+•••+φ(f i-1 (a)) ρ(a)1 B (a) µ φ (x)

= µ φ , λ -i ρ -1 f i * (e φ+φ•f +•••+φ•f i-1 ρ1 B ) = ρe φ+φ•f +•••+φ•f i-1 λ i (ρ • f i ) (f i ) * µ φ , 1 B = µ φ (B),
where in the last step we used the fact that the Jacobian of µ φ (i.e., the Radon-Nidokym derivative

f * µ φ µ φ
) is given by λρ -1 e -φ (ρ • f ), which implies that

(f i ) * µ φ = λ i ρ -1 e -i-1 j=0 φ•f j (ρ • f i )µ φ .
This completes the proof of the Claim.

Let us now fix an integer m > 0, a constant L 0 < L < L 1 , and a second positive integer γ. For every integer N > 0 we set XN := x ∈ X : η L (x) ≥ N -1 and S L (x) ≤ N .

Observe that μφ ( XN ) → 1 as N → ∞. In particular, there exists N 0 = N 0 (m, γ) such that, for every N > N 0 , we have μφ ( XN ) > 1 -1/(2m γ+1 ). It follows by Markov inequality that there exists a subset X γ ⊂ X with µ φ (X γ ) > 1 -1/m γ such that, for all N > N 0 , μx φ ( XN ∩ {x 0 = x}) > 1 -1/(2m) for all x ∈ X γ . It is enough to prove the property in the lemma for all x ∈ X γ . Let us fix one such x. By Lemma 4.12 and the definition of XN , for every x ∈ XN and n ≥ 0 the inverse branch f -n x is defined on the ball B P k (x 0 , N -1 ) with Lip(f -n

x ) ≤ N e -nL . In particular, diam(f -n

x (B P k (x 0 , e -m /(2N )))) ≤ e -m-nL 0 for all n ≥ 0. It follows that all inverse branches on B P k (x, e -m /(2N )) corresponding to elements x ∈ XN ∩ {x 0 = x} are m-good for all n.

The Claim above implies that μx n ( XN ∩ {x 0 = x}) > 1 -1/m for all n large enough. This precisely means that, for all n sufficiently large, we have µ (m) B,n > 1 -1/m, where B = B P k (x, e -m /(2N )). This implies that such a ball B is m-nice. The proof is complete. Lemma 4.13. There exists a positive constant C = C(L 0 , q) such that, for all n ∈ N, m > 0, and every m-good inverse branch g : B → B ′ of f of order n on a ball B, and for all sequences of points {x l }, {y l } with 0 ≤ l ≤ n -1 and x l , y l ∈ f l (B ′ ) we have n-1 l=0 |φ(x l ) -φ(y l )| ≤ Cm -(q-1) .

Proof. Since g is m-good, we have dist(x l , y l ) ≤ e -m-(n-l)L 0 for all 0 ≤ l ≤ n -1. Hence, n-1 l=0 |φ(x l ) -φ(y l )| ≤ n-1 l=0 φ log q | log ⋆ dist(x l , y l )| -q ≤ φ log q ∞ l=1 |1 + m + lL 0 | -q m -(q-1) , where the implicit constant depends on L 0 , q and we used the assumption that q > 2.

Lemma 4.14. Let U be a finite collection of disjoint open subsets of P k . For every m > 0 there exists n(m, U ) > m and, for every n ≥ n(m, U ), a set Q m,n of repelling periodic points of period n in the intersection of the union of the sets in U with the small Julia set such that, for all U ∈ U ,

(1 -1/m)µ φ (U ) ≤ λ -n y∈Qm,n∩U e φ(y)+φ(f (y))+•••+φ(f n-1 (y)) ≤ (1 + 1/m)µ φ (U ).

Proof. We can assume that U consists of a single open set U , the general case follows by taking n(m, U ) to be the maximum of the n(m, U ), for U ∈ U . We can also assume that µ φ (U ) > 0 because otherwise we can choose n(m, U ) = m + 1 and Q m,n = ∅. Fix integers m 2 ≫ m 1 ≫ m. By Lemma 4.11, for µ φ -almost every point a, every ball of sufficiently small radius centred at a is m 2 -nice. Hence, we can find a finite family of disjoint m 2 -nice balls B i ⋐ U , such that µ φ (U \ ∪B i ) < µ φ (U )/m 2 . It is then enough to prove the lemma for each B i instead of U . More precisely, let B = B P k (a, r) be an m 2 -nice ball. It is enough to find an n(m 2 ) > m 2 and, for all n ≥ n(m 2 ), a set Q of repelling periodic points of period n in B ∩ supp(µ φ ) such that (4.5)

(1 -1/m 1 )µ φ (B) ≤ λ -n y∈Q e φ(y)+φ(f (y))+•••+φ(f n-1 (y)) ≤ (1 + 1/m 1 )µ φ (B).

We fix in what follows an integer m 3 ≫ m 2 /µ φ (B) and a second ball B ⋆ = B P k (a, r ⋆ ), with r ⋆ < r, such that µ φ (B ⋆ ) > (1 -1/m 2 )µ φ (B). Choose a finite family of disjoint m 3 -nice balls D i with the property that µ φ (∪D i ) > 1 -1/m 3 . We set D := ∪D i and let b i be the center of D i . We also fix balls D ⋆ i ⋐ D i centred at b i and such that µ φ (∪D ⋆ i ) > 1 -1/m 3 and set D ⋆ := ∪D ⋆ i . Claim 1. There is an integer M 1 = M 1 (m 2 , B, B ⋆ , D i ) such that, for all N ≥ M 1 , we have for all i and all N large enough. This is a consequence of Corollary 4.2 and of the inequality µ φ (B ⋆ ) > (1 -1/m 2 )µ φ (B).

Similarly, we also have the following.

Claim 2. There is an integer M 2 = M 2 (m 2 , B, D ⋆ ) such that, for all N ≥ M 2 , we have Hence, by the fact that µ (m 2 ) B,N ≤ µ a,N and µ a,N ≤ 1 + o(1), in order to prove the claim it is enough to show that 1 -2/m 2 ≤ µ a,N (D ⋆ ) ≤ 1 + 2/m 2 for all N large enough. This is again a consequence of Corollary 4.2 and of the inequality µ φ (D ⋆ ) > (1 -1/m 3 ).

For every N 1 sufficiently large, every point in the support of 1 B ⋆ µ (m 3 ) D i ,N 1 corresponds to an m 3 -good inverse branch of f of order N 1 mapping D i to a relatively compact subset of B. Similarly, for every N 2 sufficiently large every point in the support of 1 D ⋆ µ (m 2 ) B,N 2 corresponds to an m 2 -good inverse branch of f of order N 2 mapping B to a relatively compact subset of

  N ) max φ d kn δ n • On the other hand, by the definitions of ρn we have the following general estimates (with n ≥ N in the first inequality and n -m ≥ N in the second one) (3.9) ρn d kn e (n-N ) min φ and ρn d km e m min φ ρn-m . The first inequality and the above estimate of Ω( 1n ) imply that

  then deduce that l ′ = 0. The lemma follows. 4.2. Pressure and uniqueness of the equilibrium state. Using the results in the previous section, to prove the next proposition we only need to follow the arguments in [UZ13, Sections 6 and 7] and [PU10, Section 5.6].

  4/m 2 )µ φ (B) ≤ µ (m 3 ) D i ,N (B ⋆ ) ≤ (1 + 4/m 2 )µ φ (B) for all i.Proof. Since the balls D i are m 3 -nice and m 3 ≫ m 2 /µ φ (B), for every i we haveµ (m 3 ) D i ,N ≥ (1 -µ φ (B)/m 2 ) for all N large enough.Hence, since µ(m 3 ) D i ,N ≤ µ b i ,N and µ b i ,N ≤ 1+ o(1), we have µ b i ,N -µ (m 3 ) D i ,N ≤ µ φ (B)/m 2 + o(1).Therefore, in order to prove the claim it is enough to show that (1 -2/m 2 )µ φ (B) ≤ µ b i ,N (B ⋆ ) ≤ (1 + 2/m 2 )µ φ (B)

  (D ⋆ ) ≤ 1 + 4/m 2 . Proof. Since the ball B is m 2 -nice, we have µ (m 2 ) B,N ≥ (1 -1/m 2 ) for all N large enough.

For the first assertion, take n = 1. From the definition of ρ + n and λ, we have ρ + 1 ≤ d k e max φ and λ ≥ d k e min φ . The above inequality implies that m φ , |Lg| 2 ≤ e Ω(φ) λ 2 m φ , |g| 2 .

The first assertion in the lemma follows.

Proposition 4.5. Under the assumptions of Theorem 1.1, the measure µ φ = ρm φ is K-mixing and mixing of all orders.

Proof. We start with the second property. Let {g 0 , . . . , g r } be any finite family of continuous test functions on P k . We need to show that, for 0 = n 0 ≤ n 1 ≤ • • • ≤ n r , µ φ , g 0 (g 1 • f n 1 ) . . . (g r • f nr ) -r j=0 µ φ , g j → 0 when n := inf 0≤j<r (n j+1 -n j ) tends to infinity. This property is clearly true for r = 0. Take r ≥ 1. By induction, we can assume that the above convergence holds for the case of r -1 test functions. We prove now the same property for r test functions.

By the f * -invariance of µ φ and the induction hypothesis, we have

So the desired property holds when g 0 is a constant function. Therefore, we can subtract from g 0 a constant and assume that µ φ , g 0 = 0, which implies that the product n j=0 µ φ , g j vanishes. Using that λ -1 L(ρ) = ρ, the λ -1 L * -invariance of m φ , and the definition of L, we can easily check by induction that for all functions g, l we have

We then deduce that

.

By Lemma 4.3, the sequence L n 1 (g 0 ) converges uniformly to 0 as n 1 tends to ∞. So the last integral tends to 0 because the function g 1 . . . (g r • f nr-n 1 ) is bounded. We then conclude that µ φ is mixing of all orders.

We prove now that µ φ is K-mixing, that is, that given g ∈ L 2 (µ φ ), when n tends to infinity the difference µ φ , g(l

tends to 0 uniformly on test functions l whose L 2 (µ φ )-norm is bounded by a constant. As above, we can assume that µ φ , g = 0. We can also assume that the L 2 (µ φ )-norms of g and l are bounded by 1. Fix an arbitrary constant ǫ > 0. It is enough to show the existence of an integer

Choose a continuous function g ′ such that µ φ , g ′ = 0 and g -g ′ L 2 (µ φ ) ≤ ǫ. Using the invariance of µ φ we have

Lemma 4.3 and the identity µ φ , g ′ = 0 imply the result.

We denote by 0 < L 1 ≤ • • • ≤ L k the Lyapunov exponents of µ φ , see Proposition 4.9. We fix in what follows a constant 0 < L 0 < L 1 . Given x ∈ X, a ball B of center x, and n ∈ N, we say that g :

Notice that the definition in particular implies that diam(B) ≤ e -m . We denote by µ

where the sum is taken on the m-good inverse branches g of f of order n on B. Since we have µ

B,n ≤ µ x,n for all n ≥ 0, it follows that any limit value µ ′ B of the sequence µ

B,n ≥ 1 -1/m for every n sufficiently large. Observe that the second condition implies that diam(B) ≤ e -m for every m-nice ball B. Moreover, we have µ ′ B ≥ 1 -1/m for every limit value µ ′ B of the sequence µ

Lemma 4.11. For µ φ -almost every x ∈ P k , every sufficiently small ball centred at x is m-nice.

The proof of Lemma 4.11 is elementary but makes uses of the natural extension of the system (P k , f, µ φ ), see for instance [START_REF] Cornfeld | Ergodic theory[END_REF]Sec. 10.4]. We denote by X 0 , C f , P C f the small Julia set, the critical set and the postcritical set P C f := ∪ n≥0 f n (C f ) of f , respectively. We also set X := X 0 \ ∪ m∈N f -m (P C f ). By Proposition 4.9 we have µ φ (f -m (P C f )) = 0 for every m ∈ N, hence µ(X) = 1. We denote by X the set

by π n : x → x n the natural projection from X to X and by f : X → X the map f (. . . , x -1 , x 0 , x 1 , . . . ) := (. . . , f (x -1 ), f (x 0 ), f (x 1 ), . . . ) = (. . . , x 0 , x 1 , x 2 , . . . ).

Observe that π n • f = f • π n for all n ∈ Z. Let us consider on X the σ-algebra B generated by all cylinders, i.e., the sets of the form Similarly, for every m > 0 and Borel sets B 0 , B -1 , . . . , B -m ⊆ P k we then have μφ ({x :

We then extend μφ to a probability measure, still denoted by μφ , on B. Observe that μφ is f -invariant by construction and satisfies (π 0 ) * μφ = µ φ .

For n > 0 we denote by f -n

x the inverse branch of f n defined in a neighbourhood of x 0 and such that f -n

x (x 0 ) = x -n . This branch exists for all x 0 ∈ X. We have the following lemma.

D.

Composing such inverse branches we get inverse branches g j of f N 1 +N 2 defined on B whose images are relatively compact in B. In what follows, we only consider these inverse branches g j . We also write g j as g

(1)

j , where g

(2) j is the corresponding inverse branch of f N 2 on B (whose image is then in D) and g

(1) j is the corresponding inverse branch of f N 1 on g

(2) j (B). We also set i = i(j), where g

(2) j (B) ⊂ D i . Each inverse branch g j as above contracts the Kobayashi metric of B, and thus admits a unique fixed point y j , which is attracting for g j and hence repelling for f N 1 +N 2 . Up to possibly increasing the integers M 1 and M 2 given by the Claims above, we can assume that the above properties hold for N 1 = M 1 and N 2 = M 2 . We set n(m) := M 1 (m 2 ) + M 2 (m 2 ) for a fixed choice of sufficiently large m 1 , m 2 , m 3 and, for all n ≥ n(m), we define the set Q as the union of all such fixed points constructed as above with

The points in Q are then repelling periodic points of period n = N 1 + N 2 for f . Observe that, for all j and all z ∈ B, since g j (B) ⋐ B we have g l j (z) → y j as l → ∞. Since B intersects the small Julia set, by taking z in the small Julia set we see that y j belongs to the small Julia set.

To conclude, we need to prove (4.5) for this choice of Q. We set

Observe that there is a correspondence between the terms in µ n and those in μn . Moreover, since all the balls B and D i are m 2 -nice, we have

j (b i(j) ))/ρ(a) -1| m -1 2 and |ρ(g

2 for all i and j.

It follows from these inequalities and Lemma 4.13 that |µ n (B) -μn (B)| μn (B)m -1 2 . Hence, in order to conclude it is enough to prove that

because m 2 is chosen large enough. By construction, we have

By Claim 1, this implies that

The assertion then follows from Claim 2 and the fact that i µ

, by taking m 2 large enough.

We can now conclude the proof of Theorem 4.10. As mentioned at the beginning of the section, this also completes the proof of Theorem 1.1.

End of the proof of Theorem 4.10. For every i ∈ N we construct a finite family of disjoint open sets U i := {U i,j } 1≤j≤J i with the following properties:

(i) µ φ (∪ 1≤j≤J i U i,j ) = 1;

(ii) for all 1 ≤ j ≤ J i we have diam(U i,j ) < 1/i; (iii) for all i ≥ 2 and 1 ≤ j ≤ J i there exists 1

We can construct these sets using local coordinates and generic real hyperplanes which are parallel to the coordinate hyperplanes. Observe also that, by the first condition, we have µ φ (∂U i,j ) = 0 for all i and 1 ≤ j ≤ J i .

For every n, we define i n := max{m ≤ n : n ≥ n(m, U m )}, where n(m, U m ) is given by Lemma 4.14. Observe that i n → ∞ as n → ∞. We define P ′ n ⊂ ∪ j U in,j as the union of the sets of repelling periodic points of period n in the small Julia set obtained by applying Lemma 4.14 to the collection U in instead of U , and set

By Properties (i) and (ii) of the open sets U i,j and Lemma 4.14, any limit µ ′ of the sequence {µ ′ n } has mass 1. So, since µ φ (∪ j U in,j ) = 1 for all n and diam(U i,j ) < 1/i for all i, it is enough to prove that

Indeed, given any open set A ⊆ P k , we can write A as a countable union of compact sets of the form Ūi,j ⋐ A, overlapping only on their boundaries. We then see that (4.8) implies that µ φ (A) ≤ µ ′ (A) for every open set A, and the facts that µ φ = µ ′ and µ φ (∂U i,j ) = 0 for all i, j imply that µ φ = µ ′ . We can then fix i ⋆ , j ⋆ as in (4.8) and a positive number ǫ, and it is enough to prove that

-ǫ for all n sufficiently large. We only consider in what follows integers n such that i n > i ⋆ and the sets U in,j which are contained in U i ⋆ ,j ⋆ . For all such n, we have µ

). It follows by the definition of µ ′ n and Lemma 4.14 that

The assertion follows.

Remark 4.15. One could improve the argument in the proof of Lemma 4.14 to obtain that P ′ n can be taken to be a subset of the repelling periodic points with a good control of the eigenvalues, see for instance [START_REF] Berteloot | Normalization of bundle holomorphic contractions and applications to dynamics[END_REF][START_REF] Berteloot | A Distortion Theorem for iterated inverse branches of holomorphic endomorphisms of P k[END_REF]. This implies that, setting Σ j := L k-j+1 + • • • + L k , we have Here, Df n x : T x P k → T f n (x) P k denotes the differential of f n at x. This is a linear map from the complex tangent space of P k at x to the one at f n (x). It induces the natural linear map j Df n x from the exterior power j T x P k to j T f n (x) P k .
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