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EQUILIBRIUM STATES OF ENDOMORPHISMS OF Pk I:

EXISTENCE AND PROPERTIES

FABRIZIO BIANCHI AND TIEN-CUONG DINH

Dedicated to the memory of Professor Nessim Sibony

Abstract. We develop a new method, based on pluripotential theory, to study the transfer
(Perron-Frobenius) operator induced on P

k = P
k(C) by a holomorphic endomorphism and a

suitable continuous weight. This method allows us to prove the existence and uniqueness of the
equilibrium state and conformal measure for very general weights (due to Denker-Przytycki-
Urbański in dimension 1 and Urbański-Zdunik in higher dimensions, both in the case of Hölder
continuous weights). We establish a number of properties of the equilibrium states, including
mixing, K-mixing, mixing of all orders, and an equidistribution of repelling periodic points.
Our analytic method replaces all distortion estimates on inverse branches with a unique, global,
estimate on dynamical currents, and allows us to reduce the dynamical questions to comparisons
between currents and their potentials.
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Notation. Throughout the paper, Pk denotes the complex projective space of dimension k
endowed with the standard Fubini-Study form ωFS. This is a Kähler (1, 1)-form normalized so
that ωk

FS
is a probability measure. We will use the metric and distance dist(·, ·) on Pk induced

by ωFS and the standard ones on Ck when we work on open subsets of Ck. We denote by
BPk(a, r) (resp. Bkr ,D(a, r),Dr) the ball of center a and radius r in Pk (resp. the ball of center
0 and radius r in Ck, the disc of center a and radius r in C, and the disc of center 0 and radius
r in C). Leb denotes the standard Lebesgue measure on a Euclidean space or on a sphere. The
oscillation Ω(·), the modulus of continuity m(·, ·), and the semi-norms ‖·‖logp of a function are
defined in Section 2.1. The currents ωn and their dynamical potentials un are introduced in
Section 2.4.

The pairing 〈·, ·〉 is used for the integral of a function with respect to a measure or more
generally the value of a current at a test form. If S and R are two (1, 1)-currents, we will write
|R| ≤ S when ℜ(ξR) ≤ S for every function ξ : Pk → C with |ξ| ≤ 1, i.e., all currents S−ℜ(ξR)
with ξ as before are positive. Notice that this forces S to be real and positive. We also write
other inequalities such as |R| ≤ |R1| + |R2| if |R| ≤ S1 + S2 whenever |R1| ≤ S1 and |R2| ≤ S2.
Recall that dc = i

2π (∂ − ∂) and ddc = i
π∂∂. The notations . and & stand for inequalities up to

a multiplicative constant. The function identically equal to 1 is denoted by 1. We also use the
function log⋆(·) := 1 + | log(·)|.

Consider a holomorphic endomorphism f : Pk → Pk of algebraic degree d ≥ 2 satisfying the
Assumption (A) in the Introduction. Denote respectively by T , µ = T k, supp(µ) the Green
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(1, 1)-current, the measure of maximal entropy (also called the Green measure or the equilibrium
measure), and the small Julia set of f . If S is a positive closed (1, 1)-current on Pk, its dynamical
potential is denoted by uS and is defined in Section 2.2. If ν is an invariant probability measure,
we denote by Entf (ν) the metric entropy of ν with respect to f .

We also consider a weight φ which is a real-valued continuous function on Pk. The transfer
operator (Perron-Frobenius operator) L = Lφ is introduced in the Introduction together with
the scaling ratio λ = λφ, the conformal measure mφ, the density function ρ = ρφ, the equilibrium
state µφ = ρmφ, the pressure P (φ), see also Section 3. The measures mφ and µφ are probability
measures. The operator L is a suitable modification of L and is introduced in Section 4.1.

1. Introduction and results

Let f : Pk → Pk be a holomorphic endomorphism of the complex projective space Pk = Pk(C),
with k ≥ 1, of algebraic degree d ≥ 2. Denote by µ the unique measure of maximal entropy
for the dynamical system (Pk, f) [Lyu83; BD09; DS10a; BM01]. The support supp(µ) of µ
is called the small Julia set of f . The measure µ corresponds to the equilibrium state of the
system in the case without weight, i.e., when the weight is zero. In this paper, we will consider
the case where the weight, denoted by φ, is not necessarily equal to zero. This problem has
been studied for Hölder continuous weights using a geometric approach, in dimension 1, see,
e.g., Denker-Przytycki-Urbański [Prz90; DU91a; DU91b; DPU96] and Haydn [Hay99] just to
name a few, and in higher dimensions, see Szostakiewicz-Urbański-Zdunik [UZ13; SUZ14]. We
will develop here an analytic method which will allow us to obtain more general and more
quantitative results. Many results are new even when for k = 1.

Throughout this paper, we make use of the following technical assumption for f :

(A) the local degree of the iterate fn := f ◦ · · · ◦ f (n times) satisfies

lim
n→∞

1

n
log max

a∈Pk
deg(fn, a) = 0.

Here, deg(fn, a) is the multiplicity of a as a solution of the equation fn(z) = fn(a). Note that
generic endomorphisms of Pk satisfy this condition, see [DS10b]. Our study still holds under a
weaker condition that the exceptional set of f (i.e., the maximal proper analytic subset of Pk

invariant by f−1) is empty or more generally has no intersection with supp(µ) (in particular,
this condition is superfluous in dimension 1). However, this situation requires more technical
conditions on the weight φ. We choose not to present this case here in order to simplify the
notation and focus on the main new ideas introduced in this topic. Our main goal in this paper
is to prove the following theorem (see Theorem 3.1 and Section 4 for more precise statements).

Theorem 1.1. Let f be an endomorphism of Pk of algebraic degree d ≥ 2 and satisfying
the Assumption (A) above. Let φ be a real-valued logq-continuous function on Pk, for some
q > 2, such that Ω(φ) := maxφ− minφ < log d. Then φ admits a unique equilibrium state µφ,
whose support is equal to the small Julia set of f . This measure µφ is K-mixing and mixing
of all orders, and repelling periodic points of period n (suitably weighted) are equidistributed
with respect to µφ as n goes to infinity. Moreover, there is a unique conformal measure mφ

associated to φ. We have µφ = ρmφ for some strictly positive continuous function ρ on Pk and
the preimages of points by fn (suitably weighted) are equidistributed with respect to mφ as n
goes to infinity.

We say that a function is logq-continuous if its oscillation on a ball of radius r is bounded by
a constant times (log⋆ r)−q, see Section 2.1 for details. See also Section 4.1 for the K-mixing
and mixing of all orders.

An equilibrium state as in the statement above is defined as follows, see for instance [Rue72;
Wal00; PU10]. Given a weight, i.e., a real-valued continuous function, φ as above, we define the
pressure of φ as

P (φ) := sup
{

Entf (ν) + 〈ν, φ〉
}
,
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where the supremum is taken over all Borel f -invariant probability measures ν and Entf (ν)
denotes the metric entropy of ν. An equilibrium state for φ is then an invariant probability
measure µφ realizing a maximum in the above formula, that is,

P (φ) = Entf (µφ) + 〈µφ, φ〉.

On the other hand, a conformal measure is defined as follows. Define the Perron-Frobenius (or
transfer) operator L with weight φ as (we often drop the index φ for simplicity)

(1.1) Lg(y) := Lφg(y) :=
∑

x∈f−1(y)

eφ(x)g(x),

where g : Pk → R is a continuous test function and the points x in the sum are counted with
multiplicity. A conformal measure is an eigenvector for the dual operator L∗ acting on positive
measures.

Notice that, in the case where φ is Hölder continuous, a part of Theorem 1.1 was established
by Urbański-Zdunik [UZ13] (also under a genericity assumption for f), see also [Prz90; DU91a;
DU91b; DPU96] for previous results in dimension k = 1. When φ is constant, the operator L
reduces to a constant times the push-forward operator f∗ and we get µφ = µ. For an account
of the known results in this case, see for instance [DS10a].

A reformulation of Theorem 1.1 is the following: given φ as in the statement, there exist
a number λ > 0 and a continuous function ρ = ρφ : Pk → R such that, for every continuous

function g : Pk → R, the following uniform convergence holds:

(1.2) λ−nLng(y) → cgρ

for some constant cg depending on g. By duality, this is equivalent to the convergence, uniform
on probability measures ν,

(1.3) λ−n(L∗)nν → mφ,

where mφ is a conformal measure associated to the weight φ. The equilibrium state µφ is then
given by µφ = ρmφ, and we have cg = 〈mφ, g〉.

To prove Theorem 1.1, in Section 3 we develop a new and completely different approach
with respect to [UZ13] and to the previous studies in dimension 1. As we will see in the
second part of this work [BD20], the flexibility of this method will allow for a more quantitative
understanding of the convergences (1.2) and (1.3), and for the direct establishment of several
statistical properties of the equilibrium states.

The main idea of our method is the following. Let us just consider for now the case where
both of the functions g and φ are of class C2 (the general case is technically quite involved and
requires suitable approximations of g and φ by C2 functions). Given such a function g, first we
want to prove that the ratio between the maximum and the minimum of Lng stays bounded
with n. This allows us to define the good scaling ratio λ and to get that the sequence λ−nLng is
uniformly bounded. Next, we would like to prove that this sequence is actually equicontinuous.
This, together with other technical arguments, would imply the existence and uniqueness of the
limit function ρ.

In order to establish the above controls, we study the sequence of (1, 1)-currents given by
ddcLng. First we prove that suitably normalized versions of these currents are uniformly
bounded by a common positive closed (1, 1)-current R. This is the core of our method which
replaces all controls on the distortion of inverse branches of fn in the geometric method of
[UZ13] by a unique, global, and flexible estimate. Namely, for every n ∈ N we can get an
estimate of the form

(1.4)
∣∣∣ddc

Lng
cn

∣∣∣ .
∞∑

j=0

(eΩ(φ)

d

)j (f∗)
jωFS

d(k−1)j
with cn := ‖g‖C2〈ωk

FS
,Ln1〉.
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Here, ωFS denotes the usual Fubini-Study form on Pk normalized so that ωk
FS

is a probability
measure. Notice that the last infinite sum gives a key reason for the assumption Ω(φ) < log d

made on the weight φ as the mass of the current (f∗)jωFS is equal to d(k−1)j .
We will establish in Section 2 some general criteria, interesting in themselves, which allow

one to bound the oscillation of c−1
n Lng in terms of the oscillation of the potentials of the current

in the RHS of (1.4). This latter oscillation is actually controllable. Assumption (A) allows
us to have a simple control which makes the estimates less technical but such a control exists
without Assumption (A).

Combining all these ingredients, the existence and uniqueness of the equilibrium state and
conformal measure, as well as the equidistribution of preimages and the equality P (φ) = log λ,
follow from standard arguments that we recall in Sections 4.1 and 4.2 for completeness. We
also prove that the entropy of µφ is larger than k log d − Ω(φ) > (k − 1) log d, and that all the
Lyapunov exponents of µφ are strictly positive, see Proposition 4.9. This also leads to a lower
bound for the Hausdorff dimension of µφ. In Section 4.3 we establish the equidistribution of
repelling periodic points with respect to µφ, see Theorem 4.10, which completes the proof of
Theorem 1.1. This result is due to Lyubich [Lyu83] (for k = 1) and Briend-Duval [BD99] (for
any k ≥ 1) when φ = 0, and is new even for k = 1 otherwise.

In the second part of our study [BD20], we will prove that the Perron-Frobenius operator
and its complex perturbations admit spectral gaps, and deduce several statistical properties of
the equilibrium states through a unified method.

Outline of the organization of the paper. In Section 2, we introduce some useful notions
and establish comparison principles for currents and potentials that will be the technical key
to prove Theorem 1.1. We also present the estimates on the sequence fn∗ ωFS (and on their
potentials) that we will need in the sequel. Section 3 is dedicated to the proof of Theorem 3.1.
For this purpose, we develop our method to get the uniform boundedness and equicontinuity
for the sequence Lng, properly normalized, that lead to the good definition of the scaling ratio
λ. Once this is done, we will complete the proof of Theorem 1.1 in Section 4.
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(NUS) for its support and hospitality during the visits where this project started and developed,
and Imperial College London were he was based during the first part of this work.
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Nationale de la Recherche, the CNRS through the program PEPS JCJC 2019, and the NUS and
MOE through the grants C-146-000-047-001, R-146-000-248-114, and MOE-T2EP20120-0010.

2. Dynamical potentials and some comparison principles

2.1. logp-continuous functions. We will use the following notations throughout the paper.

Definition 2.1. Given a subset U of Pk or Ck and a real-valued function g : U → R, define the
oscillation ΩU(g) of g as

ΩU (g) := sup g − inf g

and its continuity modulus mU (g, r) at distance r as

mU (g, r) := sup
x,y∈U : dist(x,y)≤r

|g(x) − g(y)|.

We may drop the index U when there is no possible confusion.

Definition 2.2. The semi-norm ‖·‖logp is defined for every p > 0 and g : Pk → R as

‖g‖logp := sup
a,b∈Pk

|g(a) − g(b)| · (log⋆ dist(a, b))p = sup
r>0,a∈Pk

ΩB
Pk (a,r)(g) · (1 + | log r|)p,

where BPk(a, r) denotes the ball of center a and radius r in Pk.
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The following technical lemma will be used in Section 3.

Lemma 2.3. For every logp-continuous function g : Pk → R, p > 0, s ≥ 1, and 0 < ǫ ≤ 1,

there exist continuous functions g
(1)
ǫ and g

(2)
ǫ such that

g = g(1)ǫ + g(2)ǫ , ‖g(1)ǫ ‖Cs ≤ c ‖g‖∞ e(1/ǫ)
1/p
, and ‖g(2)ǫ ‖∞ ≤ c ‖g‖logp ǫ,

where c = c(p, s) is a positive constant independent of g and ǫ. In particular, for every n ≥ 1

there exist g
(1)
n of class C2 and g

(2)
n continuous such that

g = g(1)n + g(2)n , ‖g(1)n ‖C2 ≤ c ‖g‖∞ e
1
2
n2/p

, and ‖g(2)n ‖∞ ≤ c ‖g‖logp n−2.

Proof. Clearly, the second assertion is a consequence of the first one by taking ǫ = 2pn−2 and
replacing c by 2pc. We prove now the first assertion. Using a partition of unity, we can reduce
the problem to the case where g is supported by the unit ball of an affine chart Ck ⊂ Pk.

Consider a smooth non-negative function χ with support in the unit ball of Ck whose integral
with respect to the Lebesgue measure is 1. For ν > 0, consider the function χν(z) := ν−2kχ(z/ν)
which has integral 1 and tends to the Dirac mass at 0 when ν tends to 0. Define an approximation

of g using the standard convolution operator gν := g∗χν , and define g
(1)
ǫ := gν and g

(2)
ǫ := g−gν .

We consider ν := e−1/(Mǫ)1/p for some constant M > 0 large enough. It remains to bound

‖g(1)ǫ ‖Cs and ‖g(2)ǫ ‖∞.
By standard properties of the convolution we have, for some constant κ > 0,

‖g(2)ǫ ‖∞ . m(g, κν) . ‖g‖logp (log⋆ ν)−p . ‖g‖logp ǫ
and, by definition of gν ,

‖g(1)ǫ ‖Cs . ‖g‖∞ ‖χν‖Cs Leb(Bkν) . ‖g‖∞ ν−s . ‖g‖∞ e(1/ǫ)
1/p
,

where we use the fact that M is large enough. This ends the proof of the lemma. �

2.2. Dynamical potentials. Let T denote the Green (1, 1)-current of f . It is positive closed
and of unit mass. Let S be any positive closed (1, 1)-current of mass m on Pk. There is a unique
function uS : Pk → R ∪ {−∞} which is p.s.h. modulo mT and such that

S = mT + ddcuS and 〈µ, uS〉 = 0.

Locally, uS is the difference between a potential of S and a potential of mT . We call it the
dynamical potential of S. Observe that the dynamical potential of T is zero, i.e., uT = 0.

Recall that T has Hölder continuous potentials. So, uS is locally the difference between a
p.s.h. function and a Hölder continuous one. The dynamical potential of S behaves well under
the push-forward and pull-back operators associated to f . Indeed, because of the invariance
properties of T , we have

f∗S = md · T + ddc(uS ◦ f) and f∗S = mdk−1 · T + ddc(f∗uS),

which, together with the invariance properties of µ, imply

uf∗S = uS ◦ f and uf∗S = f∗uS .

We refer the reader to [DS10a] for details. In this paper, we only need currents S such that uS
is continuous.

2.3. Comparisons between currents and their potentials. A technical key point in the
proof of our main theorem will be based on the following general idea: if u and v are two
functions on some domain in Ck such that |ddcu| ≤ ddcv, then u inherits some of the regularity
properties of v. This section is devoted to make this idea precise and quantitative for our
purposes. We start with the simplest occurrence of this fact in the first case in terms of the
sup-norm.
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Lemma 2.4. There exists a positive constant A such that, for every positive closed (1, 1)-
current S0 on Pk of mass 1 and for every positive closed (1, 1)-current S on Pk with S ≤ S0,
we have Ω(uS) ≤ A + Ω(uS0), where uS0 and uS denote the dynamical potentials of S0 and S,
respectively.

Proof. We assume that Ω(uS0) is finite, since otherwise the assertion trivially holds. Observe
that the mass m of S is at most equal to 1 because S ≤ S0. Recall that uS and uS0 satisfy

S = mT + ddcuS , S0 = T + ddcuS0 , 〈µ, uS〉 = 0, and 〈µ, uS0〉 = 0.

The last identity implies that supuS0 is non-negative.
We first prove that uS is bounded above by a constant. As mentioned above, the

correspondence between positive closed (1, 1)-currents and their dynamical potentials is a
bijection. Moreover, we know that quasi-p.s.h. functions (i.e., functions that are locally difference
between a p.s.h. and a smooth function) are integrable with respect to µ [DS10a, Th. 1.35]. Since
the set of positive closed (1, 1)-currents of mass less than or equal to 1 is compact, uS belongs
to a compact family of p.s.h. functions modulo mT . We deduce that there is a constant A > 0
independent of S such that uS ≤ A/2 on Pk, see [DS10a, App. A.2] for more details. It follows
that supuS ≤ supuS0 +A/2 because supuS0 is non-negative.

Consider the current S′ := S0 − S which is positive closed and smaller than S0. By the
uniqueness of the dynamical potential, we have uS′ = uS0 − uS , which implies uS = uS0 − uS′ .
Since S′ ≤ S, as above, we also have supuS′ ≤ A/2. It follows that

inf uS ≥ inf uS0 − supuS′ ≥ inf uS0 −A/2.

This estimate and the above inequality supuS ≤ supuS0 +A/2 imply the lemma. �

Corollary 2.5. There exists a positive constant A such that for every positive closed (1, 1)-
current S0 on Pk and for every continuous function g : Pk → R with |ddcg| ≤ S0 we have
Ω(g) ≤ A ‖S0‖ + 3Ω(uS0).

Proof. By linearity we can assume that S0 is of mass 1/2. Define R := ddcg and write it as a
difference of positive closed currents, R = (R + S0) − S0. Since R + S0 and S0 belong to the
same cohomology class, they have the same mass 1/2. We denote as usual by uR+S0 and uS0

the dynamical potentials of R+ S0 and S0 respectively.
A direct computation gives ddc(g − uR+S0 + uS0) = 0 which implies that g − uR+S0 + uS0 is

a constant function. Thus,

Ω(g) = Ω(uR+S0 − uS0) ≤ Ω(uR+S0) + Ω(uS0).

The assertion follows from Lemma 2.4 applied to R+ S0, 2S0 instead of S, S0. We use here the
fact that R+ S0 = ddcg+ S0 ≤ 2S0 and that 2S0 is of mass 1. We also use a constant A which
is equal to twice the one in Lemma 2.4. �

The following result gives a quantitative control on the oscillation of u in terms of the
oscillation of v. Notice in particular that it implies that, if v is Hölder or logp-continuous
for some p > 0, then u enjoys the same property with possibly a loss in the Hölder exponent,
but not in the logp-exponent.

Proposition 2.6. Let u and v be two p.s.h. functions on Bk3 such that ddcu ≤ ddcv and v
is continuous. Then u is continuous and for every 0 < s ≤ 1 there is a positive constant A
(independent of u and v) such that, for every 0 < r ≤ 1/2, we have

m
Bk
1
(u, r) ≤ m

Bk
2
(v, rs) +Am

Bk
2
(u, rs)r1−s ≤ m

Bk
2
(v, rs) +AΩ

Bk
2
(u)r1−s.

Proof. The continuity of u is a well-known property. Indeed, since ddcv − ddcu is a positive
closed (1, 1)-current, there is a p.s.h. function u′ such that ddcu′ = ddcv− ddcu. So, both u+u′

and v are potentials of ddcv. We deduce that they differ by a pluriharmonic function. Hence
u+u′ is continuous. We then easily deduce that both u and u′ are continuous because both are
p.s.h. (and hence u.s.c.).
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We prove now the estimate in the lemma. Let x, y ∈ Bk1 be such that ‖x−y‖ ≤ r. We need to
bound u(y) − u(x). Without loss of generality, we can reduce the problem to the case k = 1 by
restricting ourselves to the complex line through x and y. Moreover, by translating and adding
constants to u and v, we can assume that x = 0, |y| ≤ r, u(x) = v(x) = 0, and u(y) ≥ 0. It is
then enough to prove that

u(y) ≤ mD1(v, rs) +AΩDrs
(u)r1−s

for some positive constant A and for u, v defined on D2. Note that ΩDrs
(u) ≤ 2mD1(u, rs).

Claim. We have, for some positive constant A,

u(y) ≤ 1

Leb(∂Drs)

∫

|z|=rs
u(z)dLeb(z) +AΩDrs

(u)r1−s.

Assuming the claim, we first complete the proof of the lemma. Let ũ (resp. ṽ) be the radial
subharmonic function on D2 such that ũ(z) (resp. ṽ(z)) is equal to the mean value of u (resp.
v) on the circle of center 0 and radius |z|. Using the Claim, in order to obtain the lemma, it is
enough to show that ũ ≤ ṽ.

Recall that v − u is a subharmonic function vanishing at 0. Therefore, ṽ − ũ is a radial
subharmonic function vanishing at 0. Radial subharmonic functions are increasing in |z|. Thus,
ṽ − ũ is a non-negative function and the lemma follows. �

Proof of the Claim. Define u′(z) := u(zrs) and y′ := y/rs. We need to show that, for |y′| ≤ r1−s,

u′(y′) ≤ 1

Leb(∂D1)

∫

∂D1

u′(z)dLeb(z) +AΩD1(u′)r1−s.

We can assume, without loss of generality, that y′ = α ∈ R+ and α ≤ r1−s. Consider the
automorphism Ψ of the unit disc given by Ψ(z) = z+α

1+αz . The map Ψ satisfies Ψ(0) = y′ and

moreover Ψ extends smoothly to ∂D1 and tends to the identity in the C1 norm as α → 0. It
follows that

∥∥Ψ±1 − id
∥∥
C1 ≤ A′α ≤ A′r1−s for some positive constant A′.

Define u′′ := u′ ◦ Ψ and denote by ν the normalized standard Lebesgue measure on the unit
circle. We deduce from the last inequalities that Ψ∗ν − ν is given by a smooth 1-form on ∂D1

and ‖Ψ∗ν − ν‖∞ = O(r1−s). Applying the submean inequality to the subharmonic function u′′

we get

u′(y′) = u′′(0) ≤ 〈ν, u′′〉 = 〈ν, u′ ◦ Ψ〉 = 〈Ψ∗ν, u
′〉 = 〈ν, u′〉 + 〈Ψ∗ν − ν, u′〉.

Since Ψ∗ν and ν are probability measures, the integral 〈Ψ∗ν − ν, u′〉 does not change if we add
to u′ a constant c. With the choice c = − infD1 u

′ (observe that u′ is continuous on D1) we get

u′(y′) ≤
∫

∂D1

u′ dν + sup
D1

|u′ + c|O(r1−s) ≤
∫

∂D1

u′ dν +AΩD1(u′)r1−s

for some positive constant A. This implies the desired inequality. �

Corollary 2.7. Let v be a continuous p.s.h. function on Bk3. Let u be a continuous real-valued
function on Bk3 such that |ddcu| ≤ ddcv. Then for every 0 < s ≤ 1 we have for 0 < r ≤ 1/2

m
Bk
1
(u, r) ≤ 3m

Bk
2
(v, rs) +A

(
Ω

Bk
2
(u) + Ω

Bk
2
(v)

)
r1−s,

where A is a positive constant independent of u and v.

Proof. Since |ddcu| ≤ ddcv, we have ddc(u + v) = ddcu + ddcv ≥ 0. So the function u + v is
p.s.h.; observe also that ddc(u+v) = ddcu+ddcv ≤ 2ddcv. Therefore, we can apply Proposition
2.6 to u+ v, 2v instead of u, v. This gives

m
B
k
1
(u, r) ≤ m

B
k
1
(u+ v, r) +m

B
k
1
(v, r) ≤ m

B
k
2
(2v, rs) +AΩ

B
k
2
(u+ v)r1−s +m

B
k
2
(v, r)

≤ 3m
B
k
2
(v, rs) +A

(
Ω

B
k
2
(u) + Ω

B
k
2
(v)

)
r1−s,

which is the desired estimate. �
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Corollary 2.8. Let S0 be a positive closed (1, 1)-current on Pk with continuous local potentials.
Let F(S0) denote the set of all continuous real-valued functions g on Pk such that |ddcg| ≤ S0.
Then F(S0) is equicontinuous.

Proof. Let g be as in the statement. We cover Pk with a finite family of open sets of the form
Φj(B

k
1/2) where Φj is an injective holomorphic map from Bk4 to Pk. Write S0 = ddcvj for some

continuous p.s.h. function vj on Φj(B
k
4) and define Vj := Φj(B

k
3).

We apply Corollary 2.7 to g, vj restricted to Vj instead of u, v and to s = 1/2. Taking into
account the distortion of the maps Φj, we see that for all r smaller than some constant r0 > 0

mPk(g, r) ≤ 3 max
j
mVj (vj , c

√
r) +A

(
ΩPk(g) + max

j
ΩVj (vj)

)√
r,

where c ≥ 1 is a constant. Since ΩPk(g) is bounded by Corollary 2.5, the RHS of the last
inequality is bounded by a constant ǫr which is independent of g and tends to 0 when r tends
to 0. It is now clear that the family F(S0) is equicontinuous. �

2.4. Dynamical potentials of (fn)∗ωFS. In this section we consider the action of the operator
(fn)∗ on functions and currents. Some results and ideas here are of independent interest. Recall
that we always assume that f satisfies the Assumption (A) in the Introduction.

We start by giving estimates on the potentials of the currents (fn)∗ωFS. As explained in the
Introduction, these estimates will allow us to globally control the distortion of fn. Define

ωn := d−(k−1)n(fn)∗ωFS.

Recall that f∗ multiplies the mass of a positive closed (1, 1)-current by dk−1. Therefore, all
currents ωn have unit mass. We denote by un the dynamical potential of ωn. In particular, u0
is the dynamical potential of ωFS. It is known that u0 is Hölder continuous, see [Kos97; DS10a].

Observe that d−1f∗ωFS is a smooth positive closed (1, 1)-form of mass 1. Therefore, there is
a unique smooth function v such that

ddcv = d−1f∗ωFS − ωFS and 〈µ, v〉 = 0.

Lemma 2.9. We have

un = d−(k−1)n(fn)∗u0 and u0 = −
∞∑

n=0

d−nv ◦ fn.

Proof. We prove the first identity. Denote by u′n the RHS of this identity, which is a continuous
function. By the definition of un and the invariance of T , we have

ddc(un − u′n) = (ωn − T ) − d−(k−1)n(fn)∗(ωFS − T ) = (ωn − T ) − (ωn − T ) = 0.

Therefore, un − u′n is pluriharmonic and hence constant on Pk. Moreover, the invariance of µ
implies that

〈µ, u′n〉 = d−(k−1)n〈(fn)∗µ, u0〉 = dn〈µ, u0〉 = 0.

By the definition of un, we also have 〈µ, un〉 = 0. We deduce that un = u′n, which implies the
first identity in the lemma.

It is clear that the sum in the RHS of the second identity in the lemma converges uniformly.
Therefore, this RHS is a continuous function that we denote by u′0. The invariance of µ also
implies that 〈µ, u′0〉 = 0. A direct computation gives

ddcu′0 = lim
N→∞

(
−
N−1∑

n=0

d−nddc(v ◦ fn)
)

= lim
N→∞

ωFS − d−N (fN )∗ωFS = ωFS − T,

where the last identity is a consequence of the definition of T . Since ddcu0 is also equal to
ωFS − T , we obtain that u0 − u′0 is constant on Pk. Finally, using that

〈µ, u0〉 = 〈µ, u′0〉 = 0,

we conclude that u0 = u′0. This ends the proof of the lemma. �
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In the sequel, we will need explicit bounds on the oscillation Ω(un) of un. These are provided
in the next result.

Lemma 2.10. For every constant A > 1, there exists a positive constant c independent of n
such that ‖un‖∞ ≤ cAn and Ω(un) ≤ cAn for all n ≥ 0.

Proof. Observe that the second assertion is deduced from the first one by replacing c with 2c.
We prove now the first assertion. By Lemma 2.9 we have, for any given z ∈ Pk,

un(z) = d−(k−1)n ((fn)∗ u0) (z) =
〈
δz, d

−(k−1)n (fn)∗ u0
〉

= dn
〈
d−kn (fn)∗ δz , u0

〉
= dn

〈
d−kn (fn)∗ δz,−

∞∑

m=0

d−mv ◦ fm
〉

= −dn
〈
d−kn (fn)∗ δz,

n∑

m=0

d−mv ◦ fm
〉
−

〈
d−kn (fn)∗ δz,

∞∑

m=n+1

d−m+nv ◦ fm
〉
.

The absolute value of the second term in the last line is bounded by ‖v‖∞ because d−kn (fn)∗ δz
is a probability measure. Observe that (fn)∗(v ◦ fm) = dkm(fn−m)∗v for all n ≥ m. Hence, the
absolute value of the first term is equal to

(2.1)
∣∣∣

n∑

m=0

dn−m
〈
δz , d

−k(n−m)(fn−m)∗v
〉∣∣∣ ≤

n∑

j=0

dj‖d−kj(f j)∗v‖∞.

Under the Assumption (A), it is known that ‖d−kj(f j)∗v‖∞ . δ−j for every 0 < δ < d. Indeed,
the Assumption (A) implies the property (A1) below, see [DS10b, Cor. 1.2].

(A1) Let g : Pk → R be C2 and such that 〈µ, g〉 = 0. For every constant 1 < δ < d, there is a
positive constant c independent of g and n such that

‖d−kn(fn)∗g‖∞ ≤ c‖g‖C2δ−n.

By choosing δ > d/A, we can bound the RHS of (2.1) by a constant times An. This ends the
proof of the lemma. �

As an application of the previous estimates, we have the following lemma that can be used
to study the regularity of functions g : Pk → R.

Lemma 2.11. Let g : Pk → R be a continuous function and 0 < β < 1 a constant such that

(2.2) |ddcg| ≤
∞∑

n=0

βnωn.

Then, for every q > 0, there is a positive constant c = c(q, β) independent of g such that

‖g‖logq ≤ c.

Proof. We bound the continuity modulus m(g, r) of g by means of Corollary 2.7. We only need
to consider 0 < r ≤ 1/2. For this purpose, since T has Hölder continuous local potentials, it
suffices to bound the continuity modulus of the dynamical potential of the RHS of (2.2). This
dynamical potential is equal to

u :=

∞∑

n=0

βnun.

Fix a constant 1 < A < 1/β. By Lemma 2.10, we have ‖un‖∞ . An. Hence, for every N , we
have

m(u, r) .
∑

n≤N

βnm(un, r) +
∑

n>N

(Aβ)n .
∑

n≤N

βnm(un, r) + (Aβ)N .

Applying [DS10b, Cor. 4.4] inductively to some iterate of f , we see that the Assumption (A)
implies:

9



(A2) for every constant κ > 1, there are an integer nκ ≥ 0 and a constant cκ > 0 independent
of n such that for all x, y ∈ Pk and n ≥ nκ we can write f−n(x) = {x1, . . . , xdkn} and f−n(y) =
{y1, . . . , ydkn} (counting multiplicity) with the property that

dist(xj , yj) ≤ cκ dist(x, y)1/κ
n

for j = 1, . . . , dkn.

By definition, the function u0 is γ-Hölder continuous for some Hölder exponent γ because
T has Hölder continuous local potentials. The above property (A2) implies that (fn)∗u0 is
γκ−n-Hölder continuous for all n ≥ nκ. More precisely, we have

m(d−kn(fn)∗u0, r) ≤ c′rγκ
−n

and hence m(un, r) ≤ c′dnrγκ
−n

for some positive constant c′ independent of n ≥ nκ and r. Observe also that for 0 ≤ n ≤ nκ all
the un are ακ-Hölder continuous for some ακ > 0. Indeed, as the multiplicity of fn at a point
is at most dkn, we have (see again [DS10b, Cor. 4.4]):

(A2’) there is a constant c0 > 0 such that for every n ≥ 0, for all x, y ∈ Pk, we can write
f−n(x) = {x1, . . . , xdkn} and f−n(y) = {y1, . . . , ydkn} (counting multiplicity) with the property
that

dist(xj , yj) ≤ c0 dist(x, y)1/d
kn

for j = 1, . . . , dkn.

Therefore, we have

(2.3) m(u, r) . rακ +
∑

nκ≤n≤N

(βd)n rγκ
−n

+ (Aβ)N .

Choose κ close enough to 1 so that 2q log κ < | log(Aβ)| and take

N =
1

2 log κ
log |log r|

(recall that we only need to consider r ≤ 1/2). Then, the last term in (2.3) satisfies

(Aβ)N = eN log(Aβ) < e−2Nq log κ = | log r|−q.
It remains to prove that the sum in (2.3) satisfies a similar estimate. We have

∑

n≤N

(βd)n rγκ
−n ≤

∑

n≤N

βndNrγκ
−N

. dNrγκ
−N

= e
log d
2 log κ

log|log r|
eγ(log r)e

− 1
2 log | log r|

=
| log r|

log d
2 log κ

eγ
√

| log r|
·

The last expression is smaller than a constant times | log r|−q because et ≫ tM when t→ ∞
for every M ≥ 0. This, together with the above estimates, gives m(u, r) . | log r|−q and ends
the proof of the lemma. �

3. Existence of the scaling ratio and equilibrium state

In this section we prove the existence of a good scaling ratio λ, see Theorem 3.1 below.

3.1. Main statement and first step of the proof. Recall that the Perron-Frobenius operator
L is defined as in (1.1). A direct computation gives

Ln(g)(y) =
∑

fn(x)=y

eφ(x)+φ(f(x))+···+φ(fn−1(x))g(x).

Theorem 3.1. Let f and φ be as in Theorem 1.1. There exist a number λ > 0 and a continuous
function ρ > 0 on Pk such that for every continuous function g : Pk → R the sequence λ−nLn(g)
is equicontinuous and converges uniformly to cgρ, where cg is a constant depending linearly

on g. Moreover, if g is strictly positive, then cg is strictly positive and the sequence Ln(g)1/n

converges uniformly to λ as n tends to infinity.
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We will first study the case where g is equal to 1. The general case will be deduced from this
particular case. Define 1n := Ln(1). Denote by ρ+n and ρ−n the maximum and the minimum of
1n, respectively. Consider also the ratio θn := ρ+n /ρ

−
n and the function 1∗

n := (ρ−n )−11n. Observe
that the last function satisfies min 1∗

n = 1. The following result will be crucial for us.

Proposition 3.2. Under the hypotheses of Theorem 3.1, the sequence {θn} is bounded and the
sequence of functions {1∗

n} is uniformly bounded and equicontinuous.

The proof of this result will be given in Section 3.3 and uses the technical tools that were
presented in Section 2. Before giving it, we need to first introduce some auxiliary objects.

By Lemma 2.3 applied to φ instead of g, we can find functions φn and ψn such that

(3.1) φ = φn + ψn, ‖φn‖C2 ≤ c ‖φ‖∞ e
1
2
n2/q

, and ‖ψn‖∞ ≤ c ‖φ‖logq n−2.

Consider two integers J ≥ 0 and N ≥ 0, whose values will be specialised later. Define for
n ≥ N + 1

(3.2) L̂n(g)(x) :=
∑

fn(x)=y

eφn+J (x)+φn+J−1(f(x))+···+φJ+N+1(f
n−N−1(x))g(x).

This operator will be used to approximate Ln. The gain here is the fact that the involved
functions φm have controlled C2 norms. As above, we define

1̂n := L̂n1, ρ̂+n := max 1̂n, ρ̂−n := min 1̂n, θ̂n := ρ̂+n /ρ̂
−
n , and 1̂

∗
n := (ρ̂−n )−1

1̂n.

The following lemma allows us to reduce our problem to the study of the functions 1̂n.

Lemma 3.3. There exists a positive constant c = c(N) such that, for all n > N ≥ 0 and J ,

c−1 ≤ ρ+n /ρ̂
+
n ≤ c and c−1 ≤ ρ−n /ρ̂

−
n ≤ c.

In particular, the sequence
{
θ̂n
}
is bounded if and only if the sequence {θn} is bounded.

Proof. We have

ρ+n = max 1n = max
y

∑

fn(x)=y

eφ(x)+φ(f(x))+···+φ(fn−1(x))

= max
y

∑

fn(x)=y

eφn+J (x)+···+φJ+N+1(f
n−N−1(x)) · eψn+J (x)+···+ψJ+N+1(f

n−N−1(x))

· eφ(fn−Nx))+···+φ(fn−1(x))

and similarly for ρ−n . So, both ρ+n /ρ̂
+
n and ρ−n /ρ̂

−
n are bounded from above and below by

eN maxφCn,N,J and eN minφ/Cn,N,J respectively, where

Cn,N,J := e‖ψn+J‖∞+‖ψn+J−1‖∞+ ···+‖ψJ+N+1‖∞ .

It follows from the estimate on ψn given above that Cn,N,J is bounded from above by a positive
constant which does not depend on n, J and N . Therefore, both ρ+n /ρ̂

+
n and ρ−n /ρ̂

−
n are bounded

from below and above by positive constants as in the statement. The lemma follows. �

3.2. An estimate for ddc1̂n. Proposition 3.2 will be obtained using the following crucial
estimate for ddc1̂n. We will see here the role of the estimate of the C2 norm of φn. Recall that
q > 2, see Theorem 1.1. We also refer to Section 2.4 for notation.

Proposition 3.4. There exists a sub-exponential function η(t) = ct3e(t+J)
2/q

with a positive
constant c = c(‖φ‖logq , ‖φ‖∞) independent of n, J and N such that for all n > N ≥ 0 we have

∣∣ddc1̂n
∣∣ ≤

n−N∑

m=N+1

η(m)emmaxφρ̂+n−md
(k−1)mωm +

n∑

m=n0

dkNη(m)e(n−N) maxφd(k−1)mωm,

where n0 := max(n−N + 1, N + 1).
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Recall that the function 1̂n is given by

1̂n(y) =
∑

fn(x)=y

eφn+J (x)+φn+J−1(f(x))+···+φJ+N+1(f
n−N−1(x)).

In order to estimate ddc1̂n, we will use a now classical construction due to Gromov [Gro03].
Define the manifold Γn ⊂ (Pk)n+1 by

Γn :=
{

(x, f(x), . . . , fn(x)) : x ∈ P
k
}
,

which can also be seen as the graph of the map (f, f2, . . . , fn) in the product space (Pk)n+1.
Consider the function h on (Pk)n+1 given by

h(x0, . . . , xn) := eφn+J (x0)+φn+J−1(x1)+···+φJ+N+1(xn−N−1).

The function 1̂n on Pk is equal to the push-forward of the function h|Γn
to the last factor Pk of

(Pk)n+1. Indeed, denoting by πn the restriction of the projection x 7→ xn to Γn, we have

(πn)∗ (h)(y) =
∑

(x0,...,xn)∈Γn : xn=y

h(x) =
∑

x∈f−n(y)

eφn+J (x)+···+φJ+N+1(f
n−N−1(x)) = 1̂n(y).

Recall that, since ddc1̂n is real, estimating |ddc1̂n| means finding a good positive closed (1, 1)-
current S on Pk such that both S ± ddc1̂n are positive. According to the identities above, we
have

ddc1̂n = (πn)∗
(
ddch

)
.

Thus, we need to estimate ddch on (Pk)n+1 and Γn. We define ω(m) as the pullback of the

Fubini-Study form ωFS to (Pk)n+1 by the projection x 7→ xm. Equivalently, ω(m) is a (1, 1)-form

on (Pk)n+1 such that ω(m)(x) = ωFS(xm).

Lemma 3.5. There exists a sub-exponential function η(t) = ct3e(t+J)
2/q

with a positive constant
c = c(‖φ‖logq , ‖φ‖∞) independent of n, J , and N such that

|ddch| ≤ h

n−N−1∑

m=0

η(n−m)ω(m).

Proof. A direct computation gives

i∂∂̄h = h

( n−N−1∑

m=0

i∂∂φn+J−m(xm) +
n−N−1∑

m,m′=0

i∂φn+J−m(xm) ∧ ∂φn+J−m′(xm′)
)
.

For the first sum, observe that

|i∂∂φn+J−m(xm)| . ‖φn+J−m‖C2ω(m)(x) . e(n+J−m)2/qω(m)(x).

For the second sum, consider m′ ≤ m ≤ n−N − 1. By using Cauchy-Schwarz’s inequality, we
have

|i∂φn+J−m(xm) ∧ ∂φn+J−m′(xm′)|(3.3)

≤ (m−m′ + 1)−2i∂φn+J−m(xm) ∧ ∂φn+J−m(xm)

+(m−m′ + 1)2i∂φn+J−m′(xm′) ∧ ∂φn+J−m′(xm′)

. (m−m′ + 1)−2‖φn+J−m‖2C1ω
(m)(x) + (m−m′ + 1)2‖φn+J−m′‖2C1ω

(m′)(x)

. (m−m′ + 1)−2e(n+J−m)2/qω(m)(x) + (n −m′ + 1)2e(n+J−m
′)2/qω(m′)(x).
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This and the fact that
∑∞

j=1 j
−2 is finite imply that

∣∣∣
∑

0≤m′≤m≤n−N−1

i∂φn+J−m(xm) ∧ ∂φn+J−m′(xm′)
∣∣∣(3.4)

.

n−N−1∑

m=0

e(n+J−m)2/qω(m)(x) +
n−N−1∑

m′=0

(n−m′ + 1)3e(n+J−m
′)2/qω(m′)(x)

.

n−N−1∑

m=0

(n−m)3e(n+J−m)2/qω(m)(x).

We obtain by symmetry a similar estimate for the case where m < m′ ≤ n−N − 1.
Finally, combining all the above identities and estimates we get

|i∂∂̄h| . h

n−N−1∑

m=0

(n−m)3e(n+J−m)2/qω(m).

The lemma follows. �

Proof of Proposition 3.4. We are only interested in the restriction of h to the graph Γn. We
deduce from Lemma 3.5 that

(3.5)
∣∣ddc1̂n

∣∣ = |(πn)∗ dd
c
h| ≤

n−N−1∑

m=0

η(n−m)(πn)∗
(
hω(m)

)
.

We split the last sum into the two sums corresponding to m < N and m ≥ N . Note that
when n ≤ 2N , in the sum in (3.5) we always have m < N and the first sum in the statement
of the proposition vanishes. So, for simplicity, we assume that n > 2N and we will see in the
proof below that the arguments also work when n ≤ 2N .

For m < N , using the definition of φm we have ‖φ − φm‖∞ = ‖ψm‖∞ ≤ c′m−2 and hence
maxφm ≤ maxφ+ c′m−2 for some positive constant c′ which may depend on ‖φ‖logq . It follows

that h . e(n−N)maxφ. Then, using the definition of Γn, we have for m < N

(πn)∗
(
hω(m)

)
. e(n−N)maxφ (πn)∗

(
ω(m)

)
= e(n−N)maxφdkm(fn−m)∗(ωFS)

= e(n−N)maxφdkmd(k−1)(n−m)ωn−m.

Thus,

N−1∑

m=0

η(n−m)(πn)∗
(
hω(m)

)
.

N−1∑

m=0

η(n −m)e(n−N)maxφdkmd(k−1)(n−m)ωn−m

≤
n∑

m=n−N+1

dkNη(m)e(n−N) maxφd(k−1)mωm.(3.6)

The last expression is the second sum in the statement of the present proposition (this step

also works for n ≤ 2N but in this case the above sums
∑N−1

0 and
∑n

n−N+1 are replaced by∑n−N−1
0 and

∑n
N+1 respectively). In order to finish the proof, it is enough to have a similar

estimate for m ≥ N (this step is superfluous when n ≤ 2N , see (3.5)).
As above, using the definition of h and the estimates on maxφm and ‖φ− φm‖∞, we have

h . e(n−m)maxφeφ(x0)+φ(x1)+···+φ(xm−N−1) . e(n−m)maxφ
h
′

with

h
′ := eφm+J (x0)+φm+J−1(x1)+···+φJ+N+1(xm−N−1).

Note that the sum in the definition of h′ contains m − N terms while the one of h contains
n−N terms. The specific choice of h′ is convenient for our next computation as it is related to
the function 1̂m.
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Consider the map π′ : Γn → (Pk)n−m+1 defined by π′(x) := x′ := (xm, . . . , xn). Denote by Γ′

the image of Γn by π′. It is the graph of the map (f, . . . , fn−m) from Pk to (Pk)n−m. We also
have for x′ ∈ Γ′

π′−1(x′) =
{(
y, f(y), . . . , fm−1(y), x′

)
with y ∈ f−m(xm)

}
.

So π′ : Γn → Γ′ is a ramified covering of degree dkm.
Consider the map π′′ : Γ′ → Pk defined by π′′(x′) := xn. We have, for xn ∈ Pk,

π′′−1(xn) =
{(
z, f(z), . . . , fn−m(z)

)
with z ∈ f−n+m(xn)

}
.

So π′′ : Γ′ → Pk is a ramified covering of degree dk(n−m). We have πn = π′′ ◦ π′. Observe that
π′∗(h

′ω(m)) is a (1, 1)-form on Γ′ such that

π′∗(h
′ω(m))(x′) =

( ∑

y∈f−m(xm)

eφm+J (y)+···+φJ+N+1(f
m−N−1(y))

)
ωFS(xm)

≤ ρ̂+mωFS(xm) =: ρ̂+mω
′(x′),

where we define ω′ as the pull-back of ωFS to Γ′ by the map x′ 7→ xm. We also have

π′′∗(ω′)(xn) =
∑

xm∈f−n+m(xn)

ωFS(xm) = (fn−m)∗(ωFS)(xn) = d(k−1)(n−m)ωn−m(xn).

Thus,

(πn)∗(hω(m)) . e(n−m)maxφπ′′∗π
′
∗(h

′ω(m)) ≤ e(n−m)maxφρ̂+md
(k−1)(n−m)ωn−m

and

n−N−1∑

m=N

η(n−m)(πn)∗
(
hω(m)

)
.

n−N−1∑

m=N

η(n−m)e(n−m)max φρ̂+md
(k−1)(n−m)ωn−m

=

n−N∑

m=N+1

η(m)emmaxφρ̂+n−md
(k−1)mωm.(3.7)

Finally, we deduce the proposition from (3.5), (3.6), and (3.7) by multiplying η with a large
enough constant. �

3.3. Proof of Proposition 3.2. We are working under the hypotheses of Theorem 3.1. We
will obtain Proposition 3.2 using Lemmas 3.6 and 3.7 below.

Lemma 3.6. Under the hypotheses of Theorem 3.1, given an integer J ≥ 0, we have θ̂n ≤ dkN

for all n > N , with N large enough. In particular, the sequences (θn) and (θ̂n) are bounded for
all J ≥ 0 and N ≥ 0.

Proof. Observe that the last assertion is a consequence of the first one. Indeed, we can first fix
J and N satisfying the first assertion of the lemma. Then, by Lemma 3.3, the sequence (θn) is

bounded. Applying again Lemma 3.3 for arbitrary J and N gives that the sequence (θ̂n) is also
bounded. We prove now the first assertion in the lemma with J fixed and N large enough.

Observe that, by the definition of ρ̂±n , θ̂n, and Ω(·), for every K ≥ 1 the two inequalities

θ̂n ≤ K and Ω(1̂n) ≤ (K − 1)ρ̂−n are equivalent. Hence, in order to get the first assertion in

the lemma, it is enough to show that Ω(1̂n)/ρ̂−n ≤ dkN/2. The constants that we use below are

independent of N and n. Fix a constant δ such that eΩ(φ) < δ < d. By the estimate on ‖ψn‖∞
in (3.1), for every j sufficiently large, we have Ω(φj) ≤ Ω(φ) + Ω(ψj) < log δ. Since we assume
that N is large enough, the last inequality holds for all j ≥ N .

We use Proposition 3.4 and Corollary 2.5 in order to estimate Ω(1̂n) in terms of Ω(um). Recall
that um is the dynamical potential of ωm. We also use Lemma 2.10, which gives Ω(um) . dmδ′−m
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for any δ′ such that δ < δ′ < d. More precisely, we obtain from those results that

Ω(1̂n) .
n−N∑

m=N+1

η(m)emmax φdkmδ′−mρ̂+n−m +
n∑

m=max(n−N+1,N+1)

dkNη(m)e(n−N) maxφdkmδ′−m.

Since δ < δ′ and N is large, the fact that η is sub-exponential and independent of n and N
implies that

(3.8) Ω(1̂n) .

n−N∑

m=N+1

emmaxφdkmδ−mρ̂+n−m +

n∑

m=max(n−N+1,N+1)

dkNe(n−N)maxφdkmδ−m.

We now distinguish two cases.

Case 1. Assume that N < n ≤ 2N . In this case, the first sum in (3.8) is empty. We thus
deduce from (3.8) that

Ω(1̂n) . dkNe(n−N)maxφ
(dk(N+1)

δN+1
+ · · · +

dkn

δn

)
. dkNe(n−N)maxφd

kn

δn
·

On the other hand, by the definitions of ρ̂−n we have the following general estimates (with n ≥ N
in the first inequality and n−m ≥ N in the second one)

(3.9) ρ̂−n & dkne(n−N)minφ and ρ̂−n & dkmemminφρ̂−n−m.

The first inequality and the above estimate of Ω(1̂n) imply that

Ω(1̂n)

ρ̂−n
. dkN

e(n−N)Ω(φ)

δn
≤ dkN

enΩ(φ)

δn
·

Hence, Ω(1̂n)/ρ̂−n ≤ dkN/2 because N is chosen large enough and δ > eΩ(φ). The lemma in this
case follows.

Case 2. Assume now that n > 2N . By induction on n and the previous case, we can assume
that Ω(1̂m)/ρ̂−m ≤ dkN/2, which implies ρ̂+m ≤ dkN ρ̂−m, for all m < n. We need to prove the
same inequality for m = n. From (3.8) and the induction hypothesis, we have

Ω(1̂n) . dkN
n−N∑

m=N+1

emmaxφdkmδ−mρ̂−n−m + dkN
n∑

m=n−N+1

e(n−N)maxφdkmδ−m

. dkN
n−N∑

m=N+1

emmaxφdkmδ−mρ̂−n−m + dkNe(n−N)maxφdknδ−n.

This and the second inequality in (3.9) imply that

Ω(1̂n) . dkN
n−N∑

m=N+1

emΩ(φ)δ−mρ̂−n + dkNe(n−N)maxφdknδ−n.

Then, by the first inequality in (3.9) and using that δ > eΩ(φ) and n > 2N , we obtain

Ω(1̂n)

ρ̂−n
. dkN

n−N∑

m=N+1

emΩ(φ)δ−m + dkNe(n−N)Ω(φ)δ−n . dkNeNΩ(φ)δ−N .

Recall that all the constants involved in our computations do not depend on n and N . Since
N is chosen large enough, we obtain that Ω(1̂n)/ρ̂−n ≤ dkN/2. This ends the proof of the
lemma. �

Lemma 3.7. Under the hypotheses of Theorem 3.1, for all J ≥ 0, N ≥ 0, and p > 0, the
sequence ‖1̂∗

n‖logp is bounded. In particular, the sequence of functions 1̂∗
n is equicontinuous.
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Proof. We only need to consider n > 2N , and the implicit constants below may depend on
N . We will use Lemma 2.11 and need to estimate ddc1̂∗

n. By Lemma 3.6 the sequence (θ̂n) is
bounded. This and Proposition 3.4 imply that

∣∣ddc1̂∗
n

∣∣ . 1

ρ̂−n

( n−N∑

m=N+1

η(m)emmaxφρ̂−n−md
(k−1)mωm +

n∑

m=n−N+1

η(m)e(n−N)max φd(k−1)mωm

)
.

Then, using the two inequalities in (3.9), we obtain

∣∣ddc1̂∗
n

∣∣ .

n−N∑

m=N+1

η(m)emΩ(φ)d−mωm +

n∑

m=n−N+1

η(m)e(n−N)Ω(φ)d(k−1)m−knωm

.

∞∑

m=0

η(m)emΩ(φ)d−mωm.

Finally, since η is sub-exponential and eΩ(φ) < d, Lemma 2.11 implies the result. �

End of the proof of Proposition 3.2. By Lemma 3.6, we already know that the sequence (θn)
is bounded. Since min 1∗

n = 1, we have max 1∗
n = θn, hence the sequence (1∗

n) is uniformly
bounded. In order to show that this sequence is equicontinuous, it is enough to approximate it
uniformly by an equicontinuous sequence.

Take N = 0. Fix an arbitrary constant 0 < ǫ < 1. Since ‖φ− φm‖∞ . m−2 by (3.1), we can
choose an integer J large enough so that for every n ≥ 0 we have

(1 − ǫ)1̂n ≤ 1n ≤ (1 + ǫ)1̂n.

This implies
1 − ǫ

1 + ǫ
1̂
∗
n ≤ 1

∗
n ≤ 1 + ǫ

1 − ǫ
1̂
∗
n.

Therefore, |1∗
n − 1̂∗

n| is bounded uniformly by a constant times ǫ. By Lemma 3.7, the sequence
(1̂∗
n) is equicontinuous. We easily deduce that the sequence (1∗

n) is equicontinuous as well. �

3.4. Proof of Theorem 3.1. We first define the scaling ratio λ. By definition of ρ+n , we easily
see that the sequence (ρ+n ) is sub-multiplicative, that is, ρ+n+m ≤ ρ+mρ

+
n for all m,n ≥ 0. It

follows that the first limit in the following line exists

λ := lim
n→∞

(
ρ+n

)1/n
= lim

n→∞

(
ρ−n

)1/n
,

where the last identity is due to the fact that (θn) is bounded, see Lemma 3.6. We have the
following lemma.

Lemma 3.8. The sequences (λ−nρ+n ) and (λ−nρ−n ) are both bounded above and below by positive
constants. In particular, the sequence

(
λ−n1n

)
is uniformly bounded and equicontinuous.

Proof. It is clear that the second assertion is a consequence of the first one and Proposition 3.2.
We prove now the first assertion. Since the sequence ρ+n is sub-multiplicative, it is well-known
that infn(ρ+n )1/n is equal to λ. Hence, we have λ−nρ+n ≥ 1. Since θn is bounded, we have
ρ+n . ρ−n . It follows that both λ−nρ±n are bounded from below by positive constants. Similarly,
the sequence ρ−n is super-multiplicative, i.e., ρ−n+m ≥ ρ−mρ

−
n for all m,n ≥ 0, and we deduce that

that both λ−nρ±n are bounded from above by positive constants. The lemma follows. �

We can extend the above result to all continuous test functions.

Lemma 3.9. Let F be a uniformly bounded and equicontinuous family of real-valued functions
on Pk. Then the family

FN := {λ−nLn(g) : g ∈ F , n ≥ 0}
is also uniformly bounded and equicontinuous.
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Proof. By Lemma 3.8, the family FN is uniformly bounded. We prove now that it is
equicontinuous. Given any constant ǫ > 0, using a convolution, we can find for every g ∈ F a
smooth function g′ such that ‖g − g′‖∞ ≤ ǫ and ‖g′‖C2 is bounded by a constant depending on
ǫ. Denote by F ′ the family of these g′. Observe that

|λ−nLn(g) − λ−nLn(g′)| = |λ−nLn(g − g′)| ≤ ǫλ−n1n ≤ ǫλ−nρ+n

and the last expression is bounded by a constant times ǫ. Therefore, in order to prove the lemma,
it is enough to show that the family F ′

N
, defined in a similar way as for FN, is equicontinuous.

For simplicity, we replace F by F ′ and assume that ‖g‖C2 is bounded by a constant for g ∈ F .
The constants involved in the computation below do not depend on g ∈ F .

We continue to use the notation introduced above. Consider an arbitrary constant ǫ > 0.
Take N = 0 and choose J large enough depending on ǫ. From the definitions of L and L̂n (see
(3.2)) and the fact that ‖φ− φm‖∞ . m−2 we obtain that

|λ−nLn(g)(x) − λ−nL̂n(g)(x)| ≤ ǫλ−n
∑

fn(x)=y

eφ(x)+φ(f(x))+···+φ(fn−1(x))|g(x)|.

This and Lemma 3.8 imply that

‖λ−nLn(g) − λ−nL̂n(g)‖∞ ≤ ǫλ−nρ+n ‖g‖∞ . ǫ.

So, in order to prove that the family λ−nLn(g) is equicontinuous, it is enough to show the same

property for the family λ−nL̂n(g).
We will use the same idea as in Proposition 3.4 and Lemma 3.5. Instead of the function h,

we need to consider the following slightly different function (recall that N = 0)

H(x0, . . . , xn) := eφn+J (x0)+φn+J−1(x1)+···+φJ+1(xn−1)g(x0) = h(x0, . . . , xn)g(x0).

We have

i∂∂H = (i∂∂h)g(x0) + h(i∂∂g(x0)) + i∂h ∧ ∂g(x0) − i∂h ∧ ∂g(x0).

Applying Cauchy-Schwarz’s inequality to the last two terms, and since g has a bounded C2

norm, we obtain

|i∂∂H| ≤ |(i∂∂h)g(x0)| + |h(i∂∂g(x0))| + ih−1∂h ∧ ∂h + ih∂g(x0) ∧ ∂g(x0)

. |i∂∂h| + hωFS(x0) + ih−1∂h ∧ ∂h + hωFS(x0)

. |i∂∂h| + hωFS(x0) + ih−1∂h ∧ ∂h.

We claim that the last sum satisfies

|i∂∂h| + hωFS(x0) + ih−1∂h ∧ ∂h . h

n−1∑

m=0

η(n −m)ω(m).

Lemma 3.5 shows that the first term |i∂∂h| of the LHS is bounded by the RHS. The second
term clearly satisfies the same property (consider m = 0 in the above sum). For the last term,
by Cauchy-Schwarz’s inequality and using a computation as in the proof of Lemma 3.5, we have
(recall that N = 0)

ih−1∂h ∧ ∂h = h

n−1∑

m,m′=0

i∂φn+J−m(xm) ∧ ∂φn+J−m′(xm′) . h

n−1∑

m=0

η(n−m)ω(m).

This implies the claim and gives a bound for |i∂∂H|.
Since L̂n(g) = (πn)∗(H), we obtain as in the proof of Proposition 3.4 that

|ddcλ−nL̂n(g)| . λ−n
n∑

m=1

η(m)emmaxφρ̂+n−md
(k−1)mωm.
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By Lemmas 3.3 and 3.8 we have ρ̂±n−m . ρ±n−m . λn−m. Therefore, we obtain

|ddcλ−nL̂n(g)| .
n∑

m=1

η(m)emmaxφλ−md(k−1)mωm.

Finally, since λ ≥ dkeminφ by definition of λ, the last estimate implies that

|ddcλ−nL̂n(g)| .
n∑

m=1

η(m)emΩ(φ)d−mωm.

Lemma 2.11 and the fact that d > eΩ(φ) imply the result. �

We now construct the density function ρ on Pk. Recall that the sequence λ−n1n is uniformly
bounded and equicontinuous. Therefore, the Cesaro sums

1̃n :=
1

n

n−1∑

j=0

λ−j1j

also form a uniformly bounded and equicontinuous sequence of functions. It follows that there
is a subsequence of 1̃n which converges uniformly to a continuous function ρ. Observe that
ρ ≥ infn λ

−nρ−n . Hence, by Lemma 3.8, the function ρ is strictly positive. A direct computation
gives

λ−1L(1̃n) − 1̃n =
1

n
(λ−n1n − 10).

Since λ−n1n is bounded uniformly in n, the last expression tends uniformly to 0 when n tends
to infinity. We then deduce from the definition of ρ that λ−1L(ρ) = ρ.

End of the proof of Theorem 3.1. Observe that we only need to show that λ−nLn(g) converges
to cgρ for some constant cg. The remaining part of the theorem is then clear. Let G denote
the family of all limit functions of subsequences of λ−nLn(g). By Lemma 3.9, the sequence
λ−nLn(g) is uniformly bounded and equicontinuous. Therefore, by Arzelà-Ascoli theorem, G is
a uniformly bounded and equicontinuous family of functions which is compact for the uniform
topology. Observe also that G is invariant under the action of λ−1L. Define

M := max{l(a)/ρ(a) : l ∈ G, a ∈ P
k}.

We first prove the following properties.

Claim 1. We have max
Pk(l/ρ) = M for every l ∈ G.

Assume by contradiction that there is a sequence λ−njLnj(g) which converges uniformly to
a function l ∈ G such that l ≤ (M − 2ǫ)ρ for some constant ǫ > 0. Then, for j large enough, we
have λ−njLnj(g) ≤ (M − ǫ)ρ. Fix such an index j. For n > nj we have

λ−nLn(g) = λ−n+njLn−nj(λ−njLnj(g)) ≤ (M − ǫ)λ−n+njLn−nj(ρ) = (M − ǫ)ρ.

Since this is true for every n > nj, we get a contradiction with the definition of M . This ends
the proof of Claim 1.

Claim 2. We have l/ρ = M on the small Julia set supp(µ) for every l ∈ G.

Consider an arbitrary function l ∈ G and define ln := λ−nLn(l) ∈ G. By Claim 1, there is a
point an ∈ Pk such that ln(an) = Mρ(an). By definition of M , we have l ≤Mρ and hence

Mρ(an) = ln(an) = λ−nLn(l)(an) ≤ λ−nLn(Mρ)(an) = Mρ(an).

So the inequality in the last line is actually an equality. This and the definition of L imply
that l/ρ = M on f−n(an). Observe that when n tends to infinity, the limit of f−n(an) contains
supp(µ), see, e.g., [DS10b, Cor. 1.4]. By continuity, we obtain l/ρ = M on supp(µ). This ends
the proof of Claim 2.

Applying the above claims to the function −g instead of g, we obtain that l/ρ is equal on
supp(µ) to minPk(l/ρ). We can now conclude that l = Mρ on Pk for every l ∈ G. Define
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cg := M . We obtain that λ−nLn(g) converges uniformly to cgρ. This completes the proof of
the theorem. �

4. Properties of equilibrium states

In this section we conclude the proof of Theorem 1.1. In Sections 4.1 and 4.2, we deduce the
main properties of the equilibrium states in Theorem 1.1 from Theorem 3.1. In Section 4.3 we
prove the equidistribution of repelling periodic points, which concludes the proof of Theorem
1.1.

4.1. Equidistribution of preimages and mixing properties. We have seen that the operator
L acts on the space of continuous functions g : Pk → R. It is also positive, i.e., L(g) ≥ 0 when
g ≥ 0. Therefore, L induces by duality a linear operator L∗ acting on the space of measures
and preserving the cone of positive measures.

Proposition 4.1. Under the assumptions of Theorem 1.1, there exists a unique conformal
measure associated with φ, that is, there exists a unique probability measure mφ which is an
eigenvector of L∗. We also have L∗(mφ) = λmφ, supp(mφ) = supp(µ), and if ν is a positive
measure, λ−n(Ln)∗(ν) converges to 〈ν, ρ〉mφ when n tends to infinity. Moreover, if F is a

uniformly bounded and equicontinuous family of functions on Pk, then λ−nLn(g)−cgρ converges
to 0 when n goes to infinity, uniformly on g ∈ F , where cg := 〈mφ, g〉.
Proof. For any probability measure mφ as in the first assertion, there is a constant λ′ > 0 such
that L∗(mφ) = λ′mφ. It follows that, for every continuous function g,

〈mφ, g〉 = lim
n→∞

〈λ′−n(Ln)∗(mφ), g〉 = lim
n→∞

〈mφ, λ
′−nLn(g)〉.

We necessarily have λ′ = λ because we know from the end of the proof of Theorem 3.1 that
λ−nLn(g) converges uniformly to cgρ and cg is not always 0. We conclude that 〈mφ, g〉 =
cg〈mφ, ρ〉. Since 〈mφ, g〉 = cg = 1 when g = 1 (because mφ is a probability measure) we
deduce that 〈mφ, ρ〉 = 1 and hence 〈mφ, g〉 = cg for every continuous function g. This gives the
uniqueness of mφ.

Consider now an arbitrary probability measure ν on Pk. We have

〈λ−n(Ln)∗(ν), g〉 = 〈ν, λ−nLn(g)〉 → 〈ν, cgρ〉 = 〈ν, ρ〉〈mφ, g〉.
It follows that λ−n(Ln)∗(ν) converges to 〈ν, ρ〉mφ. If ν is supported by supp(µ) and g vanishes on
supp(µ), by definition of L, the function Ln(g) also vanishes on supp(µ) and the last computation
implies that 〈mφ, g〉 = 0. Equivalently, the measure mφ is supported by supp(µ).

In order to show that supp(mφ) = supp(µ), we assume by contradiction that there is a

continuous function g ≥ 0 on Pk such that g > 0 on some open subset U of supp(µ) and
〈mφ, g〉 = 0. The λ−1L∗-invariance of mφ implies that 〈mφ,Lng〉 = λn〈mφ, g〉 = 0 and the
definition of L implies that Ln(g) > 0 on fn(U). It follows that mφ has no mass on fn(U)

and hence on ∪n≥0f
n(U). On the other hand, we have for every x ∈ Pk that d−kn(fn)∗(δx)

converges to µ, see, e.g., [DS10b, Cor. 1.4]. Therefore, f−n(δx)∩U 6= ∅ for some n or equivalently
x ∈ ∪n≥0f

n(U). So we have ∪n≥0f
n(U) = Pk. This contradicts the fact that mφ has no mass

on this union. So we have supp(mφ) = supp(µ) as desired.
For the last assertion of the proposition, we can replace g with g−cgρ in order to assume that

cg = 0 for g ∈ F . By Lemma 3.9, the family FN is uniformly bounded and equicontinuous. So
the limit of the sequence of sets λ−nLn(F) is a compact, uniformly bounded and equicontinuous
family of functions that we denote by F∞. This family is invariant by λ−1L and we also have
cg = 0 for g ∈ F∞. We want to show that it contains only the function 0.

Define

M := max{l(a)/ρ(a) : l ∈ F∞, a ∈ P
k}.

Choose a function l ∈ F∞ and a point a such that l(a)/ρ(a) = M . There are an increasing
sequence of integers (nj) and a sequence (gj) ⊂ F such that λ−njLnj(gj) converges uniformly
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to l. For every n ≥ 0, choose a limit function l−n of the sequence λ−nj+nLnj−n(gj). We have
l = λ−nLn(l−n) and l−n ∈ F∞.

As in the end of the proof of Theorem 3.1, we obtain that l−n/ρ = M on the set f−n(a) and
if l−∞ is a limit of the sequence l−n then l−∞ belongs to F∞ and l−∞/ρ = M on the small Julia
set supp(µ). Since mφ is supported by the small Julia set and 〈mφ, g〉 = cg = 0 for g ∈ F∞, we
conclude that M = 0. Using the same argument for −g with g ∈ F , we obtain that the minimal
value of the functions in F∞ is also 0. So F∞ contains only the function 0. This ends the proof
of the proposition. �

Proposition 4.1 in particular gives the following equidistribution result for the (weighted)
preimages of a given point.

Corollary 4.2. Under the assumptions of Theorem 1.1, for every x ∈ Pk the points in f−n(x),
with suitable weights, are equidistributed with respect to the conformal measure mφ when n tends
to infinity. More precisely, if δa denotes the Dirac mass at a, then

lim
n→∞

λ−n
∑

fn(a)=x

eφ(a)+···+φ(fn−1(a))δa = ρ(x)mφ

for every x ∈ Pk.

Proof. Denote by µn the measure in the LHS of the last identity. Let g be any continuous
function on Pk. We have

〈µn, g〉 = λ−n
∑

fn(a)=x

eφ(a)+···+φ(fn−1(a))g(a) = λ−n(Lng)(x).

The last expression converges to cgρ(x) = ρ(x)〈mφ, g〉. The result follows. �

For our convenience, define the operator L by L(g) := (λρ)−1L(ρg). Define also the positive
measure µφ by µφ := ρmφ. We have the following lemma.

Lemma 4.3. For any continuous function g : Pk → R, the sequence Ln(g) converges uniformly
to the constant cρg = 〈µφ, g〉 = 〈mφ, ρg〉. We also have that µφ is an f -invariant probability
measure such that supp(µφ) = supp(µ).

Proof. Define g′ := ρg. We have cg′ = 〈mφ, ρg〉 = 〈µφ, g〉. The first assertion is a direct
consequence of the fact that λ−nLn(g′) converges uniformly to cg′ρ.

For the second assertion, we have seen in the proof of Proposition 4.1 that 〈mφ, ρ〉 = 1. It
follows that µφ is a probability measure. Moreover, we obtain from the λ−1L∗-invariance of mφ

that

〈µφ, g ◦ f〉 = 〈mφ, ρ(g ◦ f)〉 = 〈λ−1L∗(mφ), ρ(g ◦ f)〉 = 〈mφ, λ
−1L(ρ(g ◦ f))〉 = 〈µφ, L(g ◦ f)〉.

Using that λ−1L(ρ) = ρ and the definition of L, we can easily check that L(g ◦ f) = g. So the
previous identities imply that 〈µφ, g ◦ f〉 = 〈µφ, g〉. Hence, µφ is an invariant measure. The
assertion on the support of µφ is clear because supp(mφ) = supp(µ) by Proposition 4.1 and ρ
is strictly positive. �

The operator L can also be extended to a continuous operator on L2(µφ) and L2(mφ). Since
µφ = ρmφ and ρ is positive and continuous, these two spaces are actually the same and the
corresponding norms are equivalent.

Lemma 4.4. Under the assumptions of Theorem 1.1, the operator L extends to a linear

continuous operator on L2(mφ) whose norm is bounded by λe
1
2
Ω(φ). Moreover, there exists

a positive constant c such that ‖λ−nLn‖L2(mφ)
≤ c for all n ≥ 0.

Proof. By Cauchy-Schwarz’s inequality and using the λ−1L∗-invariance of mφ, we have
〈
mφ, |Lng|2

〉
≤

〈
mφ, (Ln1) · (Ln |g|2)

〉
≤ ρ+n

〈
mφ,Ln |g|2

〉
= ρ+n λ

n
〈
mφ, |g|2

〉

for every g ∈ L2(mφ) and n ≥ 0. The second assertion of the lemma follows because ρ+n . λn.
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For the first assertion, take n = 1. From the definition of ρ+n and λ, we have ρ+1 ≤ dkemax φ

and λ ≥ dkeminφ. The above inequality implies that
〈
mφ, |Lg|2

〉
≤ eΩ(φ)λ2

〈
mφ, |g|2

〉
.

The first assertion in the lemma follows. �

Proposition 4.5. Under the assumptions of Theorem 1.1, the measure µφ = ρmφ is K-mixing
and mixing of all orders.

Proof. We start with the second property. Let {g0, . . . , gr} be any finite family of continuous
test functions on Pk. We need to show that, for 0 = n0 ≤ n1 ≤ · · · ≤ nr,

〈
µφ, g0(g1 ◦ fn1) . . . (gr ◦ fnr)

〉
−

r∏

j=0

〈µφ, gj〉 → 0

when n := inf0≤j<r(nj+1 − nj) tends to infinity. This property is clearly true for r = 0. Take
r ≥ 1. By induction, we can assume that the above convergence holds for the case of r− 1 test
functions. We prove now the same property for r test functions.

By the f∗-invariance of µφ and the induction hypothesis, we have

〈
µφ, (g1 ◦ fn1) . . . (gr ◦ fnr)

〉
=

〈
µφ, g1(g2 ◦ fn2−n1) . . . (gr ◦ fnr−n1)

〉
→

r∏

j=1

〈µφ, gj〉.

So the desired property holds when g0 is a constant function. Therefore, we can subtract from g0
a constant and assume that 〈µφ, g0〉 = 0, which implies that the product

∏n
j=0〈µφ, gj〉 vanishes.

Using that λ−1L(ρ) = ρ, the λ−1L∗-invariance of mφ, and the definition of L, we can easily
check by induction that for all functions g, l we have

〈µφ, g〉 = 〈µφ, Ln(g)〉 and Ln(g(l ◦ fn)) = Ln(g)l.

We then deduce that
〈
µφ, g0(g1 ◦ fn1) . . . (gr ◦ fnr)

〉
=

〈
µφ, L

n1
(
g0(g1 ◦ fn1) . . . (gr ◦ fnr)

)〉

=
〈
µφ, L

n1(g0)g1 . . . (gr ◦ fnr−n1)
〉
.

By Lemma 4.3, the sequence Ln1(g0) converges uniformly to 0 as n1 tends to ∞. So the last
integral tends to 0 because the function g1 . . . (gr ◦ fnr−n1) is bounded. We then conclude that
µφ is mixing of all orders.

We prove now that µφ is K-mixing, that is, that given g ∈ L2(µφ), when n tends to infinity
the difference 〈

µφ, g(l ◦ fn)
〉
− 〈µφ, g〉〈µφ, l〉

tends to 0 uniformly on test functions l whose L2(µφ)-norm is bounded by a constant. As
above, we can assume that 〈µφ, g〉 = 0. We can also assume that the L2(µφ)-norms of g and l
are bounded by 1. Fix an arbitrary constant ǫ > 0. It is enough to show the existence of an
integer N = N(ǫ) independent of l such that |〈µφ, g(l ◦ fn)〉| ≤ 2ǫ for n ≥ N .

Choose a continuous function g′ such that 〈µφ, g′〉 = 0 and ‖g − g′‖L2(µφ) ≤ ǫ. Using the
invariance of µφ we have

|〈µφ, g(l ◦ fn)〉 − 〈µφ, g′(l ◦ fn)〉| = |〈µφ, (g − g′)(l ◦ fn)〉| ≤ ‖g − g′‖L2(µφ)‖l ◦ f
n‖L2(µφ)

= ‖g − g′‖L2(µφ)‖l‖L2(µφ) ≤ ǫ.

It remains to show that |〈µφ, g′(l ◦ fn)〉| ≤ ǫ when n ≥ N for some N large enough. As above,
we have

|〈µφ, g′(l ◦ fn)〉| = |〈µφ, Ln(g′)l〉| ≤ ‖Ln(g′)‖∞.
Lemma 4.3 and the identity 〈µφ, g′〉 = 0 imply the result. �
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For positive real numbers q,M , and Ω with q > 2 and Ω < log d, consider the following set
of weights

P(q,M,Ω) :=
{
φ : P

k → R : ‖φ‖logq ≤M, Ω(φ) ≤ Ω
}

and the uniform topology induced by the sup norm. Observe that this family is equicontinuous.
In the two lemmas below, we study the dependence on φ ∈ P(q,M,Ω) of the objects introduced
in this section. Therefore, we will use the index φ or parameter φ for objects which depend on
φ, e.g., we will write λφ,Lφ, ρφ,1n(φ) instead of λ,L, ρ and 1n.

Lemma 4.6. Let q,M , and Ω be positive real numbers such that q > 2 and Ω < log d. The maps
φ 7→ λφ, φ 7→ mφ, φ 7→ µφ, and φ 7→ ρφ are continuous on φ ∈ P(q,M,Ω) with respect to the
standard topology on R, the weak topology on measures, and the uniform topology on functions.
In particular, ρφ is bounded from above and below by positive constants which are independent

of φ ∈ P(q,M,Ω). Moreover, ‖λ−nφ Lnφ‖∞ is bounded by a constant which is independent of n

and of φ ∈ P(q,M,Ω).

Proof. Fix q,M, and Ω as above. Observe that when we add to φ a constant c the scaling ratio
λφ and the operator Lφ are both changed by a factor ec. It follows that the operator λ−1

φ Lφ,
the measures mφ, µφ, and the density function ρφ do not change. So, for simplicity, it is enough
to prove the lemma for φ in the family

P0(q,M,Ω) :=
{
φ : P

k → R : minφ = 0, ‖φ‖logq ≤M, Ω(φ) ≤ Ω
}
.

Notice that this family is compact for the uniform topology.
Consider two weights φ and φ′ in this space. From the definition of λφ and λφ′ , we have

e−‖φ−φ′‖∞ ≤ λφ/λφ′ ≤ e‖φ−φ
′‖∞ . It follows that φ 7→ λφ is continuous. When φ′ → φ, any limit

value of mφ′ is a probability measure invariant by λ−1
φ L∗

φ thanks to the invariance of mφ′ by

λ−1
φ′ L∗

φ′ . Since mφ is the only probability measure which is invariant by λ−1
φ L∗

φ, this limit value

must be mφ. Thus, φ 7→ mφ′ is continuous.
We deduce from the proof of Proposition 3.2 that θn(φ) = ρ+n (φ)/ρ−n (φ) is bounded by a

constant independent of n and φ. Moreover, the family of functions
{
1
∗
n(φ) with n ≥ 0 and φ ∈ P0(q,M,Ω)

}

is uniformly bounded and equicontinuous. Recall that 1∗
n(φ) = (ρ−n (φ))−11n(φ) and ρ−n (φ) ≤

λnφ ≤ ρ+n (φ), see the proof of Lemma 3.8. It follows that λ−nφ 1n(φ) belongs to a uniformly

bounded and equicontinuous family of functions.
From the definition of ρφ and ρφ′ , we also see that these functions belong to a uniformly

bounded and equicontinuous family of functions. When φ′ → φ, if ρ′ is any limit of ρφ′ , then

ρ′ is continuous and invariant by λ−1
φ Lφ because ρφ′ satisfies a similar property. It follows from

Theorem 3.1 that ρ′ = cρφ for some constant c. On the other hand, since µφ′ = ρφ′mφ′ is
a probability measure, any limit of ρφ′mφ′ is a probability measure. Thus, ρ′mφ = cµφ is a
probability measure and hence c = 1. We conclude that ρφ′ → ρφ and also µφ′ → µφ. In other
words, the maps φ 7→ µφ and φ 7→ ρφ are continuous. Since ρφ is strictly positive and the
family P0(q,M,Ω) is compact, we deduce that ρφ is bounded from above and below by positive
constants independent of φ.

The last assertion in the lemma is also clear because ‖λ−nφ Lnφ‖∞ = λ−nφ ‖1n(φ)‖∞ ≤ θn(φ).
This ends the proof of the lemma. �

Lemma 4.7. Let q,M , and Ω be positive real numbers such that q > 2 and Ω < log d. Let F be
a uniformly bounded and equicontinuous family of real-valued functions on Pk. Then the family

{
λ−nφ Lnφ(g) : n ≥ 0, φ ∈ P(p,M,Ω), g ∈ F

}

is equicontinuous. Moreover,
∥∥λ−nφ Lnφ(g) − 〈mφ, g〉

∥∥
∞

tends to 0 uniformly on φ ∈ P(p,M,Ω)

and g ∈ F when n goes to infinity.
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Proof. As in Lemma 4.6, we can assume that φ ∈ P0(p,M,Ω). The first assertion is clear from
the proof of Lemma 3.9. We prove now the second assertion. By Lemma 4.6, mφ belongs to
a compact family of probability measures. It follows that |〈mφ, g〉| is bounded by a constant
independent of φ and g. It follows that the family

F ′
N :=

{
λ−nφ Lnφ(g) − 〈mφ, g〉 : n ≥ 0, φ ∈ P0(p,M,Ω), g ∈ F

}

is uniformly bounded and equicontinuous. Denote by F ′
∞ the set of all functions l′ obtained as

the limit of a sequence

hj := λ
−nj

φj
Lnj

φj
(gj) − 〈mφj , gj〉

in F ′
N

with nj → ∞. By taking a subsequence, we can assume that φj converges uniformly
to some function φ ∈ P0(p,M,Ω). Since 〈mφj , hj〉 = 0, we also obtain that 〈mφ, l

′〉 = 0 by
the continuity of φ 7→ mφ. Now, as in the end of the proof of Proposition 4.1, we obtain that

l′ = λ−nφ Lnφ(l′−n) for some l′−n ∈ F ′
∞ and then deduce that l′ = 0. The lemma follows. �

4.2. Pressure and uniqueness of the equilibrium state. Using the results in the previous
section, to prove the next proposition we only need to follow the arguments in [UZ13, Sections
6 and 7] and [PU10, Section 5.6].

Proposition 4.8. The probability measure µφ is a unique equilibrium state associate to φ.
Moreover, the pressure P (φ) is equal to log λ.

Proof. We follow the approach in [PU10, Th. 5.6.5]. To simplify the notation, set Sn(g) :=∑n−1
j=0 g ◦ f j for any function g : Pk → R. Recall that, given φ′ : Pk → R with ‖φ′‖logq <∞ and

Ω(φ′) < log d, we denote by λφ′ , ρφ′ the objects associated to Lφ′ .
Claim 1. We have Entf (µφ′) +

〈
µφ′ , φ

′
〉

= P (φ′) = log λφ′ for all φ′ : Pk → R such that
‖φ′‖logq <∞ and Ω(φ′) < log d.

Proof of Claim 1. The proof of the inequality P (φ′) ≤ log λφ′ is an adaptation of Gromov’s
proof of the fact that the topological entropy of f is bounded above by k log d, see [Gro03]. We
refer to [UZ13, Th. 6.1] for the complete details. To complete the proof, it is enough to show
that Entf (µφ′) +

〈
µφ′ , φ

′
〉
≥ log λφ′ .

It follows from [Par69] that Entf (µφ′) ≥
〈
µφ′ , log Jµφ′

〉
, where Jµφ′ is defined as the Radon-

Nikodym derivative of f∗µφ′ with respect to µφ′ (when this derivative exists). In our setting, it
follows from a straightforward computation that Jµφ′ is well defined and given by

Jµφ′ = λφ′ρ
−1
φ′ e

−φ′(ρφ′ ◦ f).

Indeed, denoting by J ′ the RHS in the above expression, for every continuous function g : Pk →
R, we have

〈
µφ′ , J

′g
〉

=
〈
λmφ′ , e

−φ′(ρφ′ ◦ f)g
〉

=
〈
L∗
φ′mφ′ , e

−φ′(ρφ′ ◦ f)g
〉

=
〈
mφ′ ,Lφ′(e−φ

′
(ρφ′ ◦ f)g)

〉

=
〈
mφ′ , ρφ′Lφ′(e−φ

′
g)
〉

=
〈
µφ′ , f∗g

〉
=

〈
f∗µφ′ , g

〉
,

which proves that J ′ = Jµφ′ . We then have, using the f∗-invariance of µφ′ ,

Entf (µφ′)+
〈
µφ′ , φ

′
〉
≥

〈
µφ′ , log Jµφ′

〉
+
〈
µφ′ , φ

′
〉

=
〈
µφ′ , log(ρφ′ ◦ f) − log ρφ′

〉
+log λφ′ = log λφ′

and the proof is complete. �

Claim 2. Let M and Ω be positive real numbers such that Ω < log d, and g : Pk → R a
continuous function. Then, for every y ∈ Pk, we have

(4.1)
1

n

∑
fn(x)=y Sn(g)(x)eSn(φ′)(x)

Lnφ′1(y)
→

〈
µφ′ , g

〉

where the convergence is uniform on φ′ ∈ P(q,M,Ω).
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Proof of Claim 2. Observe that the LHS of (4.1) is equal to

1

n

λ−nφ′
∑

fn(x)=y Sn(g)(x)eSn(φ′)(x)

λ−nφ′ Lnφ′1(y)
.

The denominator of the last quotient converges to ρφ′(y) and the numerator satisfies

(4.2) λ−nφ′
∑

fn(x)=y

Sn(g)(x)eSn(φ′)(x) = λ−nφ′

n−1∑

j=0

Lnφ′(g ◦ f j)(y) = λ−jφ′

n−1∑

j=0

λj−nφ′ Ln−jφ′ (g · Ljφ′1)(y).

It follows from Lemma 4.7 that

(4.3) λj−nφ′ Ln−jφ′ (g · Ljφ′1) →
〈
mφ′ , g · Ljφ′1

〉
ρφ′

as n − j → ∞, where the convergence is uniform on φ′ ∈ P(q′,M,Ω). We deduce from (4.2),

(4.3), and the fact that λ−jφ′ L
j
φ′1 → ρφ′ as j → ∞ that, as n→ ∞, the LHS in (4.1) tends to

lim
n→∞

1

n

n−1∑

j=0

λ−jφ′
〈
mφ′ , g · Ljφ′1

〉
=

〈
mφ′ , g · ρφ′

〉
=

〈
µφ′ , g

〉
.

The proof is complete. �

Claim 3. For every ψ : Pk → R such that ‖ψ‖logq < ∞ the function t 7→ P (φ + tψ) is
differentiable in a neighbourhood of 0.

Proof of Claim 3. Fix y ∈ Pk and set

Pn(t) :=
1

n
logLnφ+tψ1(y) and Qn(t) :=

d

dt
Pn(t) =

1

n

∑
fn(x)=y Sn(ψ)(x)eSn(φ+tψ)(x)

Lnφ+tψ1(y)
.

Notice that Ω(φ+tψ) < log d for t sufficiently small. A direct computation and Claim 2 (applied
with φ+ tψ, ψ instead of φ′, g) imply that Qn(t) → 〈µφ+tψ, ψ〉 as n→ ∞, locally uniformly with
respect to t. We also have Pn(t) → log λφ+tψ = P (φ+ tψ), where the convergence follows from
Lemma 3.8 and the equality from Claim 1 applied with φ′ instead of φ+ tψ. We deduce that the
pressure function P , in a neighbourhood of t = 0, is the uniform limit of the C1 functions Pn(t),
whose derivatives Qn(t) are also uniformly convergent. Thus, the function P is differentiable in
a neighbourhood of t = 0, with derivative at t equal to 〈µφ+tψ, ψ〉. �

It follows from Claim 1 that µφ is an equilibrium state. By [PU10, Cor. 3.6.7], the fact that
the pressure function t 7→ P (φ + tψ) is differentiable at t = 0 with respect to a dense set of
continuous functions ψ implies the uniqueness of the equilibrium state for the weight φ. Since
this property holds by Claim 3 for all ψ such that ‖ψ‖logq <∞, the proof is complete. �

In the second part of this work, we will prove that, when φ and ψ are Hölder continuous, the
pressure function P (t) defined above is actually analytic, see [BD20, Theorem 1.3].

We conclude this section with the following properties of the equilibrium state µφ that we
will use in the next section.

Proposition 4.9. Under the assumptions of Theorem 1.1, the metric entropy Entf (µφ) of µφ is

strictly larger than (k−1) log d. In particular, µφ has no mass on proper analytic subsets of Pk,

its Lyapunov exponents are strictly positive and at least equal to 1
2(Entf (µφ)−(k−1) log d), and

the function log | JacDf | is integrable with respect to µφ. Moreover, the Hausdorff dimension
of µφ satisfies

dimH(µφ) ≥ (k − 1) log d

λ1
+

Entf (µφ) − (k − 1) log d

λk
·
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Proof. Since µφ maximizes the pressure and Entf (µ) = k log d, we have

Entf (µφ) + 〈µφ, φ〉 ≥ Entf (µ) + 〈µ, φ〉 ≥ k log d+ minφ.

Since by assumption we have Ω(φ) < log d, it follows that

Entf (µφ) ≥ k log d+ minφ− 〈µφ, φ〉 ≥ k log d− Ω(φ) > (k − 1) log d.

The Lyapunov exponents of every ergodic invariant probability measure satisfying this property
are bounded below as in the statement, and in particular the function log | Jac | is integrable
with respect to it, see de Thélin [De 08] and Dupont [Dup12]. The bound on the Hausdorff
dimension of µφ is then a consequence of [Dup11], see also [DV15].

Let now X be a proper analytic subset of Pk. Assume by contradiction that m := µφ(X) > 0.
We choose such an X which is irreducible and of minimal dimension p. So, for all n ≥ 0, fn(X)
is also an irreducible analytic set of dimension p. We have

µφ(fn(X)) = µφ(f−n(fn(X))) ≥ µφ(X) = m.

It follows that µφ(fn(X) ∩ fn′
(X)) > 0 for some n′ > n ≥ 0. The minimality of the dimension

p implies that fn(X) = fn
′
(X).

Replacing X, f , and φ by fn(X), fn
′−n, and φ + · · · + φ ◦ fn′−n−1 we can assume that X is

invariant and µφ(X) > 0. Since µφ is mixing, it is ergodic. We then deduce that µφ(X) = 1.
Therefore, the metric entropy of µφ is smaller than the topological entropy of f on X. But this
is a contradiction because the last one is at most equal to p log d, see [DS10a, Th. 1.108 and
Ex. 1.122]. The result follows. �

4.3. Equidistribution of periodic points and end of the proof of Theorem 1.1. Because
of Proposition 4.1, Corollary 4.2, Lemma 4.3, and Propositions 4.5 and 4.8, to prove Theorem
1.1 it only remains to establish the equidistribution of (weighted) repelling periodic points of
period n with respect to µφ, as n→ ∞.

Theorem 4.10. Let f : Pk → Pk be a holomorphic endomorphism of Pk of algebraic degree
d ≥ 2 and satisfying Assumption (A). Let φ : Pk → R satisfy ‖φ‖logq < ∞ for some q > 2 and

Ω(φ) < log d. Let µφ be the unique equilibrium state associated to φ, and λ the scaling ratio.
Then for every n ∈ N there exists a set P ′

n of repelling periodic points of period n in the small
Julia set such that

(4.4) lim
n→∞

λ−n
∑

y∈P ′
n

eφ(y)+φ(f(y))+···+φ(fn−1(y))δy = µφ.

Note that a related equidistribution property for Hölder continuous weights was proved by
Comman-River-Letelier [CR11] for (hyperbolic and) topologically Collect-Eckmann rational
maps on P1.

To prove Theorem 4.10, we follow a now classical strategy due to Briend-Duval [BD99] for
the measure of maximal entropy (which corresponds to the case φ ≡ 0). We employ a trick due
to X. Buff which simplifies the original proof. An extra difficulty with respect to the case φ ≡ 0
is due to the fact that there is no a priori upper bound for the mass of the left hand side of
(4.4) when P ′

n is replaced by the set of all repelling periodic points of period n.
Given any point x ∈ Pk we denote by µx,n the measure

µx,n := λ−nρ(x)−1
∑

fn(a)=x

eφ(a)+φ(f(a))+···+φ(fn−1(a))ρ(a)δa.

It follows from Corollary 4.2 that, for every continuous function g : Pk → R, we have

〈µx,n, g〉 = λ−nρ(x)−1
∑

fn(a)=x

eφ(a)+φ(f(a))+···+φ(fn−1(a))ρ(a)g(a) → ρ(x)−1 〈ρ(x)mφ, ρg〉 = 〈µφ, g〉

as n→ ∞. This means that, for all x ∈ Pk, we have µx,n → µφ as n→ ∞.
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We denote by 0 < L1 ≤ · · · ≤ Lk the Lyapunov exponents of µφ, see Proposition 4.9. We fix
in what follows a constant 0 < L0 < L1. Given x ∈ X, a ball B of center x, and n ∈ N, we say
that g : B → B′ is an m-good inverse branch of f of order n on B if

g ◦ fn = id|B′ and diam f l(B′) ≤ e−m−(n−l)L0 for all 0 ≤ l ≤ n.

Notice that the definition in particular implies that diam(B) ≤ e−m. We denote by µ
(m)
B,n the

measure

µ
(m)
B,n := λ−nρ(x)−1

∑

a=g(x)

eφ(a)+φ(f(a))+···+φ(fn−1(a))ρ(a)δa,

where the sum is taken on the m-good inverse branches g of f of order n on B. Since we have

µ
(m)
B,n ≤ µx,n for all n ≥ 0, it follows that any limit value µ′B of the sequence

{
µ
(m)
B,n

}
satisfies

µ′B ≤ µφ. In particular, we have ‖µ′B‖ ≤ 1.
Given m > 1 we say that a ball B centred at x is m-nice if

(i) infB ρ > (1 − 1/m) supB ρ;

(ii)
∥∥µ(m)

B,n

∥∥ ≥ 1 − 1/m for every n sufficiently large.

Observe that the second condition implies that diam(B) ≤ e−m for every m-nice ball B.

Moreover, we have ‖µ′B‖ ≥ 1 − 1/m for every limit value µ′B of the sequence µ
(m)
B,n.

Lemma 4.11. For µφ-almost every x ∈ Pk, every sufficiently small ball centred at x is m-nice.

The proof of Lemma 4.11 is elementary but makes uses of the natural extension of the system
(Pk, f, µφ), see for instance [CFS12, Sec. 10.4]. We denote by X0, Cf , PCf the small Julia set,
the critical set and the postcritical set PCf := ∪n≥0f

n(Cf ) of f , respectively. We also set
X := X0 \ ∪m∈Nf

−m(PCf ). By Proposition 4.9 we have µφ(f−m(PCf )) = 0 for every m ∈ N,

hence µ(X) = 1. We denote by X̂ the set

X̂ := {x̂ := (xn)n∈Z : xn ∈ X, f(xn) = xn+1} ,

by πn : x̂ 7→ xn the natural projection from X̂ to X and by f̂ : X̂ → X̂ the map

f̂(. . . , x−1, x0, x1, . . . ) := (. . . , f(x−1), f(x0), f(x1), . . . ) = (. . . , x0, x1, x2, . . . ).

Observe that πn ◦ f̂ = f ◦ πn for all n ∈ Z. Let us consider on X̂ the σ-algebra B̂ generated by
all cylinders, i.e., the sets of the form

An,B := π−1
n (B) = {x̂ : xn ∈ B} for n ≤ 0 and B ⊆ P

k a Borel set

and set

µ̂φ(An,B) := µφ(B) for all An,B as above.

It follows from the invariance of µφ and the fact that xn ∈ B if and only if xn−m ∈ f−m(B)
(with m ≥ 0) that µ̂φ is well defined on the collection of the sets An,B and

µ̂φ(An,B) = µ̂φ(An−m,B) for all m ≥ 0.

Similarly, for every m > 0 and Borel sets B0, B−1, . . . , B−m ⊆ Pk we then have

µ̂φ({x̂ : x0 ∈ B0, x−1 ∈ B−1, . . . , x−m ∈ B−m})

= µ̂φ({x̂ : x−m ∈ f−m(B0) ∩ f−(m−1)(B−1) ∩ · · · ∩B−m})

= µφ(f−m(B0) ∩ f−(m−1)(B−1) ∩ · · · ∩B−m).

We then extend µ̂φ to a probability measure, still denoted by µ̂φ, on B̂. Observe that µ̂φ is

f̂ -invariant by construction and satisfies (π0)∗µ̂φ = µφ.

For n > 0 we denote by f−nx̂ the inverse branch of fn defined in a neighbourhood of x0 and

such that f−nx̂ (x0) = x−n. This branch exists for all x0 ∈ X. We have the following lemma.
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Lemma 4.12. For every 0 < L < L1 there exist two measurable functions ηL : X̂ → (0, 1]

and SL : X̂ → (1,+∞) such that, for µ̂φ-almost every x̂ ∈ X̂, the map f−nx̂ is defined on

BPk(x0, ηL(x̂)) with Lip(f−nx̂ ) ≤ SL(x̂)e−nL for every n ∈ N.

Sketch of proof. The statement is a consequence of Proposition 4.9. A direct proof in the case
φ = 0 is given in [BD99, Sec. 2] and [BDM08, Thm. 1.4(3)]. The case n = 1 comes from a
(quantitative) application of the inverse mapping theorem, which is then iterated to get functions
ηL and SL valid for all n. The main point in the proof is an application of the Birkhoff ergodic
theorem to the function log | JacDf |. This function is integrable with respect to the measure of
maximal entropy µ0, which has continuous potentials, because of the Chern-Levine-Nirenberg
inequality [CLN69]. Since this function is integrable with respect to µφ by Proposition 4.9, the
same proof applies in our setting. �

Proof of Lemma 4.11. Since ρ is continuous and strictly positive, we only need to check that, for

µφ-almost every x ∈ Pk, every sufficiently small ball B centred at x satisfies
∥∥µ(m)

B,n

∥∥ ≥ 1 − 1/m
for every n sufficiently large.

Let us consider the disintegration of the measure µ̂φ with respect to µφ and the projection
π0. We denote by µ̂xφ the conditional measure on {x0 = x}. The measure µ̂xφ is uniquely defined
for µφ-almost all x ∈ X and characterized by the identity

〈µ̂φ, g〉 = 〈µφ, u(x)〉 , where u(x) :=
〈
µ̂xφ, g

〉

for all bounded measurable functions g : X̂ → R. Since (π0)∗µ̂φ = µφ, µ̂xφ is a probability
measure for µφ-almost every x.

We will need a more explicit description of the conditional measures µ̂xφ. For n > 0 and

x ∈ X we consider the measure µ̂xn on X̂ defined as follows. First, let us consider the projection

X̂ → Xn+1 given by

π̂n := (π−n, . . . , π−1, π0).

For every element (y−n, . . . , y0) ∈ Xn+1 we choose a representative ẑ ∈ X̂ such that zj = yj for

all −n ≤ j ≤ 0. For any given y0 and any n > 0 we then have dkn distinct such representatives,
and we denote by Ẑn their collection. We then set

µ̂xn := λ−nρ(x)−1
∑

ẑ∈Ẑn : z0=x

eφ(z−n)+φ(z−n+1)+···+φ(z−1)ρ(z−n)δẑ.

Since this is a finite sum, the measures µ̂xn are well defined on X̂ .

Claim. We have limn→∞ µ̂xn = µ̂xφ for µφ-almost every x ∈ X.

Proof. It is enough to check the assertion on the cylinders A−i,B for i ≥ 0 and B ⊆ Pk a Borel
set. It is clear that, for all n > 0, we have µ̂xn(A0,B) = δx(B), which implies that

∫
µ̂xn(A0,B)µφ(x) =

∫
δx(B)µφ(x) = µφ(B).

Moreover, for all n > i, using the invariance of ρ by λ−1L we have

µ̂xn(A−i,B) = µ̂xn(A−i,B ∩ π−1
0 (x))

= λ−nρ(x)−1
∑

ẑ∈Ẑn : z0=x

eφ(z−n)+φ(z−n+1)+···+φ(z−1)ρ(z−n)δẑ(A−i,B)

= λ−nρ(x)−1
∑

ẑ∈Ẑi : z0=x

(Ln−iρ)(z−i)e
φ(z−i)+φ(z−i+1)+···+φ(z−1)δẑ(A−i,B)

= λ−iρ(x)−1
∑

ẑ∈Ẑi : z0=x

ρ(z−i)e
φ(z−i)+φ(z−i+1)+···+φ(z−1)δẑ(A−i,B)

= µ̂xi (A−i,B).
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In order to conclude it is enough to prove that
∫
µ̂xi (A−i,B)µφ(x) = µφ(B) for all i > 0.

We have∫
µ̂xi (A−i,B)µφ(x) =

∫ (
λ−iρ(x)−1

∑

ẑ∈Ẑi : z0=x

eφ(z−i)+φ(z−i+1)+···+φ(z−1)ρ(z−i)δẑ(A−i,B)
)
µφ(x)

=

∫ (
λ−iρ(x)−1

∑

f i(a)=x

eφ(a)+φ(f(a))+···+φ(f i−1(a))ρ(a)1B(a)
)
µφ(x)

=
〈
µφ, λ

−iρ−1f i∗(e
φ+φ◦f+···+φ◦f i−1

ρ1B)
〉

=
〈ρeφ+φ◦f+···+φ◦f i−1

λi(ρ ◦ f i) (f i)∗µφ,1B

〉
= µφ(B),

where in the last step we used the fact that the Jacobian of µφ (i.e., the Radon-Nidokym

derivative
f∗µφ
µφ

) is given by λρ−1e−φ(ρ ◦ f), which implies that

(f i)∗µφ = λiρ−1e−
∑i−1

j=0 φ◦f
j

(ρ ◦ f i)µφ.
This completes the proof of the Claim. �

Let us now fix an integer m > 0, a constant L0 < L < L1, and a second positive integer γ.
For every integer N > 0 we set

X̂N :=
{
x̂ ∈ X̂ : ηL(x̂) ≥ N−1 and SL(x̂) ≤ N

}
.

Observe that µ̂φ(X̂N ) → 1 as N → ∞. In particular, there exists N0 = N0(m,γ) such that, for

every N > N0, we have µ̂φ(X̂N ) > 1 − 1/(2mγ+1). It follows by Markov inequality that there
exists a subset Xγ ⊂ X with µφ(Xγ) > 1 − 1/mγ such that, for all N > N0,

µ̂xφ(X̂N ∩ {x0 = x}) > 1 − 1/(2m) for all x ∈ Xγ .

It is enough to prove the property in the lemma for all x ∈ Xγ . Let us fix one such

x. By Lemma 4.12 and the definition of X̂N , for every x̂ ∈ X̂N and n ≥ 0 the inverse
branch f−nx̂ is defined on the ball BPk(x0, N

−1) with Lip(f−nx̂ ) ≤ Ne−nL. In particular,

diam(f−nx̂ (BPk(x0, e
−m/(2N)))) ≤ e−m−nL0 for all n ≥ 0. It follows that all inverse branches

on BPk(x, e−m/(2N)) corresponding to elements x̂ ∈ X̂N ∩ {x0 = x} are m-good for all n.
The Claim above implies that

µ̂xn(X̂N ∩ {x0 = x}) > 1 − 1/m for all n large enough.

This precisely means that, for all n sufficiently large, we have
∥∥µ(m)

B,n

∥∥ > 1 − 1/m, where B =

BPk(x, e−m/(2N)). This implies that such a ball B is m-nice. The proof is complete. �

Lemma 4.13. There exists a positive constant C = C(L0, q) such that, for all n ∈ N,m > 0,
and every m-good inverse branch g : B → B′ of f of order n on a ball B, and for all sequences
of points {xl}, {yl} with 0 ≤ l ≤ n− 1 and xl, yl ∈ f l(B′) we have

n−1∑

l=0

|φ(xl) − φ(yl)| ≤ Cm−(q−1).

Proof. Since g is m-good, we have dist(xl, yl) ≤ e−m−(n−l)L0 for all 0 ≤ l ≤ n− 1. Hence,

n−1∑

l=0

|φ(xl) − φ(yl)| ≤
n−1∑

l=0

‖φ‖logq | log⋆ dist(xl, yl)|−q ≤ ‖φ‖logq
∞∑

l=1

|1 +m+ lL0|−q . m−(q−1),

where the implicit constant depends on L0, q and we used the assumption that q > 2. �
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Lemma 4.14. Let U be a finite collection of disjoint open subsets of Pk. For every m > 0
there exists n(m,U) > m and, for every n ≥ n(m,U), a set Qm,n of repelling periodic points of
period n in the intersection of the union of the sets in U with the small Julia set such that, for
all U ∈ U ,

(1 − 1/m)µφ(U) ≤ λ−n
∑

y∈Qm,n∩U

eφ(y)+φ(f(y))+···+φ(fn−1(y)) ≤ (1 + 1/m)µφ(U).

Proof. We can assume that U consists of a single open set U , the general case follows by taking
n(m,U) to be the maximum of the n(m,U), for U ∈ U . We can also assume that µφ(U) > 0
because otherwise we can choose n(m,U) = m+ 1 and Qm,n = ∅. Fix integers m2 ≫ m1 ≫ m.
By Lemma 4.11, for µφ-almost every point a, every ball of sufficiently small radius centred at
a is m2-nice. Hence, we can find a finite family of disjoint m2-nice balls Bi ⋐ U , such that
µφ(U \∪Bi) < µφ(U)/m2. It is then enough to prove the lemma for each Bi instead of U . More
precisely, let B = BPk(a, r) be an m2-nice ball. It is enough to find an n(m2) > m2 and, for all
n ≥ n(m2), a set Q of repelling periodic points of period n in B ∩ supp(µφ) such that

(4.5) (1 − 1/m1)µφ(B) ≤ λ−n
∑

y∈Q

eφ(y)+φ(f(y))+···+φ(fn−1(y)) ≤ (1 + 1/m1)µφ(B).

We fix in what follows an integer m3 ≫ m2/µφ(B) and a second ball B⋆ = BPk(a, r⋆), with
r⋆ < r, such that µφ(B⋆) > (1 − 1/m2)µφ(B). Choose a finite family of disjoint m3-nice balls
Di with the property that µφ(∪Di) > 1−1/m3. We set D := ∪Di and let bi be the center of Di.
We also fix balls D⋆

i ⋐ Di centred at bi and such that µφ(∪D⋆
i ) > 1− 1/m3 and set D⋆ := ∪D⋆

i .

Claim 1. There is an integer M1 = M1(m2, B,B
⋆,Di) such that, for all N ≥M1, we have

(4.6) (1 − 4/m2)µφ(B) ≤ µ
(m3)
Di,N

(B⋆) ≤ (1 + 4/m2)µφ(B) for all i.

Proof. Since the balls Di are m3-nice and m3 ≫ m2/µφ(B), for every i we have
∥∥µ(m3)

Di,N

∥∥ ≥ (1 − µφ(B)/m2) for all N large enough.

Hence, since µ
(m3)
Di,N

≤ µbi,N and ‖µbi,N‖ ≤ 1+o(1), we have
∥∥µbi,N−µ(m3)

Di,N

∥∥ ≤ µφ(B)/m2+o(1).
Therefore, in order to prove the claim it is enough to show that

(1 − 2/m2)µφ(B) ≤ µbi,N (B⋆) ≤ (1 + 2/m2)µφ(B)

for all i and all N large enough. This is a consequence of Corollary 4.2 and of the inequality
µφ(B⋆) > (1 − 1/m2)µφ(B). �

Similarly, we also have the following.

Claim 2. There is an integer M2 = M2(m2, B,D
⋆) such that, for all N ≥M2, we have

(4.7) 1 − 4/m2 ≤ µ
(m2)
B,N (D⋆) ≤ 1 + 4/m2.

Proof. Since the ball B is m2-nice, we have
∥∥µ(m2)

B,N

∥∥ ≥ (1 − 1/m2) for all N large enough.

Hence, by the fact that µ
(m2)
B,N ≤ µa,N and ‖µa,N‖ ≤ 1 + o(1), in order to prove the claim it is

enough to show that
1 − 2/m2 ≤ µa,N (D⋆) ≤ 1 + 2/m2

for all N large enough. This is again a consequence of Corollary 4.2 and of the inequality
µφ(D⋆) > (1 − 1/m3). �

For every N1 sufficiently large, every point in the support of 1B⋆µ
(m3)
Di,N1

corresponds to an
m3-good inverse branch of f of order N1 mapping Di to a relatively compact subset of B.

Similarly, for every N2 sufficiently large every point in the support of 1D⋆µ
(m2)
B,N2

corresponds
to an m2-good inverse branch of f of order N2 mapping B to a relatively compact subset of
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D. Composing such inverse branches we get inverse branches gj of fN1+N2 defined on B whose
images are relatively compact in B. In what follows, we only consider these inverse branches

gj . We also write gj as g
(1)
j ◦ g(2)j , where g

(2)
j is the corresponding inverse branch of fN2 on B

(whose image is then in D) and g
(1)
j is the corresponding inverse branch of fN1 on g

(2)
j (B). We

also set i = i(j), where g
(2)
j (B) ⊂ Di.

Each inverse branch gj as above contracts the Kobayashi metric of B, and thus admits a

unique fixed point yj, which is attracting for gj and hence repelling for fN1+N2 . Up to possibly
increasing the integers M1 and M2 given by the Claims above, we can assume that the above
properties hold for N1 = M1 and N2 = M2. We set n(m) := M1(m2) + M2(m2) for a fixed
choice of sufficiently large m1,m2,m3 and, for all n ≥ n(m), we define the set Q as the union
of all such fixed points constructed as above with N1 = M1(m2) and N2 = n −N1 ≥ M2(m2).
The points in Q are then repelling periodic points of period n = N1 + N2 for f . Observe that,
for all j and all z ∈ B, since gj(B) ⋐ B we have glj(z) → yj as l → ∞. Since B intersects the
small Julia set, by taking z in the small Julia set we see that yj belongs to the small Julia set.
To conclude, we need to prove (4.5) for this choice of Q. We set

µn := λ−n
∑

y∈Q

eφ(y)+φ(f(y))+···+φ(fn−1(y))δy =
∑

j

eφ(y)+φ(f(y))+···+φ(fn−1(y))δyj

and

µ̃n := λ−n
∑

j

(
eφ(g

(1)
j (bi(j)))+φ(f◦g

(1)
j (bi(j)))+···+φ(fN1−1◦g

(1)
j (bi(j)))

ρ(g
(1)
j (bi(j)))

ρ(bi(j))
·

· eφ(g
(2)
j (a))+φ(f◦g

(2)
j (a))+···+φ(fN2−1◦g

(2)
j (a))

ρ(g
(2)
j (a))

ρ(a)
δgj(a)

)
.

Observe that there is a correspondence between the terms in µn and those in µ̃n. Moreover,
since all the balls B and Di are m2-nice, we have

|ρ(g
(1)
j (bi(j)))/ρ(a) − 1| . m−1

2 and |ρ(g
(2)
j (a))/ρ(bi(j)) − 1| . m−1

2 for all i and j.

It follows from these inequalities and Lemma 4.13 that |µn(B) − µ̃n(B)| . µ̃n(B)m−1
2 . Hence,

in order to conclude it is enough to prove that

(1 − 1/(2m1))µφ(B) ≤ µ̃n(B) ≤ (1 + 1/(2m1))µφ(B)

because m2 is chosen large enough. By construction, we have

µ̃n(B) =
∑

i

µ
(m2)
B,N2

(D⋆
i ) · µ(m3)

Di,N1
(B⋆).

By Claim 1, this implies that

(1 − 4/m2)µφ(B)
∑

i

µ
(m2)
B,N2

(D⋆
i ) ≤ µ̃n(B) ≤ (1 + 4/m2)µφ(B)

∑

i

µ
(m2)
B,N2

(D⋆
i ).

The assertion then follows from Claim 2 and the fact that
∑

i µ
(m2)
B,N2

(D⋆
i ) = µ

(m2)
B,N2

(D⋆), by taking
m2 large enough. �

We can now conclude the proof of Theorem 4.10. As mentioned at the beginning of the
section, this also completes the proof of Theorem 1.1.

End of the proof of Theorem 4.10. For every i ∈ N we construct a finite family of disjoint open
sets Ui := {Ui,j}1≤j≤Ji with the following properties:

(i) µφ(∪1≤j≤JiUi,j) = 1;
(ii) for all 1 ≤ j ≤ Ji we have diam(Ui,j) < 1/i;
(iii) for all i ≥ 2 and 1 ≤ j ≤ Ji there exists 1 ≤ j′ ≤ Ji−1 such that Ui,j ⊂ Ui−1,j′ .
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We can construct these sets using local coordinates and generic real hyperplanes which are
parallel to the coordinate hyperplanes. Observe also that, by the first condition, we have
µφ(∂Ui,j) = 0 for all i and 1 ≤ j ≤ Ji.

For every n, we define in := max{m ≤ n : n ≥ n(m,Um)}, where n(m,Um) is given by Lemma
4.14. Observe that in → ∞ as n → ∞. We define P ′

n ⊂ ∪jUin,j as the union of the sets of
repelling periodic points of period n in the small Julia set obtained by applying Lemma 4.14 to
the collection Uin instead of U , and set

µ′n := λ−n
∑

y∈P ′
n

eφ(y)+φ(f(y))+···+φ(fn−1(y))δy.

By Properties (i) and (ii) of the open sets Ui,j and Lemma 4.14, any limit µ′ of the sequence
{µ′n} has mass 1. So, since µφ(∪jUin,j) = 1 for all n and diam(Ui,j) < 1/i for all i, it is enough
to prove that

(4.8) lim inf
n→∞

µ′n(Ui⋆,j⋆) ≥ µφ(Ui⋆,j⋆) for all i⋆ ∈ N and 1 ≤ j⋆ ≤ Ji⋆ .

Indeed, given any open set A ⊆ Pk, we can write A as a countable union of compact sets of
the form Ūi,j ⋐ A, overlapping only on their boundaries. We then see that (4.8) implies that
µφ(A) ≤ µ′(A) for every open set A, and the facts that ‖µφ‖ = ‖µ′‖ and µφ(∂Ui,j) = 0 for all
i, j imply that µφ = µ′.

We can then fix i⋆, j⋆ as in (4.8) and a positive number ǫ, and it is enough to prove that

µ′n(Ui⋆,j⋆) ≥ µφ(Ui⋆,j⋆) − ǫ for all n sufficiently large.

We only consider in what follows integers n such that in > i⋆ and the sets Uin,j which
are contained in Ui⋆,j⋆. For all such n, we have µφ(Ui⋆,j⋆) =

∑
j µφ(Uin,j) and µ′n(Ui⋆,j⋆) =∑

j µ
′
n(Uin,j). It follows by the definition of µ′n and Lemma 4.14 that
∣∣µ′n(Ui⋆,j⋆) − µφ(Ui⋆,j⋆)

∣∣ ≤
∑

j

∣∣µ′n(Uin,j) − µφ(Uin,j)
∣∣ ≤ i−1

n

∑

j

µφ(Uin,j) = i−1
n µφ(U).

The assertion follows. �

Remark 4.15. One could improve the argument in the proof of Lemma 4.14 to obtain that P ′
n can

be taken to be a subset of the repelling periodic points with a good control of the eigenvalues,
see for instance [BDM08; BD19]. This implies that, setting Σj := Lk−j+1 + · · · + Lk, we have

Σj = lim
n→∞

λ−n
∑

y∈P ′
n

1

n
eφ(y)+φ(f(y))+···+φ(fn−1(y)) log

∥∥∥
∧jDfny

∥∥∥

and, in particular,

Σk =
k∑

j=1

Lj = lim
n→∞

λ−n
∑

y∈P ′
n

eφ(y)+φ(f(y))+···+φ(fn−1(y)) log | JacDfy|.

Here, Dfnx : TxP
k → Tfn(x)P

k denotes the differential of fn at x. This is a linear map from

the complex tangent space of Pk at x to the one at fn(x). It induces the natural linear map∧jDfnx from the exterior power
∧j TxP

k to
∧j Tfn(x)P

k.
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