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EXISTENCE AND PROPERTIES OF EQUILIBRIUM STATES

OF HOLOMORPHIC ENDOMORPHISMS OF Pk

FABRIZIO BIANCHI AND TIEN-CUONG DINH

Abstract. We study the transfer (Perron-Frobenius) operator induced on Pk = Pk(C) by a
generic holomorphic endomorphism and a suitable continuous weight. We prove the existence
and uniqueness of the equilibrium state and conformal measure and the existence of a spectral
gap for the transfer operator and its perturbations on various functional spaces. Moreover, we
establish an equidistribution property for the backward orbits of points, with exponential speed
of convergence, towards the conformal measure, as well as the equidistribution of repelling
periodic points with respect to the equilibrium state. Several statistical properties of the
equilibrium state, such as the K-mixing, mixing of all orders, exponential mixing, ASIP, LIL,
CLT, LDP, local CLT, almost sure CLT are also obtained. Our study in particular applies
to the case of Hölder continuous weights and observables, and many results are already new
in the case of zero weight function and even in dimension k = 1. Our approach is based on
pluripotential theory and on the introduction of new invariant functional spaces in this mixed
real-complex setting.
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Notation. Throughout the paper, Pk denotes the complex projective space of dimension k
endowed with the standard Fubini-Study form ωFS. This is a Kähler (1, 1)-form normalized so
that ωkFS is a probability measure. We will use the metric and distance dist(·, ·) on Pk induced
by ωFS and the standard ones on Ck when we work on open subsets of Ck. We denote by
BPk(a, r) (resp. Bkr ,D(a, r),Dr) the ball of center a and radius r in Pk (resp. the ball of center
0 and radius r in Ck, the disc of center a and radius r in C, and the disc of center 0 and radius
r in C). Leb denotes the standard Lebesgue measure on a Euclidean space or on a sphere. The
currents ωn and their dynamical potentials un are introduced in Section 3.1.

The pairing 〈·, ·〉 is used for the integral of a function with respect to a measure or more
generally the value of a current at a test form. If S and R are two (1, 1)-currents, we will write
|R| ≤ S when <(ξR) ≤ S for every function ξ : Pk → C with |ξ| ≤ 1, i.e., all currents S−<(ξR)
with ξ as before are positive. Notice that this forces S to be real and positive. We also write
other inequalities such as |R| ≤ |R1|+ |R2| if |R| ≤ S1 + S2 whenever |R1| ≤ S1 and |R2| ≤ S2.
Recall that dc = i

2π (∂− ∂) and ddc = i
π∂∂. The notations . and & stand for inequalities up to

a multiplicative constant. The function identically equal to 1 is denoted by 1. We also use the
function log?(·) := 1 + | log(·)|.
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Consider a holomorphic endomorphism f : Pk → Pk of algebraic degree d ≥ 2 satisfying the
Assumption (A) in the Introduction. Denote respectively by T , µ = T k, supp(µ) the Green
(1, 1)-current, the measure of maximal entropy (also called the Green measure or the equilibrium
measure), and the small Julia set of f . If S is a positive closed (1, 1)-current on Pk, its dynamical
potential is denoted by uS and is defined in Section 2.2. If ν is an invariant probability measure,
we denote by Entf (ν) the metric entropy of ν with respect to f .

We also consider a weight φ which is a continuous function on Pk. We often assume that
φ is real. The transfer operator (Perron-Frobenius operator) L = Lφ is introduced in the
Introduction together with the scaling ratio λ = λφ, the conformal measure mφ, the density
function ρ = ρφ, the equilibrium state µφ = ρmφ, the pressure P (φ), see also Section 4. The
measures mφ and µφ are probability measures. The operator L is a suitable modification of L
and is introduced in Section 4.5.

The oscillation Ω(·), the modulus of continuity m(·, ·), the semi-norms ‖·‖logp and ‖·‖∗ of a

function are defined in Section 2.1. Other norms and semi-norms ‖·‖p, ‖·‖p,α, ‖·‖〈p,α〉, ‖·‖〈p,α〉,γ
for (1, 1)-currents and functions are introduced in Section 3 and the norms ‖·‖�1 , ‖·‖�2 in Section
5.3. The semi-norms we consider are almost norms: they vanish only on constant functions. It
is easy to make them norms by adding a suitable functional such as g 7→ |〈mφ, g〉|. However,
for simplicity, it is more convenient to work directly with these semi-norms. The versions of
these semi-norms for currents are actually norms. The positive numbers q0, q1, q2 are defined in
Lemmas 3.10, 3.13, 3.16 and the families of weights P(q,M,Ω),P0(q,M,Ω),Q0 are introduced
in Sections 4.5 and 5.2.

1. Introduction and results

Let f : Pk → Pk be a holomorphic endomorphism of the complex projective space Pk = Pk(C),
with k ≥ 1, of algebraic degree d ≥ 2. Denote by µ the unique measure of maximal entropy
for the dynamical system (Pk, f) [Lyu83, BD09, DS10a]. The support supp(µ) of µ is called
the small Julia set of f . The measure µ corresponds to the equilibrium state of the system in
the case without weight, i.e., when the weight is zero. In this paper, we will consider the case
where the weight, denoted by φ, is not necessarily equal to zero. This problem has been studied
for Hölder continuous weights using a geometric approach, in dimension 1, see, e.g., Denker-
Przytycki-Urbański [Prz90, DU91a, DU91b, DPU96] and Haydn [Hay99] just to name a few,
and in higher dimensions, see Szostakiewicz-Urbański-Zdunik [UZ13, SUZ14]. We will develop
here an analytic method which will allow us to obtain more general and more quantitative
results. Many results are new even when φ = 0 and even for k = 1.

Throughout this paper, we make use of the following technical assumption for f :

(A) the local degree of the iterate fn := f ◦ · · · ◦ f (n times) satisfies

lim
n→∞

1

n
log max

a∈Pk
deg(fn, a) = 0.

Here, deg(fn, a) is the multiplicity of a as a solution of the equation fn(z) = fn(a). Note that
generic endomorphisms of Pk satisfy this condition, see [DS10b]. Our study still holds under a
weaker condition that the exceptional set of f (i.e., the maximal proper analytic subset of Pk

invariant by f−1) is empty or more generally has no intersection with supp(µ) (in particular,
this condition is superfluous in dimension 1). However, this situation requires more technical
conditions on the weight φ. We choose not to present this case here in order to simplify the
notation and focus on the main new ideas introduced in this topic. Our first goal in this paper
is to prove the following theorem (more precise statements will be given later).

Theorem 1.1. Let f be an endomorphism of Pk of algebraic degree d ≥ 2 and satisfying
the Assumption (A) above. Let φ be a real-valued logq-continuous function on Pk, for some
q > 2, such that Ω(φ) := maxφ−minφ < log d. Then φ admits a unique equilibrium state µφ,
whose support is equal to the small Julia set of f . This measure µφ is K-mixing and mixing
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of all orders, and repelling periodic points of period n (suitably weighted) are equidistributed
with respect to µφ as n goes to infinity. Moreover, there is a unique conformal measure mφ

associated to φ. We have µφ = ρmφ for some strictly positive continuous function ρ on Pk and
the preimages of points by fn (suitably weighted) are equidistributed with respect to mφ as n
goes to infinity.

We say that a function is logq-continuous if its oscillation on a ball of radius r is bounded by
a constant times (log? r)−q, see Section 2.1 for details. See also Section 4.5 for the K-mixing
and mixing of all orders.

An equilibrium state as in the statement above is defined as follows, see for instance [Rue72,
Wal00, PU10]. Given a weight, i.e., a real-valued continuous function, φ as above, we define the
pressure of φ as

P (φ) := sup
{

Entf (ν) + 〈ν, φ〉
}
,

where the supremum is taken over all Borel f -invariant probability measures ν and Entf (ν)
denotes the metric entropy of ν. An equilibrium state for φ is then an invariant probability
measure µφ realizing a maximum in the above formula, that is,

P (φ) = Entf (µφ) + 〈µφ, φ〉.
On the other hand, a conformal measure is defined as follows. Define the Perron-Frobenius (or
transfer) operator L with weight φ as (we often drop the index φ for simplicity)

(1.1) Lg(y) := Lφg(y) :=
∑

x∈f−1(y)

eφ(x)g(x),

where g : Pk → R is a continuous test function and the points x in the sum are counted with
multiplicity. A conformal measure is an eigenvector for the dual operator L∗ acting on positive
measures.

Notice that, in the case where φ is Hölder continuous, a part of Theorem 1.1 was established
by Urbański-Zdunik [UZ13] (also under a genericity assumption for f), see also [Prz90, DU91a,
DU91b, DPU96] for previous results in dimension k = 1. When φ is constant, the operator L
reduces to a constant times the push-forward operator f∗ and we get µφ = µ. For an account
of the known results in this case, see for instance [DS10a].

A reformulation of Theorem 1.1 is the following: given φ as in the statement, there exist
a number λ > 0 and a continuous function ρ = ρφ : Pk → R such that, for every continuous

function g : Pk → R, the following uniform convergence holds:

(1.2) λ−nLng(y)→ cgρ

for some constant cg depending on g. By duality, this is equivalent to the convergence, uniform
on probability measures ν,

(1.3) λ−n(L∗)nν → mφ,

where mφ is a conformal measure associated to the weight φ. The equilibrium state µφ is then
given by µφ = ρmφ, and we have cg = 〈mφ, g〉.

To prove Theorem 1.1, in Section 4 we develop a new and completely different approach with
respect to [UZ13] and to the previous studies in dimension 1. As we will see later, the flexibility
of this method will allow for a more quantitative understanding of the convergences (1.2) and
(1.3), and for the direct establishment of several statistical properties of the equilibrium states.

The main idea of our method is the following. Let us just consider for now the case where
both of the functions g and φ are of class C2 (the general case requires suitable approximations
of g and φ by C2 functions). Given such a function g, first we want to prove that the ratio
between the maximum and the minimum of Lng stays bounded with n. This allows us to define
the good scaling ratio λ and to get that the sequence λ−nLng is uniformly bounded. Next, we
would like to prove that this sequence is actually equicontinuous. This, together with other
technical arguments, would imply the existence and uniqueness of the limit function ρ.
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In order to establish the above controls, we study the sequence of (1, 1)-currents given by
ddcLng. First we prove that suitably normalized versions of these currents are uniformly
bounded by a common positive closed (1, 1)-current R. This is the core of our method which
replaces all controls on the distortion of inverse branches of fn in the geometric method of
[UZ13] by a unique, global, and flexible estimate. Namely, for every n ∈ N we can get an
estimate of the form

(1.4)
∣∣∣ddcLng

cn

∣∣∣ . ∞∑
j=0

(eΩ(φ)

d

)j (f∗)
jωFS

d(k−1)j
with cn := ‖g‖C2〈ωkFS,Ln1〉.

Here, ωFS denotes the usual Fubini-Study form on Pk normalized so that ωkFS is a probability
measure. Notice that the last infinite sum gives a key reason for the assumption Ω(φ) < log d

made on the weight φ as the mass of the current (f∗)
jωFS is equal to d(k−1)j .

We will establish in Section 2 some general criteria, interesting in themselves, which allow
one to bound the oscillation of c−1

n Lng in terms of the oscillation of the potentials of the current
in the RHS of (1.4). This latter oscillation is actually controllable. Assumption (A) allows
us to have a simple control which makes the estimates less technical but such a control exists
without Assumption (A).

Combining all these ingredients, the existence and uniqueness of the equilibrium state and
conformal measure, as well as the equidistribution of preimages and the equality P (φ) = log λ,
follow from standard arguments that we recall in Sections 4.5 and 4.6 for completeness. We
also prove that the entropy of µφ is larger than k log d − Ω(φ) > (k − 1) log d, and that all
the Lyapunov exponents of µφ are strictly positive. This also leads to a lower bound for the
Hausdorff dimension of µφ. In Section 4.7 we establish the equidistribution of repelling periodic
points with respect to µφ, see Theorem 4.20, which completes the proof of Theorem 1.1. This
result is due to Lyubich [Lyu83] (for k = 1) and Briend-Duval [BD99] (for any k ≥ 1) when
φ = 0, and is new even for k = 1 otherwise.

Without extra arguments, given a continuous test function g the convergence as n → ∞
in (1.2) is not uniform in g. Our next and main goal is to establish an exponential speed
of convergence in (1.2). This requires to build a suitable (semi-)norm for (or equivalently, a
suitable functional space on) which the operator λ−1L turns out to be a contraction.

Establishing the following statement is then our main goal in the current paper. As far
as we know, this is the first time that the existence of a spectral gap for the perturbed
Perron-Frobenius operator is proved in this context even in dimension 1, except for hyperbolic
endomorphisms or for weights with ad-hoc conditions (see for instance [Rue92, MS00]). This is
one of the most desirable properties in dynamics.

Theorem 1.2. Let f, q, φ, ρ,mφ be as in Theorem 1.1 and L, λ the above Perron-Frobenius
operator and scaling factor associated to φ. Let A > 0 and 0 < Ω < log d be two constants.
Then, for every constant 0 < γ ≤ 1, there exist two explicit equivalent norms for functions on
Pk: ‖·‖�1, depending on f, γ, q and independent of φ, and ‖·‖�2, depending on f, φ, γ, q, such
that

‖·‖∞ + ‖·‖logq . ‖·‖�1 ' ‖·‖�2 . ‖·‖Cγ .
Moreover, there are positive constants c = c(f, γ, q, A,Ω) and β = β(f, γ, q, A,Ω) with β < 1,
both independent of φ and n, such that when ‖φ‖�1 ≤ A and Ω(φ) ≤ Ω we have

‖λ−nLn‖�1 ≤ c, ‖ρ‖�1 ≤ c, ‖1/ρ‖�1 ≤ c, and
∥∥λ−1Lg

∥∥
�2 ≤ β ‖g‖�2

for every function g : Pk → R with 〈mφ, g〉 = 0. Furthermore, given any constant 0 < δ <

dγ/(2γ+2), when A is small enough, the norm ‖·‖�2 can be chosen so that we can take β = 1/δ.

The construction of the norms ‖·‖�1 and ‖·‖�2 is quite involved. We use here ideas from
the theory of interpolation between Banach spaces [Tri95] combined with techniques from
pluripotential theory and complex dynamics. Roughly speaking, an idea from interpolation
theory allows us to reduce the problem to the case where γ = 1. The definition of the above
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norms in this case requires a control of the derivatives of g (in the distributional sense), and
this is where we use techniques from pluripotential theory. This also explains why these norms
are bounded by the C1 norm. Note that we should be able to bound the derivatives of Lg
in a similar way. A quick expansion of the derivatives of Lg using (1.1) gives an idea of the
difficulties that one faces. The existence of these norms is still surprising to us.

Let us highlight two among these difficulties. First, the objects from complex analysis and
geometry are too rigid for perturbations with a non-constant weight: none of the operators f∗,
d, and ddc commutes with the operator L. In particular, the ddc-method developed by the
second author and Sibony (see for instance [DS10a]) cannot be applied in this context, even for
small perturbations of the weight φ = 0. Moreover, we have critical points on the support of
the measure, which cause a loss in the regularity of functions under the operators f∗ and L (see
Section 3). Notice that we do not assume that our potential degenerates at the critical points.

Our solution to these problems is to define a new invariant functional space and norm in this
mixed real-complex setting, that we call the dynamical Sobolev space and semi-norm, taking into
account both the regularity of the function (to cope with the rigidity of the complex objects)
and the action of f (to take into account the critical dynamics), see Definitions 3.12 and 3.15.
The construction of this norm requires the definition of several intermediate semi-norms and
the precise study of the action of the operator f∗ with respect to them, and is carried out in
Section 3. Some of the intermediate estimates already give new or more precise convergence
properties for the operator f∗ and the equilibrium measure µ, see for instance Theorem 3.6.

A spectral gap for the Perron-Frobenius operator and its perturbations is one of the most
desirable properties in dynamics. It allows us to obtain several statistical properties of the
equilibrium state. In the present setting, we have the following result, see Appendix A for the
definitions.

Theorem 1.3. Let f, φ, µφ,mφ, ‖·‖�1 be as in Theorems 1.1 and 1.2 , λ the scaling ratio
associated to φ, and assume that ‖φ‖�1 < ∞. Then the equilibrium state µφ is exponentially
mixing for observables with bounded ‖·‖�1 norm and the preimages of points by fn (suitably
weighted) equidistribute exponentially fast towards mφ as n goes to infinity. The measure µφ
satisfies the LDP for all observables with finite ‖·‖�1 norm, the ASIP, CLT, almost sure CLT,
LIL for all observables with finite ‖·‖�1 norm which are not coboundaries, and the local CLT for
all observables with finite ‖·‖�1 norm which are not (‖·‖�1 , φ)-multiplicative cocycles. Moreover,
the pressure P (φ) is equal to log λ and is analytic in the following sense: for ‖ψ‖�1 <∞ and t
sufficiently small, the function t 7→ P (φ+ tψ) is analytic.

In particular, all the properties in Theorem 1.3 hold when the weight φ and the observable
are Hölder continuous and satisfy the necessary coboundary/cocycles requirements. In this
assumption, some of the above properties were previously obtained with ad hoc arguments,
see [PUZ89, DU91a, DU91b, DPU96, Hay99, DNS07, SUZ15] when k = 1, [UZ13, SUZ14] for
mixing, CLT, LIL when k ≥ 1, and [Dup10] for the ASIP when k ≥ 1 and φ = 0. Our results
are more general, sharper, and with better error control. Note that the LDP and the local CLT
are new even for φ = 0 (for all k ≥ 1 and for all k > 1, respectively). Our method of proof of
Theorem 1.3 exploits the spectral gap established in Theorem 1.2 and is based on the theory
of perturbed operators. This approach was first developed by Nagaev [Nag57] in the context
of Markov chains, see also [RE83, Bro96, Gou15], and provides a unified treatment for all the
statistical study.

For the reader’s convenience, the above statistic properties (exponential mixing, LDP, ASIP,
CLT, almost sure CLT, LIL, local CLT) and the notions of coboundary and multiplicative
cocycle will be recalled in Section 6 and Appendix A at the end of the paper.

Outline of the organization of the paper. In Section 2, we introduce some useful notions
and establish comparison principles for currents and potentials that will be the technical key
to prove Theorems 1.1 and 1.2. In Section 3 we introduce the main (semi-)norms that we will
need, and study the action of the operator f∗ with respect to these (semi-)norms. Section 4
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is dedicated to the proof of Theorem 4.1. For this purpose, we develop our method to get the
uniform boundedness and equicontinuity for the sequence Lng, properly normalized, that lead to
the good definition of the scaling ratio λ. Once this is done, the deduction of most of Theorem
1.1 is classical, and we just recall the proof of this in Sections 4.5 and 4.6 for the reader’s
convenience. Section 5 is dedicated to the proof of Theorem 1.2, which is built on the method
developed in Section 4, made quantitative with respect to the semi-norms that we introduced
in Section 3. Finally, in Section 6 we develop the statistical study of the equilibrium states.
This section contains the proof of Theorem 1.3 and more precise statements. In Appendix A
we recall statistical properties and criteria in abstract settings that we use to prove results in
Section 6.
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2. Preliminaries and some comparison principles

2.1. Some definitions. We collect here some notions that we will use throughout the paper.

Definition 2.1. Given a subset U of Pk or Ck and a real-valued function g : U → R, define the
oscillation ΩU (g) of g as

ΩU (g) := sup g − inf g

and its continuity modulus mU (g, r) at distance r as

mU (g, r) := sup
x,y∈U : dist(x,y)≤r

|g(x)− g(y)|.

We may drop the index U when there is no possible confusion.

The following semi-norms will be the main building blocks for all the semi-norms that we
will construct and study in the sequel.

Definition 2.2. The semi-norm ‖·‖logp is defined for every p > 0 and g : Pk → R as

‖g‖logp := sup
a,b∈Pk

|g(a)− g(b)| · (log? dist(a, b))p = sup
r>0,a∈Pk

ΩBPk (a,r)(g) · (1 + | log r|)p,

where BPk(a, r) denotes the ball of center a and radius r in Pk.

Definition 2.3. The norm ‖·‖∗ of a (1, 1)-current R is given by

‖R‖∗ := inf ‖S‖
where the infimum is taken over all positive closed (1, 1)-currents S such that |R| ≤ S, see
the Notation at the beginning of the paper. When such a current S does not exist, we put
‖R‖∗ := +∞. The semi-norm ‖·‖∗ of an integrable function g : Pk → R is given by

‖g‖∗ := ‖ddcg‖∗ .

Note that when R is a real closed (1, 1)-current the above norm is equivalent to the usual
one defined as

‖R‖∗ := inf(‖S+‖+ ‖S−‖)
6



where the infimum is taken over all positive closed (1, 1)-currents S± on Pk such that R =
S+−S−. In particular, for R = ddcg, the currents S+ and S− are cohomologous and thus have
the same mass, i.e., ‖S+‖ = ‖S−‖, see [DS10a, App. A.4] for details.

In this paper we only consider continuous functions g. So the above semi-norms (and the
others that we will introduce later) are almost norms: they only vanish when g is constant.
In particular, they are norms on the space of functions g satisfying 〈ν, g〉 = 0 for some fixed
probability measure ν. We will use later ν = mφ or ν = µφ to obtain a spectral gap for the
Perron-Frobenius operator and to study the statistical properties of µφ.

2.2. Dynamical potentials. Let T denote the Green (1, 1)-current of f . It is positive closed
and of unit mass. Let S be any positive closed (1, 1)-current of mass m on Pk. There is a unique
function uS : Pk → R ∪ {−∞} which is p.s.h. modulo mT and such that

S = mT + ddcuS and 〈µ, uS〉 = 0.

Locally, uS is the difference between a potential of S and a potential of mT . We call it the
dynamical potential of S. Observe that the dynamical potential of T is zero, i.e., uT = 0.

Recall that T has Hölder continuous potentials. So, uS is locally the difference between a
p.s.h. function and a Hölder continuous one. The dynamical potential of S behaves well under
the push-forward and pull-back operators associated to f . Indeed, because of the invariance
properties of T , we have

f∗S = md · T + ddc(uS ◦ f) and f∗S = mdk−1 · T + ddc(f∗uS),

which, together with the invariance properties of µ, imply

uf∗S = uS ◦ f and uf∗S = f∗uS .

We refer the reader to [DS10a] for details. In this paper, we only need currents S such that uS
is continuous.

2.3. Comparisons between currents and their potentials. A technical key point in the
proof of our main theorems will be based on the following general idea: if u and v are two
functions on some domain in Ck such that |ddcu| ≤ ddcv or i∂u ∧ ∂u ≤ ddcv, then u inherits
some of the regularity properties of v. This section and the next are devoted to make this idea
precise and quantitative for our purposes. We start with the simplest occurrence of this fact in
the first case in terms of the sup-norm.

Lemma 2.4. There exists a positive constant A such that, for every positive closed (1, 1)-
current S0 on Pk of mass 1 and for every positive closed (1, 1)-current S on Pk with S ≤ S0,
we have Ω(uS) ≤ A + Ω(uS0), where uS0 and uS denote the dynamical potentials of S0 and S,
respectively.

Proof. We assume that Ω(uS0) is finite, since otherwise the assertion trivially holds. Observe
that the mass m of S is at most equal to 1 because S ≤ S0. Recall that uS and uS0 satisfy

S = mT + ddcuS , S0 = T + ddcuS0 , 〈µ, uS〉 = 0, and 〈µ, uS0〉 = 0.

The last identity implies that supuS0 is non-negative.
We first prove that uS is bounded above by a constant. As mentioned above, the

correspondence between positive closed (1, 1)-currents and their dynamical potentials is a
bijection. Moreover, we know that quasi-p.s.h. functions (i.e., functions that are locally difference
between a p.s.h. and a smooth function) are integrable with respect to µ [DS10a, Th. 1.35]. Since
the set of positive closed (1, 1)-currents of mass less than or equal to 1 is compact, uS belongs
to a compact family of p.s.h. functions modulo mT . We deduce that there is a constant A > 0
independent of S such that uS ≤ A/2 on Pk, see [DS10a, App. A.2] for more details. It follows
that supuS ≤ supuS0 +A/2 because supuS0 is non-negative.
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Consider the current S′ := S0 − S which is positive closed and smaller than S0. By the
uniqueness of the dynamical potential, we have uS′ = uS0 − uS , which implies uS = uS0 − uS′ .
Since S′ ≤ S, as above, we also have supuS′ ≤ A/2. It follows that

inf uS ≥ inf uS0 − supuS′ ≥ inf uS0 −A/2.

This estimate and the above inequality supuS ≤ supuS0 +A/2 imply the lemma. �

Corollary 2.5. There exists a positive constant A such that for every positive closed (1, 1)-
current S0 on Pk and for every continuous function g : Pk → R with |ddcg| ≤ S0 we have
Ω(g) ≤ A ‖S0‖+ 3Ω(uS0).

Proof. By linearity we can assume that S0 is of mass 1/2. Define R := ddcg and write it as a
difference of positive closed currents, R = (R + S0) − S0. Since R + S0 and S0 belong to the
same cohomology class, they have the same mass 1/2. We denote as usual by uR+S0 and uS0

the dynamical potentials of R+ S0 and S0 respectively.
A direct computation gives ddc(g − uR+S0 + uS0) = 0 which implies that g − uR+S0 + uS0 is

a constant function. Thus,

Ω(g) = Ω(uR+S0 − uS0) ≤ Ω(uR+S0) + Ω(uS0).

The assertion follows from Lemma 2.4 applied to R+ S0, 2S0 instead of S, S0. We use here the
fact that R+ S0 = ddcg+ S0 ≤ 2S0 and that 2S0 is of mass 1. We also use a constant A which
is equal to twice the one in Lemma 2.4. �

The following result gives a quantitative control on the oscillation of u in terms of the
oscillation of v. Notice in particular that it implies that, if v is Hölder or logp-continuous
for some p > 0, then u enjoys the same property with possibly a loss in the Hölder exponent,
but not in the logp-exponent.

Proposition 2.6. Let u and v be two p.s.h. functions on Bk3 such that ddcu ≤ ddcv and v
is continuous. Then u is continuous and for every 0 < s ≤ 1 there is a positive constant A
(independent of u and v) such that, for every 0 < r ≤ 1/2, we have

mBk1
(u, r) ≤ mBk2

(v, rs) +AmBk2
(u, rs)r1−s ≤ mBk2

(v, rs) +AΩBk2
(u)r1−s.

Proof. The continuity of u is a well-known property. Indeed, since ddcv − ddcu is a positive
closed (1, 1)-current, there is a p.s.h. function u′ such that ddcu′ = ddcv− ddcu. So, both u+u′

and v are potentials of ddcv. We deduce that they differ by a pluriharmonic function. Hence
u+u′ is continuous. We then easily deduce that both u and u′ are continuous because both are
p.s.h. (and hence u.s.c.).

We prove now the estimate in the lemma. Let x, y ∈ Bk1 be such that ‖x−y‖ ≤ r. We need to
bound u(y)− u(x). Without loss of generality, we can reduce the problem to the case k = 1 by
restricting ourselves to the complex line through x and y. Moreover, by translating and adding
constants to u and v, we can assume that x = 0, |y| ≤ r, u(x) = v(x) = 0, and u(y) ≥ 0. It is
then enough to prove that

u(y) ≤ mD1(v, rs) +AΩDrs (u)r1−s

for some positive constant A and for u, v defined on D2. Note that ΩDrs (u) ≤ 2mD1(u, rs).

Claim. We have, for some positive constant A,

u(y) ≤ 1

Leb(∂Drs)

∫
|z|=rs

u(z)dLeb(z) +AΩDrs (u)r1−s.

Assuming the claim, we first complete the proof of the lemma. Let ũ (resp. ṽ) be the radial
subharmonic function on D2 such that ũ(z) (resp. ṽ(z)) is equal to the mean value of u (resp.
v) on the circle of center 0 and radius |z|. Using the Claim, in order to obtain the lemma, it is
enough to show that ũ ≤ ṽ.
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Recall that v − u is a subharmonic function vanishing at 0. Therefore, ṽ − ũ is a radial
subharmonic function vanishing at 0. Radial subharmonic functions are increasing in |z|. Thus,
ṽ − ũ is a non-negative function and the lemma follows. �

Proof of the Claim. Define u′(z) := u(zrs) and y′ := y/rs. We need to show that, for |y′| ≤ r1−s,

u′(y′) ≤ 1

Leb(∂D1)

∫
∂D1

u′(z)dLeb(z) +AΩD1(u′)r1−s.

We can assume, without loss of generality, that y′ = α ∈ R+ and α ≤ r1−s. Consider the
automorphism Ψ of the unit disc given by Ψ(z) = z+α

1+αz . The map Ψ satisfies Ψ(0) = y′ and

moreover Ψ extends smoothly to ∂D1 and tends to the identity in the C1 norm as α → 0. It
follows that

∥∥Ψ±1 − id
∥∥
C1 ≤ A

′α ≤ A′r1−s for some positive constant A′.

Define u′′ := u′ ◦Ψ and denote by ν the normalized standard Lebesgue measure on the unit
circle. We deduce from the last inequalities that Ψ∗ν − ν is given by a smooth 1-form on ∂D1

and ‖Ψ∗ν − ν‖∞ = O(r1−s). Applying the submean inequality to the subharmonic function u′′

we get

u′(y′) = u′′(0) ≤ 〈ν, u′′〉 = 〈ν, u′ ◦Ψ〉 = 〈Ψ∗ν, u′〉 = 〈ν, u′〉+ 〈Ψ∗ν − ν, u′〉.

Since Ψ∗ν and ν are probability measures, the integral 〈Ψ∗ν − ν, u′〉 does not change if we add
to u′ a constant c. With the choice c = − infD1 u

′ (observe that u′ is continuous on D1) we get

u′(y′) ≤
∫
∂D1

u′ dν + sup
D1

|u′ + c|O(r1−s) ≤
∫
∂D1

u′ dν +AΩD1(u′)r1−s

for some positive constant A. This implies the desired inequality. �

Corollary 2.7. Let v be a continuous p.s.h. function on Bk3. Let u be a continuous real-valued
function on Bk3 such that |ddcu| ≤ ddcv. Then for every 0 < s ≤ 1 we have for 0 < r ≤ 1/2

mBk1
(u, r) ≤ 3mBk2

(v, rs) +A
(

ΩBk2
(u) + ΩBk2

(v)
)
r1−s,

where A is a positive constant independent of u and v.

Proof. Since |ddcu| ≤ ddcv, we have ddc(u + v) = ddcu + ddcv ≥ 0. So the function u + v is
p.s.h.; observe also that ddc(u+v) = ddcu+ddcv ≤ 2ddcv. Therefore, we can apply Proposition
2.6 to u+ v, 2v instead of u, v. This gives

mBk1
(u, r) ≤ mBk1

(u+ v, r) +mBk1
(v, r) ≤ mBk2

(2v, rs) +AΩBk2
(u+ v)r1−s +mBk2

(v, r)

≤ 3mBk2
(v, rs) +A

(
ΩBk2

(u) + ΩBk2
(v)
)
r1−s,

which is the desired estimate. �

Corollary 2.8. Let S0 be a positive closed (1, 1)-current on Pk with continuous local potentials.
Let F(S0) denote the set of all continuous real-valued functions g on Pk such that |ddcg| ≤ S0.
Then F(S0) is equicontinuous.

Proof. Let g be as in the statement. We cover Pk with a finite family of open sets of the form
Φj(Bk1/2) where Φj is an injective holomorphic map from Bk4 to Pk. Write S0 = ddcvj for some

continuous p.s.h. function vj on Φj(Bk4) and define Vj := Φj(Bk3).
We apply Corollary 2.7 to g, vj restricted to Vj instead of u, v and to s = 1/2. Taking into

account the distortion of the maps Φj , we see that for all r smaller than some constant r0 > 0

mPk(g, r) ≤ 3 max
j
mVj (vj , c

√
r) +A

(
ΩPk(g) + max

j
ΩVj (vj)

)√
r,

where c ≥ 1 is a constant. Since ΩPk(g) is bounded by Corollary 2.5, the RHS of the last
inequality is bounded by a constant εr which is independent of g and tends to 0 when r tends
to 0. It is now clear that the family F(S0) is equicontinuous. �
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2.4. Further comparisons. In our study we will be naturally lead to also consider currents of
the form i∂u ∧ ∂̄u. These currents are always positive. In this section we study the regularity
of u under the assumption that i∂u ∧ ∂̄u ≤ ddcv for some v of given regularity. Recall that,
given a smooth bounded open set Ω ⊂ Ck, the Sobolev space W 1,2(Ω) is defined as the space
of functions u : Ω→ R such that ‖u‖W 1,2(Ω) := ‖u‖L2(Ω) + ‖∂u‖L2(Ω) <∞, where the reference
measure is the standard Lebesgue measure on Ω. The Poincaré-Wirtinger’s inequality implies
that ‖u‖W 1,2(Ω) . ‖∂u‖L2(Ω) +

∣∣ ∫
Ω u dLeb

∣∣. We will need the following lemmas.

Lemma 2.9. There is a universal positive constant c such that∫
K
|u|dLeb ≤ cLeb(K)(log? Leb(K))1/2.

for every compact set K ⊂ D1 with LebK > 0 and function u : D1 → R such that ‖u‖W 1,2(D1) ≤
1.

Proof. By Trudinger-Moser’s inequality [Mos71], there are positive constants c0 and α such that∫
D1

e2α|u|2dLeb ≤ c0.

Let m denote the restriction of the measure Leb to K multiplied by 1/Leb(K). This is a
probability measure. It follows from Cauchy-Schwarz’s inequality that∫

eα|u|
2
dm ≤

(∫
e2α|u|2dm

)1/2
. Leb(K)−1/2.

Observe that the function t 7→ eαt
2

is convex on R+ and its inverse is the function t 7→
α−1/2(log t)1/2. By Jensen’s inequality, we obtain∫

|u|dm ≤ α−1/2
[

log

∫
eα|u|

2
dm
]1/2
. (log? Leb(K))1/2.

The lemma follows. �

Lemma 2.10. Let u : D2 → R be a continuous function and χ : D2 → R a smooth function
with compact support in D2 and equal to 1 on D1. Set χz := ∂χ/∂z. Then we have, for all
0 < r < s < 1,

(2.1) u(0)− u(r) =
1

2π

〈
i∂u, χ(s−1z)

r

z(z − r)
dz
〉

+
1

2π

〈
u, χz(s

−1z)
r

sz(z − r)
idz ∧ dz

〉
.

Proof. Denote by δξ the Dirac mass at ξ ∈ C. Observe that

i

2π
∂
dz

z − ξ
= ddc log |z − ξ| = δξ,

where the equalities are in the sense of currents on C. Hence, for |ξ| < s,

i

2π
∂
[χ(s−1z)dz

z − ξ

]
=
χz(s

−1z)idz ∧ dz
2πs(z − ξ)

+ χ(s−1z)δξ =
χz(s

−1z)idz ∧ dz
2πs(z − ξ)

+ δξ.

Applying this identity for ξ = 0 and ξ = r, and since u(0)− u(r) = 〈u, δ0 − δr〉, we obtain

u(0)− u(r) =
1

2π

〈
u, i∂

[
χ(s−1z)

(1

z
− 1

z − r

)
dz
]〉
− 1

2πs

〈
u, χz(s

−1z)
(1

z
− 1

z − r

)
idz ∧ dz

〉
=

1

2π

〈
i∂u, χ(s−1z)

r

z(z − r)
dz
〉

+
1

2π

〈
u, χz(s

−1z)
r

sz(z − r)
idz ∧ dz

〉
.

The assertion is proved. �

The following is a main result in this section. It will be a crucial technical tool in the
construction of the norms with respect to which the transfer operator has a spectral gap.
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Proposition 2.11. Let u : Bk5 → R be continuous and such that ‖∂u‖L2(Bk5) <∞. Assume that

i∂u ∧ ∂u ≤ ddcv where v : Bk5 → R is continuous, p.s.h., and such that

(2.2)

∫ 1

0
mBk4

(v, t)(log log? t)4t−1dt < +∞.

Then there is a positive constant c such that, for all 0 < r ≤ 1/2, we have

mBk1
(u, r) ≤ c

(∫ r1/2

0
mBk4

(v, t)(log log? t)2t−1dt
)1/2

(2.3)

+ cmBk4
(v, r)1/3ΩBk4

(v)1/6(log? r)1/2 + cΩBk4
(v)1/2r1/2(log? r)1/2.

Proof. Let x, y ∈ Bk1 be such that dist(x, y) ≤ r ≤ 1/2. We need to bound |u(x) − u(y)| by
the RHS of (2.3). We can assume without loss of generality that dist(x, y) = r. By a change
of coordinates and restricting to the complex line through x and y we can reduce the problem
to the case of dimension 1. More precisely, we can assume that x = 0 and y = r in C and
that u, v are defined on D4. By subtracting constants, we can assume that v(0) = 0 and∫

D3
u(z)idz ∧ dz = 0. By multiplying u and v by suitable constants γ and γ2, we can assume

that mD3(v, 1) = 1/8, which implies that |v| ≤ 1 on D3. In order to establish (2.3) it is enough
to show that |u(0)− u(r)| is bounded by a constant times

(2.4)
(∫ r1/2

0
mD3(v, t)(log log? t)2t−1dt

)1/2
+mD3(v, r)1/3(log? r)1/2 + r1/2(log? r)1/2.

Since v is bounded, by Chern-Levine-Nirenberg’s inequality [CLN69] the mass of ddcv on D2

is bounded by a constant. Thus, by the hypotheses on u and v, the L2-norm of ∂u on D2 is
bounded by a constant and therefore, by Poincaré-Wirtinger’s inequality, ‖u‖W 1,2(D2) is also

bounded by a constant.
Fix a smooth function 0 ≤ χ(z) ≤ 1 with compact support in D2 and such that χ = 1 on D1.

Define χz := ∂χ/∂z and set

s := rmin
{
r−1/2,mD3(v, r)−1/3

}
.

We have

(2.5)
√

2r ≤ s ≤ r1/2 < 1

because mD3(v, r) ≤ mD3(v, 1) = 1/8 and 0 < r ≤ 1/2. The functions u and χ satisfy the
assumptions of Lemma 2.10. Thus, (2.1) holds for the above s and r. The second term in the
RHS of (2.1) is an integral over D2s \ Ds because χz has support in D2 \ D1. Moreover, for
z ∈ D2s \ Ds, we have r

sz(z−r) = O(rs−3) because of (2.5). Using that ‖u‖W 1,2(D2) . 1 and

that Leb(D2s) . s2, Lemma 2.9 implies that the considered term has modulus bounded by a
constant times

rs−1(log? s)1/2 . max
{
r1/2,mD3(v, r)1/3

}
(log? r)1/2.

The last expression is bounded by the sum in (2.4).
In order to conclude, it remains to bound the first term in the RHS of (2.1). Choose a

smooth decreasing function h(t) defined for t > 0 and such that h(t) := (− log t)(log(− log t))2

for t small enough and h(t) = 1 for t large enough. Define η(z) := h(|z|) + h(|z − 1|). We
will also use the function ṽ(z) := v(z) − r−1v(r)<(z). This function satisfies ddcṽ = ddcv and
ṽ(0) = ṽ(r) = 0. By Cauchy-Schwarz’s inequality we have for the first term in the RHS of (2.1)∣∣∣〈i∂u, χ(s−1z)

r

z(z − r)
dz
〉∣∣∣2 ≤ 〈i∂u ∧ ∂u, χ(s−1z)η(r−1z)

〉 ∫ χ(s−1z)

η(r−1z)

r2

|z2(z − r)2|
idz ∧ dz.

Using the change of variable z 7→ rz, the fact that 0 ≤ χ ≤ 1, and the definition of η we see
that the last integral is bounded by∫

C

idz ∧ dz[
h(|z|) + h(|z − 1|)

]
|z2(z − 1)2|

·

11



Using polar coordinates for z and for z − 1 and the definition of h it is not difficult to see that
the last integral is finite. Therefore, since i∂u ∧ ∂u ≤ ddcv = ddcṽ, we get∣∣∣〈i∂u, χ(s−1z)

r

z(z − r)
dz
〉∣∣∣2 . 〈ddcṽ, χ(s−1z)η(r−1z)

〉
.

Define v̂(z) := ṽ(sz). The RHS in the last expression is then equal to〈
ddcv̂, χ(z)η(r−1sz)

〉
=
〈
ddcv̂, χ(z)h(r−1s|z|)

〉
+
〈
ddcv̂, χ(z)h(|r−1sz − 1|)

〉
.

In order to conclude the proof of the proposition, it is enough to show that each term in the
last sum is bounded by a constant times

(2.6)

∫ s

0
mD3(v, t)(log? | log t|)2t−1dt+mD3(v, r)2/3 log? r.

We will only consider the first term. The second term can be treated in a similar way using
the coordinate z′ := z − rs−1. Since h is decreasing, the first term we consider is bounded by〈

ddcv̂, χ(z)h(|z|)
〉
.

Claim. We have

(2.7)
〈
ddcv̂, χ(z)h(|z|)

〉
=

∫
D2\{0}

v̂(z)ddc[χ(z)h(|z|)].

We assume the claim for now and conclude the proof of the proposition. Notice that the
assumption (2.2) will be used in the proof of this claim.

Using the definitions of h and χ, we can bound the RHS of (2.7) by a constant times∫
D2\{0}

|v̂(z)z−2|(log log? |z|)2idz ∧ dz =

∫
D2s\{0}

|ṽ(z)z−2|(log log? |z/s|)2idz ∧ dz

.
∫

D2s\{0}
|ṽ(z)z−2|(log log? |z|)2idz ∧ dz,

where we used the change of variable z 7→ sz and the fact that log? |z/s| . log? |z| for
0 < |z| < 2s < 2. Moreover, by the definition of ṽ and using that v(0) = ṽ(0) = 0, we
have for |z| < 2s

|ṽ(z)| ≤ mD3(v, |z|) + r−1|v(r)<(z)| ≤ mD3(v, |z|) +mD3(v, r)r−1|z|.

Therefore, using polar coordinates, we see that the last integral is bounded by a constant times∫ 2s

0
mD3(v, t)(log log? t)2t−1dt+mD3(v, r)r−1s(log log?(2s))2.

The first term in this sum is bounded by a constant times the integral in (2.6) because
mD3(v, t′) ≤ 4mD3(v, t) for s/2 ≤ t ≤ s ≤ t′ ≤ 2s. The second one is bounded by a constant
times the second term in (2.6) by the definition of s and (2.5). The proposition follows. �

Proof of the claim. Observe that h(|z|) tends to infinity when z tends to 0. Let ϑ : R→ R be a
smooth increasing concave function such that ϑ(t) = t for t ≤ 0 and ϑ(t) = 1 for t ≥ 2. Define
ϑn(t) := ϑ(t− n) + n. This is a sequence of smooth functions increasing to the identity. Define
l(z) := χ(z)h(|z|). Using an integration by parts, we see that the LHS of (2.7) is equal to

lim
n→∞

〈
ddcv̂, ϑn(l(z))

〉
= lim

n→∞

∫
D3

v̂(z)ddcϑn(l(z))

= lim
n→∞

∫
D3

v̂(z)ϑ′n(l(z))ddcl(z) + lim
n→∞

∫
D3

v̂(z)ϑ′′n(l(z))dl(z) ∧ dcl(z).

The first term in the last sum converges to the RHS of the identity in the claim using Lebesgue’s
dominated convergence theorem and (2.2). We need to show that the second term tends to 0.
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Since χ(z) = 1 for z near 0, for n large enough, the considered term has an absolute value
bounded by a constant times

lim
n→∞

∫
{h(|z|)>n}

|v̂(z)|i∂h(|z|) ∧ ∂h(|z|) . lim
n→∞

∫
{h(|z|)>n}

|v̂(z)z−2|(log log? |z|))4idz ∧ dz.

Using the arguments as at the end of the proof of Proposition 2.11 and the assumption (2.2)
on v, we see that the last integrand is an integrable function on D1. Since the set {h(|z|) > n}
decreases to {0} when n tends to infinity, the last limit is zero according to Lebesgue’s dominated
convergence theorem. This ends the proof of the claim. �

Corollary 2.12. Let S0 be a positive closed (1, 1)-current on Pk whose dynamical potential uS
satisfies ‖uS‖logp ≤ 1 for some p > 3/2. Let F(S0) denote the set of all continuous functions

g : Pk → R such that i∂g∧ ∂̄g ≤ S0. Then for any positive number q < p
3−

1
2 we have ‖g‖logq ≤ c

for some positive constant c = c(p, q). In particular, the family F(S0) is equicontinuous.

Proof. Notice that (2.2) is satisfied for all v such that ‖v‖logp < ∞ for some p > 1. It follows
that if u and v are as in Proposition 2.11 and v is logp-continuous for some p > 1 then u

is logq-continuous on Bk1 for all q as in the statement, with ‖u‖Bk1 ,logq ≤ c ‖v‖1/2
Bk5 ,logp

for some

positive constant c independent of u, v. The result is thus deduced from Proposition 2.11 by
means of a finite cover of Pk, in the same way as in the proof of Corollary 2.8. �

3. Some semi-norms and equidistribution properties

In this section we consider the action of the operator (fn)∗ on functions and currents. We
also introduce the semi-norms which are crucial in our study. Some results and ideas here are
of independent interest. Recall that we always assume that f satisfies the Assumption (A) in
the Introduction.

3.1. Bounds on the potentials of (fn)∗ωFS. We start by giving estimates on the potentials
of the currents (fn)∗ωFS. As explained in the Introduction, these estimates will allow us to
globally control the distortion of fn. Define

ωn := d−(k−1)n(fn)∗ωFS.

Recall that f∗ multiplies the mass of a positive closed (1, 1)-current by dk−1. Therefore, all
currents ωn have unit mass. We denote by un the dynamical potential of ωn. In particular, u0

is the dynamical potential of ωFS. It is known that u0 is Hölder continuous, see [Kos97, DS10a].
Observe that d−1f∗ωFS is a smooth positive closed (1, 1)-form of mass 1. Therefore, there is

a unique smooth function v such that

ddcv = d−1f∗ωFS − ωFS and 〈µ, v〉 = 0.

Lemma 3.1. We have

un = d−(k−1)n(fn)∗u0 and u0 = −
∞∑
n=0

d−nv ◦ fn.

Proof. We prove the first identity. Denote by u′n the RHS of this identity, which is a continuous
function. By the definition of un and the invariance of T , we have

ddc(un − u′n) = (ωn − T )− d−(k−1)n(fn)∗(ωFS − T ) = (ωn − T )− (ωn − T ) = 0.

Therefore, un − u′n is pluriharmonic and hence constant on Pk. Moreover, the invariance of µ
implies that

〈µ, u′n〉 = d−(k−1)n〈(fn)∗µ, u0〉 = dn〈µ, u0〉 = 0.

By the definition of un, we also have 〈µ, un〉 = 0. We deduce that un = u′n, which implies the
first identity in the lemma.
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It is clear that the sum in the RHS of the second identity in the lemma converges uniformly.
Therefore, this RHS is a continuous function that we denote by u′0. The invariance of µ also
implies that 〈µ, u′0〉 = 0. A direct computation gives

ddcu′0 = lim
N→∞

(
−
N−1∑
n=0

d−nddc(v ◦ fn)
)

= lim
N→∞

ωFS − d−N (fN )∗ωFS = ωFS − T,

where the last identity is a consequence of the definition of T . Since ddcu0 is also equal to
ωFS − T , we obtain that u0 − u′0 is constant on Pk. Finally, using that

〈µ, u0〉 = 〈µ, u′0〉 = 0,

we conclude that u0 = u′0. This ends the proof of the lemma. �

In the sequel, we will need explicit bounds on the oscillation Ω(un) of un. These are provided
in the next result.

Lemma 3.2. For every constant A > 1, there exists a positive constant c independent of n such
that ‖un‖∞ ≤ cAn and Ω(un) ≤ cAn for all n ≥ 0.

Proof. Observe that the second assertion is deduced from the first one by replacing c with 2c.
We prove now the first assertion. By Lemma 3.1 we have, for any given z ∈ Pk,

un(z) = d−(k−1)n ((fn)∗ u0) (z) =
〈
δz, d

−(k−1)n (fn)∗ u0

〉
= dn

〈
d−kn (fn)∗ δz, u0

〉
= dn

〈
d−kn (fn)∗ δz,−

∞∑
m=0

d−mv ◦ fm
〉

= −dn
〈
d−kn (fn)∗ δz,

n∑
m=0

d−mv ◦ fm
〉
−
〈
d−kn (fn)∗ δz,

∞∑
m=n+1

d−m+nv ◦ fm
〉
.

The absolute value of the second term in the last line is bounded by ‖v‖∞ because d−kn (fn)∗ δz
is a probability measure. Observe that (fn)∗(v ◦ fm) = dkm(fn−m)∗v for all n ≥ m. Hence, the
absolute value of the first term is equal to

(3.1)
∣∣∣ n∑
m=0

dn−m
〈
δz, d

−k(n−m)(fn−m)∗v
〉∣∣∣ ≤ n∑

j=0

dj‖d−kj(f j)∗v‖∞.

Under the Assumption (A), it is known that ‖d−kj(f j)∗v‖∞ . δ−j for every 0 < δ < d. Indeed,
the Assumption (A) implies the property (A1) below, see [DS10b, Cor. 1.2].

(A1) Let g : Pk → R be C2 and such that 〈µ, g〉 = 0. For every constant 1 < δ < d, there is a
positive constant c independent of g and n such that

‖d−kn(fn)∗g‖∞ ≤ c‖g‖C2δ−n.

By choosing δ > d/A, we can bound the RHS of (3.1) by a constant times An. This ends the
proof of the lemma. �

As an application of the previous estimates, we have the following lemma that can be used
to study the regularity of functions g : Pk → R.

Lemma 3.3. Let g : Pk → R be a continuous function and 0 < β < 1 a constant such that

(3.2) |ddcg| ≤
∞∑
n=0

βnωn.

Then, for every q > 0, there is a positive constant c = c(q, β) independent of g such that

‖g‖logq ≤ c.
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Proof. We bound the continuity modulus m(g, r) of g by means of Corollary 2.7. We only need
to consider 0 < r ≤ 1/2. For this purpose, since T has Hölder continuous local potentials, it
suffices to bound the continuity modulus of the dynamical potential of the RHS of (3.2), see
also Lemma 3.7 below. This dynamical potential is equal to

u :=

∞∑
n=0

βnun.

Fix a constant 1 < A < 1/β. By Lemma 3.2, we have ‖un‖∞ . An. Hence, for every N , we
have

m(u, r) .
∑
n≤N

βnm(un, r) +
∑
n>N

(Aβ)n .
∑
n≤N

βnm(un, r) + (Aβ)N .

Applying [DS10b, Cor. 4.4] inductively to some iterate of f , we see that the Assumption (A)
implies:

(A2) for every constant κ > 1, there are an integer nκ ≥ 0 and a constant cκ > 0 independent
of n such that for all x, y ∈ Pk and n ≥ nκ we can write f−n(x) = {x1, . . . , xdkn} and f−n(y) =
{y1, . . . , ydkn} (counting multiplicity) with the property that

dist(xj , yj) ≤ cκ dist(x, y)1/κn for j = 1, . . . , dkn.

By definition, the function u0 is γ-Hölder continuous for some Hölder exponent γ because
T has Hölder continuous local potentials. The above property (A2) implies that (fn)∗u0 is
γκ−n-Hölder continuous for all n ≥ nκ. More precisely, we have

m(d−kn(fn)∗u0, r) ≤ c′rγκ
−n

and hence m(un, r) ≤ c′dnrγκ
−n

for some positive constant c′ independent of n ≥ nκ and r. Observe also that for 0 ≤ n ≤ nκ all
the un are ακ-Hölder continuous for some ακ > 0. Indeed, as the multiplicity of fn at a point
is at most dkn, we have (see again [DS10b, Cor. 4.4]):

(A2’) there is a constant c0 > 0 such that for every n ≥ 0, for all x, y ∈ Pk, we can write
f−n(x) = {x1, . . . , xdkn} and f−n(y) = {y1, . . . , ydkn} (counting multiplicity) with the property
that

dist(xj , yj) ≤ c0 dist(x, y)1/dkn for j = 1, . . . , dkn.

Therefore, we have

(3.3) m(u, r) . rακ +
∑

nκ≤n≤N
(βd)n rγκ

−n
+ (Aβ)N .

Choose κ close enough to 1 so that 2q log κ < | log(Aβ)| and take

N =
1

2 log κ
log |log r|

(recall that we only need to consider r ≤ 1/2). Then, the last term in (3.3) satisfies

(Aβ)N = eN log(Aβ) < e−2Nq log κ = | log r|−q.

It remains to prove that the sum in (3.3) satisfies a similar estimate. We have

∑
n≤N

(βd)n rγκ
−n ≤

∑
n≤N

βndNrγκ
−N
. dNrγκ

−N
= e

log d
2 log κ

log|log r|
eγ(log r)e−

1
2 log | log r|

=
| log r|

log d
2 log κ

eγ
√
| log r|

·

The last expression is smaller than a constant times | log r|−q because et � tM when t→∞
for every M ≥ 0. This, together with the above estimates, gives m(u, r) . | log r|−q and ends
the proof of the lemma. �
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Remark 3.4. The conclusion of Lemma 3.3 stays true if the assumption (3.2) is replaced by

i∂g ∧ ∂̄g ≤
∞∑
n=0

βnωn.

It suffices to use Corollary 2.12 instead of Corollary 2.7.

3.2. Bounds with respect to the semi-norm ‖·‖logp. In this section we study the action of

the operator f∗ on functions with bounded semi-norm ‖·‖logp . We first prove that, with respect
to this semi-norm, the operator f∗ is Lipschitz.

Lemma 3.5. For every constant A > 1, there exists a positive constant c = c(A) such that for
every n ≥ 0, p > 0, and continuous function g : Pk → R, we have∥∥d−kn(fn)∗g

∥∥
logp
≤ cpApn ‖g‖logp .

Proof. We use the notations in the proof of Lemma 3.3 and the properties (A2) and (A2’)
stated there. We have∥∥d−kn(fn)∗g

∥∥
logp

= sup
x,y∈Pk

d−kn |(fn)∗g(x)− (fn)∗g(y)| · (log? dist(x, y))p.

We need to bound the RHS by cpApn ‖g‖logp . Fix κ < A. We have, for n ≥ nκ,

d−kn |(fn)∗g(x)− (fn)∗g(y)| (log? dist(x, y))p ≤ max
j
|g(xj)− g(yj)| (log? dist(x, y))p

≤ max
j

‖g‖logp

(log? dist(xj , yj))p
(log? dist(x, y))p

= max
j

( log? dist(x, y)

κn log? dist(xj , yj)

)p
‖g‖logp κ

pn.

We need to check that the expression in the last parentheses is bounded by a constant. Fix a
large constant M > 0. Since log? dist(xj , yj) is bounded from below by 1, when log? dist(x, y) is
bounded by 2Mκn the considered expression is bounded by some constant c as desired. Assume
now that log? dist(x, y) ≥ 2Mκn. Since M is large, we deduce that log dist(x, y) ≤ −2Mκn+1 ≤
−Mκn. Hence, by (A2), since M is large, we have

log dist(xj , yj) ≤ log cκ + κ−n log dist(x, y) ≤ 1

2
κ−n log dist(x, y).

It is now clear that κn log? dist(xj , yj) ≥ 1
2 log? dist(x, y) which implies that the considered

expression is bounded, as desired. This implies the lemma for n ≥ nκ.
When n ≤ nκ, it is enough to use (A2’) instead of (A2). Since nκ is fixed it is clear that

log? dist(x,y)
log? dist(xj ,yj)

. dknκ , which is bounded. The proof is complete. �

We will need the following result which is an improvement of [DS10b, Th. 1.1] in the case
where f satisfies the Assumption (A). This assumption is likely necessary here to get the
estimate in the norm ‖·‖∞.

Theorem 3.6. Let f be an endomorphism of Pk of algebraic degree d ≥ 2 and satisfying the
Assumption (A). Consider a real number p > 0. Let g : Pk → R be such that ‖ddcg‖∗ ≤ 1,

〈µ, g〉 = 0 and ‖g‖logp ≤ 1. Then, for every constant η > d−p/(p+1), there is a positive constant
c independent of g such that for every n ≥ 0∥∥d−kn(fn)∗g

∥∥
∞ ≤ cη

n.

Proof. Set gn := d−kn(fn)∗g. Recall (see, e.g., [Sko72, DNS10]) that there exists a positive
constant c0 independent of g and n such that

(3.4)

∫
Pk
ed
n|gn| ≤ c0,
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where the integral above is taken with respect to the Lebesgue measure associated to the volume
form ωkFS on Pk.

Fix a constant A > 1 such that η > (A/d)p/(p+1). Suppose by contradiction that for infinitely
many n there exists a point an ∈ Pk such that |gn(an)| ≥ 3ηn for some g as above. Choose

r := e−cAA
nη−n/p with cA the constant given by Lemma 3.5 (we write cA instead of c in order

to avoid confusion). By that lemma, when dist(z, an) < r, we have

|gn(z)| ≥ |gn(an)| − |gn(z)− gn(an)| ≥ 3ηn − cpAA
pn(1 + | log r|)−p ≥ ηn.

This implies that

c0 ≥
∫

Pk
ed
n|gn| ≥

∫
dist(z,an)<r

ed
n|gn(z)| & r2ked

nηn & e−2kcAA
nη−n/p+dnηn .

By the choice of A, the last expression diverges when n tends to infinity. This is a contradiction.
The theorem follows. �

3.3. The semi-norm ‖·‖p. In this section we combine the semi-norms ‖·‖logp and ‖·‖∗ to build

a new semi-norm ‖·‖p and study its first properties. For our convenience we will use dynamical
potentials of currents, but this is avoidable.

For every positive closed (1, 1)-current S on Pk we first define

‖S‖′p := ‖S‖+ ‖uS‖logp ,

where uS is the dynamical potential of S. When R is any (1, 1)-current we define

‖R‖p = min ‖S‖′p ,

where the minimum is taken over all positive closed (1, 1)-currents S such that |R| ≤ S, and we
set ‖R‖p :=∞ when no such S exists. Finally, for all g : Pk → R, define

‖g‖p := ‖ddcg‖p.

The following lemma shows in particular that the norm ‖·‖p is equivalent to the norm ‖·‖′p when

both are defined. We will thus just consider the norm ‖·‖p in the sequel.

Lemma 3.7. Let S be a positive closed (1, 1)-current on Pk and let g : Pk → R be a continuous
function. Then

‖uS‖p ≤ 2‖S‖′p, ‖S‖p ≤ ‖S‖
′
p ≤ c ‖S‖p , and ‖g‖logp ≤ c ‖g‖p

for some positive constant c = c(p) independent of S and g.

Proof. Define m := ‖S‖. We have ‖S‖′p ≥ m. Since uT = 0, we have ‖T‖p = ‖T‖′p = 1 and

‖uS‖p = ‖ddcuS‖p = ‖S −mT‖p ≤ ‖S‖p +m‖T‖p ≤ ‖S‖′p +m ≤ 2‖S‖′p.
This proves the first assertion in the lemma.

We prove now the second assertion. The first inequality is true by definition. For the
second one, it is enough to prove that if S̃ is also positive closed, and such that S ≤ S̃, then

‖S‖′p ≤ c
∥∥S̃∥∥′

p
for some constant c independent of S, S̃. It is clear that ‖S‖ ≤

∥∥S̃∥∥. So we can

assume that
∥∥S̃∥∥ = 1 and we only need to check that ‖uS‖logp is bounded by c(1 + ‖uS̃‖logp) for

some constant c. For this purpose, we will apply Corollary 2.7 for the charts Φj(Bk4) of a finite

atlas of Pk as in Corollary 2.8.
By Corollary 2.5, we have that Ω(uS) is bounded by a constant. Let hj denote a potential

of T on Φj(Bk4). This is a Hölder continuous function. By definition of dynamical potential,

vj := uS̃ +hj is a potential of S̃ on Φj(Bk4). Using the notation in the proof of Corollary 2.8, as
in that corollary, we obtain for r ≤ r0

mPk(uS , r) . max
j
mVj (vj , c

√
r) +

√
r . (1 + ‖uS̃‖logp)| log r|−p.

This proves the second assertion.
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Finally, let us consider the last inequality in the statement. By linearity, we can assume that
there exists a positive closed (1, 1)-current S̃ of mass

∥∥S̃∥∥ = 1 such that |ddcg| ≤ S̃ and prove

that ‖g‖logp ≤ c(1 +
∥∥uS̃∥∥logp

) for some positive constant c independent of g and S̃. Observe

that ddcg+ S̃ is a positive closed current and ddcg+ S̃ ≤ 2S̃. So we can apply the arguments in
the previous paragraph to g+uS̃ , 2uS̃ instead of uS , uS̃ . We obtain ‖g+uS̃‖logp . 1 + ‖uS̃‖logp .
This implies the last assertion, and completes the proof of the lemma. �

The following lemma can be applied to a non-convex C2 function χ as it can be written as the
difference of two convex functions. We can also apply it to χ Lipschitz and convex because such
a function can be approximated by smooth convex functions with bounded first derivatives.
The statement for the smooth convex case that we need is however simpler.

Lemma 3.8. There is a positive constant c = c(p) such that for all continuous functions
g, h : Pk → R with finite ‖·‖p semi-norms and any C2 convex function χ : R→ R we have∥∥∂g ∧ ∂̄h∥∥

p
≤ c(Ω(g)‖h‖p + ‖g‖pΩ(h)) and ‖χ(g)‖p ≤ c‖χ′(g)‖∞‖g‖p.

Proof. We can write |ddcg| ≤ S with ‖S‖ . ‖g‖p and ‖uS‖logp . ‖g‖p. We first prove the
second inequality. Set A := ‖χ′(g)‖∞. We have

ddcχ(g) = χ′(g)ddcg +
1

π
χ′′(g)i∂g ∧ ∂g =

[
χ′(g)ddcg +AS +

1

π
χ′′(g)i∂g ∧ ∂g

]
− [AS].

Write the last expression as R+ −R− where R+ (resp. R−) is the expression in the first (resp.
second) brackets. Using the definition of A, the inequality |ddcg| ≤ S, the convexity of χ, and
the fact that i∂g∧∂g is always positive, we deduce that both R+ and R− are positive currents.
Clearly, the current R− is closed and its mass is . A ‖g‖p. The current R+ is cohomologous to

R− because ddcχ(g) is an exact current. It follows that R+ is also a positive closed current of
mass . A ‖g‖p.

We have ‖uR−‖logp = A‖uS‖logp . A ‖g‖p. This and the above estimate for the mass imply

that ‖R−‖p . A ‖g‖p. On the other hand, the above identities imply that χ(g) + uR− differs
from uR+ by a constant. We deduce that

‖uR+‖logp ≤ ‖uR−‖logp + ‖χ(g)‖logp . ‖uR−‖logp +A‖g‖logp . A ‖g‖p .

Therefore, we also have ‖R+‖p . A ‖g‖p. It is now clear that ‖ddcχ(g)‖p . A ‖g‖p. Hence, we
get the second assertion in the lemma.

For the first assertion, we first consider the case where g = h. We can replace g by g−min g
in order to assume that min g = 0 and hence ‖g‖∞ = Ω(g). The above computation gives

0 ≤ i∂g ∧ ∂̄g = π
(
ddcg2 − 2gddcg

)
. ddcg2 + 2‖g‖∞S.

We thus have

‖i∂g ∧ ∂̄g‖p . ‖ddcg2‖p + ‖g‖∞ ‖S‖p . ‖dd
cg2‖p + ‖g‖∞ ‖g‖p .

We obtain the desired estimate by applying the second assertion in the lemma to ‖ddcg2‖p,
using the function χ(t) := t2.

Finally, let us consider the first inequality for g and h. As above, we can assume that
minh = 0 and hence ‖h‖∞ = Ω(h). It follows from Cauchy-Schwarz’s inequality that∣∣∂g ∧ ∂̄h± ∂h ∧ ∂̄g∣∣ . ‖h‖∞

‖g‖∞
i∂g ∧ ∂̄g +

‖g‖∞
‖h‖∞

i∂h ∧ ∂̄h.

The assertion thus follows from the particular case considered above. This completes the proof
of the lemma. �
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3.4. The dynamical norm ‖·‖p,α. In this section we define the main norms ‖·‖p,α for (1, 1)-

currents that we will use to quantify the convergence (1.2). Based on the results in the previous
sections, we will see later that these norms satisfy the inequalities

‖·‖q . ‖·‖p,α . ‖·‖p
for some explicit q depending on p, α, and d. In particular, the new norms are at the same time
weaker than the previous norm ‖·‖p, but still inherit the main properties of a similar norm ‖·‖q
which are obtained in the previous section.

Definition 3.9. Given a positive closed (1, 1)-current S on Pk and a real number α such that
d−1 ≤ α < 1, we define the current Sα by

Sα :=
∞∑
n=0

αn
(fn)∗(S)

d(k−1)n
·

For any (1, 1)-current R on Pk and real number p > 0, we define

(3.5) ‖R‖p,α := inf
{
c ∈ R : ∃S positive closed: ‖S‖p ≤ 1, |R| ≤ cSα

}
and we set ‖R‖p,α :=∞ if such a number c does not exist.

Note that when ‖R‖p,α is finite, by compactness, the infimum in (3.5) is actually a minimum.

We have the following lemma where the assumption d−1 ≤ α < d−1/(p+1) is equivalent to
0 < q0 ≤ p.
Lemma 3.10. Let α and p be positive and such that d−1 ≤ α < d−1/(p+1). Then, for every

0 < q < q0 := |logα|
log d (p + 1) − 1, there are positive constants c1 = c1(p, α) and c2 = c2(p, α, q)

such that, for every (1, 1)-current R,

‖R‖p,α ≤ c1 ‖R‖p and ‖R‖q ≤ c2 ‖R‖p,α .
Proof. The first inequality holds by the definition of ‖·‖p,α and Lemma 3.7. We prove the second

inequality. Consider a current R such that ‖R‖p,α = 1. We have to show that ‖R‖q is bounded
by a constant.

From the definition of ‖·‖p,α, we can find a positive closed current S such that ‖S‖p = 1 and

|R| ≤ Sα. By the definition of the norm ‖·‖q and Lemma 3.7 applied to Sα, it is enough to

show that ‖Sα‖′q is bounded. Denote by uα the dynamical potential of Sα. Since the mass of
Sα is bounded, we only need to show that ‖uα‖logq is bounded. By definition of Sα, we have

uα =

∞∑
n=0

αn
(fn)∗uS

d(k−1)n
·

It follows that, for every positive number N ,

m(uα, r) ≤
∑
n≤N

αnd−(k−1)n‖(fn)∗uS‖logp(log? r)−p + 2
∑
n>N

αnd−(k−1)n ‖(fn)∗uS‖∞ .

Fix constants A > 1 close enough to 1, η > d−p/(p+1) close enough to d−p/(p+1) and α′ > αAp

close enough to α. In particular, by the assumption on α and the choice of η, we have that
αdη is close to αd1/(p+1) and smaller than 1. By Lemma 3.5 and Theorem 3.6 we know that
‖(fn)∗uS‖logp . dknApn and ‖(fn)∗uS‖∞ . dknηn. This, the above estimate on m(uα, r), and

the fact that α′d > αd ≥ 1 imply that

m(uα, r) .
∑
n≤N

αndnApn(log? r)−p +
∑
n>N

αndnηn . (α′d)N (log? r)−p + (αdη)N .

Finally, choose N = p+1
log d log log? r. Observe that if we replace α′ by α and αdη by αd1/(p+1),

the last sum is equal to 2(log? r)−q0 . So, this sum is bounded by a constant times (log? r)−q for

q < q0 because α′ is chosen close to α and αdη is close to αd1/(p+1). This concludes the proof
of the lemma. �
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The following shifting property of the norm ‖·‖p,α is very useful when we work with the action
of f , and is the key property that we need of this norm.

Lemma 3.11. For every n ≥ 0 and every (1, 1)-current R on Pk, we have∥∥d−kn (fn)∗R
∥∥
p,α
≤ 1

dnαn
‖R‖p,α .

Proof. We can assume that ‖R‖p,α = 1, so that there is a positive closed current S with ‖S‖p = 1

and |R| ≤ Sα, see the Notation at the beginning of the paper. Consider any function ξ : Pk → C
such that |ξ| ≤ 1 and define ξn := ξ ◦ fn. Since |ξn| ≤ 1, we have

<
(
ξd−kn (fn)∗R

)
=

1

dn
<
((fn)∗ (ξnR)

d(k−1)n

)
≤ 1

dnαn

∞∑
j=0

αn+j (fn)∗

d(k−1)n

(f j)∗

d(k−1)j
S ≤ 1

dnαn
Sα.

The lemma follows. �

3.5. The dynamical Sobolev semi-norm ‖·‖〈p,α〉. We can now define the first semi-norm for

functions g : Pk → R with respect to which we will be able to prove the existence of a spectral
gap for the transfer operator. We can also define this norm for 1-forms.

Definition 3.12. Let α be a real number such that d−1 ≤ α < 1. For any function g : Pk → R
we set

‖g‖〈p,α〉 :=
∥∥i∂g ∧ ∂̄g∥∥1/2

p,α
.

The following two lemmas give the main properties of the semi-norm ‖·‖〈p,α〉 that we will

need in Section 5, together with Lemma 3.11. Recall that q0 is defined in Lemma 3.10. Note
that the hypothesis p > 3/2 ensures that d−1 < d−5/(2p+2) and the hypothesis on α ensures that
q0 > 3/2, and hence that q1 is positive.

Lemma 3.13. Let α and p be positive numbers such that p > 3/2 and d−1 ≤ α < d−5/(2p+2).
Then, for every 0 < q < q1 := q0

3 −
1
2 , there are positive constants c1 = c1(p, α, q) and c2 =

c2(p, α) such that for every g : Pk → R we have

‖g‖logq ≤ c1 ‖g‖〈p,α〉 , ‖g‖〈p,α〉 ≤ c2 ‖g‖p , and ‖g‖〈p,α〉 ≤ c2 ‖g‖C1 .

Proof. We can assume that ‖g‖〈p,α〉 ≤ 1. By the definition of the norm ‖·‖〈p,α〉 and Lemma

3.10,
∥∥i∂g ∧ ∂̄g∥∥

q′
is bounded by a constant for any q′ < q0. Therefore, we have i∂g ∧ ∂̄g ≤ R

for some positive closed current R such that ‖R‖ and ‖uR‖logq
′ are bounded by a constant. The

first inequality follows from Corollary 2.12. The second assertion follows from Lemmas 3.10 and
3.8. The last assertion follows from Definition 3.12. �

Lemma 3.14. Let α and p be positive numbers such that d−1 ≤ α < 1. Then for all functions
g, h : Pk → R we have

‖gh‖〈p,α〉 ≤
√

2
(
‖g‖〈p,α〉 ‖h‖∞ + ‖g‖∞ ‖h‖〈p,α〉

)
.

Proof. Using an expansion of i∂(gh) ∧ ∂̄(gh) and Cauchy-Schwarz’s inequality we have∥∥i∂(gh) ∧ ∂̄(gh)
∥∥
p,α

≤ ‖h‖2∞
∥∥i∂g ∧ ∂̄g∥∥

p,α
+ ‖g‖2∞

∥∥i∂h ∧ ∂̄h∥∥
p,α

+ ‖g‖∞ ‖h‖∞
∥∥i∂g ∧ ∂̄h+ i∂h ∧ ∂̄g

∥∥
p,α

≤ ‖h‖2∞
∥∥i∂g ∧ ∂̄g∥∥

p,α
+ ‖g‖2∞

∥∥i∂h ∧ ∂̄h∥∥
p,α

+ ‖g‖∞ ‖h‖∞
(‖h‖∞
‖g‖∞

∥∥i∂g ∧ ∂̄g∥∥
p,α

+
‖g‖∞
‖h‖∞

∥∥i∂h ∧ ∂̄h∥∥
p,α

)
≤ 2 ‖h‖2∞

∥∥i∂g ∧ ∂̄g∥∥
p,α

+ 2 ‖g‖2∞
∥∥i∂h ∧ ∂̄h∥∥

p,α
.

The assertion follows from Definition 3.12. �
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3.6. The semi-norm ‖·‖〈p,α〉,γ. The following semi-norm defines the final space of functions

that we will use in our study of the transfer operator. We use here some ideas from the theory
of interpolation between Banach spaces, see also [Tri95].

Definition 3.15. For all real numbers d−1 ≤ α < 1, γ > 0 and p > 0, we define for a continuous
function g : Pk → R

(3.6)
‖g‖〈p,α〉,γ := inf

{
c ≥ 0: ∀ 0 < ε ≤ 1 ∃ g(1)

ε , g(2)
ε :

g = g(1)
ε + g(2)

ε ,
∥∥g(1)

ε

∥∥
〈p,α〉 ≤ c(1/ε)

1/γ ,
∥∥g(2)

ε

∥∥
∞ ≤ cε

}
.

When such a number c does not exist, we set ‖g‖〈p,α〉,γ :=∞.

The following two lemmas are the counterparts of Lemmas 3.13 and 3.14 for the semi-norm
‖·‖〈p,α〉,γ . Recall that q1 is defined in Lemma 3.13.

Lemma 3.16. For all positive numbers p, α, γ, q satisfying p > 3/2, d−1 ≤ α < d−5/(2p+2) and
q < q2 := γ

γ+1q1, there is a positive constant c = c(p, α, γ, q) such that

‖g‖logq ≤ c ‖g‖〈p,α〉,γ and ‖g‖〈p,α〉,γ ≤ ‖g‖〈p,α〉
for every continuous function g : Pk → R. Moreover, if χ : I → R is a Lipschitz function with
Lipschitz constant κ on an interval I ⊂ R containing the image of g, then we have

‖χ(g)‖〈p,α〉,γ ≤ κ‖g‖〈p,α〉,γ .

Proof. Let us prove the first inequality. We can assume that ‖g‖〈p,α〉,γ ≤ 1. Lemma 3.13 implies

that g
(1)
ε has ‖·‖

logq
′ semi-norm bounded by a constant times (1/ε)1/γ when q′ < q1. Therefore,

we have for r > 0

m(g, r) ≤ m(g(1)
ε , r) +m(g(2)

ε , r) .
(1/ε)1/γ

(log? r)q′
+ ε.

Choosing ε = (log? r)−K with K = q′/(1 + 1/γ) gives

m(g, r) . (log? r)−q
′+K/γ + (log? r)−K = 2(log? r)−q

′/(1+1/γ).

The first assertion of the lemma follows by choosing q′ close enough to q1.

The second inequality follows from the definition of the semi-norm ‖·‖〈p,α〉,γ , by taking g
(2)
ε = 0

in the decomposition g = g
(1)
ε + g

(2)
ε for every ε.

We prove now the last assertion. Since we can approximate χ uniformly by smooth functions
χn with |χ′n| ≤ 1, we can assume for simplicity that χ is smooth. Define h := χ(g) and recall
that we are assuming that ‖g‖〈p,α〉,γ ≤ 1. For every 0 < ε ≤ 1, we have the decomposition

g = g(1)
ε + g(2)

ε with
∥∥g(1)

ε

∥∥
〈p,α〉 ≤ (1/ε)1/γ and

∥∥g(2)
ε

∥∥
∞ ≤ ε.

Write

h = h(1)
ε + h(2)

ε with h(1)
ε := χ(g(1)

ε ) and h(2)
ε := h− h(1)

ε .

We have

‖h(2)
ε ‖∞ = ‖χ(g)− χ(g(1)

ε )‖∞ . κ‖g − g(1)
ε ‖∞ = κ‖g(2)

ε ‖∞ ≤ κε
and also

‖h(1)
ε ‖〈p,α〉 = ‖i∂χ(g(1)

ε ) ∧ ∂χ(g(1)
ε )‖1/2p,α ≤ κ‖i∂g(1)

ε ∧ ∂g(1)
ε ‖1/2p,α = κ‖g(1)

ε ‖〈p,α〉 ≤ κ(1/ε)1/γ .

It follows that ‖h‖〈p,α〉,γ ≤ κ. This completes the proof of the lemma. �

Lemma 3.17. For all positive numbers p, α, γ such that d−1 ≤ α < 1 we have

‖gh‖〈p,α〉,γ ≤ 3
(
‖g‖〈p,α〉,γ ‖h‖∞ + ‖g‖∞ ‖h‖〈p,α〉,γ

)
for every continuous functions g, h : Pk → R.

21



Proof. We can assume that ‖g‖〈p,α〉,γ = ‖h‖〈p,α〉,γ = 1. For every 0 < ε ≤ 1 we need to find a

decomposition gh = L
(1)
ε + L

(2)
ε with L

(1)
ε , L

(2)
ε such that

‖L(1)
ε ‖〈p,α〉 ≤ 3(‖g‖∞ + ‖h‖∞)(1/ε)1/γ and ‖L(2)

ε ‖∞ ≤ 3(‖g‖∞ + ‖h‖∞)ε.

Case 1. Assume that ‖g‖∞ ≤ 3ε and ‖h‖∞ ≤ 3ε. Choose L
(1)
ε = 0 and L

(2)
ε = gh. Clearly,

these functions satisfy the desired estimates.

Case 2. Assume now that ‖g‖∞ + ‖h‖∞ ≥ 3ε. By the definition of the semi-norm ‖·‖〈p,α〉,γ we

have the decompositions g = g
(1)
ε + g

(2)
ε and h = h

(1)
ε + h

(2)
ε with

‖g(1)
ε ‖〈p,α〉 ≤ (1/ε)1/γ , ‖g(2)

ε ‖∞ ≤ ε, ‖h(1)
ε ‖〈p,α〉 ≤ (1/ε)1/γ , ‖h(2)

ε ‖∞ ≤ ε.

Observe that
∥∥g(1)

ε

∥∥
∞ ≤ ‖g‖∞ + ε and

∥∥h(1)
ε

∥∥
∞ ≤ ‖h‖∞ + ε, which imply that∥∥g(1)

ε

∥∥
∞ +

∥∥h(1)
ε

∥∥
∞ ≤ 2(‖g‖∞ + ‖h‖∞).

Set

L(1)
ε := g(1)

ε h(1)
ε and L(2)

ε := g(1)
ε h(2)

ε + g(2)
ε h(1)

ε + g(2)
ε h(2)

ε .

The desired estimate for ‖L(1)
ε ‖〈p,α〉 follows from Lemma 3.14 and the one for ‖L(2)

ε ‖∞ is obtained
by a direct computation. This ends the proof of the lemma. �

3.7. Approximations for Hölder and logp-continuous functions. We end this section
with the following technical lemmas. The first one will be used in Section 4.

Lemma 3.18. For every logp-continuous function g : Pk → R, p > 0, s ≥ 1, and 0 < ε ≤ 1,

there exist continuous functions g
(1)
ε and g

(2)
ε such that

g = g(1)
ε + g(2)

ε , ‖g(1)
ε ‖Cs ≤ c ‖g‖∞ e

(1/ε)1/p , and ‖g(2)
ε ‖∞ ≤ c ‖g‖logp ε,

where c = c(p, s) is a positive constant independent of g and ε. In particular, for every n ≥ 1

there exist g
(1)
n of class C2 and g

(2)
n continuous such that

g = g(1)
n + g(2)

n , ‖g(1)
n ‖C2 ≤ c ‖g‖∞ e

1
2
n2/p

, and ‖g(2)
n ‖∞ ≤ c ‖g‖logp n

−2.

Proof. Clearly, the second assertion is a consequence of the first one by taking ε = 2pn−2 and
replacing c by 2pc. We prove now the first assertion. Using a partition of unity, we can reduce
the problem to the case where g is supported by the unit ball of an affine chart Ck ⊂ Pk.

Consider a smooth non-negative function χ with support in the unit ball of Ck whose integral
with respect to the Lebesgue measure is 1. For ν > 0, consider the function χν(z) := ν−2kχ(z/ν)
which has integral 1 and tends to the Dirac mass at 0 when ν tends to 0. Define an approximation

of g using the standard convolution operator gν := g∗χν , and define g
(1)
ε := gν and g

(2)
ε := g−gν .

We consider ν := e−1/(Mε)1/p for some constant M > 0 large enough. It remains to bound

‖g(1)
ε ‖Cs and ‖g(2)

ε ‖∞.
By standard properties of the convolution we have, for some constant κ > 0,

‖g(2)
ε ‖∞ . m(g, κν) . ‖g‖logp (log? ν)−p . ‖g‖logp ε

and, by definition of gν ,

‖g(1)
ε ‖Cs . ‖g‖∞ ‖χν‖Cs Leb(Bkν) . ‖g‖∞ ν

−s . ‖g‖∞ e
(1/ε)1/p ,

where we use the fact that M is large enough. This ends the proof of the lemma. �

The following lemma applied for s = 1 implies that ‖·‖〈p,α〉,γ . ‖·‖Cγ because ‖·‖〈p,α〉 . ‖·‖C1 ,

see Lemma 3.13.
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Lemma 3.19. Let 0 < γ ≤ 1 be a constant. Then, for every Cγ function g : Pk → R, s ≥ 1,

and 0 < ε ≤ 1, there exist a Cs function g
(1)
ε and a continuous function g

(2)
ε such that

g = g(1)
ε + g(2)

ε , ‖g(1)
ε ‖Cs ≤ c ‖g‖∞ (1/ε)s/γ and ‖g(2)

ε ‖∞ ≤ c ‖g‖Cγ ε,
where c = c(γ, s) is a positive constant independent of g and ε.

Proof. It is enough to follow the proof of Lemma 3.18 and take ν := ε1/γ . We have in this case

‖g(1)
ε ‖Cs . ‖g‖∞ ‖χν‖Cs Leb(Bkν) . ‖g‖∞ ν

−s . ‖g‖∞ ε
−s/γ

and

‖g(2)
ε ‖∞ . m(g, κν) . ‖g‖Cγ (κν)γ . ‖g‖Cγ ε.

The lemma follows. �

4. Existence of the scaling ratio and equilibrium state

In this section we prove Theorem 1.1. We divide the exposition in two parts. In the first part
(Sections 4.1 to 4.4) we prove the existence of a good scaling ratio λ using a new approach, see
Theorem 4.1 below. In the second part (Sections 4.5 and 4.6), we deduce Theorem 1.1 from
Theorem 4.1 using some classical arguments.

4.1. Main statement and first step of the proof. Recall that the Perron-Frobenius operator
L is defined as in (1.1). A direct computation gives

Ln(g)(y) =
∑

fn(x)=y

eφ(x)+φ(f(x))+···+φ(fn−1(x))g(x).

The following result gives the scaling ratio λ.

Theorem 4.1. Let f and φ be as in Theorem 1.1. There exist a number λ > 0 and a continuous
function ρ > 0 on Pk such that for every continuous function g : Pk → R the sequence λ−nLn(g)
is equicontinuous and converges uniformly to cgρ, where cg is a constant depending linearly

on g. Moreover, if g is strictly positive, then cg is strictly positive and the sequence Ln(g)1/n

converges uniformly to λ as n tends to infinity.

We will first study the case where g is equal to 1. The general case will be deduced from this
particular case. Define 1n := Ln(1). Denote by ρ+

n and ρ−n the maximum and the minimum of
1n, respectively. Consider also the ratio θn := ρ+

n /ρ
−
n and the function 1∗n := (ρ−n )−11n. Observe

that the last function satisfies min 1∗n = 1. The following result will be crucial for us.

Proposition 4.2. Under the hypotheses of Theorem 4.1, the sequence {θn} is bounded and the
sequence of functions {1∗n} is uniformly bounded and equicontinuous.

The proof of this result will use the technical tools that were presented in Sections 2 and 3.
Before giving it, we need to first introduce some auxiliary objects.

By Lemma 3.18 applied to φ instead of g, we can find functions φn and ψn such that

(4.1) φ = φn + ψn, ‖φn‖C2 ≤ c ‖φ‖∞ e
1
2
n2/q

, and ‖ψn‖∞ ≤ c ‖φ‖logq n
−2.

Consider two integers J ≥ 0 and N ≥ 0, whose values will be specialised later. Define for
n ≥ N + 1

(4.2) L̂n(g)(x) :=
∑

fn(x)=y

eφn+J (x)+φn+J−1(f(x))+···+φJ+N+1(fn−N−1(x))g(x).

This operator will be used to approximate Ln. The gain here is the fact that the involved
functions φm have controlled C2 norms. As above, we define

1̂n := L̂n1, ρ̂+
n := max 1̂n, ρ̂−n := min 1̂n, θ̂n := ρ̂+

n /ρ̂
−
n , and 1̂∗n := (ρ̂−n )−11̂n.

The following lemma allows us to reduce our problem to the study of the functions 1̂n.
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Lemma 4.3. There exists a positive constant c = c(N) such that, for all n > N ≥ 0 and J ,

c−1 ≤ ρ+
n /ρ̂

+
n ≤ c and c−1 ≤ ρ−n /ρ̂−n ≤ c.

In particular, the sequence
{
θ̂n
}

is bounded if and only if the sequence {θn} is bounded.

Proof. We have

ρ+
n = max 1n = max

y

∑
fn(x)=y

eφ(x)+φ(f(x))+···+φ(fn−1(x))

= max
y

∑
fn(x)=y

eφn+J (x)+···+φJ+N+1(fn−N−1(x)) · eψn+J (x)+···+ψJ+N+1(fn−N−1(x))

· eφ(fn−Nx))+···+φ(fn−1(x))

and similarly for ρ−n . So, both ρ+
n /ρ̂

+
n and ρ−n /ρ̂

−
n are bounded from above and below by

eN maxφCn,N,J and eN minφ/Cn,N,J respectively, where

Cn,N,J := e‖ψn+J‖∞+‖ψn+J−1‖∞+ ···+‖ψJ+N+1‖∞ .

It follows from the estimate on ψn given above that Cn,N,J is bounded from above by a positive
constant which does not depend on n, J and N . Therefore, both ρ+

n /ρ̂
+
n and ρ−n /ρ̂

−
n are bounded

from below and above by positive constants as in the statement. The lemma follows. �

4.2. An estimate for ddc1̂n. Proposition 4.2 will be obtained using the following crucial
estimate for ddc1̂n. We will see here the role of the estimate of the C2 norm of φn. Recall that
q > 2, see Theorem 1.1. We also refer to Section 3.1 for notation.

Proposition 4.4. There exists a sub-exponential function η(t) = ct3e(t+J)2/q with a positive
constant c = c(‖φ‖logq , ‖φ‖∞) independent of n, J and N such that for all n > N ≥ 0 we have

∣∣ddc1̂n∣∣ ≤ n−N∑
m=N+1

η(m)emmaxφρ̂+
n−md

(k−1)mωm +
n∑

m=n0

dkNη(m)e(n−N) maxφd(k−1)mωm,

where n0 := max(n−N + 1, N + 1).

Recall that the function 1̂n is given by

1̂n(y) =
∑

fn(x)=y

eφn+J (x)+φn+J−1(f(x))+···+φJ+N+1(fn−N−1(x)).

In order to estimate ddc1̂n, we will use a now classical construction due to Gromov [Gro03].
Define the manifold Γn ⊂ (Pk)n+1 by

Γn :=
{

(x, f(x), . . . , fn(x)) : x ∈ Pk
}
,

which can also be seen as the graph of the map (f, f2, . . . , fn) in the product space (Pk)n+1.
Consider the function h on (Pk)n+1 given by

h(x0, . . . , xn) := eφn+J (x0)+φn+J−1(x1)+···+φJ+N+1(xn−N−1).

The function 1̂n on Pk is equal to the push-forward of the function h|Γn to the last factor Pk of

(Pk)n+1. Indeed, denoting by πn the restriction of the projection x 7→ xn to Γn, we have

(πn)∗ (h)(y) =
∑

(x0,...,xn)∈Γn : xn=y

h(x) =
∑

x∈f−n(y)

eφn+J (x)+···+φJ+N+1(fn−N−1(x)) = 1̂n(y).

Recall that, since ddc1̂n is real, estimating |ddc1̂n| means finding a good positive closed (1, 1)-
current S on Pk such that both S ± ddc1̂n are positive. According to the identities above, we
have

ddc1̂n = (πn)∗
(
ddch

)
.
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Thus, we need to estimate ddch on (Pk)n+1 and Γn. We define ω(m) as the pullback of the

Fubini-Study form ωFS to (Pk)n+1 by the projection x 7→ xm. Equivalently, ω(m) is a (1, 1)-form

on (Pk)n+1 such that ω(m)(x) = ωFS(xm).

Lemma 4.5. There exists a sub-exponential function η(t) = ct3e(t+J)2/q with a positive constant
c = c(‖φ‖logq , ‖φ‖∞) independent of n, J , and N such that

|ddch| ≤ h
n−N−1∑
m=0

η(n−m)ω(m).

Proof. A direct computation gives

i∂∂̄h = h
( n−N−1∑

m=0

i∂∂φn+J−m(xm) +

n−N−1∑
m,m′=0

i∂φn+J−m(xm) ∧ ∂φn+J−m′(xm′)
)
.

For the first sum, observe that

|i∂∂φn+J−m(xm)| . ‖φn+J−m‖C2ω(m)(x) . e(n+J−m)2/qω(m)(x).

For the second sum, consider m′ ≤ m ≤ n−N − 1. By using Cauchy-Schwarz’s inequality, we
have

|i∂φn+J−m(xm) ∧ ∂φn+J−m′(xm′)|(4.3)

≤ (m−m′ + 1)−2i∂φn+J−m(xm) ∧ ∂φn+J−m(xm)

+(m−m′ + 1)2i∂φn+J−m′(xm′) ∧ ∂φn+J−m′(xm′)

. (m−m′ + 1)−2‖φn+J−m‖2C1ω
(m)(x) + (m−m′ + 1)2‖φn+J−m′‖2C1ω

(m′)(x)

. (m−m′ + 1)−2e(n+J−m)2/qω(m)(x) + (n−m′ + 1)2e(n+J−m′)2/qω(m′)(x).

This and the fact that
∑∞

j=1 j
−2 is finite imply that∣∣∣ ∑

0≤m′≤m≤n−N−1

i∂φn+J−m(xm) ∧ ∂φn+J−m′(xm′)
∣∣∣(4.4)

.
n−N−1∑
m=0

e(n+J−m)2/qω(m)(x) +
n−N−1∑
m′=0

(n−m′ + 1)3e(n+J−m′)2/qω(m′)(x)

.
n−N−1∑
m=0

(n−m)3e(n+J−m)2/qω(m)(x).

We obtain by symmetry a similar estimate for the case where m < m′ ≤ n−N − 1.
Finally, combining all the above identities and estimates we get

|i∂∂̄h| . h
n−N−1∑
m=0

(n−m)3e(n+J−m)2/qω(m).

The lemma follows. �

Proof of Proposition 4.4. We are only interested in the restriction of h to the graph Γn. We
deduce from Lemma 4.5 that

(4.5)
∣∣ddc1̂n∣∣ = |(πn)∗ dd

ch| ≤
n−N−1∑
m=0

η(n−m)(πn)∗
(
hω(m)

)
.

We split the last sum into the two sums corresponding to m < N and m ≥ N . Note that
when n ≤ 2N , in the sum in (4.5) we always have m < N and the first sum in the statement
of the proposition vanishes. So, for simplicity, we assume that n > 2N and we will see in the
proof below that the arguments also work when n ≤ 2N .
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For m < N , using the definition of φm we have ‖φ − φm‖∞ = ‖ψm‖∞ ≤ c′m−2 and hence
maxφm ≤ maxφ+ c′m−2 for some positive constant c′ which may depend on ‖φ‖logq . It follows

that h . e(n−N) maxφ. Then, using the definition of Γn, we have for m < N

(πn)∗
(
hω(m)

)
. e(n−N) maxφ (πn)∗

(
ω(m)

)
= e(n−N) maxφdkm(fn−m)∗(ωFS)

= e(n−N) maxφdkmd(k−1)(n−m)ωn−m.

Thus,

N−1∑
m=0

η(n−m)(πn)∗
(
hω(m)

)
.

N−1∑
m=0

η(n−m)e(n−N) maxφdkmd(k−1)(n−m)ωn−m

≤
n∑

m=n−N+1

dkNη(m)e(n−N) maxφd(k−1)mωm.(4.6)

The last expression is the second sum in the statement of the present proposition (this step

also works for n ≤ 2N but in this case the above sums
∑N−1

0 and
∑n

n−N+1 are replaced by∑n−N−1
0 and

∑n
N+1 respectively). In order to finish the proof, it is enough to have a similar

estimate for m ≥ N (this step is superfluous when n ≤ 2N , see (4.5)).
As above, using the definition of h and the estimates on maxφm and ‖φ− φm‖∞, we have

h . e(n−m) maxφeφ(x0)+φ(x1)+···+φ(xm−N−1) . e(n−m) maxφh′

with

h′ := eφm+J (x0)+φm+J−1(x1)+···+φJ+N+1(xm−N−1).

Note that the sum in the definition of h′ contains m − N terms while the one of h contains
n−N terms. The specific choice of h′ is convenient for our next computation as it is related to
the function 1̂m.

Consider the map π′ : Γn → (Pk)n−m+1 defined by π′(x) := x′ := (xm, . . . , xn). Denote by Γ′

the image of Γn by π′. It is the graph of the map (f, . . . , fn−m) from Pk to (Pk)n−m. We also
have for x′ ∈ Γ′

π′−1(x′) =
{(
y, f(y), . . . , fm−1(y), x′

)
with y ∈ f−m(xm)

}
.

So π′ : Γn → Γ′ is a ramified covering of degree dkm.
Consider the map π′′ : Γ′ → Pk defined by π′′(x′) := xn. We have, for xn ∈ Pk,

π′′−1(xn) =
{(
z, f(z), . . . , fn−m(z)

)
with z ∈ f−n+m(xn)

}
.

So π′′ : Γ′ → Pk is a ramified covering of degree dk(n−m). We have πn = π′′ ◦ π′. Observe that
π′∗(h

′ω(m)) is a (1, 1)-form on Γ′ such that

π′∗(h
′ω(m))(x′) =

( ∑
y∈f−m(xm)

eφm+J (y)+···+φJ+N+1(fm−N−1(y))
)
ωFS(xm)

≤ ρ̂+
mωFS(xm) =: ρ̂+

mω
′(x′),

where we define ω′ as the pull-back of ωFS to Γ′ by the map x′ 7→ xm. We also have

π′′∗(ω
′)(xn) =

∑
xm∈f−n+m(xn)

ωFS(xm) = (fn−m)∗(ωFS)(xn) = d(k−1)(n−m)ωn−m(xn).

Thus,

(πn)∗(hω
(m)) . e(n−m) maxφπ′′∗π

′
∗(h
′ω(m)) ≤ e(n−m) maxφρ̂+

md
(k−1)(n−m)ωn−m
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and
n−N−1∑
m=N

η(n−m)(πn)∗
(
hω(m)

)
.

n−N−1∑
m=N

η(n−m)e(n−m) maxφρ̂+
md

(k−1)(n−m)ωn−m

=
n−N∑

m=N+1

η(m)emmaxφρ̂+
n−md

(k−1)mωm.(4.7)

Finally, we deduce the proposition from (4.5), (4.6), and (4.7) by multiplying η with a large
enough constant. �

4.3. Proof of Proposition 4.2. We are working under the hypotheses of Theorem 4.1. We
will obtain Proposition 4.2 using Lemmas 4.6 and 4.7 below.

Lemma 4.6. Under the hypotheses of Theorem 4.1, given an integer J ≥ 0, we have θ̂n ≤ dkN
for all n > N , with N large enough. In particular, the sequences (θn) and (θ̂n) are bounded for
all J ≥ 0 and N ≥ 0.

Proof. Observe that the last assertion is a consequence of the first one. Indeed, we can first fix
J and N satisfying the first assertion of the lemma. Then, by Lemma 4.3, the sequence (θn) is

bounded. Applying again Lemma 4.3 for arbitrary J and N gives that the sequence (θ̂n) is also
bounded. We prove now the first assertion in the lemma with J fixed and N large enough.

Observe that, by the definition of ρ̂±n , θ̂n, and Ω(·), for every K ≥ 1 the two inequalities

θ̂n ≤ K and Ω(1̂n) ≤ (K − 1)ρ̂−n are equivalent. Hence, in order to get the first assertion in
the lemma, it is enough to show that Ω(1̂n)/ρ̂−n ≤ dkN/2. The constants that we use below are

independent of N and n. Fix a constant δ such that eΩ(φ) < δ < d. By the estimate on ‖ψn‖∞
in (4.1), for every j sufficiently large, we have Ω(φj) ≤ Ω(φ) + Ω(ψj) < log δ. Since we assume
that N is large enough, the last inequality holds for all j ≥ N .

We use Proposition 4.4 and Corollary 2.5 in order to estimate Ω(1̂n) in terms of Ω(um). Recall
that um is the dynamical potential of ωm. We also use Lemma 3.2, which gives Ω(um) . dmδ′−m

for any δ′ such that δ < δ′ < d. More precisely, we obtain from those results that

Ω(1̂n) .
n−N∑

m=N+1

η(m)emmaxφdkmδ′−mρ̂+
n−m +

n∑
m=max(n−N+1,N+1)

dkNη(m)e(n−N) maxφdkmδ′−m.

Since δ < δ′ and N is large, the fact that η is sub-exponential and independent of n and N
implies that

(4.8) Ω(1̂n) .
n−N∑

m=N+1

emmaxφdkmδ−mρ̂+
n−m +

n∑
m=max(n−N+1,N+1)

dkNe(n−N) maxφdkmδ−m.

We now distinguish two cases.

Case 1. Assume that N < n ≤ 2N . In this case, the first sum in (4.8) is empty. We thus
deduce from (4.8) that

Ω(1̂n) . dkNe(n−N) maxφ
(dk(N+1)

δN+1
+ · · ·+ dkn

δn

)
. dkNe(n−N) maxφd

kn

δn
·

On the other hand, by the definitions of ρ̂−n we have the following general estimates (with n ≥ N
in the first inequality and n−m ≥ N in the second one)

(4.9) ρ̂−n & d
kne(n−N) minφ and ρ̂−n & d

kmemminφρ̂−n−m.

The first inequality and the above estimate of Ω(1̂n) imply that

Ω(1̂n)

ρ̂−n
. dkN

e(n−N)Ω(φ)

δn
≤ dkN e

nΩ(φ)

δn
·
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Hence, Ω(1̂n)/ρ̂−n ≤ dkN/2 because N is chosen large enough and δ > eΩ(φ). The lemma in this
case follows.

Case 2. Assume now that n > 2N . By induction on n and the previous case, we can assume
that Ω(1̂m)/ρ̂−m ≤ dkN/2, which implies ρ̂+

m ≤ dkN ρ̂−m, for all m < n. We need to prove the
same inequality for m = n. From (4.8) and the induction hypothesis, we have

Ω(1̂n) . dkN
n−N∑

m=N+1

emmaxφdkmδ−mρ̂−n−m + dkN
n∑

m=n−N+1

e(n−N) maxφdkmδ−m

. dkN
n−N∑

m=N+1

emmaxφdkmδ−mρ̂−n−m + dkNe(n−N) maxφdknδ−n.

This and the second inequality in (4.9) imply that

Ω(1̂n) . dkN
n−N∑

m=N+1

emΩ(φ)δ−mρ̂−n + dkNe(n−N) maxφdknδ−n.

Then, by the first inequality in (4.9) and using that δ > eΩ(φ) and n > 2N , we obtain

Ω(1̂n)

ρ̂−n
. dkN

n−N∑
m=N+1

emΩ(φ)δ−m + dkNe(n−N)Ω(φ)δ−n . dkNeNΩ(φ)δ−N .

Recall that all the constants involved in our computations do not depend on n and N . Since
N is chosen large enough, we obtain that Ω(1̂n)/ρ̂−n ≤ dkN/2. This ends the proof of the
lemma. �

Lemma 4.7. Under the hypotheses of Theorem 4.1, for all J ≥ 0, N ≥ 0, and p > 0, the
sequence ‖1̂∗n‖logp is bounded. In particular, the sequence of functions 1̂∗n is equicontinuous.

Proof. We only need to consider n > 2N , and the implicit constants below may depend on
N . We will use Lemma 3.3 and need to estimate ddc1̂∗n. By Lemma 4.6 the sequence (θ̂n) is
bounded. This and Proposition 4.4 imply that∣∣ddc1̂∗n∣∣ . 1

ρ̂−n

( n−N∑
m=N+1

η(m)emmaxφρ̂−n−md
(k−1)mωm +

n∑
m=n−N+1

η(m)e(n−N) maxφd(k−1)mωm

)
.

Then, using the two inequalities in (4.9), we obtain∣∣ddc1̂∗n∣∣ . n−N∑
m=N+1

η(m)emΩ(φ)d−mωm +

n∑
m=n−N+1

η(m)e(n−N)Ω(φ)d(k−1)m−knωm

.
∞∑
m=0

η(m)emΩ(φ)d−mωm.

Finally, since η is sub-exponential and eΩ(φ) < d, Lemma 3.3 implies the result. �

End of the proof of Proposition 4.2. By Lemma 4.6, we already know that the sequence (θn)
is bounded. Since min 1∗n = 1, we have max 1∗n = θn, hence the sequence (1∗n) is uniformly
bounded. In order to show that this sequence is equicontinuous, it is enough to approximate it
uniformly by an equicontinuous sequence.

Take N = 0. Fix an arbitrary constant 0 < ε < 1. Since ‖φ− φm‖∞ . m−2 by (4.1), we can
choose an integer J large enough so that for every n ≥ 0 we have

(1− ε)1̂n ≤ 1n ≤ (1 + ε)1̂n.

This implies
1− ε
1 + ε

1̂∗n ≤ 1∗n ≤
1 + ε

1− ε
1̂∗n.
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Therefore, |1∗n − 1̂∗n| is bounded uniformly by a constant times ε. By Lemma 4.7, the sequence
(1̂∗n) is equicontinuous. We easily deduce that the sequence (1∗n) is equicontinuous as well. �

Remark 4.8. The method of the proof of Proposition 4.2 developed above is based on deducing a
bound on Ω(1∗n) and ‖1∗n‖logp from estimates on ddc1∗n, by means of Proposition 2.6, Corollaries

2.7 and 2.8, and Lemma 3.3. We could reach the same goal by estimating i∂1∗n ∧ ∂̄1∗n and using
Proposition 2.11, Corollary 2.12, and Remark 3.4.

4.4. Proof of Theorem 4.1. We first define the scaling ratio λ. By definition of ρ+
n , we easily

see that the sequence (ρ+
n ) is sub-multiplicative, that is, ρ+

n+m ≤ ρ+
mρ

+
n for all m,n ≥ 0. It

follows that the first limit in the following line exists

λ := lim
n→∞

(
ρ+
n

)1/n
= lim

n→∞

(
ρ−n
)1/n

,

where the last identity is due to the fact that (θn) is bounded, see Lemma 4.6. We have the
following lemma.

Lemma 4.9. The sequences (λ−nρ+
n ) and (λ−nρ−n ) are both bounded above and below by positive

constants. In particular, the sequence
(
λ−n1n

)
is uniformly bounded and equicontinuous.

Proof. It is clear that the second assertion is a consequence of the first one and Proposition 4.2.
We prove now the first assertion. Since the sequence ρ+

n is sub-multiplicative, it is well-known
that infn(ρ+

n )1/n is equal to λ. Hence, we have λ−nρ+
n ≥ 1. Since θn is bounded, we have

ρ+
n . ρ

−
n . It follows that both λ−nρ±n are bounded from below by positive constants. Similarly,

the sequence ρ−n is super-multiplicative, i.e., ρ−n+m ≥ ρ−mρ−n for all m,n ≥ 0, and we deduce that
that both λ−nρ±n are bounded from above by positive constants. The lemma follows. �

We can extend the above result to all continuous test functions.

Lemma 4.10. Let F be a uniformly bounded and equicontinuous family of real-valued functions
on Pk. Then the family

FN := {λ−nLn(g) : g ∈ F , n ≥ 0}
is also uniformly bounded and equicontinuous.

Proof. By Lemma 4.9, the family FN is uniformly bounded. We prove now that it is
equicontinuous. Given any constant ε > 0, using a convolution, we can find for every g ∈ F a
smooth function g′ such that ‖g − g′‖∞ ≤ ε and ‖g′‖C2 is bounded by a constant depending on
ε. Denote by F ′ the family of these g′. Observe that

|λ−nLn(g)− λ−nLn(g′)| = |λ−nLn(g − g′)| ≤ ελ−n1n ≤ ελ−nρ+
n

and the last expression is bounded by a constant times ε. Therefore, in order to prove the lemma,
it is enough to show that the family F ′N, defined in a similar way as for FN, is equicontinuous.
For simplicity, we replace F by F ′ and assume that ‖g‖C2 is bounded by a constant for g ∈ F .
The constants involved in the computation below do not depend on g ∈ F .

We continue to use the notation introduced above. Consider an arbitrary constant ε > 0.
Take N = 0 and choose J large enough depending on ε. From the definitions of L and L̂n (see
(4.2)) and the fact that ‖φ− φm‖∞ . m−2 we obtain that

|λ−nLn(g)(x)− λ−nL̂n(g)(x)| ≤ ελ−n
∑

fn(x)=y

eφ(x)+φ(f(x))+···+φ(fn−1(x))|g(x)|.

This and Lemma 4.9 imply that

‖λ−nLn(g)− λ−nL̂n(g)‖∞ ≤ ελ−nρ+
n ‖g‖∞ . ε.

So, in order to prove that the family λ−nLn(g) is equicontinuous, it is enough to show the same

property for the family λ−nL̂n(g).
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We will use the same idea as in Proposition 4.4 and Lemma 4.5. Instead of the function h,
we need to consider the following slightly different function (recall that N = 0)

H(x0, . . . , xn) := eφn+J (x0)+φn+J−1(x1)+···+φJ+1(xn−1)g(x0) = h(x0, . . . , xn)g(x0).

We have
i∂∂H = (i∂∂h)g(x0) + h(i∂∂g(x0)) + i∂h ∧ ∂g(x0)− i∂h ∧ ∂g(x0).

Applying Cauchy-Schwarz’s inequality to the last two terms, and since g has a bounded C2

norm, we obtain

|i∂∂H| ≤ |(i∂∂h)g(x0)|+ |h(i∂∂g(x0))|+ ih−1∂h ∧ ∂h + ih∂g(x0) ∧ ∂g(x0)

. |i∂∂h|+ hωFS(x0) + ih−1∂h ∧ ∂h + hωFS(x0)

. |i∂∂h|+ hωFS(x0) + ih−1∂h ∧ ∂h.

We claim that the last sum satisfies

|i∂∂h|+ hωFS(x0) + ih−1∂h ∧ ∂h . h
n−1∑
m=0

η(n−m)ω(m).

Lemma 4.5 shows that the first term |i∂∂h| of the LHS is bounded by the RHS. The second
term clearly satisfies the same property (consider m = 0 in the above sum). For the last term,
by Cauchy-Schwarz’s inequality and using a computation as in the proof of Lemma 4.5, we have
(recall that N = 0)

ih−1∂h ∧ ∂h = h
n−1∑

m,m′=0

i∂φn+J−m(xm) ∧ ∂φn+J−m′(xm′) . h
n−1∑
m=0

η(n−m)ω(m).

This implies the claim and gives a bound for |i∂∂H|.
Since L̂n(g) = (πn)∗(H), we obtain as in the proof of Proposition 4.4 that

|ddcλ−nL̂n(g)| . λ−n
n∑

m=1

η(m)emmaxφρ̂+
n−md

(k−1)mωm.

By Lemmas 4.3 and 4.9 we have ρ̂±n−m . ρ
±
n−m . λ

n−m. Therefore, we obtain

|ddcλ−nL̂n(g)| .
n∑

m=1

η(m)emmaxφλ−md(k−1)mωm.

Finally, since λ ≥ dkeminφ by definition of λ, the last estimate implies that

|ddcλ−nL̂n(g)| .
n∑

m=1

η(m)emΩ(φ)d−mωm.

Lemma 3.3 and the fact that d > eΩ(φ) imply the result. �

We now construct the density function ρ on Pk. Recall that the sequence λ−n1n is uniformly
bounded and equicontinuous. Therefore, the Cesaro sums

1̃n :=
1

n

n−1∑
j=0

λ−j1j

also form a uniformly bounded and equicontinuous sequence of functions. It follows that there
is a subsequence of 1̃n which converges uniformly to a continuous function ρ. Observe that
ρ ≥ infn λ

−nρ−n . Hence, by Lemma 4.9, the function ρ is strictly positive. A direct computation
gives

λ−1L(1̃n)− 1̃n =
1

n
(λ−n1n − 10).

Since λ−n1n is bounded uniformly in n, the last expression tends uniformly to 0 when n tends
to infinity. We then deduce from the definition of ρ that λ−1L(ρ) = ρ.
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End of the proof of Theorem 4.1. Observe that we only need to show that λ−nLn(g) converges
to cgρ for some constant cg. The remaining part of the theorem is then clear. Let G denote
the family of all limit functions of subsequences of λ−nLn(g). By Lemma 4.10, the sequence
λ−nLn(g) is uniformly bounded and equicontinuous. Therefore, by Arzelà-Ascoli theorem, G is
a uniformly bounded and equicontinuous family of functions which is compact for the uniform
topology. Observe also that G is invariant under the action of λ−1L. Define

M := max{l(a)/ρ(a) : l ∈ G, a ∈ Pk}.

We first prove the following properties.

Claim 1. We have maxPk(l/ρ) = M for every l ∈ G.

Assume by contradiction that there is a sequence λ−njLnj (g) which converges uniformly to
a function l ∈ G such that l ≤ (M − 2ε)ρ for some constant ε > 0. Then, for j large enough, we
have λ−njLnj (g) ≤ (M − ε)ρ. Fix such an index j. For n > nj we have

λ−nLn(g) = λ−n+njLn−nj (λ−njLnj (g)) ≤ (M − ε)λ−n+njLn−nj (ρ) = (M − ε)ρ.

Since this is true for every n > nj , we get a contradiction with the definition of M . This ends
the proof of Claim 1.

Claim 2. We have l/ρ = M on the small Julia set supp(µ) for every l ∈ G.

Consider an arbitrary function l ∈ G and define ln := λ−nLn(l) ∈ G. By Claim 1, there is a
point an ∈ Pk such that ln(an) = Mρ(an). By definition of M , we have l ≤Mρ and hence

Mρ(an) = ln(an) = λ−nLn(l)(an) ≤ λ−nLn(Mρ)(an) = Mρ(an).

So the inequality in the last line is actually an equality. This and the definition of L imply
that l/ρ = M on f−n(an). Observe that when n tends to infinity, the limit of f−n(an) contains
supp(µ), see, e.g., [DS10b, Cor. 1.4]. By continuity, we obtain l/ρ = M on supp(µ). This ends
the proof of Claim 2.

Applying the above claims to the function −g instead of g, we obtain that l/ρ is equal on
supp(µ) to minPk(l/ρ). We can now conclude that l = Mρ on Pk for every l ∈ G. Define
cg := M . We obtain that λ−nLn(g) converges uniformly to cgρ. This completes the proof of
the theorem. �

4.5. Equidistribution of preimages and mixing properties. We have seen that the operator
L acts on the space of continuous functions g : Pk → R. It is also positive, i.e., L(g) ≥ 0 when
g ≥ 0. Therefore, L induces by duality a linear operator L∗ acting on the space of measures
and preserving the cone of positive measures.

Proposition 4.11. Under the assumptions of Theorem 1.1, there exists a unique conformal
measure associated with φ, that is, there exists a unique probability measure mφ which is an
eigenvector of L∗. We also have L∗(mφ) = λmφ, supp(mφ) = supp(µ), and if ν is a positive
measure, λ−n(Ln)∗(ν) converges to 〈ν, ρ〉mφ when n tends to infinity. Moreover, if F is a

uniformly bounded and equicontinuous family of functions on Pk, then λ−nLn(g)−cgρ converges
to 0 when n goes to infinity, uniformly on g ∈ F , where cg := 〈mφ, g〉.

Proof. For any probability measure mφ as in the first assertion, there is a constant λ′ > 0 such
that L∗(mφ) = λ′mφ. It follows that, for every continuous function g,

〈mφ, g〉 = lim
n→∞

〈λ′−n(Ln)∗(mφ), g〉 = lim
n→∞

〈mφ, λ
′−nLn(g)〉.

We necessarily have λ′ = λ because we know from the end of the proof of Theorem 4.1 that
λ−nLn(g) converges uniformly to cgρ and cg is not always 0. We conclude that 〈mφ, g〉 =
cg〈mφ, ρ〉. Since 〈mφ, g〉 = cg = 1 when g = 1 (because mφ is a probability measure) we
deduce that 〈mφ, ρ〉 = 1 and hence 〈mφ, g〉 = cg for every continuous function g. This gives the
uniqueness of mφ.
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Consider now an arbitrary probability measure ν on Pk. We have

〈λ−n(Ln)∗(ν), g〉 = 〈ν, λ−nLn(g)〉 → 〈ν, cgρ〉 = 〈ν, ρ〉〈mφ, g〉.
It follows that λ−n(Ln)∗(ν) converges to 〈ν, ρ〉mφ. If ν is supported by supp(µ) and g vanishes on
supp(µ), by definition of L, the function Ln(g) also vanishes on supp(µ) and the last computation
implies that 〈mφ, g〉 = 0. Equivalently, the measure mφ is supported by supp(µ).

In order to show that supp(mφ) = supp(µ), we assume by contradiction that there is a

continuous function g ≥ 0 on Pk such that g > 0 on some open subset U of supp(µ) and
〈mφ, g〉 = 0. The λ−1L∗-invariance of mφ implies that 〈mφ,Lng〉 = λn〈mφ, g〉 = 0 and the
definition of L implies that Ln(g) > 0 on fn(U). It follows that mφ has no mass on fn(U)

and hence on ∪n≥0f
n(U). On the other hand, we have for every x ∈ Pk that d−kn(fn)∗(δx)

converges to µ, see, e.g., [DS10b, Cor. 1.4]. Therefore, f−n(δx)∩U 6= ∅ for some n or equivalently
x ∈ ∪n≥0f

n(U). So we have ∪n≥0f
n(U) = Pk. This contradicts the fact that mφ has no mass

on this union. So we have supp(mφ) = supp(µ) as desired.
For the last assertion of the proposition, we can replace g with g−cgρ in order to assume that

cg = 0 for g ∈ F . By Lemma 4.10, the family FN is uniformly bounded and equicontinuous. So
the limit of the sequence of sets λ−nLn(F) is a compact, uniformly bounded and equicontinuous
family of functions that we denote by F∞. This family is invariant by λ−1L and we also have
cg = 0 for g ∈ F∞. We want to show that it contains only the function 0.

Define
M := max{l(a)/ρ(a) : l ∈ F∞, a ∈ Pk}.

Choose a function l ∈ F∞ and a point a such that l(a)/ρ(a) = M . There are an increasing
sequence of integers (nj) and a sequence (gj) ⊂ F such that λ−njLnj (gj) converges uniformly
to l. For every n ≥ 0, choose a limit function l−n of the sequence λ−nj+nLnj−n(gj). We have
l = λ−nLn(l−n) and l−n ∈ F∞.

As in the end of the proof of Theorem 4.1, we obtain that l−n/ρ = M on the set f−n(a) and
if l−∞ is a limit of the sequence l−n then l−∞ belongs to F∞ and l−∞/ρ = M on the small Julia
set supp(µ). Since mφ is supported by the small Julia set and 〈mφ, g〉 = cg = 0 for g ∈ F∞, we
conclude that M = 0. Using the same argument for −g with g ∈ F , we obtain that the minimal
value of the functions in F∞ is also 0. So F∞ contains only the function 0. This ends the proof
of the proposition. �

Proposition 4.11 in particular gives the following equidistribution result for the (weighted)
preimages of a given point.

Corollary 4.12. Under the assumptions of Theorem 1.1, for every x ∈ Pk the points in f−n(x),
with suitable weights, are equidistributed with respect to the conformal measure mφ when n tends
to infinity. More precisely, if δa denotes the Dirac mass at a, then

lim
n→∞

λ−n
∑

fn(a)=x

eφ(a)+···+φ(fn−1(a))δa = ρ(x)mφ

for every x ∈ Pk.

Proof. Denote by µn the measure in the LHS of the last identity. Let g be any continuous
function on Pk. We have

〈µn, g〉 = λ−n
∑

fn(a)=x

eφ(a)+···+φ(fn−1(a))g(a) = λ−n(Lng)(x).

The last expression converges to cgρ(x) = ρ(x)〈mφ, g〉. The result follows. �

For our convenience, define the operator L by L(g) := (λρ)−1L(ρg). Define also the positive
measure µφ by µφ := ρmφ. We have the following lemma.

Lemma 4.13. For any continuous function g : Pk → R, the sequence Ln(g) converges uniformly
to the constant cρg = 〈µφ, g〉 = 〈mφ, ρg〉. We also have that µφ is an f -invariant probability
measure such that supp(µφ) = supp(µ).
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Proof. Define g′ := ρg. We have cg′ = 〈mφ, ρg〉 = 〈µφ, g〉. The first assertion is a direct
consequence of the fact that λ−nLn(g′) converges uniformly to cg′ρ.

For the second assertion, we have seen in the proof of Proposition 4.11 that 〈mφ, ρ〉 = 1. It
follows that µφ is a probability measure. Moreover, we obtain from the λ−1L∗-invariance of mφ

that

〈µφ, g ◦ f〉 = 〈mφ, ρ(g ◦ f)〉 = 〈λ−1L∗(mφ), ρ(g ◦ f)〉 = 〈mφ, λ
−1L(ρ(g ◦ f))〉 = 〈µφ, L(g ◦ f)〉.

Using that λ−1L(ρ) = ρ and the definition of L, we can easily check that L(g ◦ f) = g. So the
previous identities imply that 〈µφ, g ◦ f〉 = 〈µφ, g〉. Hence, µφ is an invariant measure. The
assertion on the support of µφ is clear because supp(mφ) = supp(µ) by Proposition 4.11 and ρ
is strictly positive. �

The operator L can also be extended to a continuous operator on L2(µφ) and L2(mφ). Since
µφ = ρmφ and ρ is positive and continuous, these two spaces are actually the same and the
corresponding norms are equivalent.

Lemma 4.14. Under the assumptions of Theorem 1.1, the operator L extends to a linear

continuous operator on L2(mφ) whose norm is bounded by λe
1
2

Ω(φ). Moreover, there exists a
positive constant c such that ‖λ−nLn‖L2(mφ) ≤ c for all n ≥ 0.

Proof. By Cauchy-Schwarz’s inequality and using the λ−1L∗-invariance of mφ, we have〈
mφ, |Lng|2

〉
≤
〈
mφ, (Ln1) · (Ln |g|2)

〉
≤ ρ+

n

〈
mφ,Ln |g|2

〉
= ρ+

n λ
n
〈
mφ, |g|2

〉
for every g ∈ L2(mφ) and n ≥ 0. The second assertion of the lemma follows because ρ+

n . λ
n.

For the first assertion, take n = 1. From the definition of ρ+
n and λ, we have ρ+

1 ≤ dkemaxφ

and λ ≥ dkeminφ. The above inequality implies that〈
mφ, |Lg|2

〉
≤ eΩ(φ)λ2

〈
mφ, |g|2

〉
.

The first assertion in the lemma follows. �

Proposition 4.15. Under the assumptions of Theorem 1.1, the measure µφ = ρmφ is K-mixing
and mixing of all orders.

Proof. We start with the second property. Let {g0, . . . , gr} be any finite family of continuous
test functions on Pk. We need to show that, for 0 = n0 ≤ n1 ≤ · · · ≤ nr,〈

µφ, g0(g1 ◦ fn1) . . . (gr ◦ fnr)
〉
−

r∏
j=0

〈µφ, gj〉 → 0

when n := inf0≤j<r(nj+1 − nj) tends to infinity. This property is clearly true for r = 0. Take
r ≥ 1. By induction, we can assume that the above convergence holds for the case of r− 1 test
functions. We prove now the same property for r test functions.

By the f∗-invariance of µφ and the induction hypothesis, we have〈
µφ, (g1 ◦ fn1) . . . (gr ◦ fnr)

〉
=
〈
µφ, g1(g2 ◦ fn2−n1) . . . (gr ◦ fnr−n1)

〉
→

r∏
j=1

〈µφ, gj〉.

So the desired property holds when g0 is a constant function. Therefore, we can subtract from g0

a constant and assume that 〈µφ, g0〉 = 0, which implies that the product
∏n
j=0〈µφ, gj〉 vanishes.

Using that λ−1L(ρ) = ρ, the λ−1L∗-invariance of mφ, and the definition of L, we can easily
check by induction that for all functions g, l we have

〈µφ, g〉 = 〈µφ, Ln(g)〉 and Ln(g(l ◦ fn)) = Ln(g)l.

We then deduce that〈
µφ, g0(g1 ◦ fn1) . . . (gr ◦ fnr)

〉
=

〈
µφ, L

n1
(
g0(g1 ◦ fn1) . . . (gr ◦ fnr)

)〉
=

〈
µφ, L

n1(g0)g1 . . . (gr ◦ fnr−n1)
〉
.

33



By Lemma 4.13, the sequence Ln1(g0) converges uniformly to 0 as n1 tends to ∞. So the last
integral tends to 0 because the function g1 . . . (gr ◦ fnr−n1) is bounded. We then conclude that
µφ is mixing of all orders.

We prove now that µφ is K-mixing, that is, that given g ∈ L2(µφ), when n tends to infinity
the difference 〈

µφ, g(l ◦ fn)
〉
− 〈µφ, g〉〈µφ, l〉

tends to 0 uniformly on test functions l whose L2(µφ)-norm is bounded by a constant. As
above, we can assume that 〈µφ, g〉 = 0. We can also assume that the L2(µφ)-norms of g and l
are bounded by 1. Fix an arbitrary constant ε > 0. It is enough to show the existence of an
integer N = N(ε) independent of l such that |〈µφ, g(l ◦ fn)〉| ≤ 2ε for n ≥ N .

Choose a continuous function g′ such that 〈µφ, g′〉 = 0 and ‖g − g′‖L2(µφ) ≤ ε. Using the
invariance of µφ we have

|〈µφ, g(l ◦ fn)〉 − 〈µφ, g′(l ◦ fn)〉| = |〈µφ, (g − g′)(l ◦ fn)〉| ≤ ‖g − g′‖L2(µφ)‖l ◦ fn‖L2(µφ)

= ‖g − g′‖L2(µφ)‖l‖L2(µφ) ≤ ε.

It remains to show that |〈µφ, g′(l ◦ fn)〉| ≤ ε when n ≥ N for some N large enough. As above,
we have

|〈µφ, g′(l ◦ fn)〉| = |〈µφ, Ln(g′)l〉| ≤ ‖Ln(g′)‖∞.
Lemma 4.13 and the identity 〈µφ, g′〉 = 0 imply the result. �

For positive real numbers q,M , and Ω with q > 2 and Ω < log d, consider the following set
of weights

P(q,M,Ω) :=
{
φ : Pk → R : ‖φ‖logq ≤M, Ω(φ) ≤ Ω

}
and the uniform topology induced by the sup norm. Observe that this family is equicontinuous.
In the two lemmas below, we study the dependence on φ ∈ P(q,M,Ω) of the objects introduced
in this section. Therefore, we will use the index φ or parameter φ for objects which depend on
φ, e.g., we will write λφ,Lφ, ρφ,1n(φ) instead of λ,L, ρ and 1n.

Lemma 4.16. Let q,M , and Ω be positive real numbers such that q > 2 and Ω < log d.
The maps φ 7→ λφ, φ 7→ mφ, φ 7→ µφ, and φ 7→ ρφ are continuous on φ ∈ P(q,M,Ω) with
respect to the standard topology on R, the weak topology on measures, and the uniform topology
on functions. In particular, ρφ is bounded from above and below by positive constants which

are independent of φ ∈ P(q,M,Ω). Moreover, ‖λ−nφ L
n
φ‖∞ is bounded by a constant which is

independent of n and of φ ∈ P(q,M,Ω).

Proof. Fix q,M, and Ω as above. Observe that when we add to φ a constant c the scaling ratio
λφ and the operator Lφ are both changed by a factor ec. It follows that the operator λ−1

φ Lφ,

the measures mφ, µφ, and the density function ρφ do not change. So, for simplicity, it is enough
to prove the lemma for φ in the family

P0(q,M,Ω) :=
{
φ : Pk → R : minφ = 0, ‖φ‖logq ≤M, Ω(φ) ≤ Ω

}
.

Notice that this family is compact for the uniform topology.
Consider two weights φ and φ′ in this space. From the definition of λφ and λφ′ , we have

e−‖φ−φ
′‖∞ ≤ λφ/λφ′ ≤ e‖φ−φ

′‖∞ . It follows that φ 7→ λφ is continuous. When φ′ → φ, any limit

value of mφ′ is a probability measure invariant by λ−1
φ L

∗
φ thanks to the invariance of mφ′ by

λ−1
φ′ L

∗
φ′ . Since mφ is the only probability measure which is invariant by λ−1

φ L
∗
φ, this limit value

must be mφ. Thus, φ 7→ mφ′ is continuous.
We deduce from the proof of Proposition 4.2 that θn(φ) = ρ+

n (φ)/ρ−n (φ) is bounded by a
constant independent of n and φ. Moreover, the family of functions{

1∗n(φ) with n ≥ 0 and φ ∈ P0(q,M,Ω)
}
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is uniformly bounded and equicontinuous. Recall that 1∗n(φ) = (ρ−n (φ))−11n(φ) and ρ−n (φ) ≤
λnφ ≤ ρ+

n (φ), see the proof of Lemma 4.9. It follows that λ−nφ 1n(φ) belongs to a uniformly

bounded and equicontinuous family of functions.
From the definition of ρφ and ρφ′ , we also see that these functions belong to a uniformly

bounded and equicontinuous family of functions. When φ′ → φ, if ρ′ is any limit of ρφ′ , then

ρ′ is continuous and invariant by λ−1
φ Lφ because ρφ′ satisfies a similar property. It follows from

Theorem 4.1 that ρ′ = cρφ for some constant c. On the other hand, since µφ′ = ρφ′mφ′ is
a probability measure, any limit of ρφ′mφ′ is a probability measure. Thus, ρ′mφ = cµφ is a
probability measure and hence c = 1. We conclude that ρφ′ → ρφ and also µφ′ → µφ. In other
words, the maps φ 7→ µφ and φ 7→ ρφ are continuous. Since ρφ is strictly positive and the
family P0(q,M,Ω) is compact, we deduce that ρφ is bounded from above and below by positive
constants independent of φ.

The last assertion in the lemma is also clear because ‖λ−nφ L
n
φ‖∞ = λ−nφ ‖1n(φ)‖∞ ≤ θn(φ).

This ends the proof of the lemma. �

Lemma 4.17. Let q,M , and Ω be positive real numbers such that q > 2 and Ω < log d. Let
F be a uniformly bounded and equicontinuous family of real-valued functions on Pk. Then the
family {

λ−nφ L
n
φ(g) : n ≥ 0, φ ∈ P(p,M,Ω), g ∈ F

}
is equicontinuous. Moreover,

∥∥λ−nφ Lnφ(g) − 〈mφ, g〉
∥∥
∞ tends to 0 uniformly on φ ∈ P(p,M,Ω)

and g ∈ F when n goes to infinity.

Proof. As in Lemma 4.16, we can assume that φ ∈ P0(p,M,Ω). The first assertion is clear from
the proof of Lemma 4.10. We prove now the second assertion. By Lemma 4.16, mφ belongs to
a compact family of probability measures. It follows that |〈mφ, g〉| is bounded by a constant
independent of φ and g. It follows that the family

F ′N :=
{
λ−nφ L

n
φ(g)− 〈mφ, g〉 : n ≥ 0, φ ∈ P0(p,M,Ω), g ∈ F

}
is uniformly bounded and equicontinuous. Denote by F ′∞ the set of all functions l′ obtained as
the limit of a sequence

hj := λ
−nj
φj
Lnjφj (gj)− 〈mφj , gj〉

in F ′N with nj → ∞. By taking a subsequence, we can assume that φj converges uniformly to
some function φ ∈ P0(p,M,Ω). Since 〈mφj , hj〉 = 0, we also obtain that 〈mφ, l

′〉 = 0 by the
continuity of φ 7→ mφ. Now, as in the end of the proof of Proposition 4.11, we obtain that

l′ = λ−nφ L
n
φ(l′−n) for some l′−n ∈ F ′∞ and then deduce that l′ = 0. The lemma follows. �

4.6. Pressure and uniqueness of the equilibrium state. Using the results in the previous
section, to prove the next proposition we only need to follow the arguments in [UZ13, Sections
6 and 7] and [PU10, Section 5.6].

Proposition 4.18. The probability measure µφ is a unique equilibrium state associate to φ.
Moreover, the pressure P (φ) is equal to log λ.

Proof. We follow the approach in [PU10, Th. 5.6.5]. To simplify the notation, set Sn(g) :=∑n−1
j=0 g ◦ f j for any function g : Pk → R. Recall that, given φ′ : Pk → R with ‖φ′‖logq <∞ and

Ω(φ′) < log d, we denote by λφ′ , ρφ′ the objects associated to Lφ′ .

Claim 1. We have Entf (µφ′) +
〈
µφ′ , φ

′〉 = P (φ′) = log λφ′ for all φ′ : Pk → R such that
‖φ′‖logq <∞ and Ω(φ′) < log d.

Proof of Claim 1. The proof of the inequality P (φ′) ≤ log λφ′ is an adaptation of Gromov’s
proof of the fact that the topological entropy of f is bounded above by k log d, see [Gro03]. We
refer to [UZ13, Th. 6.1] for the complete details. To complete the proof, it is enough to show
that Entf (µφ′) +

〈
µφ′ , φ

′〉 ≥ log λφ′ .
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It follows from [Par69] that Entf (µφ′) ≥
〈
µφ′ , log Jµφ′

〉
, where Jµφ′ is defined as the Radon-

Nikodym derivative of f∗µφ′ with respect to µφ′ (when this derivative exists). In our setting, it
follows from a straightforward computation that Jµφ′ is well defined and given by

Jµφ′ = λφ′ρ
−1
φ′ e
−φ′(ρφ′ ◦ f).

Indeed, denoting by J ′ the RHS in the above expression, for every continuous function g : Pk →
R, we have〈

µφ′ , J
′g
〉

=
〈
λmφ′ , e

−φ′(ρφ′ ◦ f)g
〉

=
〈
L∗φ′mφ′ , e

−φ′(ρφ′ ◦ f)g
〉

=
〈
mφ′ ,Lφ′(e−φ

′
(ρφ′ ◦ f)g)

〉
=
〈
mφ′ , ρφ′Lφ′(e−φ

′
g)
〉

=
〈
µφ′ , f∗g

〉
=
〈
f∗µφ′ , g

〉
,

which proves that J ′ = Jµφ′ . We then have, using the f∗-invariance of µφ′ ,

Entf (µφ′)+
〈
µφ′ , φ

′〉 ≥ 〈µφ′ , log Jµφ′
〉
+
〈
µφ′ , φ

′〉 =
〈
µφ′ , log(ρφ′ ◦ f)− log ρφ′

〉
+log λφ′ = log λφ′

and the proof is complete. �

Claim 2. Let M and Ω be positive real numbers such that Ω < log d, and g : Pk → R a
continuous function. Then, for every y ∈ Pk, we have

(4.10)
1

n

∑
fn(x)=y Sn(g)(x)eSn(φ′)(x)

Lnφ′1(y)
→
〈
µφ′ , g

〉
where the convergence is uniform on φ′ ∈ P(q,M,Ω).

Proof of Claim 2. Observe that the LHS of (4.10) is equal to

1

n

λ−nφ′
∑

fn(x)=y Sn(g)(x)eSn(φ′)(x)

λ−nφ′ Lnφ′1(y)
.

The denominator of the last quotient converges to ρφ′(y) and the numerator satisfies

(4.11) λ−nφ′
∑

fn(x)=y

Sn(g)(x)eSn(φ′)(x) = λ−nφ′

n−1∑
j=0

Lnφ′(g ◦ f j)(y) = λ−jφ′

n−1∑
j=0

λj−nφ′ L
n−j
φ′ (g · Ljφ′1)(y).

It follows from Lemma 4.17 that

(4.12) λj−nφ′ L
n−j
φ′ (g · Ljφ′1)→

〈
mφ′ , g · Ljφ′1

〉
ρφ′

as n − j → ∞, where the convergence is uniform on φ′ ∈ P(q′,M,Ω). We deduce from (4.11),

(4.12), and the fact that λ−jφ′ L
j
φ′1→ ρφ′ as j →∞ that, as n→∞, the LHS in (4.10) tends to

lim
n→∞

1

n

n−1∑
j=0

λ−jφ′
〈
mφ′ , g · Ljφ′1

〉
=
〈
mφ′ , g · ρφ′

〉
=
〈
µφ′ , g

〉
.

The proof is complete. �

Claim 3. For every ψ : Pk → R such that ‖ψ‖logq < ∞ the function t 7→ P (φ + tψ) is
differentiable in a neighbourhood of 0.

Proof of Claim 3. Fix y ∈ Pk and set

Pn(t) :=
1

n
logLnφ+tψ1(y) and Qn(t) :=

d

dt
Pn(t) =

1

n

∑
fn(x)=y Sn(ψ)(x)eSn(φ+tψ)(x)

Lnφ+tψ1(y)
.

Notice that Ω(φ+tψ) < log d for t sufficiently small. A direct computation and Claim 2 (applied
with φ+ tψ, ψ instead of φ′, g) imply that Qn(t)→ 〈µφ+tψ, ψ〉 as n→∞, locally uniformly with
respect to t. We also have Pn(t)→ log λφ+tψ = P (φ+ tψ), where the convergence follows from
Lemma 4.9 and the equality from Claim 1 applied with φ′ instead of φ+tψ. We deduce that the
pressure function P , in a neighbourhood of t = 0, is the uniform limit of the C1 functions Pn(t),
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whose derivatives Qn(t) are also uniformly convergent. Thus, the function P is differentiable in
a neighbourhood of t = 0, with derivative at t equal to 〈µφ+tψ, ψ〉. �

It follows from Claim 1 that µφ is an equilibrium state. By [PU10, Cor. 3.6.7], the fact that
the pressure function t 7→ P (φ + tψ) is differentiable at t = 0 with respect to a dense set of
continuous functions ψ implies the uniqueness of the equilibrium state for the weight φ. Since
this property holds by Claim 3 for all ψ such that ‖ψ‖logq <∞, the proof is complete. �

We will prove in Section 6 that, when φ and ψ are Hölder continuous, the pressure function
P (t) defined above is actually analytic, see Proposition 6.8. We conclude this section with the
following properties of the equilibrium state µφ that we will use in the next section.

Proposition 4.19. Under the assumptions of Theorem 1.1, the metric entropy Entf (µφ) of µφ
is strictly larger than (k−1) log d. In particular, µφ has no mass on proper analytic subsets of Pk,

its Lyapunov exponents are strictly positive and at least equal to 1
2(Entf (µφ)−(k−1) log d), and

the function log | JacDf | is integrable with respect to µφ. Moreover, the Hausdorff dimension
of µφ satisfies

dimH(µφ) ≥ (k − 1) log d

λ1
+

Entf (µφ)− (k − 1) log d

λk
·

Proof. Since µφ maximizes the pressure and Entf (µ) = k log d, we have

Entf (µφ) + 〈µφ, φ〉 ≥ Entf (µ) + 〈µ, φ〉 ≥ k log d+ minφ.

Since by assumption we have Ω(φ) < log d, it follows that

Entf (µφ) ≥ k log d+ minφ− 〈µφ, φ〉 ≥ k log d− Ω(φ) > (k − 1) log d.

The Lyapunov exponents of every ergodic invariant probability measure satisfying this property
are bounded below as in the statement, and in particular the function log | Jac | is integrable
with respect to it, see de Thélin [DT08] and Dupont [Dup12]. The bound on the Hausdorff
dimension of µφ is then a consequence of [Dup11].

Let now X be a proper analytic subset of Pk. Assume by contradiction that m := µφ(X) > 0.
We choose such an X which is irreducible and of minimal dimension p. So, for all n ≥ 0, fn(X)
is also an irreducible analytic set of dimension p. We have

µφ(fn(X)) = µφ(f−n(fn(X))) ≥ µφ(X) = m.

It follows that µφ(fn(X) ∩ fn′(X)) > 0 for some n′ > n ≥ 0. The minimality of the dimension

p implies that fn(X) = fn
′
(X).

Replacing X, f , and φ by fn(X), fn
′−n, and φ + · · · + φ ◦ fn′−n−1 we can assume that X is

invariant and µφ(X) > 0. Since µφ is mixing, it is ergodic. We then deduce that µφ(X) = 1.
Therefore, the metric entropy of µφ is smaller than the topological entropy of f on X. But this
is a contradiction because the last one is at most equal to p log d, see [DS10a, Th. 1.108 and
Ex. 1.122]. The result follows. �

4.7. Equidistribution of periodic points and end of the proof of Theorem 1.1. Because
of Proposition 4.11, Corollary 4.12, Lemma 4.13, and Propositions 4.15 and 4.18, to prove
Theorem 1.1 it only remains to establish the equidistribution of (weighted) repelling periodic
points of period n with respect to µφ, as n→∞.

Theorem 4.20. Let f : Pk → Pk be a holomorphic endomorphism of Pk of algebraic degree
d ≥ 2 and satisfying Assumption (A). Let φ : Pk → R satisfy ‖φ‖logq < ∞ for some q > 2 and

Ω(φ) < log d. Let µφ be the unique equilibrium state associated to φ, and λ the scaling ratio.
Then for every n ∈ N there exists a set P ′n of repelling periodic points of period n in the small
Julia set such that

(4.13) lim
n→∞

λ−n
∑
y∈P ′n

eφ(y)+φ(f(y))+···+φ(fn−1(y))δy = µφ.
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Note that a related equidistribution property for Hölder continuous weights was proved by
Comman-River-Letelier [CRL11] for (hyperbolic and) topologically Collect-Eckmann rational
maps on P1.

To prove Theorem 4.20, we follow a now classical strategy due to Briend-Duval [BD99] for
the measure of maximal entropy (which corresponds to the case φ ≡ 0). We employ a trick due
to X. Buff which simplifies the original proof. An extra difficulty with respect to the case φ ≡ 0
is due to the fact that there is no a priori upper bound for the mass of the left hand side of
(4.13) when P ′n is replaced by the set of all repelling periodic points of period n.

Given any point x ∈ Pk we denote by µx,n the measure

µx,n := λ−nρ(x)−1
∑

fn(a)=x

eφ(a)+φ(f(a))+···+φ(fn−1(a))ρ(a)δa.

It follows from Corollary 4.12 that, for every continuous function g : Pk → R, we have

〈µx,n, g〉 = λ−nρ(x)−1
∑

fn(a)=x

eφ(a)+φ(f(a))+···+φ(fn−1(a))ρ(a)g(a)→ ρ(x)−1 〈ρ(x)mφ, ρg〉 = 〈µφ, g〉

as n→∞. This means that, for all x ∈ Pk, we have µx,n → µφ as n→∞.
We denote by 0 < L1 ≤ · · · ≤ Lk the Lyapunov exponents of µφ, see Proposition 4.19. We

fix in what follows a constant 0 < L0 < L1. Given x ∈ X, a ball B of center x, and n ∈ N, we
say that g : B → B′ is an m-good inverse branch of f of order n on B if

g ◦ fn = id|B′ and diam f l(B′) ≤ e−m−(n−l)L0 for all 0 ≤ l ≤ n.

Notice that the definition in particular implies that diam(B) ≤ e−m. We denote by µ
(m)
B,n the

measure
µ

(m)
B,n := λ−nρ(x)−1

∑
a=g(x)

eφ(a)+φ(f(a))+···+φ(fn−1(a))ρ(a)δa,

where the sum is taken on the m-good inverse branches g of f of order n on B. Since we have

µ
(m)
B,n ≤ µx,n for all n ≥ 0, it follows that any limit value µ′B of the sequence

{
µ

(m)
B,n

}
satisfies

µ′B ≤ µφ. In particular, we have ‖µ′B‖ ≤ 1.
Given m > 1 we say that a ball B centred at x is m-nice if

(i) infB ρ > (1− 1/m) supB ρ;

(ii)
∥∥µ(m)

B,n

∥∥ ≥ 1− 1/m for every n sufficiently large.

Observe that the second condition implies that diam(B) ≤ e−m for every m-nice ball B.

Moreover, we have ‖µ′B‖ ≥ 1− 1/m for every limit value µ′B of the sequence µ
(m)
B,n.

Lemma 4.21. For µφ-almost every x ∈ Pk, every sufficiently small ball centred at x is m-nice.

The proof of Lemma 4.21 is elementary but makes uses of the natural extension of the system
(Pk, f, µφ), see for instance [CFS12, Sec. 10.4]. We denote by X0, Cf , PCf the small Julia set,
the critical set and the postcritical set PCf := ∪n≥0f

n(Cf ) of f , respectively. We also set
X := X0 \ ∪m∈Nf

−m(PCf ). By Proposition 4.19 we have µφ(f−m(PCf )) = 0 for every m ∈ N,

hence µ(X) = 1. We denote by X̂ the set

X̂ := {x̂ := (xn)n∈Z : xn ∈ X, f(xn) = xn+1} ,

by πn : x̂ 7→ xn the natural projection from X̂ to X and by f̂ : X̂ → X̂ the map

f̂(. . . , x−1, x0, x1, . . . ) := (. . . , f(x−1), f(x0), f(x1), . . . ) = (. . . , x0, x1, x2, . . . ).

Observe that πn ◦ f̂ = f ◦ πn for all n ∈ Z. Let us consider on X̂ the σ-algebra B̂ generated by
all cylinders, i.e., the sets of the form

An,B := π−1
n (B) = {x̂ : xn ∈ B} for n ≤ 0 and B ⊆ Pk a Borel set

and set
µ̂φ(An,B) := µφ(B) for all An,B as above.
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It follows from the invariance of µφ and the fact that xn ∈ B if and only if xn−m ∈ f−m(B)
(with m ≥ 0) that µ̂φ is well defined on the collection of the sets An,B and

µ̂φ(An,B) = µ̂φ(An−m,B) for all m ≥ 0.

Similarly, for every m > 0 and Borel sets B0, B−1, . . . , B−m ⊆ Pk we then have

µ̂φ({x̂ : x0 ∈ B0, x−1 ∈ B−1, . . . , x−m ∈ B−m})

= µ̂φ({x̂ : x−m ∈ f−m(B0) ∩ f−(m−1)(B−1) ∩ · · · ∩B−m})

= µφ(f−m(B0) ∩ f−(m−1)(B−1) ∩ · · · ∩B−m).

We then extend µ̂φ to a probability measure, still denoted by µ̂φ, on B̂. Observe that µ̂φ is

f̂ -invariant by construction and satisfies (π0)∗µ̂φ = µφ.

For n > 0 we denote by f−nx̂ the inverse branch of fn defined in a neighbourhood of x0 and

such that f−nx̂ (x0) = x−n. This branch exists for all x0 ∈ X. We have the following lemma.

Lemma 4.22. For every 0 < L < L1 there exist two measurable functions ηL : X̂ → (0, 1]

and SL : X̂ → (1,+∞) such that, for µ̂φ-almost every x̂ ∈ X̂, the map f−nx̂ is defined on

BPk(x0, ηL(x̂)) with Lip(f−nx̂ ) ≤ SL(x̂)e−nL for every n ∈ N.

Sketch of proof. The statement is a consequence of Proposition 4.19. A direct proof in the
case φ = 0 is given in [BD99, Sec. 2] and [BDM08, Thm. 1.4(3)]. The case n = 1 comes
from a (quantitative) application of the inverse mapping theorem, which is then iterated to
get functions ηL and SL valid for all n. The main point in the proof is an application of the
Birkhoff ergodic theorem to the function log | JacDf |. This function is integrable with respect
to the measure of maximal entropy µ0, which has continuous potentials, because of the Chern-
Levine-Nirenberg inequality [CLN69]. Since this function is integrable with respect to µφ by
Proposition 4.19, the same proof applies in our setting. �

Proof of Lemma 4.21. Since ρ is continuous and strictly positive, we only need to check that, for

µφ-almost every x ∈ Pk, every sufficiently small ball B centred at x satisfies
∥∥µ(m)

B,n

∥∥ ≥ 1− 1/m
for every n sufficiently large.

Let us consider the disintegration of the measure µ̂φ with respect to µφ and the projection
π0. We denote by µ̂xφ the conditional measure on {x0 = x}. The measure µ̂xφ is uniquely defined
for µφ-almost all x ∈ X and characterized by the identity

〈µ̂φ, g〉 = 〈µφ, u(x)〉 , where u(x) :=
〈
µ̂xφ, g

〉
for all bounded measurable functions g : X̂ → R. Since (π0)∗µ̂φ = µφ, µ̂xφ is a probability
measure for µφ-almost every x.

We will need a more explicit description of the conditional measures µ̂xφ. For n > 0 and

x ∈ X we consider the measure µ̂xn on X̂ defined as follows. First, let us consider the projection

X̂ → Xn+1 given by

π̂n := (π−n, . . . , π−1, π0).

For every element (y−n, . . . , y0) ∈ Xn+1 we choose a representative ẑ ∈ X̂ such that zj = yj for

all −n ≤ j ≤ 0. For any given y0 and any n > 0 we then have dkn distinct such representatives,
and we denote by Ẑn their collection. We then set

µ̂xn := λ−nρ(x)−1
∑

ẑ∈Ẑn : z0=x

eφ(z−n)+φ(z−n+1)+···+φ(z−1)ρ(z−n)δẑ.

Since this is a finite sum, the measures µ̂xn are well defined on X̂.

Claim. We have limn→∞ µ̂
x
n = µ̂xφ for µφ-almost every x ∈ X.
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Proof. It is enough to check the assertion on the cylinders A−i,B for i ≥ 0 and B ⊆ Pk a Borel
set. It is clear that, for all n > 0, we have µ̂xn(A0,B) = δx(B), which implies that∫

µ̂xn(A0,B)µφ(x) =

∫
δx(B)µφ(x) = µφ(B).

Moreover, for all n > i, using the invariance of ρ by λ−1L we have

µ̂xn(A−i,B) = µ̂xn(A−i,B ∩ π−1
0 (x))

= λ−nρ(x)−1
∑

ẑ∈Ẑn : z0=x

eφ(z−n)+φ(z−n+1)+···+φ(z−1)ρ(z−n)δẑ(A−i,B)

= λ−nρ(x)−1
∑

ẑ∈Ẑi : z0=x

(Ln−iρ)(z−i)e
φ(z−i)+φ(z−i+1)+···+φ(z−1)δẑ(A−i,B)

= λ−iρ(x)−1
∑

ẑ∈Ẑi : z0=x

ρ(z−i)e
φ(z−i)+φ(z−i+1)+···+φ(z−1)δẑ(A−i,B)

= µ̂xi (A−i,B).

In order to conclude it is enough to prove that∫
µ̂xi (A−i,B)µφ(x) = µφ(B) for all i > 0.

We have∫
µ̂xi (A−i,B)µφ(x) =

∫ (
λ−iρ(x)−1

∑
ẑ∈Ẑi : z0=x

eφ(z−i)+φ(z−i+1)+···+φ(z−1)ρ(z−i)δẑ(A−i,B)
)
µφ(x)

=

∫ (
λ−iρ(x)−1

∑
f i(a)=x

eφ(a)+φ(f(a))+···+φ(f i−1(a))ρ(a)1B(a)
)
µφ(x)

=
〈
µφ, λ

−iρ−1f i∗(e
φ+φ◦f+···+φ◦f i−1

ρ1B)
〉

=
〈ρeφ+φ◦f+···+φ◦f i−1

λi(ρ ◦ f i)
(f i)∗µφ, 1B

〉
= µφ(B),

where in the last step we used the fact that the Jacobian of µφ (i.e., the Radon-Nidokym

derivative
f∗µφ
µφ

) is given by λρ−1e−φ(ρ ◦ f), which implies that

(f i)∗µφ = λiρ−1e−
∑i−1
j=0 φ◦f

j

(ρ ◦ f i)µφ.

This completes the proof of the Claim. �

Let us now fix an integer m > 0, a constant L0 < L < L1, and a second positive integer γ.
For every integer N > 0 we set

X̂N :=
{
x̂ ∈ X̂ : ηL(x̂) ≥ N−1 and SL(x̂) ≤ N

}
.

Observe that µ̂φ(X̂N )→ 1 as N →∞. In particular, there exists N0 = N0(m, γ) such that, for

every N > N0, we have µ̂φ(X̂N ) > 1 − 1/(2mγ+1). It follows by Markov inequality that there
exists a subset Xγ ⊂ X with µφ(Xγ) > 1− 1/mγ such that, for all N > N0,

µ̂xφ(X̂N ∩ {x0 = x}) > 1− 1/(2m) for all x ∈ Xγ .

It is enough to prove the property in the lemma for all x ∈ Xγ . Let us fix one such

x. By Lemma 4.22 and the definition of X̂N , for every x̂ ∈ X̂N and n ≥ 0 the inverse
branch f−nx̂ is defined on the ball BPk(x0, N

−1) with Lip(f−nx̂ ) ≤ Ne−nL. In particular,

diam(f−nx̂ (BPk(x0, e
−m/(2N)))) ≤ e−m−nL0 for all n ≥ 0. It follows that all inverse branches

on BPk(x, e−m/(2N)) corresponding to elements x̂ ∈ X̂N ∩ {x0 = x} are m-good for all n.
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The Claim above implies that

µ̂xn(X̂N ∩ {x0 = x}) > 1− 1/m for all n large enough.

This precisely means that, for all n sufficiently large, we have
∥∥µ(m)

B,n

∥∥ > 1 − 1/m, where B =

BPk(x, e−m/(2N)). This implies that such a ball B is m-nice. The proof is complete. �

Lemma 4.23. There exists a positive constant C = C(L0, q) such that, for all n ∈ N,m > 0,
and every m-good inverse branch g : B → B′ of f of order n on a ball B, and for all sequences
of points {xl}, {yl} with 0 ≤ l ≤ n− 1 and xl, yl ∈ f l(B′) we have

n−1∑
l=0

|φ(xl)− φ(yl)| ≤ Cm−(q−1).

Proof. Since g is m-good, we have dist(xl, yl) ≤ e−m−(n−l)L0 for all 0 ≤ l ≤ n− 1. Hence,

n−1∑
l=0

|φ(xl)− φ(yl)| ≤
n−1∑
l=0

‖φ‖logq | log? dist(xl, yl)|−q ≤ ‖φ‖logq

∞∑
l=1

|1 +m+ lL0|−q . m−(q−1),

where the implicit constant depends on L0, q and we used the assumption that q > 2. �

Lemma 4.24. Let U be a finite collection of disjoint open subsets of Pk. For every m > 0
there exists n(m,U) > m and, for every n ≥ n(m,U), a set Qm,n of repelling periodic points of
period n in the intersection of the union of the sets in U with the small Julia set such that, for
all U ∈ U ,

(1− 1/m)µφ(U) ≤ λ−n
∑

y∈Qm,n∩U
eφ(y)+φ(f(y))+···+φ(fn−1(y)) ≤ (1 + 1/m)µφ(U).

Proof. We can assume that U consists of a single open set U , the general case follows by taking
n(m,U) to be the maximum of the n(m,U), for U ∈ U . We can also assume that µφ(U) > 0
because otherwise we can choose n(m,U) = m+ 1 and Qm,n = ∅. Fix integers m2 � m1 � m.
By Lemma 4.21, for µφ-almost every point a, every ball of sufficiently small radius centred at
a is m2-nice. Hence, we can find a finite family of disjoint m2-nice balls Bi b U , such that
µφ(U \∪Bi) < µφ(U)/m2. It is then enough to prove the lemma for each Bi instead of U . More
precisely, let B = BPk(a, r) be an m2-nice ball. It is enough to find an n(m2) > m2 and, for all
n ≥ n(m2), a set Q of repelling periodic points of period n in B ∩ supp(µφ) such that

(4.14) (1− 1/m1)µφ(B) ≤ λ−n
∑
y∈Q

eφ(y)+φ(f(y))+···+φ(fn−1(y)) ≤ (1 + 1/m1)µφ(B).

We fix in what follows an integer m3 � m2/µφ(B) and a second ball B? = BPk(a, r?), with
r? < r, such that µφ(B?) > (1 − 1/m2)µφ(B). Choose a finite family of disjoint m3-nice balls
Di with the property that µφ(∪Di) > 1−1/m3. We set D := ∪Di and let bi be the center of Di.
We also fix balls D?

i b Di centred at bi and such that µφ(∪D?
i ) > 1− 1/m3 and set D? := ∪D?

i .

Claim 1. There is an integer M1 = M1(m2, B,B
?, Di) such that, for all N ≥M1, we have

(4.15) (1− 4/m2)µφ(B) ≤ µ(m3)
Di,N

(B?) ≤ (1 + 4/m2)µφ(B) for all i.

Proof. Since the balls Di are m3-nice and m3 � m2/µφ(B), for every i we have∥∥µ(m3)
Di,N

∥∥ ≥ (1− µφ(B)/m2) for all N large enough.

Hence, since µ
(m3)
Di,N

≤ µbi,N and ‖µbi,N‖ ≤ 1+o(1), we have
∥∥µbi,N−µ(m3)

Di,N

∥∥ ≤ µφ(B)/m2 +o(1).
Therefore, in order to prove the claim it is enough to show that

(1− 2/m2)µφ(B) ≤ µbi,N (B?) ≤ (1 + 2/m2)µφ(B)

for all i and all N large enough. This is a consequence of Corollary 4.12 and of the inequality
µφ(B?) > (1− 1/m2)µφ(B). �

41



Similarly, we also have the following.

Claim 2. There is an integer M2 = M2(m2, B,D
?) such that, for all N ≥M2, we have

(4.16) 1− 4/m2 ≤ µ(m2)
B,N (D?) ≤ 1 + 4/m2.

Proof. Since the ball B is m2-nice, we have∥∥µ(m2)
B,N

∥∥ ≥ (1− 1/m2) for all N large enough.

Hence, by the fact that µ
(m2)
B,N ≤ µa,N and ‖µa,N‖ ≤ 1 + o(1), in order to prove the claim it is

enough to show that

1− 2/m2 ≤ µa,N (D?) ≤ 1 + 2/m2

for all N large enough. This is again a consequence of Corollary 4.12 and of the inequality
µφ(D?) > (1− 1/m3). �

For every N1 sufficiently large, every point in the support of 1B?µ
(m3)
Di,N1

corresponds to an
m3-good inverse branch of f of order N1 mapping Di to a relatively compact subset of B.

Similarly, for every N2 sufficiently large every point in the support of 1D?µ
(m2)
B,N2

corresponds
to an m2-good inverse branch of f of order N2 mapping B to a relatively compact subset of
D. Composing such inverse branches we get inverse branches gj of fN1+N2 defined on B whose
images are relatively compact in B. In what follows, we only consider these inverse branches

gj . We also write gj as g
(1)
j ◦ g

(2)
j , where g

(2)
j is the corresponding inverse branch of fN2 on B

(whose image is then in D) and g
(1)
j is the corresponding inverse branch of fN1 on g

(2)
j (B). We

also set i = i(j), where g
(2)
j (B) ⊂ Di.

Each inverse branch gj as above contracts the Kobayashi metric of B, and thus admits a
unique fixed point yj , which is attracting for gj and hence repelling for fN1+N2 . Up to possibly
increasing the integers M1 and M2 given by the Claims above, we can assume that the above
properties hold for N1 = M1 and N2 = M2. We set n(m) := M1(m2) + M2(m2) for a fixed
choice of sufficiently large m1,m2,m3 and, for all n ≥ n(m), we define the set Q as the union
of all such fixed points constructed as above with N1 = M1(m2) and N2 = n−N1 ≥ M2(m2).
The points in Q are then repelling periodic points of period n = N1 +N2 for f . Observe that,
for all j and all z ∈ B, since gj(B) b B we have glj(z) → yj as l → ∞. Since B intersects the
small Julia set, by taking z in the small Julia set we see that yj belongs to the small Julia set.
To conclude, we need to prove (4.14) for this choice of Q. We set

µn := λ−n
∑
y∈Q

eφ(y)+φ(f(y))+···+φ(fn−1(y))δy =
∑
j

eφ(y)+φ(f(y))+···+φ(fn−1(y))δyj

and

µ̃n := λ−n
∑
j

(
eφ(g

(1)
j (bi(j)))+φ(f◦g(1)j (bi(j)))+···+φ(fN1−1◦g(1)j (bi(j)))

ρ(g
(1)
j (bi(j)))

ρ(bi(j))
·

· eφ(g
(2)
j (a))+φ(f◦g(2)j (a))+···+φ(fN2−1◦g(2)j (a))

ρ(g
(2)
j (a))

ρ(a)
δgj(a)

)
.

Observe that there is a correspondence between the terms in µn and those in µ̃n. Moreover,
since all the balls B and Di are m2-nice, we have

|ρ(g
(1)
j (bi(j)))/ρ(a)− 1| . m−1

2 and |ρ(g
(2)
j (a))/ρ(bi(j))− 1| . m−1

2 for all i and j.

It follows from these inequalities and Lemma 4.23 that |µn(B)− µ̃n(B)| . µ̃n(B)m−1
2 . Hence,

in order to conclude it is enough to prove that

(1− 1/(2m1))µφ(B) ≤ µ̃n(B) ≤ (1 + 1/(2m1))µφ(B)
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because m2 is chosen large enough. By construction, we have

µ̃n(B) =
∑
i

µ
(m2)
B,N2

(D?
i ) · µ

(m3)
Di,N1

(B?).

By Claim 1, this implies that

(1− 4/m2)µφ(B)
∑
i

µ
(m2)
B,N2

(D?
i ) ≤ µ̃n(B) ≤ (1 + 4/m2)µφ(B)

∑
i

µ
(m2)
B,N2

(D?
i ).

The assertion then follows from Claim 2 and the fact that
∑

i µ
(m2)
B,N2

(D?
i ) = µ

(m2)
B,N2

(D?), by taking
m2 large enough. �

We can now conclude the proof of Theorem 4.20. As mentioned at the beginning of the
section, this also completes the proof of Theorem 1.1.

End of the proof of Theorem 4.20. For every i ∈ N we construct a finite family of disjoint open
sets Ui := {Ui,j}1≤j≤Ji with the following properties:

(i) µφ(∪1≤j≤JiUi,j) = 1;
(ii) for all 1 ≤ j ≤ Ji we have diam(Ui,j) < 1/i;
(iii) for all i ≥ 2 and 1 ≤ j ≤ Ji there exists 1 ≤ j′ ≤ Ji−1 such that Ui,j ⊂ Ui−1,j′ .

We can construct these sets using local coordinates and generic real hyperplanes which are
parallel to the coordinate hyperplanes. Observe also that, by the first condition, we have
µφ(∂Ui,j) = 0 for all i and 1 ≤ j ≤ Ji.

For every n, we define in := max{m ≤ n : n ≥ n(m,Um)}, where n(m,Um) is given by Lemma
4.24. Observe that in → ∞ as n → ∞. We define P ′n ⊂ ∪jUin,j as the union of the sets of
repelling periodic points of period n in the small Julia set obtained by applying Lemma 4.24 to
the collection Uin instead of U , and set

µ′n := λ−n
∑
y∈P ′n

eφ(y)+φ(f(y))+···+φ(fn−1(y))δy.

By Properties (i) and (ii) of the open sets Ui,j and Lemma 4.24, any limit µ′ of the sequence
{µ′n} has mass 1. So, since µφ(∪jUin,j) = 1 for all n and diam(Ui,j) < 1/i for all i, it is enough
to prove that

(4.17) lim inf
n→∞

µ′n(Ui?,j?) ≥ µφ(Ui?,j?) for all i? ∈ N and 1 ≤ j? ≤ Ji? .

Indeed, given any open set A ⊆ Pk, we can write A as a countable union of compact sets of
the form Ūi,j b A, overlapping only on their boundaries. We then see that (4.17) implies that
µφ(A) ≤ µ′(A) for every open set A, and the facts that ‖µφ‖ = ‖µ′‖ and µφ(∂Ui,j) = 0 for all
i, j imply that µφ = µ′.

We can then fix i?, j? as in (4.17) and a positive number ε, and it is enough to prove that

µ′n(Ui?,j?) ≥ µφ(Ui?,j?)− ε for all n sufficiently large.

We only consider in what follows integers n such that in > i? and the sets Uin,j which
are contained in Ui?,j? . For all such n, we have µφ(Ui?,j?) =

∑
j µφ(Uin,j) and µ′n(Ui?,j?) =∑

j µ
′
n(Uin,j). It follows by the definition of µ′n and Lemma 4.24 that∣∣µ′n(Ui?,j?)− µφ(Ui?,j?)

∣∣ ≤∑
j

∣∣µ′n(Uin,j)− µφ(Uin,j)
∣∣ ≤ i−1

n

∑
j

µφ(Uin,j) = i−1
n µφ(U).

The assertion follows. �

Remark 4.25. One could improve the argument in the proof of Lemma 4.24 to obtain that P ′n can
be taken to be a subset of the repelling periodic points with a good control of the eigenvalues,
see for instance [BDM08, BD19]. This implies that, setting Σj := Lk−j+1 + · · ·+ Lk, we have

Σj = lim
n→∞

λ−n
∑
y∈P ′n

1

n
eφ(y)+φ(f(y))+···+φ(fn−1(y)) log

∥∥∥∧j Dfny

∥∥∥
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and, in particular,

Σk =

k∑
j=1

Lj = lim
n→∞

λ−n
∑
y∈P ′n

eφ(y)+φ(f(y))+···+φ(fn−1(y)) log | JacDfy|.

Here, Dfnx : TxPk → Tfn(x)P
k denotes the differential of fn at x. This is a linear map from

the complex tangent space of Pk at x to the one at fn(x). It induces the natural linear map∧j Dfnx from the exterior power
∧j TxPk to

∧j Tfn(x)P
k.

5. Spectral gap for the transfer operator

In this section we prove our main Theorem 1.2. We already defined in the previous section
the scaling ratio λ, the density function ρ as an eigenfunction for the operator L = Lφ, and the
probability measures mφ and µφ, all under the hypothesis that ‖φ‖logq < ∞ for some q > 2.

The semi-norms ‖·‖〈p,α〉 and ‖·‖〈p,α〉,γ were introduced in Sections 3.5 and 3.6, respectively.

5.1. Main result and first step of the proof. The following is the main result of this section.
We will use it in order to prove Theorem 1.2 with a suitable norm and another value of β.

Theorem 5.1. Let f, φ, λ,mφ, ρ be as in Theorem 1.1 and L the Perron-Frobenius operator
associated to φ. Let p, α, γ,A,Ω be positive constants and q2 as in Lemma 3.16 such that
p > 3/2, d−1 ≤ α < d−5/(2p+2), Ω < log(dα), and q2 > 2. Assume that ‖φ‖〈p,α〉,γ ≤ A and

Ω(φ) ≤ Ω. Then we have

‖λ−nLn‖〈p,α〉,γ ≤ c, ‖ρ‖〈p,α〉,γ ≤ c, and ‖1/ρ‖〈p,α〉,γ ≤ c

for some positive constant c = c(p, α, γ,A,Ω) independent of φ and n. Moreover, for every
constant 0 < β < 1 there is a positive integer N = N(p, α, γ,A,Ω, β) independent of φ such that

(5.1)
∥∥λ−NLNg∥∥〈p,α〉,γ ≤ β ‖g‖〈p,α〉,γ

for every function g : Pk → R with 〈mφ, g〉 = 0. Furthermore, we can take β = δ−N for every

constant 0 < δ < (dα)γ/(2γ+2), provided that A is small enough.

Notice that Lemma 3.16 and the assumption q2 > 2 imply that ‖φ‖logq < ∞ for some
q > 2. Hence, the scaling ratio λ, the density function ρ, and the measures mφ and µφ are well

defined by Theorem 1.1. Notice also that q2 > 2 implies that the condition α < d−5/(2p+2) is
automatically satisfied.

As it was the case for Theorem 4.1, the proof of Theorem 5.1 will be reduced to a comparison
between suitable currents and their norms. Theorem 5.1 will then follow from some interpolation
techniques (see Section 5.3). A crucial estimate that we will need here is the following.

Proposition 5.2. Let f be as in Theorem 1.1. Take 0 < α < 1 and p > 0. Given n functions
φ(j) : Pk → R for j = 1, . . . , n, set

Φm := α−md(k−1)me
∑m
j=1 max(φ(j)) and Lm,n := Lφ(m) ◦ · · · ◦ Lφ(n) .

Then there exists a positive constant c = c(p, α), independent of φ(j), such that

‖L1,ng‖〈p,α〉 ≤ c ‖L1,n1‖1/2∞ Φ1/2
n ‖g‖〈p,α〉 + c

n∑
m=1

∥∥φ(m)
∥∥
〈p,α〉m

3/2Φ1/2
m ‖L1,m1‖1/2∞ ‖Lm+1,ng‖∞

for every function g : Pk → R.

Proof. By Definition 3.12 of the semi-norm ‖·‖〈p,α〉, we need to bound the current i∂L1,ng ∧
∂̄L1,ng. We will use here the map πn introduced in Section 4.2. We have, using a direct
computation,

∂
(
eφ

(n)(x0)+···+φ(1)(xn−1)g(x0)
)

= Θ1 + Θ2
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with

Θ1 := h′′∂g(x0), Θ2 := h′′g(x0)
n−1∑
m=0

∂φ(n−m)(xm), and h′′ := eφ
(n)(x0)+···+φ(1)(xn−1).

Using Cauchy-Schwarz’s inequality, we obtain

i∂L1,ng ∧ ∂̄L1,ng = i(πn)∗(Θ1 + Θ2) ∧ (πn)∗(Θ1 + Θ2)

≤ 2i(πn)∗(Θ1) ∧ (πn)∗(Θ1) + 2i(πn)∗(Θ2) ∧ (πn)∗(Θ2).

We need to bound the norm ‖·‖p,α of the two terms in the last sum by the square of the RHS
of the inequality in the proposition.

For the first term, using again Cauchy-Schwarz’s inequality, the definition of Φm as in the
statement, and Lemma 3.11, we get (notice that (πn)∗(h′′) = L1,n1)∥∥i(πn)∗(Θ1) ∧ (πn)∗(Θ1)

∥∥
p,α

≤
∥∥(πn)∗(h

′′)(πn)∗
(
h′′i∂g(x0) ∧ ∂g(x0)

)∥∥
p,α

≤ ‖L1,n1‖∞ e
∑n
j=1 maxφ(j)

∥∥(fn)∗(i∂g ∧ ∂̄g)
∥∥
p,α

≤ ‖L1,n1‖∞Φn

∥∥i∂g ∧ ∂̄g∥∥
p,α

.

This gives the desired estimate for the first term.
For the second term, observe that i(πn)∗(Θ2) ∧ (πn)∗(Θ2) is equal to∑

0≤m,m′<n
i(πn)∗

(
h′′g(x0)∂φ(n−m)(xm)

)
∧ (πn)∗

(
h′′g(x0)∂φ(n−m′)(xm′)

)
≤ 2

∑
0≤m′≤m<n

∣∣i(πn)∗
(
h′′g(x0)∂φ(n−m)(xm)

)
∧ (πn)∗

(
h′′g(x0)∂φ(n−m′)(xm′)

)∣∣.
Using Cauchy-Schwarz’s inequality as in (4.3) and (4.4) we can bound the current in the absolute
value signs by

(m−m′ + 1)−2i(πn)∗
(
h′′g(x0)∂φ(n−m)(xm)

)
∧ (πn)∗

(
h′′g(x0)∂φ(n−m)(xm)

)
+(m−m′ + 1)2i(πn)∗

(
h′′g(x0)∂φ(n−m′)(x′m)

)
∧ (πn)∗

(
h′′g(x0)∂φ(n−m′)(x′m)

)
and deduce that i(πn)∗(Θ2) ∧ (πn)∗(Θ2) is bounded by a constant times∑

0≤m<n
(n−m)3i(πn)∗

(
h′′g(x0)∂φ(n−m)(xm)

)
∧ (πn)∗

(
h′′g(x0)∂φ(n−m)(xm)

)
.

Therefore, in order to get the proposition, setting η := (πn)∗
(
h′′g(x0)∂φ(n−m)(xm)

)
we only

need to show that

‖iη ∧ η‖p,α ≤
∥∥φ(n−m)

∥∥2

〈p,α〉Φn−m ‖L1,n−m1‖∞ ‖Ln−m+1,ng‖2∞ .

Now, using π′′ as in the proof of Proposition 4.4, we see that

η = π′′∗
(
Ln−m+1,ng(xm)hm∂φ

(n−m)(xm)
)

with hm := eφ
(n−m)(xm)+···+φ(1)(xn−1).

It follows from Cauchy-Schwarz’s inequality that

iη ∧ η ≤ ‖Ln−m+1,ng‖2∞π′′∗(hm)π′′∗(hmi∂φ
(n−m)(xm) ∧ ∂φ(n−m)(xm))

≤ ‖Ln−m+1,ng‖2∞‖π′′∗(hm)‖∞‖hm‖∞(fn−m)∗(i∂φ
(n−m) ∧ ∂φ(n−m)).

Thus, by Lemma 3.11 and the definition of π′′, we get

‖iη ∧ η‖p,α ≤ ‖Ln−m+1,ng‖2∞‖L1,n−m1‖∞Φn−m‖i∂φ(n−m) ∧ ∂φ(n−m)‖p,α.

This ends the proof of the proposition. �
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5.2. Proof of Theorem 5.1. We will need the following elementary lemma.

Lemma 5.3. Let φ, φ(j), ψ : Pk → R be such that
∑∞

j=1

∥∥φ− φ(j)
∥∥
∞ ≤ a for some positive

constant a. Define ϑ : R+ → R+ by ϑ(t) := t−1(et − 1) and ϑ(0) = 1, which is a smooth
increasing function. Then we have

(i) ‖Lφ − Lψ‖∞ ≤ ϑ(‖φ− ψ‖∞) ‖Lφ‖∞ ‖φ− ψ‖∞;

(ii) for every n ≥ 1,
∥∥Ln − Lφ(1) ◦ · · · ◦ Lφ(n)∥∥∞ ≤ ϑ(a)a ‖Ln‖∞.

Proof. Observe that for φ, ψ : Pk → R we have, using the definition of Lφ and Lψ,

‖Lφ(g)− Lψ(g)‖∞ ≤
∥∥(1− eψ−φ)‖g‖∞

∥∥
∞ ‖Lφ(1)‖∞ =

∥∥1− eψ−φ
∥∥
∞ ‖Lφ‖∞ ‖g‖∞ .

The first item in the lemma follows. For the second item, notice that∥∥∥(φ+ φ ◦ f + · · ·+ φ ◦ fn−1
)
−
(
φ(n) + φ(n−1) ◦ f + · · ·+ φ(1) ◦ fn−1

)∥∥∥
∞
≤

n∑
j=1

∥∥φ− φ(j)
∥∥
∞.

Therefore, using this estimate and the expansions of Ln(g) and Lφ(1) ◦ · · · ◦ Lφ(n)(g), we obtain
the result in the same way as the first item. �

We continue the proof of Theorem 5.1. We first prove the following result.

Proposition 5.4. Under the hypotheses of Theorem 5.1, there exists a positive integer N0 =
N0(p, α, γ,A,Ω, β) independent of φ and g and such that (5.1) holds for all N ≥ N0.

As in Lemmas 4.16 and 4.17, we can assume that φ belongs to the family of weights

Q0 :=
{
φ : Pk → R : minφ = 0, ‖φ‖〈p,α〉,γ ≤ A, Ω(φ) ≤ Ω

}
.

Observe that we can apply Lemmas 4.16 and 4.17 because, by Lemma 3.16 and the assumptions
on α and p, the family Q0 is contained in P0(q,M,Ω) for suitable q > 2 and M . Observe also
that ‖φ‖∞ = Ω(φ) ≤ Ω and ‖φ‖∞ . ‖φ‖〈p,α〉,γ ≤ A.

Consider two constants K ≥ 1 and K ′ ≥ 1 whose values depend on β and will be specialised
later. We will not fix A but we assume A ≤ A0 for some fixed constant A0 > 0. For a large part
of this section we can take A = A0, but at the end of the proof of Theorem 5.1 we will consider
A → 0. This is the reason why we will keep the constant A in the estimates below. Note that
the constants hidden in the signs . below are independent of the parameters A, β,K,K ′, n and
also of the constant 0 < ε ≤ 1 and the integer j that we consider now.

Since ‖φ‖〈p,α〉,γ ≤ A, for every j ≥ 1 there are functions φ(j) and ψ(j) such that

φ = φ(j) + ψ(j),
∥∥φ(j)

∥∥
〈p,α〉 ≤ A(Kj2)1/γ(1/ε)1/γ , and

∥∥ψ(j)‖∞ ≤ AK−1j−2ε.

Observe that ‖φ(j)‖∞ is bounded by a constant since ‖φ‖∞ is bounded by a constant.
We can assume for simplicity that ‖g‖〈p,α〉,γ ≤ 1, which implies that Ω(g) is bounded by a

constant. Since 〈mφ, g〉 = 0 by hypothesis, we deduce that ‖g‖∞ is bounded by a constant. By

the definition of the semi-norm ‖·‖〈p,α〉,γ , we can find two functions g
(1)
ε and g

(2)
ε satisfying

g = g(1)
ε + g(2)

ε ,
∥∥g(1)

ε

∥∥
〈p,α〉 ≤ K

′1/γ(1/ε)1/γ ,
∥∥g(2)

ε

∥∥
∞ ≤ 2K ′−1ε, 〈mφ, g

(1)
ε 〉 = 〈mφ, g

(2)
ε 〉 = 0.

Notice that without the condition 〈mφ, g
(2)
ε 〉 = 0 we would not need the coefficient 2 in the

above estimate of ‖g(2)
ε ‖∞. We obtain this condition by adding to g

(2)
ε a suitable constant and

subtracting the same constant from g
(1)
ε . The condition 〈mφ, g

(1)
ε 〉 = 0 is deduced from the

hypothesis 〈mφ, g〉 = 0 when we have 〈mφ, g
(2)
ε 〉 = 0. Since ‖g‖∞ is bounded by a constant,

‖g(1)
ε ‖∞ is also bounded by a constant.
Define as above Lm,n := Lφ(m) ◦ · · · ◦ Lφ(n) and write

(5.2) λ−nLng = λ−nL1,ng
(1)
ε + λ−n

(
Lng(1)

ε − L1,ng
(1)
ε

)
+ λ−nLng(2)

ε =: G(a)
n,ε +G(b)

n,ε +G(c)
n,ε.
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Lemma 5.5. When K and K ′ are large enough, we have for every n ≥ 1∥∥G(b)
n,ε

∥∥
∞ ≤

1

2
βε and

∥∥G(c)
n,ε

∥∥
∞ ≤

1

2
βε.

Proof. The above estimate on ‖ψ(j)‖∞ implies that
∑
‖ψ(j)‖∞ . AK−1ε. Therefore, using

Lemma 5.3 and the fact that the sequence λ−nLn1 is bounded uniformly on n and φ (see
Lemma 4.16), we get ∥∥G(b)

n,ε

∥∥
∞ . AK

−1ε‖g(1)
ε ‖∞ . AK−1ε ≤ A0K

−1ε

because ‖g(1)
ε ‖∞ is bounded by a constant. So we get the first estimate in the lemma when K

is large enough (depending on A0 and β).
For the second estimate, using again that the sequence λ−nLn1 is uniformly bounded, we

obtain ∥∥G(c)
n,ε

∥∥
∞ . ‖g

(2)
ε ‖∞ ≤ K ′−1ε.

The result follows provided that K ′ is large enough. �

Lemma 5.6. When K ≥ 1 and K ′ are fixed, there is a constant 0 < ε0 ≤ 1 independent of φ
and g such that, for all n large enough and 0 < ε ≤ ε0,∥∥G(a)

n,ε

∥∥
〈p,α〉 ≤ β(1/ε)1/γ .

Proof. Fix an ε0 > 0 small enough. We will apply Proposition 5.2. First, using the estimates∑
‖ψ(j)‖∞ . AK−1ε ≤ A0 and λ ≥ dkeminφ, we obtain

Φm . α
−md(k−1)memmaxφ . α−md−mλmemΩ(φ) ≤ α−md−mλmemΩ.

By Lemmas 5.3 and 4.16, we have

‖L1,m1‖∞ . ‖Lm1‖∞ . λm and ‖Lm+1,n1‖∞ . ‖Ln−m1‖∞ . λn−m

and also, again by Lemma 5.3,

‖Lm+1,ng
(1)
ε ‖∞ . ‖Ln−mg(1)

ε ‖∞ + ‖Lm+1,ng
(1)
ε − Ln−mg(1)

ε ‖∞
. ‖Ln−mg(1)

ε ‖∞ + ‖Ln−m1‖∞‖g(1)
ε ‖∞AK−1ε

. ‖Ln−mg‖∞ + ‖Ln−mg(2)
ε ‖∞ + λn−mAK−1ε

. ‖Ln−mg‖∞ + λn−mK ′−1ε+ λn−mAK−1ε.

This, Proposition 5.2, and the estimates in the definitions of g
(1)
ε and φ(j) allow us to bound∥∥G(a)

n,ε

∥∥
〈p,α〉 by a constant times

(5.3)[
K ′1/γ

( eΩ

dα

)n/2
+

n∑
m=1

AK1/γm2/γ+3/2
( eΩ

dα

)m/2(‖λ−n+mLn−mg‖∞ + (K ′−1 +AK−1)ε0
)]
ε1/γ .

Recall that g belongs to a uniformly bounded and equicontinuous family of functions, see
Lemma 3.16. It follows from Proposition 4.11 and Lemma 4.17 that ‖λ−n+mLn−mg‖∞ tends to
0, uniformly on φ and g, when n −m tends to infinity. This and the fact that eΩ < dα imply
that, when n tends to infinity, the sum between brackets in (5.3) converges to

∞∑
m=1

AK1/γm2/γ+3/2
( eΩ

dα

)m/2
(K ′−1 +AK−1)ε0.

This sum is smaller than β because ε0 is chosen small enough. Therefore, we get the estimate
in the lemma for n large enough, independently of φ and g, because the last convergence is
uniform on φ and g. �
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Proof of Proposition 5.4. Take N large enough, independent of φ. It suffices to show that we
can write

λ−NLNg = G
(1)
N,ε +G

(2)
N,ε with

∥∥G(1)
N,ε

∥∥
〈p,α〉 ≤ β(1/ε)1/γ and

∥∥G(2)
N,ε

∥∥
∞ ≤ βε.

We apply Lemmas 5.5 and 5.6 to n := N . When ε ≤ ε0, it is enough to choose G
(1)
N,ε := G

(a)
N,ε and

G
(2)
N,ε := G

(b)
N,ε +G

(c)
N,ε. Assume now that ε0 ≤ ε ≤ 1 and choose G

(1)
N,ε := 0 and G

(2)
N,ε := λ−NLNg.

With N large enough, we have ‖G(2)
N,ε‖∞ ≤ βε0 ≤ βε because ‖λ−nLng‖∞ tends to 0 uniformly

on φ and g when n goes to infinity, see Lemma 4.17. Thus, we have the desired decomposition
of λ−NLNg and hence the property (5.1) for all N large enough. �

Proposition 5.7. Under the hypotheses of Theorem 5.1, there is a positive constant c =
c(p, α, γ,A,Ω) independent of φ and n such that

‖λ−nLn‖〈p,α〉,γ ≤ c, ‖ρ‖〈p,α〉,γ ≤ c, and ‖1/ρ‖〈p,α〉,γ ≤ c.

Proof. We prove the first inequality. We will use the above computations for K = K ′ = ε0 = 1.
Consider any function g : Pk → R such that ‖g‖〈p,α〉,γ ≤ 1. We do not assume that 〈mφ, g〉 = 0.
As before, for any 0 < ε ≤ 1 we can write

g = g(1)
ε + g(2)

ε with
∥∥g(1)

ε

∥∥
〈p,α〉 ≤ (1/ε)1/γ and

∥∥g(2)
ε

∥∥
∞ ≤ ε.

We also consider as above the decomposition

λ−nLng = G(1)
n,ε +G(2)

n,ε with G(1)
n,ε := G(a)

n,ε and G(2)
n,ε := G(b)

n,ε +G(c)
n,ε,

see (5.2). The computations in Lemmas 5.5 and 5.6 give ‖G(2)
n,ε‖∞ . ε and ‖G(1)

n,ε‖〈p,α〉 . ε1/γ . We

use here the fact that ‖λ−n+mLn−mg‖∞ is bounded by a constant, see Lemma 4.17. Therefore,
‖λ−nLng‖〈p,α〉,γ is bounded by a constant. Thus, the first inequality in the proposition holds.

Consider now the second inequality. Observe that

ρ = lim
n→∞

λ−nLn1 = 1 +
∞∑
n=0

λ−nLng with g := λ−1L1− 1.

The λ−1L∗-invariance of mφ implies that 〈mφ, g〉 = 0. Therefore, Proposition 5.4 and the

first inequality in the present proposition imply that ‖λ−nLng‖〈p,α〉,γ . βn/N . We deduce that
‖ρ‖〈p,α〉,γ is bounded by a constant.

For the last inequality in the lemma, observe that ρ is bounded from above and below by
positive constants which are independent of φ, see Lemma 4.16. The result is then a consequence
of Lemma 3.16 applied to the function χ(t) := 1/t. The proof is complete. �

End of the proof of Theorem 5.1. By Propositions 5.4 and 5.7, it only remains to prove the last
assertion in this theorem. We continue to use the computations in Lemmas 5.5 and 5.6 and
take K = 1, K ′ = δ′N , and ε0 = 1 for some δ′ and d′ such that δ < δ′ = d′γ/(2γ+2) and d′ < dα.
As above, we consider the decomposition

λ−NLNg = G
(1)
N,ε +G

(2)
N,ε with G

(1)
N,ε := G

(a)
N,ε and G

(2)
N,ε := G

(b)
N,ε +G

(c)
N,ε.

Take A → 0, which also implies that Ω(φ) → 0. So we can fix an Ω as small as needed and
assume that d′ < e−Ωdα. Then, the estimates in Lemmas 5.5 and 5.6 give

‖G(1)
N,ε‖〈p,α〉 ≤ c

(
K ′1/γd′−N/2 +O(A)

)
ε1/γ and ‖G(2)

N,ε‖∞ ≤ c(K
′−1 +O(A))ε,

where c is a positive constant. With N large enough and A small enough, since δ < δ′ and
K ′ = δ′N , we get

‖G(2)
N,ε‖∞ ≤ δ

−N ε and ‖G(1)
N,ε‖〈p,α〉 ≤ δ

−N ε1/γ .

In other words, we can take β = δ−N . This completes the proof of the theorem. �
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5.3. Proof of Theorem 1.2. The statement is a consequence of Theorem 5.1, namely, of the
estimate (5.1). Note that the constant β in Theorem 1.2 is not the one in (5.1). Given φ as in
the statement, we first choose α sufficiently close to 1 so that Ω(φ) < log(αd). Then, we choose
p large enough so that q < q2, where q and γ are as in the statement and q2 is defined in Lemma
3.16 (this also implies that α < d−5/(2p+2) since q > 2). Recall that the semi-norm ‖·‖〈p,α〉,γ is

almost a norm. Define

‖·‖�1 := ‖·‖∞ + ‖·‖〈p,α〉,γ .

This is now a norm, which is independent of φ. By Lemmas 3.16 and 3.19, we have

‖·‖∞ + ‖·‖logq . ‖·‖�1 . ‖·‖Cγ .

By Lemma 4.16, the quantities ‖λ−nLn‖∞, ‖ρ‖∞, and ‖1/ρ‖∞ are bounded by a constant when
‖φ‖�1 ≤ A. By Theorem 5.1, ‖λ−nLn‖〈p,α〉,γ , ‖ρ‖〈p,α〉,γ , and ‖1/ρ‖〈p,α〉,γ are also bounded by a

constant. We deduce that ‖λ−nLn‖�1 , ‖ρ‖�1 , and ‖1/ρ‖�1 satisfy the same property.
Let N and β0 be as in Theorem 5.1 (we write β0 instead of β to distinguish it from the

constant that we use now for Theorem 1.2). Fix a constant β such that β
1/N
0 < β < 1 and

consider the following norms

‖g‖� := |cg|+
∥∥g′∥∥〈p,α〉,γ and ‖g‖�2 := |cg|+

∞∑
n=0

β−n
∥∥λ−nLng′∥∥〈p,α〉,γ

for every function g : Pk → R, where cg := 〈mφ, g〉 and g′ := g − cgρ.

Lemma 5.8. We have ‖gh‖�1 ≤ 3‖g‖�1‖h‖�1 for all functions g, h : Pk → R. Moreover, both of
the norms ‖·‖� and ‖·‖�2 are equivalent to ‖·‖�1.

Proof. The first assertion is a direct consequence of Lemma 3.17. We prove now the second
assertion. Since mφ is a probability measure and ‖ρ‖〈p,α〉,γ is bounded, we have

‖g‖� = |cg|+ ‖g − cgρ‖〈p,α〉,γ ≤ |cg|+ ‖g‖〈p,α〉,γ + |cg|‖ρ‖〈p,α〉,γ . ‖g‖∞ + ‖g‖〈p,α〉,γ = ‖g‖�1 .

Conversely, assume that ‖g‖� ≤ 1, then |cg| ≤ 1 and ‖g′‖〈p,α〉,γ ≤ 1. It follows that ‖g‖〈p,α〉,γ
is bounded by a constant because it is bounded by ‖g′‖〈p,α〉,γ + |cg| ‖ρ‖〈p,α〉,γ . By Lemma 3.16,

Ω(g) is also bounded by a constant. This and the inequality |〈mφ, g〉| = |cg| ≤ 1 imply that
‖g‖∞ is bounded by a constant. We deduce that ‖·‖� is equivalent to ‖·‖�1 .

Observe that ‖·‖� ≤ ‖·‖�2 . To complete the proof, it is enough to show that ‖g‖�2 . ‖g‖�
for every function g. Recall that ρ is invariant by λ−1L and 〈mφ, ρ〉 = 1. Therefore, we have

〈mφ, g
′〉 = 0. Theorem 5.1 and Proposition 5.7 imply that ‖λ−nLng′‖〈p,α〉,γ . β

n/N
0 ‖g′‖〈p,α〉,γ .

Hence

‖g‖�2 . |cg|+ ‖g′‖〈p,α〉,γ
∞∑
n=0

β−nβ
n/N
0 . |cg|+ ‖g′‖〈p,α〉,γ = ‖g‖�.

The last infinite sum is finite because β > β
1/N
0 . This ends the proof of the lemma. �

Consider now a function g with cg = 〈mφ, g〉 = 0, which implies g = g′. We also have
〈mφ, λ

−1Lg〉 = 0 because mφ is invariant by λ−1L∗. From the definition of ‖·‖�2 , we get∥∥λ−1Lg
∥∥
�2 = β(‖g‖�2 − ‖g‖�) ≤ β ‖g‖�2 .

This is the desired contraction. Finally, the last assertion in Theorem 1.2 is a direct consequence
of the last assertion in Theorem 5.1 by taking α close enough to 1. The proof of Theorem 1.2
is now complete.
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5.4. Spectral gap in the limit case. The semi-norm ‖·‖〈p,α〉 can be seen as the limit of the

semi-norm ‖·‖〈p,α〉,γ as γ goes to infinity. In order to complete our study, we will prove here a

spectral gap with respect to this limit norm. The following is an analogue of Theorem 5.1.

Theorem 5.9. Let f, φ, λ,mφ, ρ be as in Theorem 1.1 and L the Perron-Frobenius operator
associated to φ. Let p, α,A,Ω be positive constants and q1 as in Lemma 3.13 such that p > 3/2,

d−1 ≤ α < d−5/(2p+2), Ω < log(dα), and q1 > 2. Assume that ‖φ‖〈p,α〉 ≤ A and Ω(φ) ≤ Ω.

Then we have

‖λ−nLn‖〈p,α〉 ≤ c, ‖ρ‖〈p,α〉 ≤ c, and ‖1/ρ‖〈p,α〉 ≤ c

for some positive constant c = c(p, α,A,Ω) independent of φ and n. Moreover, for every constant
0 < β < 1 there is a positive integer N = N(p, α,A,Ω, β) independent of φ such that∥∥λ−NLNg∥∥〈p,α〉 ≤ β ‖g‖〈p,α〉
for every function g : Pk → R with 〈mφ, g〉 = 0. Furthermore, we can take β = δ−N for every

constant 0 < δ < (dα)1/2, provided that A is small enough.

Notice that Lemma 3.13 and the assumption q1 > 2 imply that ‖φ‖logq is finite for some
q > 2. Hence, the scaling ratio λ, the density function ρ, and the measures mφ and µφ are well

defined by Theorem 1.1. Notice also that q1 > 2 implies that the condition α < d−5/(2p+2) is
automatically satisfied.

Proof. The proof follows the same lines as the one of Theorem 5.1. It is however simpler because
the definition of the semi-norm ‖·‖〈p,α〉 is simpler than the one of ‖·‖〈p,α〉,γ . In particular, we do

not need any decomposition of λ−nLng. Applying directly Proposition 5.2 with φ(j) := φ for
all j ≥ 1 and recalling that ‖1n‖∞ . λn we obtain

∥∥λ−nLng∥∥〈p,α〉 . ‖g‖〈p,α〉 ( eΩ

dα

)n/2
+ ‖φ‖〈p,α〉

n∑
m=1

m3/2
( eΩ

dα

)m/2‖λ−n+mLn−mg‖∞.

With this estimate, the rest of the proof is the same as that of Theorem 5.1. �

As in the last section, we obtain the following counterpart of Theorem 1.2 as a consequence
of the last result.

Theorem 5.10. Let f, p, α,A,Ω, φ, ρ, λ,mφ and L be as in Theorem 5.9. Then there is an
explicit norm ‖·‖�0, depending on f, p, α, φ and equivalent to ‖·‖∞ + ‖·‖〈p,α〉, such that when

‖φ‖〈p,α〉 ≤ A and Ω(φ) ≤ Ω we have

‖λ−nLn‖〈p,α〉 ≤ c, ‖ρ‖〈p,α〉 ≤ c, ‖1/ρ‖〈p,α〉 ≤ c, and
∥∥λ−1Lg

∥∥
�0 ≤ β ‖g‖�0

for every g : Pk → R with 〈mφ, g〉 = 0, and for some positive constants c = c(f, p, α,A,Ω)
and β = β(f, p, α,A,Ω) with β < 1, both independent of φ, n, and g. Furthermore, given any

constant 0 < δ < (dα)1/2, when A is small enough, the norm ‖·‖�0 can be chosen so that we can
take β = 1/δ.

Note that Lipschitz functions have finite ‖·‖〈p,α〉 semi-norm (this follows from Lemma 3.13,

since Lipschitz functions can be uniformly approximated by C1 ones whose norm is dominated
by the Lipschitz constant, see also the proof of Lemma 3.16). So the last theorem can be applied
to Lipschitz functions. For such functions we can take any p large enough and α close to 1. The
rate of contraction is then almost equal to d−1/2 when A is small enough (i.e., when φ is close
to a constant function). This rate is likely optimal as it corresponds to known results obtained
in the setting of zero weight, see [DS10a].
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6. Statistical properties of equilibrium states

In this section we prove Theorem 1.3. The definitions of the statistical properties that we
consider are all recalled in Appendix A, as well as criteria ensuring their validity in an abstract
setting. We work under the hypotheses of Theorems 1.2 and 1.3 and with the equivalent norms
‖·‖�1 and ‖·‖�2 as in Theorem 1.2, see Section 5.3. Recall also that the operator L is defined by

L(g) := (λρ)−1L(ρg).

6.1. Speed of equidistribution for preimages of points. The following result gives a
quantitative version of Corollary 4.12. Because of Lemma 3.19 and of the definition of the norm
‖·‖�1 , it applies in particular to Hölder continuous test functions.

Theorem 6.1. Under the hypotheses of Theorem 1.2, for every x ∈ Pk, as n tends to infinity
the points in f−n(x), with suitable weights, are equidistributed exponentially fast with respect to
the conformal measure mφ. More precisely, we have∣∣∣〈λ−n ∑

fn(a)=x

eφ(a)+···+φ(fn−1(a))δa − ρ(x)mφ, g
〉∣∣∣ ≤ cβn‖g‖�1 ,

for all g : Pk → R, where 0 < β < 1 is the constant in Theorem 1.2 and c is a positive constant
independent of x and g.

Proof. For simplicity, assume that ‖g‖�1 = 1. Define g′ := g − cgρ with cg := 〈mφ, g〉. By
Lemma 5.8, both |cg| and ‖g′‖�1 are bounded by a constant. Since the norms ‖·‖�1 and ‖·‖�2
are equivalent, we deduce from Theorem 1.2 that ‖λ−nLn(g′)‖�1 . βn. As we have seen in the
proof of Corollary 4.12, the LHS of the inequality in the theorem is bounded by∥∥λ−nLn(g)− cgρ

∥∥
∞ =

∥∥λ−nLn(g − cgρ)
∥∥
∞ =

∥∥λ−nLn(g′)
∥∥
∞ . β

n.

This implies the result. �

We also have the following useful result.

Proposition 6.2. There exists a positive constant c such that, for every g : Pk → R with
‖g‖�1 ≤ 1, setting cρg := 〈mφ, ρg〉 = 〈µφ, g〉 we have〈

µφ, e
β−n|Ln(g)−cρg |

〉
≤ c and ‖Lng − cρg‖�1 ≤ cβ

n.

Proof. Clearly, the first inequality follows from the second one by increasing the constant c if
necessary. For the second inequality, define g̃ = ρg and g̃′ := g̃− cg̃ρ. We have 〈mφ, g̃

′〉 = 0. By
Lemma 5.8 and Theorem 1.2 we have that ‖g̃‖�1 is bounded by a constant because it is at most

equal to 3 ‖ρ‖�1 ‖g‖�1 . We deduce that cg̃ and hence ‖g̃′‖�1 are both bounded by a constant.
Using again Lemma 5.8 and Theorem 1.2, we also obtain

‖Lng − cρg‖�1 =
∥∥λ−nρ−1Lng̃ − cg̃

∥∥
�1 =

∥∥ρ−1λ−nLng̃′
∥∥
�1 ≤ 3

∥∥ρ−1
∥∥
�1

∥∥λ−nLng̃′∥∥�1 . βn.
The result follows. �

6.2. Mixing speed for the equilibrium state. The speed of mixing in Theorem 1.1 is not
controlled for g0, . . . , gr, g, l ∈ L2(µφ), see Proposition 4.15. We establish here some uniform

exponential bound for the speed of mixing of the system
(
Pk, f, µφ

)
for more regular observables.

In the case of Hölder continuous weight φ and observable g, this was established in [Hay99] for
k = 1 (see also [DPU96] for a uniform sub-exponential speed) and in [SUZ14] for k > 1, see also
[DS10a] for the case when φ is constant.

Theorem 6.3. Under the hypotheses of Theorem 1.2, for every integer r ≥ 0, there is a positive
constant c = c(r) such that∣∣∣ 〈µφ, g0 (g1 ◦ fn1) · · · (gr ◦ fnr)〉 −

r∏
j=0

〈µφ, gj〉
∣∣∣ ≤ cβn( r−1∏

j=0

‖gj‖�1
)
‖gr‖L1(µφ)
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for 0 = n0 ≤ n1 ≤ · · · ≤ nr and n := min0≤j<r(nj+1 − nj). Here, the constant 0 < β < 1 is the
one from Theorem 1.2.

Proof. We prove the theorem by induction on r. Since when r = 0 the assertion is trivial, we
can assume that the theorem holds for r − 1 and prove it for r.

The fact that the statement holds for r − 1 and the invariance of µφ imply the result for r
when g0 is constant. So, by subtracting from g0 the constant cρg0 := 〈mφ, ρg0〉 = 〈µφ, g0〉, we
can assume that 〈µφ, g0〉 = 0. Setting g′ := g1 (g2 ◦ fn2−n1) · · · (gr ◦ fnr−n1) and recalling that
L(·) = (λρ)−1L(ρ·), computing as at the end of the proof of Theorem 1.1 we get∣∣〈µφ, g0(g′ ◦ fn1)

〉∣∣ =
∣∣〈µφ, Ln1(g0(g′ ◦ fn1))

〉∣∣ =
∣∣〈µφ, Ln1(g0)g′

〉∣∣
≤ ‖Ln1(g0)‖∞

∥∥g′∥∥
L1(µφ)

≤ ‖Ln1(g0)‖∞ ‖g1‖∞ . . . ‖gr−1‖∞
∥∥gr ◦ fnr−n1

∥∥
L1(µφ)

= ‖Ln1(g0)‖∞ ‖g1‖∞ . . . ‖gr−1‖∞ ‖gr‖L1(µφ) .

The assertion follows from Proposition 6.2 applied to g0 instead of g. �

6.3. Central Limit Theorem (CLT). We prove here the CLT for observables g such that
‖g‖�1 <∞ and which are not coboundaries, see Appendix A for the definitions. In the case of
Hölder continuous weight φ and observable g, this was established in [DPU96] for k = 1 and in
[SUZ14] for k > 1, see also [DS10a] for the case when φ is constant. We start with the following
version that does not need the introduction of perturbed operators. More refined versions of
this theorem will be given later in Sections 6.5 and 6.6.

Theorem 6.4. Under the hypotheses of Theorem 1.2, consider a function g : Pk → R such that
‖g‖�1 <∞ and 〈µφ, g〉 = 0. Assume that g is not a coboundary. Then g satisfies the CLT with
variance σ > 0 given by

(6.1) σ2 :=
〈
µφ, g

2
〉

+ 2
∑
n≥1

〈µφ, g · (g ◦ fn)〉 .

We refer to Definition A.1 for the statement of the CLT. Recall that g is a coboundary if
there exists h ∈ L2(µφ) such that g = h ◦ f − h, and this is the case if and only if σ = 0. It is
not difficult to check that a coboundary cannot satisfy the CLT as in Definition A.1.

Proof. Let B denote the Borel σ-algebra on Pk. By Gordin Theorem A.2, we only need to show
that ∑

n≥1

∥∥E
(
g|f−nB

)∥∥2

L2(µφ)
<∞.

We will transform the above series into a series of the norms ‖Lng‖L2(µφ), that we will bound

by means of Proposition 6.2. Recall that 〈µφ, (Lng)h〉 = 〈µφ, g(h ◦ fn)〉 for all g, h : Pk → R. So

〈µφ, g (h ◦ fn)〉 = 〈µφ, (Lng)h〉 = 〈µφ, ((Lng) ◦ fn) (h ◦ fn)〉 ,
where in the last passage we used the f∗-invariance of µφ. This precisely says that E(g, f−nB) =
Ln(g) ◦ fn. Note that the norm of f∗ on L2(µφ) is 1. So we have∑

n≥1

∥∥E
(
g|f−nB

)∥∥2

L2(µφ)
≤
∑
n≥1

‖Ln(g)‖2L2(µφ)≤
∑
n≥1

‖Ln(g)‖2∞ .

The last sum converges because of Proposition 6.2 and the hypothesis 〈µφ, g〉 = 0. This
completes the proof. �

We have the following characterization of coboundaries with bounded ‖·‖�1 norm that will
be used in Section 6.5.

Proposition 6.5. Let g be a coboundary and assume that ‖g‖�1 < ∞. Then there exists a

function h̃ such that ‖h̃‖�1 <∞ and g = h̃ ◦ f − h̃ on the small Julia set of f .
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Proof. By the definition of coboundary, there exists a function h ∈ L2(µφ) such that g = h◦f−h
in L2(µφ). This identity implies that 〈µφ, g〉 = 0. By adding a constant to h we can assume
that 〈µφ, h〉 = 0. Since

L(h ◦ f) = λ−1ρ−1L(ρ(h ◦ f)) = λ−1ρ−1L(ρ)h = h

a direct computation gives

Lg + · · ·+ Lng = h− Lnh.
Since 〈µφ, h〉 = 0, as in the proof of the K-mixing at the end of the proof of Theorem 1.1, we have
Lnh→ 0 in L2(mφ) when n tends to infinity. Proposition 6.2 and the identity 〈µφ, g〉 = 0 imply

that the LHS of the last identity converges to a function h̃ with finite ‖·‖�1 norm. We conclude

that h̃ = h µφ-almost everywhere. Therefore, we have g = h̃ ◦ f − h̃ µφ-almost everywhere, and
thus everywhere on supp(µφ) as both sides are continuous functions. The proposition follows
because the support of µφ is equal to the small Julia set, see Theorem 1.1. �

6.4. Properties of perturbed Perron-Frobenius operators. The next statistical properties
will be proved by means of spectral methods, and more precisely by the introduction of suitable
(complex) perturbations of the operator L = Lφ. This method was originally developed by
Nagaev [Nag57] in the context of Markov chains. More details are given in Appendix A.
We introduce here some notations and prove some preliminary results. We mainly follow the
approach as presented in [Bro96, DNS07, RE83].

Definition 6.6. Given functions φ, g : Pk → R, h : Pk → C, and a parameter θ ∈ C we set

Lφ+θgh := Lφ+θg<h+ iLφ+θg=h,
where the operator in the RHS is the natural extension of (1.1) in the case with complex weight.

Since from now on we fix φ and g, we will just denote the above operator by L[θ] when no
possible confusion arises. In particular, we have L[0] = Lφ. By means of Definition 6.6, we
extended the operator L to complex weights and complex test functions. We naturally extend
the norms ‖·‖�1 and ‖·‖�2 to these function spaces by setting

‖h‖�1 := ‖<h‖�1 + ‖=h‖�1 and ‖h‖�2 := ‖<h‖�2 + ‖=h‖�2 .
We will be in particular interested in the case where θ is small or pure imaginary. We may

develop our study given in the previous sections for a complex weight directly, but we prefer
to use a shortcut which only requires to treat the real case. The next lemma collects the main
properties of the family of operators L[θ] that we need.

Lemma 6.7. Assume that ‖g‖�1 is finite. Then the following assertions hold for both of the
norms ‖·‖�1 and ‖·‖�2.

(i) L[0] = Lφ;
(ii) For every θ ∈ C, L[θ] is a bounded operator;
(iii) The map θ 7→ L[θ] is analytic in θ;

(iv) For every n ∈ N, θ ∈ C, and h : Pk → C, we have

(6.2) Ln[θ]h = Ln[0](e
θSn(g)h),

where

(6.3) S0(g) := 0 and Sn(g) :=
n−1∑
j=0

g ◦ f j for n ≥ 1.

Proof. The first item is true by definition. For the second and the third items, it is enough to
prove them for the norm ‖·‖�1 since the norm ‖·‖�2 is equivalent, see Lemma 5.8. By Lemma

5.8 we have, for all h : Pk → C and n ∈ N,∥∥L[0](g
nh)
∥∥
�1
≤
∥∥L[0]

∥∥
�1
‖gnh‖�1 ≤ 3n

∥∥L[0]

∥∥
�1
‖g‖n�1 ‖h‖�1 .
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So, the series
∑

n≥0(θn/n!)L[0](g
nh) converges normally in norm ‖·‖�1 . The limit is equal to

L[θ](h) and we have ∥∥L[θ](h)
∥∥
�1
≤ e3|θ|‖g‖�1

∥∥L[0]

∥∥
�1
‖h‖�1 .

This proves the second and the third items.
The last item follows by a direct induction. The case n = 0 is trivial and we have

Ln[0](e
θSn(g)h) = L[0]

(
Ln−1

[0]

(
eθ·g◦f

n−1
eθSn−1(g)h

))
= L[0]

(
eθgLn−1

[0] (eθSn−1(g)h)
)

= L[θ]Ln−1
[0] (eθSn−1(g)h) = L[θ]Ln−1

[θ] h.

The proof is complete. �

Recall that the operator λ−1L[0] has ρ as its unique (up to a multiplicative constant)
eigenfunction of eigenvalue 1. It is a contraction with respect to the norm ‖·‖�2 (which is
equivalent to ‖·‖�1) on the space of functions whose integrals with respect to mφ are zero, see
Theorem 1.2. The following is then a consequence of the Rellich perturbation method described
in [DS58, Ch. VII], see also [Bro96, Proposition 5.2] and [Kat13, LP82]. Note that the last
assertion of Theorem 1.3 is a direct consequence of the analyticity of α given by the fourth
item.

Proposition 6.8. Assume that ‖g‖�1 is finite and let 0 < β < 1 be the constant in Theorem

1.2. Then, for all β < β′ < 1, the following holds for θ sufficiently small and all n ∈ N: there
exists a decomposition

λ−nLn[θ] = α(θ)nΦθ + Ψn
θ

as operators on {h : ‖h‖�1 <∞} such that

(i) α(θ) is the (only) largest eigenvalue of L[θ], α(0) = 1 and |α(θ)| > β′;
(ii) Φθ is the projection on the (one dimensional) eigenspace associated to α(θ) and we have

Φ0(h) = 〈mφ, h〉 ρ;
(iii) Ψθ is a bounded operator on {h : ‖h‖�1 <∞} whose spectral radius is < β′ and

Ψθ ◦ Φθ = Φθ ◦Ψθ = 0;

(iv) the maps θ 7→ Ψθ, θ 7→ Φθ, and θ 7→ α(θ) are analytic.

The last property that we will need is the second order expansion of α(θ) for θ near 0. It is
a consequence of the above results.

Lemma 6.9. Assume that ‖g‖�1 is finite and 〈µφ, g〉 = 0. Let σ > 0 be as in (6.1) and α(θ) be
given by Proposition 6.8. Then we have

α(θ) = e
σ2θ2

2
+o(θ2) = 1 +

θ2σ2

2
+ o(θ2).

Proof. We know from Lemma 6.7 and Proposition 6.8 that α(0) = 1 and that θ 7→ α(θ) is
analytic near 0. So, we only need to prove that α′(0) = 0 and α′′(0) = σ2.

We start with the first equality. First of all notice that, for all n ∈ N and h : Pk → C, the
invariance of mφ implies

(6.4) 〈µφ, h〉 = 〈mφ, ρh〉 =
〈
mφ, λ

−nLn[0](ρh)
〉
.

Applying these identities to eSn(g)/n instead of h (with Sn(g) as in (6.3)) and using (6.2), we
get

〈µφ, eSn(g)/n〉 = 〈mφ, λ
−nLn[1/n](ρ)〉.

Then, the decomposition given in Proposition 6.8 (applied with 1/n instead of θ) gives

(6.5) 〈µφ, eSn(g)/n〉 = α(1/n)n
〈
mφ,Φ1/n(ρ)

〉
+
〈
mφ,Ψ

n
1/n(ρ)

〉
.
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By Proposition 6.8, the second term in the RHS goes to zero exponentially fast as n → ∞ .
Using that α(θ) = 1 +α′(0)θ+o(θ) and Φθ(ρ) = ρ+ o(1) as θ → 0 and the identity 〈mφ, ρ〉 = 1,
we get

lim
n→∞

〈µφ, eSn(g)/n〉 = eα
′(0).

Recall that µφ is mixing and hence ergodic. Moreover, g is continuous and 〈µφ, g〉 = 0. Birkhoff’s
ergodic theorem then implies that Sn(g)/n → 0 µφ-almost surely as n goes to infinity. We
conclude that α′(0) = 0 as desired.

Let us now prove that α′′(0) = σ2. The f -invariance of µφ and a direct computation give

σ2 = lim
n→∞

〈
µφ,
(Sng√

n

)2〉
and

〈
µφ,
(Sng√

n

)2〉
=

∂2

∂θ2

〈
µφ, e

(θ/
√
n)Sng

〉 ∣∣∣
θ=0

.

We use again (6.2) and Proposition 6.8 (applied with θ/
√
n instead of θ) to get〈

µφ, e
(θ/
√
n)Sng

〉
= α(θ/

√
n)n

〈
mφ,Φθ/

√
n(ρ)

〉
+
〈
mφ,Ψ

n
θ/
√
n(ρ)

〉
.

A direct computation, together with the identities α(0) = 1, α′(0) = 0, 〈mφ, ρ〉 = 1 and the
properties in Proposition 6.8, gives

∂2

∂θ2

〈
µφ, e

(θ/
√
n)Sng

〉 ∣∣∣
θ=0

= α′′(0) + o(1).

It is now clear that α′′(0) = σ2. This completes the proof of the lemma. �

6.5. Local Central Limit Theorem (LCLT). We establish here an improvement of the CLT,
see Definition A.4, for observables satisfying a further cocycle condition. Our result is new for
k = 1, φ non-constant, and for k > 1, even when φ = 0; for k = 1 and φ = 0, see [DNS07]. We
need the following definition.

Definition 6.10. Let g : Pk → R be a measurable function. We say that g is a multiplicative
cocycle if there exist t > 0, s ∈ R, and a measurable function ξ : Pk → C, not equal to zero µφ-

almost everywhere, such that eitg(z)ξ(z) = eisξ(f(z)). We say that g is a (C0, φ)-multiplicative
cocycle (resp. (‖·‖�1 , φ)-multiplicative cocycle) if there exist t > 0, s ∈ R, and ξ : Pk → C, not
identically zero on the small Julia set of f , which is continuous (resp. with finite ‖·‖�1 norm),

such that eitg(z)ξ(z) = eisξ(f(z)) on the small Julia set of f .

Recall that the supports of µφ and mφ are both equal to the small Julia set of f , see Theorem
1.1.

Theorem 6.11. Under the hypotheses of Theorem 1.2, let g : Pk → R be such that ‖g‖�1 is
finite, 〈µφ, g〉 = 0, and g is not a (‖·‖�1 , φ)-multiplicative cocycle. Then g satisfies the LCLT
with variance σ given by (6.1).

We first need some properties of multiplicative cocycles. Note that the following lemma still
holds if we only assume that φ and g have bounded ‖·‖logq norms for some q > 2.

Lemma 6.12. There is a positive constant c independent of g, t, and n such that ‖λ−nLn[it]‖∞ ≤
c. Let K be a compact subset of R \ {0} (e.g., a singleton in R \ {0}). Let F be a uniformly
bounded and equicontinuous family of functions on Pk. Then the family

FKN :=
{
λ−nLn[it]h : t ∈ K, h ∈ F , n ∈ N

}
is also uniformly bounded and equicontinuous. Furthermore, if K ⊂ (0,∞) and g is not a
(C0, φ)-multiplicative cocycle, then ‖λ−nLn[it]h‖∞ tends to 0 when n goes to infinity, uniformly

in t ∈ K and h ∈ F .

Proof. Define φt := φ+itg. Observe that |eφt | = eφ. It follows that ‖Ln[it]‖∞ ≤ ‖L
n‖∞ ≤ cλn for

some positive constant c, according to Lemma 4.9. Using this, we can follow the proof of Lemma
4.10, with φt instead of φ, and obtain that FKN is uniformly bounded and equicontinuous. It
remains to prove the last assertion in the lemma.
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We will use the ideas in the proof of Theorem 4.1. Let FK∞ denote the family of the limit
functions of all sequences λ−njLnj[itj ]

(hj) with tj ∈ K, hj ∈ F , and nj going to infinity. By

Arzelà-Ascoli theorem, this is a uniformly bounded and equicontinuous family of functions
which is compact for the uniform topology. Define

M := max
{
|l(a)/ρ(a)| : l ∈ FK∞, a in the small Julia set

}
.

Claim 1. If M = 0, then FK∞ only contains the zero function.

Proof of Claim 1. Assume that M = 0. Consider a function l in FK∞. We show that l = 0. As
in the proof of Theorem 4.1, we can find functions l−n ∈ FK∞ such that l = λ−nLn[it]l−n for some

t ∈ K (take t as a limit of tj above). Since M = 0, the function l−n vanishes on the support of
mφ (which is the small Julia set) and we have c|l−n| = 〈mφ, |l−n|〉 = 0. Moreover, we also have

|l| = |λ−nLn[it]l−n| ≤ λ
−nLn|l−n|.

By the last assertion of Proposition 4.11, applied to the family {|h| : h ∈ FK∞}, the last function
converges to 0 when n tends to infinity. The claim follows. �

Claim 2. There is l ∈ FK∞ such that |l/ρ| = M on the small Julia set.

Proof of Claim 2. Choose a function l in FK∞ such that max |l/ρ| = M . Consider l−n and t as
in the proof of Claim 1. Let a in the small Julia set be such that |l(a)/ρ(a)| = M . Then we
have

|l(a)| = |λ−nLn[it]l−n(a)| =
∣∣∣λ−n ∑

b∈f−n(a)

eφt(b)+···+φt(f
n−1(b))l−n(b)

∣∣∣
≤ λ−n

∑
b∈f−n(a)

eφ(b)+···+φ(fn−1(b))Mρ(b) = Mρ(a).

So the last inequality is actually an equality. In particular, we have |l−n/ρ| = M on f−n(a).
Recall that when n goes to infinity, f−n(a) tends to the small Julia set. Therefore, if l−∞ is
a limit of l−n, we have |l−∞/ρ| = M on the small Julia set. Replacing l by l−∞ gives the
claim. �

Claim 3. There are t ∈ K and l ∈ FK∞ such that |λ−NLN[it]l| = Mρ on the small Julia set for

every N ≥ 0.

Proof of Claim 3. Choose l satisfying Claim 2 and t as in its proof. Define l−n and l−∞ as in
the proof of that claim. Fix an N ≥ 0. For every n ≥ N , on the small Julia set we have

Mρ = |l| = |λ−nLn[it]l−n| = |λ
−n+NLn−N[it] (λ−NLN[it]l−n)|

≤ λ−n+NLn−N |λ−NLN[it]l−n| ≤ λ
−n+NLn−Nλ−NLN (Mρ) = Mρ.

So the two last inequalities are in fact equalities and we deduce that |λ−NLN[it]l−n| = Mρ. It

follows that |λ−NLN[it]l−∞| = Mρ for every N ≥ 0. Replacing l by l−∞ gives the claim. �

Assume now that g is not a (C0, φ)-multiplicative cocycle. By Claim 1, we only need to show
that M = 0. Assume by contradiction that M 6= 0. Consider t and l as in Claim 3. Define
ξ(a) := l(a)/ρ(a) for a ∈ Pk and ϑ(a) := eitg(a)ξ(a)/ξ(f(a)) for a in the small Julia set. These
functions are continuous and we have |ξ(a)| = M and |ϑ(a)| = 1 on the small Julia set. We
have for a in the small Julia set

Mρ(a) = |λ−nLn[it]l(a)| =
∣∣∣λ−n ∑

b∈f−n(a)

eφt(b)+···+φt(f
n−1(b))l(b)

∣∣∣
≤ λ−n

∑
b∈f−n(a)

eφ(b)+···+φ(fn−1(b))Mρ(b) = Mρ(a).
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So, the last inequality is an equality. Using the function ξ, we can rewrite this equality as (we
remove the factors λ−n and also the factors |ξ(fn(b))| and M as they are both equal to |ξ(a)|
and independent of b ∈ f−n(a))∣∣∣ ∑

b∈f−n(a)

ϑ(b) . . . ϑ(fn−1(b))eφ(b)+···+φ(fn−1(b))ρ(b)
∣∣∣ =

∑
b∈f−n(a)

eφ(b)+···+φ(fn−1(b))ρ(b).

As |ϑ| = 1, we deduce that if b and b′ are two points in f−n(a) then

ϑ(b) . . . ϑ(fn−1(b)) = ϑ(b′) . . . ϑ(fn−1(b′)).

This and a similar equality for f(b), f(b′), n − 1 instead of b, b′, n imply that ϑ(b) = ϑ(b′). We
conclude that ϑ is constant on f−n(a) for every n. As f−n(a) tends to the small Julia set
when n going to infinity, it follows that ϑ is constant. From the definition of ϑ, and since ξ is
continuous, we obtain that g is a (C0, φ)-multiplicative cocycle for a suitable real number s such
that ϑ = eis. This is a contradiction. So we have M = 0, as desired. �

Recall that φ and g have bounded ‖·‖�1 norms.

Lemma 6.13. Let K be a compact subset of R. There is a positive constant c such that
‖λ−nLn[it]‖�1 ≤ c for every n ≥ 0 and t ∈ K. If K ⊂ R \ {0} and g is not a (‖·‖�1 , φ)-

multiplicative cocycle, then there are constants c > 0 and 0 < r < 1 such that ‖λ−nLn[it]‖�1 ≤ cr
n

for every t ∈ K and n ≥ 0.

Proof. Consider the functional ball F := {h : ‖h‖�1 ≤ 1}. By Arzelà-Ascoli theorem this ball

is compact for the uniform topology. Define FK∞ as in the proof of Lemma 6.12. Using that
lemma, we can follow the proof of Proposition 5.7 and obtain that ‖λ−nLn[it]‖〈p,α〉,γ is bounded

uniformly on n and t ∈ K. It follows that a similar property holds for the norm ‖·‖�1 . This

gives the first assertion in the lemma. We also obtain that the family FK∞ is bounded in the
‖·‖�1 norm and, using again Arzelà-Ascoli theorem, we obtain that it is compact in the uniform
topology.

Consider now the second assertion and assume that g is not a (‖·‖�1 , φ)-multiplicative cocycle.

We first show that FK∞ reduces to {0}. Assume by contradiction that this is not true. Consider
t and l as in Claim 3 in the proof of Lemma 6.12. Recall that both ‖l‖�1 and ‖1/ρ‖�1 are finite,
see Theorem 1.2. By Lemma 3.17, the function ξ := l/ρ satisfies the same property and we
conclude, as at the end of the proof of Lemma 6.12, that g is a (‖·‖�1 , φ)-multiplicative cocycle.
This contradicts the hypothesis.

So FK∞ is reduced to {0}. By definition of FK∞, we obtain that λ−nLn[it]h converges to 0

uniformly on h ∈ F and t ∈ K. Using this property, we can follow the proof of Proposition 5.4
(take β = 1/4) to obtain that ‖λ−NLN[it]h‖〈p,α〉,γ ≤ 1/4 for N large enough and for all h ∈ F
and t ∈ K. When N is large enough, we also have ‖λ−NLN[it]h‖∞ ≤ 1/4. Therefore, we have

‖λ−NLN[it]‖�1 ≤ 1/2 which implies the desired property with r = 2−1/N . �

We have the following characterizations of multiplicative cocycles.

Proposition 6.14. Let g : Pk → R be such that ‖g‖�1 is finite. Then the following properties
are equivalent:

(ia) g is a multiplicative cocycle;
(ib) g is a (C0, φ)-multiplicative cocycle;
(ic) g is a (‖·‖�1 , φ)-multiplicative cocycle;

(iia) there exists a number t > 0 such that the spectral radius with respect to the norm ‖·‖�1
of λ−1L[it] is ≥ 1.

(iib) there exists a number t > 0 such that the spectral radius with respect to the norm ‖·‖�1
of λ−1L[it] is equal to 1.

Moreover, every coboundary with finite ‖·‖�1 norm is a (‖·‖�1 , φ)-multiplicative cocycle.
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Proof. The last assertion is a direct consequence of Proposition 6.5. Indeed, if g is such a
coboundary, we have g = h̃ ◦ f − h̃ on the small Julia set for some h̃ with ‖h̃‖�1 <∞. So g is a

(‖·‖�1 , φ)-multiplicative cocycle as in Definition 6.10 for t := 1, s := 0 and ξ := eih̃. We prove
now the equivalence of the above five properties. It is clear that (ic) ⇒ (ib) ⇒ (ia) and (iib) ⇒
(iia). Lemma 6.13 implies that (iia) ⇒ (ic). The following implications complete the proof.

(iia) ⇒ (iib). By Lemma 6.13, ‖λ−nLn[it]‖�1 is bounded uniformly on n. Thus, the spectral

radius of λ−1L[it] with respect to the norm ‖·‖�1 is at most equal to 1. We easily deduce that
(iia) ⇒ (iib).

(ia) ⇒ (iia). Assume by contradiction that (ia) is true and (iia) is not true. Consider t, s,
and ξ as in Definition 6.10. If ξ(z) 6= 0 we divide it by |ξ(z)|. This allows us to assume that ξ
is bounded. Define h := ξρ. Using the cocycle property of g and the λ−1L-invariance of ρ, we
have

λ−1L[it]h = λ−1L(eitgξρ) = eisλ−1L((ξ ◦ f)ρ) = eisξλ−1L(ρ) = eish.

It follows that λ−nLn[it]h = einsh for n ≥ 1. Fix an arbitrary positive constant ε and choose

a smooth function h̃ such that ‖h − h̃‖L1(mφ) ≤ ε. Since (iia) is not true, λ−nLn[it]h̃ converges

uniformly to 0. Moreover, we have

|h| = |λ−nLn[it]h| ≤ |λ
−nLn[it]h̃|+ |λ

−nLn[it](h− h̃)| ≤ |λ−nLn[it]h̃|+ λ−nLn|h− h̃|.

This and the λ−1L∗-invariance of mφ imply that

‖h‖L1(mφ) ≤ ‖λ−nLn[it]h̃‖L1(mφ) + ‖h− h̃‖L1(mφ) ≤ ‖λ−nLn[it]h̃‖L1(mφ) + ε.

By taking n going to infinity, we obtain that ‖h‖L1(mφ) ≤ ε, which implies that h = 0 and hence
ξ = 0, both mφ-almost everywhere. This contradicts the requirement on ξ in Definition 6.10
and ends the proof of the proposition. �

Proof of Theorem 6.11. We follow here the proof of [DNS07, Th. C], which is based on [Bre92,
Theorem 10.17]. Let ψ be any real-valued function in L1(R) whose Fourier transform

ψ̂(x) :=
1√
2π

∫
R
ψ(t)e−itxdt

is a continuous function with support contained in some interval [−δ, δ]. Define

(6.6) An(x) := σ
√

2πn 〈µφ, ψ(x+ Sn(g)〉 − e−x2/(2σ2n)

∫ ∞
−∞

ψ(t)dt.

By [Bre92, Th. 10.7], it suffices to show that An(x) converges to 0 as n goes to infinity, uniformly
on x.

Claim. We have
(6.7)

An(x) =

∫ δσ
√
n

−δσ
√
n
ψ̂
( t

σ
√
n

)
eitx/(σ

√
n)
〈
mφ, λ

−nLn[it/(σ√n)]ρ
〉
dt− ψ̂(0)

∫ ∞
−∞

eitx/(σ
√
n)e−t

2/2dt.

Proof of Claim. The second term in the RHS of (6.6) is equal to the second term in the RHS
of (6.7) because

e−x
2/(2σ2n) =

1√
2π

∫ ∞
−∞

eitx/(σ
√
n)e−t

2/2dt and ψ̂(0) =
1√
2π

∫ ∞
−∞

ψ(t)dt.

It remains to compare the first terms. Using the identities〈
mφ, e

itSn(g)h
〉

=
〈
mφ, λ

−nLn(eitSn(g)h)
〉

=
〈
mφ, λ

−nLn[it]h
〉

and ψ(z) =
1√
2π

∫ δ

−δ
ψ̂(t)eitzdt
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and the fact that µφ = ρmφ, we obtain

σ
√

2πn 〈µφ, ψ(x+ Sn(g)〉 = σ
√
n

∫ δ

−δ
ψ̂(t)eitx

〈
µφ, e

itSn(g)
〉
dt

= σ
√
n

∫ δ

−δ
ψ̂(t)eitx

〈
mφ, λ

−nLn[it]ρ
〉
dt.

The last expression is equal to the first term in the RHS of (6.7) by the change of variable
t 7→ t/(σ

√
n). This ends the proof of the claim. �

Notice that for any constant δ0 > 0 we have the following partial estimate for the second
term in the RHS of (6.7):

(6.8) lim
n→∞

∣∣∣ ∫
|t|>δ0σ

√
n
eitx/(σ

√
n)e−t

2/2dt
∣∣∣ ≤ lim

n→∞

∫
|t|>δ0σ

√
n
e−t

2/2dt = 0.

Moreover, it follows from Proposition 6.8, Lemma 6.9, and the identity 〈mφ, ρ〉 = 1, that

(6.9) lim
n→∞

ψ̂
( t

σ
√
n

)〈
mφ, λ

−nLn[it/(σ√n)]ρ
〉
− ψ̂(0)e−t

2/2 = 0 for all t ∈ R,

and, for δ0 < δ sufficiently small,

(6.10)
∣∣∣ψ̂( t

σ
√
n

)〈
mφ, λ

−nLn[it/(σ√n)]ρ
〉
− ψ̂(0)e−t

2/2
∣∣∣ . e−t2/4∥∥ψ̂∥∥∞ when |t| ≤ δ0σ

√
n.

Since the RHS in (6.10) defines an integrable function of t ∈ R, (6.9) and (6.10) imply that

lim
n→∞

∫ δ0σ
√
n

−δ0σ
√
n
ψ̂
( t

σ
√
n

)
eitx/(σ

√
n)
〈
mφ, λ

−nLn[it/(σ√n)]ρ
〉
dt− ψ̂(0)

∫ δ0σ
√
n

−δ0σ
√
n
eitx/(σ

√
n)e−t

2/2dt = 0.

Using this, (6.8), and the above claim, it is enough to prove that (compare with the first term
in the RHS of (6.7))

A′n(x) :=

∫
δ0≤|t/(σ

√
n)|<δ

ψ̂
( t

σ
√
n

)
eitx/(σ

√
n)
〈
mφ, λ

−nLn[it/(σ√n)]ρ
〉
dt

converges to 0. Here is where we use the assumption that g is not a multiplicative cocycle. By
Lemma 6.13 and Proposition 6.14, we can find two constants c > 0 and 0 < r < 1 such that∥∥λ−nLn

[it/(σ
√
n)]

∥∥
�1 ≤ cr

n for |t/(σ
√
n)| ∈ [δ0, δ]. This shows that the term 〈·, ·〉 in the definition

of A′n(x) goes to zero exponentially fast, and we deduce that A′n(x) = O(
√
nrn) as n goes to

infinity. This completes the proof of the theorem. �

6.6. Almost Sure Invariant Principle (ASIP) and consequences. We can now prove the
ASIP for observables which are not coboundaries, see Definition A.5. The ASIP was proved by
Dupont [Dup10] in the case where φ = 0 for observables which are Hölder continuous, or admit
analytic singularities, by using [PS75], see also Przytycki-Urbański-Zdunik [PUZ89] for k = 1
and φ = 0.

Theorem 6.15. Under the hypotheses of Theorem 1.2, let g : Pk → R be such that ‖g‖�1 is
finite and 〈µφ, g〉 = 0. Assume that g is not a coboundary. Then g satisfies the ASIP with error
rate o(nq) for all q > 1/4.

Proof. We will prove that the assumptions of Theorem A.6 are satisfied by the system f : Pk →
Pk and the operators Tt := λ−1L[it] for t ∈ R. These operators act on the functional space
H := {h : ‖h‖�1 <∞} which is endowed with the norm ‖·‖�1 . We consider here the probability
measures ν := µφ, ν∗ := mφ, the function ξ := ρ, and the constant p (of Theorem A.6) large
enough. We only need to check the strong coding condition in Theorem A.6. Indeed, the
spectral description is a consequence of Theorem 1.2, the weak regularity follows from Lemma
6.7 or Lemma 6.13, and the last condition is satisfied since g is continuous.
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Let us prove that the strong coding condition holds for all t0, . . . , tn−1 ∈ R. As in the proof
of (6.2), we obtain

Ln[0](e
i
∑n−1
l=0 tlg◦f lρ) = L[0]

(
Ln−1

[0]

(
eitn−1g◦fn−1

ei
∑n−2
l=0 tlg◦f lρ

))
= L[0]

(
eitn−1gLn−1

[0]

(
ei

∑n−2
l=0 tlg◦f lρ

))
= L[itn−1]Ln−1

[0]

(
ei

∑n−2
l=0 tlg◦f lρ

)
.

Hence, by induction, we get

Ln[0](e
i
∑n−1
l=0 tlg◦f lρ) = L[itn−1] ◦ · · · ◦ L[it0]ρ.

The identity (6.4) and the last one imply

〈µφ, ei
∑n−1
l=0 tlg◦f l〉 = 〈mφ, λ

−nLn[0](e
i
∑n−1
l=0 tlg◦f lρ)〉 =

〈
mφ, λ

−nL[itn−1] ◦ · · · ◦ L[it0]ρ
〉
.

This is the desired strong coding condition. Applying Theorem A.6 gives the result. �

We also have the following direct consequence of the ASIP and Theorem A.3, see Definitions
A.7, A.8, and Theorem A.9. The LIL was established in [SUZ14] in the case where both the
weight φ and the observable g are Hölder continuous.

Corollary 6.16. Under the hypotheses of Theorem 1.2, let g be such that ‖g‖�1 is finite and
〈µφ, g〉 = 0. Assume that g is not a coboundary. Then g satisfies the ASCLT, the LIL, and the

CLT with error rate O(n−1/2).

Remark 6.17. The LCLT is stronger that the CLT, even in its quantitative version given in
Corollary 6.16. On the other hand, notice that it requires a stronger assumption on the
observable g.

6.7. Large Deviation Principle (LDP). We conclude the statistical study of (Pk, f, µφ) with
the following property, see Definition A.10. This is new in this generality for all k ≥ 1, even for
φ = 0 (see [CRL11] for the case when k = 1 and some kind of weak hyperbolicity is assumed).
The LDP in particular implies the Large Deviation Theorem, which is proved in [DNS10] in the
case φ = 0, see also [PS96, DS10a].

Theorem 6.18. Under the hypotheses of Theorem 1.2, let g : Pk → R be such that ‖g‖�1 is
finite and 〈µφ, g〉 = 0. Assume that g is not a coboundary. Then g satisfies the LDP.

Proof. We apply Theorem A.11 for the random variables Sn := Sn(g) (see (6.3)) with respect to
the probability µφ, and for Λ(θ) := logα(θ), where α(θ) is defined in Proposition 6.8. So, Λ(θ)
is analytic and well defined for θ small enough. Since g is not a coboundary, we have σ > 0 and
the convexity of Λ follows from the expansion of α(θ) given in Lemma 6.9. Finally, as in (6.5),
using θ instead of 1/n, we get

〈µφ, eθSn(g)〉 = α(θ)n 〈mφ,Φθ(ρ)〉+
〈
mφ,Ψ

n
θ (ρ)

〉
which implies (note that 〈mφ,Φθ(ρ)〉 does not vanish for θ small as it is equal to 1 when θ = 0)

lim
n→∞

1

n
log〈µφ, eθSn(g)〉 = logα(θ) = Λ(θ).

Thus, Condition (A.5) in Theorem A.11 is satisfied. Applying that theorem gives the result. �

Appendix A. Abstract statistical theorems

We provide here the precise definitions for the statistical properties studied in Section 6, as
well as the criteria, used in the previous section, ensuring their validity in an abstract setting.
We will consider in what follows a dynamical system T : (X,F)→ (X,F), where F is a given σ-
algebra, and ν a probability measure which is invariant with respect to T . Given any observable
(real-valued measurable function) g ∈ L1(ν) and n ≥ 1 we denote by Sn(g) the Birkhoff sum
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Sn(g) :=
∑n−1

j=0 g ◦ T j . We are interested in comparing the behaviour of the sequence Sn(g)

with that of a sum of independent identically distributed random variables Zn of mean 〈ν, g〉.
Notice that the invariance of ν precisely implies that the functions g ◦T j , considered as random
variables, are identically distributed. The goal is to prove that, under suitable assumptions,
the sequence of weakly dependent random variables g ◦ T j and their sums Sn(g) enjoy many of

the statistical properties of the sequences Zn and
∑n−1

j=0 Zj . For simplicity, we only consider

observables g of zero mean, i.e., such that 〈ν, g〉 = 0. It is easy to extend the discussion to the
case of non-zero mean.

In what follows, we will denote by E(h|G) the conditional expectation of an F-measurable
function h with respect to a σ-algebra G ⊆ F . The σ-algebra T−nF is generated by the sets
of the form T−n(B) with B in F . We will say that h is a coboundary if there exists h̃ ∈ L2(ν)

such that h = h̃ ◦ T − h̃. A coboundary belongs to L2(ν) and has zero mean.

Definition A.1 (CLT - Central Limit Theorem). Let T : (X,F) → (X,F) be a dynamical
system and ν an invariant probability measure. Let g be a real-valued integrable function with
〈ν, g〉 = 0. We say that g satisfies the Central Limit Theorem (CLT) with variance σ > 0 if for
any interval I ⊂ R we have

(A.1) lim
n→∞

ν
{ 1√

n
Sn(g) ∈ I

}
=

1√
2πσ

∫
I
e−

t2

2σ2 dt.

We give two criteria to ensure that an observable g satisfies the CLT. The first one, due to
Gordin (see also [Liv96]), is more classical and easier to use.

Theorem A.2 (Gordin [Gor69]). Let T : (X,F) → (X,F) be a dynamical system and ν an
invariant probability measure. Let g be a real-valued function in L2(ν) which is not a coboundary.
Assume that

(A.2)
∑
n≥1

∥∥E
(
g|T−nF

)∥∥2

L2(ν)
<∞.

Then g satisfies the CLT with variance σ > 0 given by

(A.3) σ2 :=
〈
ν, g2

〉
+ 2

∑
n≥1

〈ν, g · (g ◦ Tn)〉 .

Note that under the hypothesis (A.2), the observable g is not a coboundary if and only if the
constant σ defined in (A.3) is non-zero. Note also that this hypothesis implies that g has zero
mean because each term in the infinite sum in (A.2) is larger than or equal to |〈ν, g〉|2 thanks
to Cauchy-Schwarz’s inequality and the invariance of ν.

The second criterion is based on the theory of perturbed operators, which also allows to study
the speed of convergence in (A.1), i.e., to get a version of Berry-Esseen theorem. Recall that the
spectrum of a linear operator T , from a complex Banach space to itself, is the closure of the set
of z ∈ C such that the operator zI−T is not invertible. The essential spectrum is obtained from
the spectrum by removing its isolated points corresponding to eigenvalues of finite multiplicity.
The spectral radius r(T ) and the essential spectral radius ress(T ) are the radii of the smallest
disks centered at the origin which contain the spectrum and the essential spectrum, respectively.
The following criterion, based on ideas on Nagaev and Guivarc’h [Nag57, GH88], is a translation
in our setting of [Gou15, Th. 3.7].

Theorem A.3 (Nagaev-Guivarc’h-Gouëzel). Let T : (X,F) → (X,F) be a dynamical system
and ν an invariant probability measure. Let g be a real-valued integrable function. Assume that
there exist a complex Banach space H, a family of operators Tt acting on H, for t ∈ [−δ, δ] with
some constant δ > 0, and elements ξ ∈ H and ν∗ ∈ H∗ such that

(i) coding: for all n ∈ N and all t ∈ [−δ, δ], we have
〈
ν, eitSn(g)

〉
= 〈ν∗, T nt ξ〉;

(ii) spectral description: we have ress(T0) < 1, and T0 has a unique eigenvalue of modulus
≥ 1; moreover, this eigenvalue has multiplicity 1 and is located at 1;

(iii) regularity: the family t 7→ Tt is of class C3.
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Assume also that the largest eigenvalue α(t) of Tt for t near 0 admits the order 2 expansion

α(t) = eiAt−σ
2t2/2+o(t2) for some A, σ ∈ R with σ > 0. Then g − A satisfies the CLT with

variance σ and the speed of convergence in (A.1) is of order O(n−1/2).

The following is an improvement of the CLT, see also Remark 6.17.

Definition A.4 (LCLT - Local Central Limit Theorem). Let T : (X,F) → (X,F) be a
dynamical system, and ν an invariant probability measure. Let g be a real-valued integrable
function with 〈ν, g〉 = 0. We say that g satisfies the Local Central Limit Theorem (LCLT) with
variance σ > 0 if for every bounded interval I ⊂ R the convergence

lim
n→∞

∣∣∣σ√nν{x+ Sn(g) ∈ I} − 1√
2π
e−x

2/(2σ2n)|I|
∣∣∣ = 0

holds uniformly in x ∈ R. Here |I| denotes the length of I.

Partial sums of independent and identically distributed random variables can be compared
with Brownian motions of suitable variance, and one can get precise estimates for the fluctuations
around the mean value. In the context of dynamical systems, we have the following analogous
definition.

Definition A.5 (ASIP - Almost Sure Invariant Principle). Let T : (X,F) → (X,F) be a
dynamical system and ν an invariant probability measure. Let g be a real-valued integrable
function with 〈ν, g〉 = 0. We say that g satisfies the Almost Sure Invariance Principle (ASIP)
of variance σ > 0 and error rate nγ if there exist, on some probability space X , a sequence of
random variables (Sn)n≥0 and a Brownian motion W of variance σ such that

(i) Sn =W(n) + o(nγ) almost everywhere on X ;
(ii) Sn(g) and Sn have the same distribution for any n ≥ 0.

General criteria that allow one to establish the ASIP in various contexts are given in [PS75].
We state here the following criterion by Gouëzel, see [Gou10, Th. 1.2] and [Gou15, Th. 5.2].
Notice that Gouëzel’s result actually holds in the more general case of random variables with
values in Rd.

Theorem A.6 (Gouëzel). Let T : (X,F)→ (X,F) be a dynamical system and ν an invariant
probability measure. Let g be a real-valued integrable function. Assume that there exist a complex
Banach space H, a family of operators Tt acting on H, for t ∈ [−δ, δ] with some constant δ > 0,
and elements ξ ∈ H and ν∗ ∈ H∗ such that

(i) strong coding: for all n ∈ N and all t0, . . . , tn−1 ∈ [−δ, δ], we have〈
ν, ei

∑n−1
j=0 tjg◦T

j〉
=
〈
ν∗, Ttn−1 ◦ · · · ◦ Tt0ξ

〉
;

(ii) spectral description: we have ress(T0) < 1, and T0 has a unique eigenvalue of modulus
≥ 1; moreover, this eigenvalue has multiplicity 1 and is located at 1;

(iii) weak regularity: either t 7→ Tt is continuous, or ‖T nt ‖H→H ≤ c for some constant c > 0
and for all t ∈ [−δ, δ] and n ≥ 0;

(iv) there exist p > 2 and c > 0 such that ‖g ◦ Tn‖Lp(ν) ≤ c for all n ≥ 0.

Assume also that the largest eigenvalue α(t) of Tt for t near 0 admits the order 2 expansion

α(t) = eiAt−σ
2t2/2+o(t2) for some A, σ ∈ R with σ > 0. Then g−A satisfies the ASIP of variance

σ and error rate o(nq) for all q such that

q >
p

4p− 4
=

1

4
+

1

4p− 4
·

The following properties are general consequences of the ASIP, see for instance [PS75, LP89,
CG07].

Definition A.7 (LIL - Law of iterated logarithms). Let T : (X,F) → (X,F) be a dynamical
system and ν an invariant probability measure. Let g be a real-valued integrable function such
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that 〈ν, g〉 = 0. We say that g satisfies the Law of Iterated Logarithms (LIL) with variance
σ > 0 if

lim sup
n→∞

Sn(g)

σ
√

2n log logn
= 1 ν-almost everywhere.

Definition A.8 (ASCLT - Almost sure Central Limit Theorem). Let T : (X,F) → (X,F) be
a dynamical system and ν an invariant probability measure. Let g be a real-valued integrable
function such that 〈ν, g〉 = 0. We say that g satisfies the Almost Sure Central Limit Theorem
(ASCLT) with variance σ > 0 if, for ν-almost every point x ∈ X,

1

log n

n∑
j=1

1

j
δj−1/2Sj(g)(x) → N (0, σ).

In particular, ν-almost surely

1

log n

n∑
j=1

1

j
1{j−1/2Sj(g)≤t0} →

1√
2πσ

∫ t0

−∞
e−

t2

2σ2 dt

for all t0 ∈ R.

Theorem A.9. Let T : (X,F)→ (X,F) be a dynamical system and ν an invariant probability
measure. Let g be a real-valued integrable function with 〈ν, g〉 = 0. Assume that g satisfies the
ASIP with variance σ > 0 and error rate nγ for some γ < 1/2. Then g satisfies the LIL and
the ASCLT, both with the same variance σ.

The last property that we recall is the Large Deviation Principle. It gives very precise
estimates on the measure of the set where the partial sums are far from the mean value. It
implies in particular the Large Deviation Theorem, which only requires an upper bound for the
measure in (A.4) below.

Definition A.10 (LDP - Large Deviation Principle). Let T : (X,F)→ (X,F) be a dynamical
system and ν an invariant probability measure. Let g be a real-valued integrable function such
that 〈ν, g〉 = 0. We say that g satisfies the Large Deviation Principle (LDP) if there exists a
non-negative, strictly convex function c which is defined on a neighbourhood of 0 ∈ R, vanishes
only at 0, and such that, for all ε > 0 sufficiently small,

(A.4) lim
n→∞

1

n
log ν

{
x ∈ X :

Sn(g)(x)

n
> ε
}

= −c(ε).

The following result, established in [BL85], is a local version of Gärtner-Ellis Theorem [Gär77,
Ell84, DZ98] which can be used to prove the LDP, see [HH01, Lem. XIII.2].

Theorem A.11 (Bougerol-Lacroix). For all n ≥ 1 denote by Pn a probability distribution, by
En the corresponding expectation operator and by Sn a real-valued random variable. Assume
that on some interval [−θ0, θ0], with θ0 > 0, we have

(A.5) lim
n→∞

1

n
log En(eθSn) = Λ(θ),

where Λ is a C1, strictly convex function satisfying Λ′(0) = 0. Then, for all 0 < ε < Λ(θ0)/θ0,
we have

lim
n→∞

1

n
log Pn(Sn > nε) = −c(ε) < 0,

where c(ε) := sup{θε − Λ(ε) : |θ| ≤ θ0} is the Legendre transform of Λ, which is non-negative,
strictly convex, and vanishes only at 0.

Notice that the symmetric statement for the measure of the set where n−1Sn(g) < −ε in
(A.4) can be obtained by applying the result above to the sequence of random variables −Sn.
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