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We study semigroups generated by general fractional Ornstein-Uhlenbeck operators acting on L 2 (R n ). We characterize geometrically the partial Gevrey-type smoothing properties of these semigroups and we sharply describe the blow-up of the associated seminorms for short times, generalizing the hypoelliptic and the quadratic cases. As a byproduct of this study, we establish partial subelliptic estimates enjoyed by fractional Ornstein-Uhlenbeck operators on the whole space by using interpolation theory.

Introduction

We study semigroups generated by fractional Ornstein-Uhlenbeck operators. These are non-local and non-selfadjoint operators in general, sum of a fractional diffusion and a linear transport operator. More precisely, the fractional Ornstein-Uhlenbeck operator associated with the positive real number s > 0 and the real n×n matrices B and Q, with Q symmetric positive semidefinite, is given by (1.1)

P = 1 2 Tr s (-Q∇ 2 x ) + Bx, ∇ x , x ∈ R n .
In this definition, the operator Tr s (-Q∇ 2 x ) stands for the Fourier multiplier associated with the symbol Qξ, ξ s , and Bx, ∇ x denotes the following differential operator Bx, ∇ x = n i=1 n j=1 B i,j x j ∂ x i , B = (B i,j ) 1≤i,j≤n .

The operator P equipped with the domain (1.2)

D(P) = u ∈ L 2 (R n ) : Pu ∈ L 2 (R n ) ,
is known from the work [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Theorem 1.1) to generate a strongly continuous semigroup (e -tP ) t≥0 on L 2 (R n ). The purpose of this work is to understand how the possible noncommutation phenomena between the diffusion and the transport parts of the operator P allow the associated evolution operators e -tP to enjoy smoothing properties in specific directions of the space we aim at sharply and completely describing. More precisely, our objective is to exhibit the vector spaces Σ ⊂ R n containing the smoothing directions of the operators e -tP , i.e. such that for all t > 0, m ≥ 1 and ξ 1 , . . . , ξ m ∈ Σ, there exists a positive constant c t,m,ξ 1 ,...,ξm > 0 such that for all u ∈ L 2 (R n ),

(1.3) ξ 1 , ∇ x . . . ξ m , ∇ x e -tP u L 2 (R n ) ≤ c t,m,ξ 1 ,...,ξm u L 2 (R n ) ,
and to sharply describe the dependence of the constant c t,m,ξ 1 ,...,ξm with respect to m ≥ 1 and ξ 1 , . . . , ξ m ∈ Σ, at least for short times 0 < t ≪ 1. This kind of estimates have already been obtained with a precise control of the short times asymptotics in the case s = 1 in the work [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] (Example 2.7). On the other hand, the study of the smoothing properties of semigroups generated by fractional Ornstein-Uhlenbeck operators has already been performed in the work [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Theorem 1.2) in a hypoelliptic setting, i.e. when the matrices B and Q satisfy an algebraic condition known as the Kalman rank condition and defined just after (1.4). The present work aims at unifying these two results in a general setting for the matrices B and Q, and for general positive real numbers s > 0.

An application to the study of the partial subelliptic estimates enjoyed by the operator P on the whole space will also be given, generalizing results from the two same works [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] (Example 2.11) and [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Corollary 1.15). The Ornstein-Uhlenbeck operators (case s = 1) and their associated semigroups have been very much studied in the last two decades. The structure of theses operators was analyzed in [START_REF] Lanconelli | On a class of hypoelliptic evolution operators[END_REF], while their spectral properties were investigated in [START_REF] Metafune | Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures[END_REF][START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF]. The smoothing properties of the associated semigroups were studied in [START_REF] Farkas | On a class of hypoelliptic operators with unbounded coefficients in R N[END_REF][START_REF] Farkas | Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures[END_REF][START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF][START_REF] Lunardi | On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures[END_REF][START_REF] Metafune | Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures[END_REF][START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF] and some global hypoelliptic estimates were derived in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF][START_REF] Farkas | Maximal regularity for Kolmogorov operators in L 2 spaces with respect to invariant measures[END_REF][START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF][START_REF] Ottobre | Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF]. We also refer the reader to [START_REF] Da Prato | On the Ornstein-Uhlenbeck operator in spaces of continuous functions[END_REF][START_REF] Lunardi | Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n[END_REF] where the Ornstein-Uhlenbeck operators are studied while acting on spaces of continuous functions. We recall from these works that among the different characterizations of the hypoellipticity of these operators is the Kalman rank condition (1.4)

Rank B | Q = n,
where the n × n 2 matrix

B | Q = Q, B Q, . . . , B n-1 Q ,
is obtained by writing consecutively the columns of the matrices √ Q, B √ Q, . . . , B n-1 √ Q, in addition to different assertions derived from the classical Hörmander's work on the hypoellipticity of differential operators, see e.g. the introduction of [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF]. The Kalman rank condition will naturally appear in the following.

Outline of the work. In Section 2, we present the main results contained in this work. Section 3 is devoted to the study of the smoothing properties of semigroups generated by fractional Ornstein-Uhlenbeck operators. Section 4 is an Appendix containing the proofs of some technical results.

Notations. The following notations and conventions will be used all over the work: 

F ⊥ for all F ⊂ R n . 2. The inner product of L 2 (R n ) is defined for all u, v ∈ L 2 (R n ) by u, v L 2 = R n u(x)v(x) dx,
while • L 2 stands for the associated norm.

3. For all function u ∈ S(R n ), the Fourier transform of u is denoted by u and defined by

u(ξ) = R n e -i x,ξ u(x) dx.
With this convention, Plancherel's theorem states that

∀u ∈ S(R n ), u 2 L 2 = (2π) n u 2 L 2 .
4. The Japanese bracket • is defined for all ξ ∈ R n by ξ = 1 + |ξ| 2 . 5. For all continuous function F : R n → C, the notation F (D x ) is used to denote the Fourier multiplier associated with the symbol F (ξ).

Main results

This section is devoted to present the main results contained in this work.

2.1. Regularizing effects. We begin by sharply describing the smoothing properties of the evolution operators e -tP generated by the fractional Ornstein-Uhlenbeck operator P.

To that end, we consider the finite-dimensional vector space S ⊂ R n defined by the following intersection of kernels

(2.1) S = n-1 j=0 Ker Q(B T ) j .
The structure of this vector space S, intrinsically linked to the matrices B and Q, will play a key role in the study of fractional Ornstein-Uhlenbeck operators and their associated semigroups. Among others, we will prove that its canonical Euclidean orthogonal contains the smoothing directions of the operators e -tP , i.e. Σ = S ⊥ is the unique maximal vector space answering the problem presented in the introduction. By definition, we may consider the smallest integer

0 ≤ r ≤ n -1 satisfying (2.2) S = r j=0 Ker Q(B T ) j .
This integer 0 ≤ r ≤ n -1 will also play a key role in the following. First, we begin by checking that any smoothing direction of the operators e -tP is contained in S ⊥ the canonical Euclidean orthogonal of the vector space S.

Theorem 2.1. Let P be the fractional Ornstein-Uhlenbeck operator defined in (1.1) and equipped with the domain (1.2). We consider S the vector space associated with the matrices B and Q defined in (2.1). If there exist t > 0 and ξ 0 ∈ R n such that the operator

ξ 0 , ∇ x e -tP is bounded on L 2 (R n ), then ξ 0 ∈ S ⊥ .
Notice that the directions of R n in which the evolution operators e -tP can be differentiated depend on the matrices B and Q but not on the positive real number s > 0.

In order to sharply describe the constant c t,m,ξ 1 ,...,ξm > 0 appearing in (1.3) with respect to the vectors ξ 1 , . . . , ξ m in short times 0 < t ≪ 1, we need to introduce the notion of index of any vector of S ⊥ . To that end, we consider the finite-dimensional vector spaces V 0 , . . . , V r ⊂ R n defined for all k ∈ {0, . . . , r} by

(2.3) V k = k j=0 Ker Q(B T ) j .
Notice that the orthogonal complement of these vector spaces V ⊥ 0 , . . . , V ⊥ r form an increasing family which satisfies, according to (2.2), (2.4)

V ⊥ 0 . . . V ⊥ r = S ⊥
. This stratification of S ⊥ allows to define the index of any vector ξ 0 ∈ S ⊥ by (2.5)

k ξ 0 = min 0 ≤ k ≤ r : ξ 0 ∈ V ⊥ k .
This notion of index plays a key role in the understanding of the blow-up for short times of the seminorms associated with the smoothing effects of the evolution operators e -tP , as illustrated in the following theorem which is the main result contained in this work.

Theorem 2.2. Let P be the fractional Ornstein-Uhlenbeck operator defined in (1.1) and equipped with the domain (1.2). We consider S the vector space associated with the matrices B and Q, and 0 ≤ r ≤ n -1 the smallest integer such that (2.2) holds. There exist some positive constants c > 1 and T > 0 such that for all m ≥ 1, ξ 1 , . . . , ξ m ∈ S ⊥ , 0 < t < T and u ∈ L 2 (R n ),

ξ 1 , ∇ x . . . ξ m , ∇ x e -tP u L 2 ≤ c m e 1 2
Tr(B)t

t k ξ 1 +...+k ξm + m 2s m j=1 |ξ j | (m!) 1 2s u L 2 ,
where 0 ≤ k ξ j ≤ r denotes the index of the vector ξ j ∈ S ⊥ .

This result shows that the semigroup (e -tP ) t≥0 enjoys partial Gevrey-type smoothing properties, the short-time asymptotics of m differentiations of this semigroup in the directions generated by the vectors ξ 1 , . . . , ξ m ∈ S ⊥ being given by O(t -k ξ 1 -...-k ξm -m 2s ), and therefore depend on the indexes k ξ 1 , . . . , k ξm of those vectors. The justification of the terminology "partial Gevrey-type smoothing properties" is the following. In the particular case where the vector space S is reduced to {0}, i.e. when the Kalman rank condition (1.4) holds according to Lemma 4.2, Theorem 2.2 implies that the evolution operators e -tP can be differentiated in any direction of R n . The behavior of the estimates given by Theorem 2.2 with respect to m ≥ 1 shows that the semigroup (e -tP ) t≥0 enjoys Gevrey-type regularity for all t > 0, i.e. Gevrey regularity when 0 < s < 1/2, analytic regularity when s = 1/2 and ultra-analytic regularity when s > 1/2. In the general case, the evolution operators e -tP can be differentiated only in specific directions of R n and one can say that the semigroup (e -tP ) t≥0 only enjoys "partial Gevrey-type regularity" for all t > 0.

Theorem 2.2 is the exact extension of [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] (Example 2.11) in the particular case of semigroups generated by Ornstein-Uhlenbeck operators (case s = 1). More generally, one of the objectives of the work [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] is to describe the smoothing properties of the evolution operators e -tq w generated by accretive quadratic operators q w (x, D x ). Theorem 2.6 in [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF], which is quite a lot similar to Theorem 2.2, states that there exist some positive constants c > 1 and T > 0 such that for all

0 < t ≤ T , m ≥ 1, X 1 , . . . , X m ∈ S ⊥ and u ∈ L 2 (R n ), X 1 , X w . . . X m , X w e -tq w u L 2 ≤ c m t k ξ 1 +...+k ξm + m 2 m j=1 |ξ j | √ m! u L 2 , with X j , X w = x j , x + ξ j , D x , X j = (x j , ξ j ) ∈ S ⊥ , D x = -i∇ x ,
where S ⊂ R 2n is a vector subspace of the phase space intrinsically linked the accretive quadratic operator q w (x, D x ), and k X 1 , . . . , k Xm are the indexes of the vectors X 1 , . . . , X m ∈ S ⊥ , similarly defined than (2.5). These estimates for accretive quadratic semigroups are obtained by exploiting the polar decomposition of the evolution operators e -tq w , i.e. a splitting formula for these operators as the product of a selfadjoint operator and a unitary operator in L 2 (R n ), which the main result of the paper [3] (Theorem 2.1). The strength of Theorem 2.2 is to obtain the same kind of estimates for all s > 0 and to track the various constants with respect to this parameter. This theorem will be proven by using the following explicit formula for the operators e -tP , coming from the work [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Theorem 1.1), which can also be seen as a polar decomposition:

e -tP = exp - t 2 1 0 Qe αtB T D x 2s dα e -t Bx,∇x .
The strategy of using representations of the above type has already been used in the literature. For example, in the work [START_REF] Huang | L p estimates for degenerate non-local Kolmogorov operators[END_REF], it allowed to derive some L p estimates for the maximal fractional regularity for degenerate non-local Kolmogorov operators. Assuming that the vector space S is reduced to zero anew, we notice that Theorem 2.2 and a straightforward induction imply in particular that for all α ∈ N n , 0 < t < T and

u ∈ L 2 (R n ), (2.6) ∂ α x (e -tP u) L 2 (R n ) ≤ c 1+|α| t |α|( 1 2s +r) (α!) 1 2s u L 2 (R n ) ,
since the index of any vector ξ 0 ∈ S ⊥ satisfies 0 ≤ k ξ 0 ≤ r. These Gevrey-type regularizing effect estimates have already been proven in [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Theorem 1.1), with the same blow-up of the associated seminorms for short times t → 0 + . In a general setting on the matrices B and Q, Theorem 2.2 does not provide any long time behavior of the norm of the linear operators ξ 1 , ∇ x . . . ξ m , ∇ x e -tP . However, this long-time study can be performed in particular cases. For example, notice from Plancherel's theorem and a straightforward study of function that for all m ≥ 1, ξ

1 , . . . , ξ m ∈ R n , t > 0 and u ∈ L 2 (R n ), ξ 1 , ∇ x . . . ξ m , ∇ x e -t(-∆x) s u L 2 ≤ 2 -m 2s t m 2s m j=1 |ξ j | (m!) 1 2s u L 2 .
We can therefore completely describe the long-time asymptotics of the smoothing properties of semigroups generated by fractional Laplacians. By adapting the proof of Theorem 2.2, one can obtain estimates in the more general case where the matrix B is nilpotent, which apply in particular to semigroups generated by fractional Kolmogorov operators, some operators naturally appearing in the theory of kinetic equations defined as follows.

Given s > 0, the associated fractional Kolmogorov operator K is the operator defined by

(2.7) K = (-∆ v ) s + v • ∇ x , (x, v) ∈ R 2n .
This is the fractional Ornstein-Uhlenbeck operator associated with the matrices B and Q respectively given by

B = 0 n I n 0 n 0 n and Q = 2 1 s 0 n 0 n 0 n I n .
We study the operator K equipped with the domain

(2.8) D(K) = u ∈ L 2 (R 2n ) : Ku ∈ L 2 (R 2n ) .
A straightforward calculus shows that the vector space S associated with the matrices B and Q is given by

S = Ker Q ∩ Ker QB T = {0}. The associated integer 0 ≤ r ≤ 2n -1 defined in (2.
2) is therefore equal to 1. The smoothing properties of the semigroup generated by the operator K are presented in the following result.

Proposition 2.3. Let K be the fractional Kolmogorov operator defined in (2.7) and equipped with the domain (2.8). There exists a positive constant c > 1 such that for all (α, β) ∈ N 2n , t > 0 and u ∈ L 2 (R 2n ),

∂ α x ∂ β v (e -tK u) L 2 ≤ c |α|+|β| t (1+ 1 2s )|α|+ |β| 2s (α!) 1 2s (β!) 1 2s u L 2 .
The long-time study of the smoothing properties of semigroups generated by fractional Ornstein-Uhlenbeck operators is an interesting question that remains open.

Subelliptic estimates.

The study of the smoothing properties of semigroups generated by fractional Ornstein-Uhlenbeck operators allows to obtain partial subelliptic estimates enjoyed by these operators on the whole space.

Theorem 2.4. Let P be the fractional Ornstein-Uhlenbeck operator defined in (1.1) and equipped with the domain (1.2). We consider 0 ≤ r ≤ n -1 the smallest integer such that (2.2) holds. There exists a positive constant c > 0 such that for all u ∈ D(P),

r k=0 Q(B T ) k D x 2s 1+2ks u L 2 ≤ c Pu L 2 + u L 2 .
The entire proof of Theorem 2.4 will not be presented in the present paper since it is completely detailed in the author's thesis work [START_REF] Alphonse | Régularité des solutions et contrôlabilité d'équations d'évolution associées à des opérateurs non-autoadjoints[END_REF] (Chapter 4, Subsection 4.3). Nevertheless, let us present its main steps. Theorem 2.4 can be directly obtained by exploiting the following estimates, established in (3.21) in Subsection 3.2 while proving Theorem 2.2, holding for all k ∈ {0, . . . , r}, q > 0, 0

< t ≪ 1 and u ∈ L 2 (R n ), (2.9) Q(B T ) k D x q e -tP u L 2 ≤ c t k+ 1 2s q e 1 2 Tr(B)t q q 2s u L 2 ,
and elements of interpolation theory. Precisely, the link between the above smoothing estimates and the subelliptic estimates stated in Theorem 2.4 is made by the following result Proposition 2.5 (Proposition 2.7 in [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF]). Let X be a Hilbert space and A : D(A) ⊂ X → X be a maximal accretive operator such that (-A, D(A)) is the generator of a strongly continuous semigroup (T (t)) t≥0 . Assume that there exists a Banach space E ⊂ X, ρ > 1 and C > 0 such that ∀t > 0, T (t) L(X,E) ≤ C t ρ , and that t → T (t)u is measurable with values in E for each u ∈ X. Then, the following continuous inclusion holds

D(A) ⊂ (X, E) 1 ρ ,2
, where (X, E) 1 ρ ,2 denotes the space obtained by real interpolation. The estimate (2.9) used with q = 1 + ⌊2s⌋ and Proposition 2.5 applied with the Hilbert spaces X = L 2 (R n ) and

E = H k = u ∈ L 2 (R n ) : Λ q k u ∈ L 2 (R n ) , with Λ k = Q(B T ) k D x ,
allow to obtain that for all k ∈ {0, . . . , r}, the following continuous inclusion holds (2.10)

D(P) ⊂ (L 2 (R n ), H k ) θ,2 with θ = 2s q(1 + 2ks) ∈ (0, 1).
By setting H k as the domain of the Fourier multiplier Λ q k , another interpolation result, namely [START_REF] Lunardi | Interpolation theory[END_REF] (Theorem 4.36), justifies that (2.11)

(L 2 (R n ), H k ) θ,2 = (D((Λ q k ) 0 ), D(Λ q k ) 1 )) θ,2 = D(Λ qθ k ).
The combinaison of the continuous inclusion (2.10) and (2.11) ends the proof of Theorem 2.4. Notice that this proof follows line to line the one presented in Subsections 5.1 and 5.2 in [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF], where subelliptic estimates similar to the ones states in Theorem 2.4 are established when the Kalman rank condition (1.4) holds. This strategy of proof, inspired by the work [START_REF] Hitrik | Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators[END_REF], is also used in the paper [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] to establish subelliptic estimates enjoyed by accretive quadratic operators on the whole space, of which Ornstein-Uhlenbeck operators (case s = 1) are a particular case, see [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] (Example 2.11).

Let us assume that the Kalman rank condition (1.4) holds. In this case, the vector space S is reduced to zero as we check in Lemma 4.1 in Appendix, and it follows that

∀ξ ∈ R n , |ξ| 2 r k=0 Q(B T ) k ξ 2 .
We therefore deduce from this estimate, Theorem 2.4 and Plancherel's theorem that for all u ∈ D(P),

D x 2s 1+2rs u L 2 r k=0 Q(B T ) k D x 2s 1+2rs u L 2 r k=0 Q(B T ) k D x 2s 1+2ks u L 2 Pu L 2 + u L 2 .
When s ≥ 1 is a positive integer, the operator P therefore enjoys a global subelliptic estimate on the whole space

D x 2s(1-δ) u L 2 Pu L 2 + u L 2 ,
with a loss of δ = 2rs 1 + 2rs > 0, derivatives with respect to the elliptic case. The above estimate has already been established in [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Corollary 1.15).

Regularizing effects of semigroups generated by fractional Ornstein-Uhlenbeck operators

Let P be the fractional Ornstein-Uhlenbeck operator defined in (1.1) and equipped with the domain (1.2). We consider the vector space S ⊂ R n defined in (2.1) and 0 ≤ r ≤ n -1 the smallest integer such that (2.2) holds. This section is devoted to the study of the smoothing properties of the semigroup (e -tP ) t≥0 generated by the operator P. To that end, we will use the fact that the evolution operators e -tP are explicitly given by the following explicit formula

(3.1) e -tP = exp - t 2 1 0 Qe αtB T D x 2s dα e -t Bx,∇x .
This formula is a straightforward reformulation of [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Theorem 1.1). Indeed, this result states that the evolution operators e -tP are given through their Fourier transform for all t ≥ 0 by

∀u ∈ L 2 (R n ), e -tP u = exp - 1 2 t 0 Qe τ B T • 2s dτ e Tr(B)t u(e tB T •).
Moreover, e -t Bx,∇x u = u(e -tB •) for all u ∈ L 2 (R n ) and a straightforward calculus of inverse Fourier transform shows that for all ξ ∈ R n ,

u(e -tB •)(ξ) =
R n e -i x,ξ u(e -tB x) dx = e Tr(B)t u(e tB T ξ).

This proves that formula (3.1) actually holds. It shows that the operators e -tP can be split as the product of a selfadjoint Fourier multiplier and an operator which is a similitude on

L 2 (R n ), since (3.2) ∀u ∈ L 2 (R n ), e -t Bx,∇x u L 2 = u(e -tB •) L 2 (R n ) = e 1 2 Tr(B)t u L 2 .
The splitting formula (3.1) can somehow be seen as the polar decomposition of the evolution operators e -tP .

3.1. Smoothing directions. The first part of this section is devoted to the proof of Theorem 2.1. Let t > 0 and ξ 0 ∈ R n . We assume that the linear operator ξ 0 , ∇ x e -tP is bounded on L 2 (R n ). We aim at proving that ξ 0 ∈ S ⊥ . Let us introduce the time-dependent real-valued symbol a t defined for all ξ ∈ R n by

(3.3) a t (ξ) = 1 2 1 0 Qe αtB T ξ 2s dα.
With this notation, the polar decomposition (3.1) can be written in the following way (3.4) e -tP = e -ta w t e -t Bx,∇x , where e -ta w t denotes the time-dependent Fourier multiplier associated with the timedependent real-valued symbol e -tat . We first notice from the splitting formula (3.4) that the boundedness on L 2 (R n ) of the operator ξ 0 , ∇ x e -tP is equivalent to the boundedness of the Fourier multiplier ξ 0 , ∇ x e -ta w t , since the evolution operator e -t Bx,∇x is invertible on L 2 (R n ). As a consequence, there exists a positive constant c t,ξ 0 > 0 depending on t > 0 and ξ 0 ∈ R n such that

(3.5) ∀u ∈ L 2 (R n ), ξ 0 , ∇ x e -ta w t u L 2 ≤ c t,ξ 0 u L 2 .
According to the orthogonal decomposition R n = S ⊕ S ⊥ , we write ξ 0 = ξ 0,S + ξ 0,S ⊥ , with ξ 0,S ∈ S and ξ 0,S ⊥ ∈ S ⊥ . For all λ ≥ 0, we consider the Gaussian function u λ ∈ S(R n ) defined for all x ∈ R n by (3.6) u λ (x) = e iλ ξ 0,S ,x e -|x| 2 .

The strategy will be to obtain upper and lower bounds for the norm

ξ 0 , ∇ x e -ta w t u λ L 2 ,
and to consider the asymptotics when λ goes to +∞ in order to conclude that ξ 0,S ∈ S has to be equal to zero. An upper bound can be directly obtained since it follows from (3.5), (3.6) and the Cauchy-Schwarz inequality that for all λ ≥ 0,

(3.7) ξ 0 , ∇ x e -ta w t u λ L 2 ≤ c t,ξ 0 u λ L 2 = c t,ξ 0 u 0 L 2 .
Notice that the right-hand side of the above estimate does not depend on the parameter λ ≥ 0. On the other hand, by using that for all λ ≥ 0, the Fourier transform of the function u λ is given for all ξ ∈ R n by

(3.8) u λ (ξ) =
R n e -i x,ξ e iλ ξ 0,S ,x e -|x| 2 dx =

R n e -i x,ξ-λξ 0,S e -|x| 2 dx = u 0 (ξ -λξ 0,S ),

we deduce from Plancherel's theorem that for all λ ≥ 0,

(3.9) ξ 0 , ∇ x e -ta w t u λ L 2 = 1 (2π) n 2 ξ 0 , ξ e -tat(ξ) u 0 (ξ -λξ 0,S ) L 2 .
Moreover, notice that for all ξ ∈ R n and η ∈ S,

(3.10) a t (ξ + η) = 1 2 1 0 Qe αtB T (ξ + η) 2s dα = 1 2 1 0 Qe αtB T ξ 2s dα = a t (ξ).
Indeed, the Cayley-Hamilton theorem applied to the matrix B T shows that

∀j ∈ N, ∀ξ ∈ R n , (B T ) j ξ ∈ Span(ξ, B T ξ, . . . , (B T ) n-1 ξ).
This proves that the space S is also given by the following infinite intersection of kernels

(3.11) S = +∞ j=0 Ker Q(B T ) j .
As a consequence of this fact, we get that

(3.12) ∀α ∈ [0, 1], ∀η ∈ S, Qe αtB T η = +∞ j=0 (αt) j j! Q(B T ) j η = 0.
This implies that (3.10) actually holds. We therefore deduce from (3.8), (3.9), (3.10), a change of variable in the norm and the triangle inequality that for all λ ≥ 0,

ξ 0 , ∇ x e -ta w t u λ L 2 = 1 (2π) n 2 ξ 0 , ξ + λξ 0,S e -tat(ξ+λξ 0,S ) u 0 (ξ) L 2 , (3.13) = 1 (2π) n 2 ξ 0 , ξ + λξ 0,S e -tat(ξ) u 0 L 2 ≥ ξ 0 , λξ 0,S e -ta w t u 0 L 2 -ξ 0 , ∇ x e -ta w t u 0 L 2 ≥ λ|ξ 0,S | 2 e -ta w t u 0 L 2 -c t,ξ 0 u 0 L 2 ,
since λξ 0,S ∈ S. It follows from (3.7) and (3.13) that for all λ ≥ 0,

λ|ξ 0,S | 2 e -ta w t u 0 L 2 ≤ 2c t,ξ 0 u 0 L 2 .
Since the function e -ta w t u 0 is not equal to zero (u 0 is a Gaussian function and the symbol of the bounded Fourier multiplier e -ta w t is not equal to zero) and that the right-hand side of the above estimate does not depend on the parameter λ ≥ 0, we conclude that ξ 0,S = 0, that is, ξ 0 ∈ S ⊥ . This ends the proof of Theorem 2.1.

Regularizing effects.

In the second part of this section, we prove Theorem 2.2. We keep the notations introduced in the previous subsection, in particular the time-dependent real-valued symbol a t defined in (3.3).

Since the operator e -t Bx,∇x is a similitude on L 2 (R n ) for all t ≥ 0, we notice from (3.4) that it is sufficient to obtain the regularizing effects of the operators e -ta w t to derive the ones of the operators e -tP . Let m ≥ 1 be a positive integer and ξ 1 , . . . , ξ m ∈ S ⊥ . We are interested in studying the operators ξ 1 , ∇ x . . . ξ m , ∇ x e -ta w t , t > 0.

Since the operators ξ j , ∇ x and e -ta w t are Fourier multipliers, they commute, and the following factorization holds for all t > 0,

ξ 1 , ∇ x . . . ξ m , ∇ x e -ta w t = ξ 1 , ∇ x . . . ξ m , ∇ x e -t m a w t . . . e -t m a w t m factors (3.14) = ξ 1 , ∇ x e -t m a w t . . . ξ m , ∇ x e -t m a w t ,
where we used the semigroup property of the family of contraction operators (e -sa w t ) s≥0 . The initial problem is therefore reduced to the analysis of the operators ξ j , ∇ x e -t m a w t , j ∈ {1, . . . , m}, t > 0.

In the following proposition, we prove a first regularizing effect for the semigroups (e -τ a w t ) τ ≥0 for all t > 0.

Proposition 3.1. There exist some positive constants c > 1 and T > 0 such that for all k ∈ {0, . . . , r}, q > 0, 0

< t < T , τ > 0 and u ∈ L 2 (R n ), Q(B T ) k D x q e -τ a w t u L 2 ≤ c t k τ 1 2s q q q 2s u L 2 .
Proof. Let us begin by noticing that to prove Proposition 3.1, it is sufficient to obtain the existence of some positive constants c 1 > 0 and t 1 > 0 such that for all q > 0, 0 < t < t 1 , τ > 0 and ξ ∈ R n , (3.15)

1 0 Qe αtB T ξ 2 dα q 2 exp - τ 2 1 0 Qe αtB T ξ 2s dα ≤ c 1 τ 1 2s
q q es q 2s

. Indeed, we check in Proposition 4.2 in Appendix, by using finite-dimensional and compactness arguments, that there exist some positive constants c 0 > 0 and t 0 > 0 such that for all 0 < t < t 0 and ξ ∈ R n , (3.16)

1 0 Qe αtB T ξ 2 dα ≥ c 0 r k=0 t 2k Q(B T ) k ξ 2 .
Once the estimates (3.15) and (3.16) are established, we deduce from the definition (3.3) of the symbols a t and Plancherel's theorem that for all k ∈ {0, . . . , r}, q > 0, 0 < t < min(t 0 , t 1 ), τ > 0 and u ∈ L 2 (R n ),

Q(B T ) k D x q e -τ a w t u L 2 (R n ) ≤ 1 √ c 0 t k q 1 0 Qe αtB T D x 2 dα q 2 e -τ a w t u L 2 (R n ) ≤ 1 √ c 0 t k q c 1 τ 1 2s q q es q 2s u L 2 (R n ) ,
which is the desired estimate. We therefore focus on establishing the estimate (3.15). In order to simplify the notations, let us consider the real-valued symbol Γ q,t,τ defined for all q > 0, t > 0, τ > 0 and ξ ∈ R n by (3.17)

Γ q,t,τ (ξ) = 1 0 Qe αtB T ξ 2 dα q 2 exp - τ 2 1 0 Qe αtB T ξ 2s dα .
First of all, observe from (3.12) and (3.17) that for all q > 0, t > 0 and τ > 0, the symbol Γ q,t,τ satisfies ∀ξ ∈ R n , Γ q,t,τ (ξ) = Γ q,t,τ (ξ S ⊥ ), where ξ S ⊥ ∈ R n denotes the coordinate of the vector ξ ∈ R n with respect to the decomposition R n = S ⊕ S ⊥ , the orthogonality being taken with respect to the canonical Euclidean structure of R n . Thus, we only need to establish the estimate (3.15) when ξ ∈ S ⊥ . To that end, we will take advantage of the homogeneity property with respect to the ξ-variable of the two integrals Qe αtB T ξ 2s dα.

Let ξ ∈ S ⊥ \ {0} and (ρ, σ) be the polar coordinates of ξ, i.e. ξ = ρσ with ρ > 0 and σ ∈ S n-1 . It follows from (3.17) and the estimate ∀q > 0, ∀x ≥ 0, x q e -x 2s ≤ q 2es q 2s

, that for all q > 0, t > 0 and τ > 0, Γ q,t,τ (ξ) =

1 0 Qe αtB T σ 2 dα q 2 ρ q exp - τ 2 1 0 Qe αtB T σ 2s dα ρ 2s (3.18) ≤ 1 0 Qe αtB T σ 2 dα q 2 τ 2 1 0 Qe αtB T σ 2s dα -q 2s q 2es q 2s ≤ M t τ 1 2s q q es q 2s
, where we set

(3.19) M t = sup η∈S n-1 ∩S ⊥ 1 0 Qe αtB T η 2 dα 1 2 1 0 Qe αtB T η 2s dα -1 2s
.

The study of the term M t is made by the author and J. Bernier in [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Proposition 3.6) when the vector space S is reduced to zero, that is, when the Kalman rank condition (1.4) holds according to Lemma 4.1. The same strategy of proof as the one used in this paper (finite-dimensional and compactness arguments) turns out to work in the general case. By using these arguments, it is proved in Proposition 4.4 in Appendix that there exist some positive constants c 1 > 0 and t 1 > 0 such that for all 0 < t < t 1 , (3.20)

M t ≤ c 1 .
We therefore deduce from (3.17), (3.18) and (3.20) that for all q > 0, 0 < t < t 1 , τ > 0 and ξ ∈ S ⊥ ,

1 0 Qe αtB T ξ 2 dα q 2 exp - τ 2 1 0 Qe αtB T ξ 2s dα ≤ c 1 τ 1 2s q q es q 2s
. This ends the proof of the estimate (3.15) and hence, the one of Proposition 3.1.

The above result also provides estimates for the operators e -tP . Indeed, we deduce from (3.1), (3.2), Proposition 3.1 and Plancherel's theorem that for all k ∈ {0, . . . , r}, q > 0, 0 < t < T and u ∈ L 2 (R n ),

Q(B T ) k D x q e -tP u L 2 ≤ c t k+ 1 2s q q q 2s e -t Bx,∇x u L 2 (3.21) = c t k+ 1 2s q e 1 2 Tr(B)t q q 2s u L 2 .
As explained in Subsection 2.2, these estimates are key to establish the partial subelliptic estimates enjoyed by fractional Ornstein-Uhlenbeck operators on the whole space.

Corollary 3.2. There exist some positive constants c > 0 and 0 < T < 1 such that for all

ξ 0 ∈ S ⊥ , 0 < t < T , τ > 0 and u ∈ L 2 (R n ), ξ 0 , ∇ x e -τ a w t u L 2 ≤ c|ξ 0 | t -k ξ 0 τ -1 2s u L 2 ,
where 0 ≤ k ξ 0 ≤ r denotes the index of the vector ξ 0 ∈ S ⊥ defined in (2.5).

Proof. First, let us check that there exists a positive constant M 0 > 0 such that for all ξ 0 ∈ S ⊥ and ξ ∈ R n ,

(3.22) ξ 0 , ξ 2 ≤ M 2 0 |ξ 0 | 2 k ξ 0 j=0 Q(B T ) j ξ 2 .
For all non-negative integer k ∈ {0, . . . , r}, we consider P k the orthogonal projection onto the vector subspace V ⊥ k ⊂ R n , the orthogonality being taken with respect to the canonical Euclidean structure of R n , where the vector subspace V k is defined in (2.3) by

V k = k j=0 Ker Q(B T ) j .
Notice from the definition of the vector spaces V k that for all k ∈ {0, . . . , r}, there exists a positive constant c k > 0 such that for all ξ ∈ R n ,

k j=0 Q(B T ) j ξ 2 = k j=0 Q(B T ) j P k ξ 2 ≥ c k |P k ξ| 2 . Let ξ 0 ∈ S ⊥ . The definition (2.5) of index implies that ξ 0 ∈ V ⊥ k ξ 0
. It follows from the above estimate and the Cauchy-Schwarz inequality that for all ξ ∈ R n ,

ξ 0 , ξ 2 = ξ 0 , P k ξ 0 ξ 2 ≤ |ξ 0 | 2 |P k ξ 0 ξ| 2 ≤ |ξ 0 | 2 c k ξ 0 k ξ 0 k=0 Q(B T ) k ξ 2 .
This proves that the estimate (3.22) holds, with M 2 0 = 1/ min k∈{0,...,r} c k > 0. We therefore deduce from (3.22) and Plancherel's theorem that for all ξ 0 ∈ S ⊥ , t ≥ 0, τ ≥ 0 and u ∈ L 2 (R n ),

(3.23) ξ 0 , ∇ x e -τ a w t u L 2 ≤ M 0 |ξ 0 | k ξ 0 k=0 Q(B T ) k D x e -τ a w t u L 2 .
On the other hand, Proposition 3.1 provides the existence of some positive constants M 1 > 1 and t 1 > 0 such that for all k ∈ {0, . . . , r}, 0 < t < t 1 , τ > 0 and u ∈ L 2 (R n ),

(3.24) Q(B T ) k D x e -τ a w t u L 2 ≤ c ′ t k τ 1 2s u L 2 .
It follows from (3.23) and (3.24) that for all ξ 0 ∈ S ⊥ , 0 < t < min(t 1 , 1), τ > 0 and

u ∈ L 2 (R n ), ξ 0 , ∇ x e -τ a w t u L 2 ≤ M 0 |ξ 0 | k ξ 0 k=0 M 1 t k τ 1 2s u L 2 ≤ M 0 M 1 (r + 1)|ξ 0 | t -k ξ 0 τ -1 2s u L 2 ,
since 0 ≤ k ξ 0 ≤ r. This ends the proof of Corollary 3.2.

We can now tackle the proof of Theorem 2.2. To that end, we implement the strategy presented in the beginning of this subsection. Let m ≥ 1 and ξ 1 , . . . , ξ m ∈ S ⊥ . We denote by 0 ≤ k ξ j ≤ r the index of the vector ξ j ∈ S ⊥ defined in (2.5). It follows from (3.14) that for all t ≥ 0,

(3.25) ξ 1 , ∇ x . . . ξ m , ∇ x e -ta w t = ξ 1 , ∇ x e -t m a w t . . . ξ m , ∇ x e -t m a w t .
According to Corollary 3.2, there exist some positive constants c > 0 and 0 < T < 1 such that for all ξ 0 ∈ S ⊥ , m ≥ 1 and 0 < t < T ,

(3.26) ξ 0 , ∇ x e -t m a w t u L 2 ≤ c t k ξ 0 + 1 2s |ξ 0 | m 1 2s u L 2 ,
where 0 ≤ k ξ 0 ≤ r denotes the index of the vector ξ 0 ∈ S ⊥ defined in (2.5). We deduce from (3.25) and (3.26) that for all 0 < t < T and u ∈ L 2 (R n ),

ξ 1 , ∇ x . . . ξ m , ∇ x e -ta w t u L 2 ≤ c m t k ξ 1 +...+k ξm + m 2s m j=1 |ξ j | m m 2s u L 2 ≤ e m 2s c m t k ξ 1 +...+k ξm + m 2s m j=1 |ξ j | (m!) 1 2s u L 2 ,
where we used the factorial estimate m m ≤ e m m!. It follows from (3.1), (3.2) and Plancherel's theorem that for all 0 < t < T and u ∈ L 2 (R n ),

ξ 1 , ∇ x . . . ξ m , ∇ x e -tP u L 2 ≤ e m 2s c m t k ξ 1 +...+k ξm + m 2s m j=1 |ξ j | (m!) 1 2s e -t Bx,∇x u L 2 = e m 2s c m e 1 2 Tr(B)t t k ξ 1 +...+k ξm + m 2s m j=1 |ξ j | (m!) 1 2s u L 2 .
This ends the proof of Theorem 2.2.

3.3.

The nilpotent case. To end this section, we explain how the proof of Theorem 2.2 can be adapted to obtain long-time asymptotics when the matrix B is nilpotent (of order K ≥ 1 say), and to prove in particular the estimates stated in Proposition 2.3. In this case, we deduce from Propositions 4.2 and 4.4 in Appendix that there exists a positive constant c 0 > 0 such that

∀t > 0, ∀ξ ∈ R n , 1 0 Qe αtB T ξ 2 dα ≥ c 0 K-1 k=0 t 2k Q(B T ) k ξ 2 ,
and ∀t > 0, sup

ξ∈S n-1 ∩S ⊥ 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2s dα -1 2s ≤ c 0 .
From the same proof than the one of Proposition 3.1, we deduce that there exists another positive constant c 1 > 1 such that for all k ∈ {0, . . . , K -1}, q > 0, t > 0, τ > 0 and

u ∈ L 2 (R n ), (3.27) 
Q(B T ) k D x q e -τ a w t u L 2 ≤ c 1 t k τ 1 2s q q q 2s u L 2 .
We now assume that the fractional Ornstein-Uhlenbeck operator P is the fractional Kolmogorov operator K given by

K = (-∆ v ) s + v • ∇ x , (x, v) ∈ R 2n ,
that is, that the matrices B and Q are respectively given by

B = 0 n I n 0 n 0 n and Q = 2 1 s 0 n 0 n 0 n I n .
In this particular case, the estimates (3.27) write in the following way for all q > 0, t > 0,

τ > 0 and u ∈ L 2 (R n ), (3.28) 
D x q e -τ a w t u L 2 ≤ c 1 tτ 1 2s q q q 2s u L 2 , D v q e -τ a w t u L 2 ≤ c 1 τ 1 2s q q q 2s u L 2 .
Since the operators |D x |, |D v | and e -t 2 a w t are Fourier multipliers, they commute, and by writing

D x q 1 D v q 2 e -ta w t = D x q 1 e -t 2 a w t D v q 2 e -t
2 a w t , we therefore deduce from (3.1), (3.2) and (3.28) that for all q 1 , q 2 > 0, t > 0 and u ∈ L 2 (R n ),

D x q 1 D v q 2 e -tK u L 2 ≤ c 1 t 1+ 1 2s q 1 (2q 1 ) q 1 2s c 1 t 1 2s q 2 (2q 2 ) q 2 2s u L 2 .
These estimates imply in particular that there exists a positive constant c 2 > 1 such that (α, β) ∈ N 2n , t > 0 and u ∈ L 2 (R 2n ),

∂ α x ∂ β v (e -tK u) L 2 ≤ c |α|+|β| 2 t (1+ 1 2s )|α|+ |β| 2s (α!) 1 2s (β!) 1 2s u L 2 ,
where we used the factorial estimate m m ≤ e m m! holding for all m ≥ 1. This ends the proof of Proposition 2.3.

Appendix

Let B and Q be n×n real matrices, with Q symmetric positive semidefinite. We consider the associated vector space S defined in (2.1) and 0 ≤ r ≤ n -1 the smallest integer such that (2.2) holds. In this appendix, we give the proofs of some results involving the matrices B and Q.

4.1. About the Kalman rank condition. First, we prove the characterization of the Kalman rank condition in term of the space S.

Lemma 4.1. The Kalman rank condition (1.4) holds if and only if the vector space S is reduced to {0}.

Proof. Using the notation of (1.4), we have the following equivalences:

Rank B | Q = n ⇔ Ran B | Q = R n ⇔ Ker B | Q T = Ran B | Q ⊥ = {0} ⇔ S = n-1 k=0 Ker Q(B T ) k = Ker B | Q T = {0},
where ⊥ denotes the orthogonality with respect to the canonical Euclidean structure. This ends the proof of Lemma 4.1.

A technical estimate.

In this subsection, we give the proof of the estimate (3.16) which has a key role in the proof of Proposition 3.1 in Section 3. To that end, we will exploit the equivalence of norms in finite-dimensional normed vector spaces applied with Hardy's norms, as well as compactness arguments, inspired by techniques used in [START_REF] Alphonse | Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects[END_REF] (Section 4).

Proposition 4.2. In the general case, there exist some positive constants c > 0 and T > 0 such that for all 0 ≤ t < T and ξ ∈ R n , (4.1)

1 0 Qe αtB T ξ 2 dα ≥ c r k=0 t 2k Q(B T ) k ξ 2 .
In the particular case where the matrix B is nilpotent of order K ≥ 1, there exists another positive constant c 0 > 0 such that for all t > 0 and ξ ∈ R n , (4.2)

1 0 Qe αtB T ξ 2 dα ≥ c 0 K-1 k=0 t 2k Q(B T ) k ξ 2 .
Proof. In order the simplify the notations, we set for all t ≥ 0 and ξ ∈ R n , (4.3)

q t (ξ) = 1 0 Qe αtB T ξ 2 dα = Qe αtB T ξ 2 L 2 (0,1) .
Notice that in the above L 2 (0, 1) norm, the parameter α ∈ (0, 1) stands for the variable of integration. This notation will be used throughout the proof each time a L 2 (0, 1) norm appears. Moreover, the notation α will be used once as a polynomial variable for a Hardy's norm H 1 on (R r [α]) n , see (4.5) just after. Minkowski's inequality implies that for all t ≥ 0 and ξ ∈ R n , (4.4)

q t (ξ) ≥ r k=0 (αt) k k! Q(B T ) k ξ L 2 (0,1) - k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1)
.

We focus on controlling the two terms appearing in the right-hand side of the above estimate. First, notice that on the finite-dimensional vector space (R r [α]) n , the Hardy's norm

• H 1 defined by (4.5) r k=0 y k α k H 1 = r k=0 k!|y k |, y 1 , . . . , y r ∈ R n ,
is equivalent to the standard Lebesgue's norm • L 2 (0,1) given by r k=0

y k α k 2 L 2 (0,1) = 1 0 r k=0 y k α k 2 dα, y 1 , . . . , y r ∈ R n .
This implies that there exists a positive constant c 1 > 0 such that for all t ≥ 0 and ξ ∈ R n , (

(αt

) k k! Q(B T ) k ξ L 2 (0,1) ≥ c 1 r k=0 t k Q(B T ) k ξ , since ∀t ≥ 0, ∀ξ ∈ R n , r k=0 (αt) k k! Q(B T ) k ξ ∈ (R r [α]) n .
In view of (4.1) and (4.4), it remains to check that the remainder term

k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1)
, can be controlled by r k=0 t k √ Q(B T ) k ξ . Precisely, we will prove that there exist some positive constants c 2 > 0 and t 1 > 0 such that for all 0 ≤ t < t 1 and ξ ∈ S ⊥ , (4.7)

k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1) ≤ c 2 t r k=0 t k Q(B T ) k ξ .
Once the estimate (4.7) is established, we deduce from (4.4) and (4.6) that for all 0 ≤ t < t 1 and ξ ∈ S ⊥ ,

q t (ξ) ≥ (c 1 -c 2 t) r k=0 t k Q(B T ) k ξ .
This estimate combined with the triangular inequality implies that there exist other positive constants c > 0 and T > 0 such that for all 0 ≤ t < T and ξ ∈ S ⊥ , (4.8)

q t (ξ) ≥ c r k=0 t 2k Q(B T ) k ξ 2 .
Moreover, for all 0 ≤ t < T , both quadratic forms q t and r k=0 t 2k | √ Q(B T ) k • | 2 vanish on the vector space S from (3.11), which proves that the estimate (4.8) can be extended to all 0 ≤ t < T and ξ ∈ R n since R n = S ⊕ S ⊥ , according to the following elementary lemma whose proof is straightforward and omitted here Lemma 4.3. Let E be a real finite-dimensional vector space and q 1 , q 2 be two non-negative quadratic forms on E. If E = F ⊕ G is a direct sum of two vector subspaces such that q 1 ≤ q 2 on F and q 1 , q 2 both vanish on G, then q 1 ≤ q 2 on E.

We therefore need to check that the estimate (4.7) actually holds to end the proof of (4.1). First, notice that there exists a positive constant c 3 > 0 such that for all 0 ≤ t ≤ 1 and ξ ∈ R n , (4.9)

k≥r+1 (αt) k k! Q(B T ) k ξ L 2 (0,1) = t r+1 k≥r+1 t k-r-1 α k k! Q(B T ) k ξ L 2 (0,1)
≤ c 3 t r+1 |ξ|.

On the other hand, it follows from the definition (2.2) of the integer 0 ≤ r ≤ n -1 that there exists a positive constant c 4 > 0 such that for all 0 ≤ t ≤ 1 and ξ ∈ S ⊥ , (4.10)

r k=0 t k Q(B T ) k ξ ≥ t r r k=0 Q(B T ) k ξ ≥ c 4 t r |ξ|,
the orthogonality being taken with respect to the canonical Euclidean structure of R n . Combining (4.9) and (4.10), we obtain that for all 0 ≤ t ≤ 1 and ξ ∈ S ⊥ , k≥r+1

αt) k k! Q(B T ) k ξ L 2 (0,1) ≤ c 3 t c 4 r k=0 t k Q(B T ) k ξ . ( 
This ends the proof of the estimate (4.7).

When the matrix B is nilpotent of order K ≥ 1, the matrix B T is also nilpotent with the same order and we deduce that

∀t ≥ 0, ∀ξ ∈ R n , Qe αtB T ξ ∈ (R K-1 [α]) n .
The finite-dimensional argument of the beginning of this proof and the triangle inequality then allow to obtain the existence of a positive constant c 0 > 0 such that for all t ≥ 0 and ξ ∈ R n ,

q t (ξ) ≥ c 0 K-1 k=0 t 2k Q(B T ) k ξ 2 .
This ends the proof of the estimate (4.2).

4.3.

Study of the term M t . To end this appendix, we establish the estimate (3.20). The proof of the following proposition follows quite line to line the ones of [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Subsection 3.2) and is presented for the sake of completeness of the present work.

Proposition 4.4. There exist some positive constants c > 0 and T > 0 such that for all 0 < t < T ,

(4.11) sup ξ∈S n-1 ∩S ⊥ 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2s dα -1 2s ≤ c.
When the matrix B is nilpotent, the above estimate holds for all t > 0.

Proof. Keeping the notation (3.19) from the proof of Proposition 3.1, we consider the term M t defined for all t > 0 by (4.12)

M t = sup ξ∈S n-1 ∩S ⊥ 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2s dα -1 2s .
Given t > 0, let us first check that the term M t is well-defined. If the vector ξ ∈ S n-1 ∩ S ⊥ satisfies 1 0

Qe αtB T ξ p dα = 0, for some p ∈ {2, 2s}, we deduce that ∀α ∈ [0, 1], Qe αtB T ξ = 0.

By differentiating this identity with respect to α and evaluating in α = 0, we deduce that ∀k ∈ {0, . . . , r}, Q(B T ) k ξ = 0.

We obtain from (2.2) that ξ ∈ S, which is not possible since ξ ∈ S n-1 ∩ S ⊥ . We therefore proved that

∀p ∈ {2, 2s}, ∀ξ ∈ S n-1 ∩ S ⊥ , 1 0 Qe αtB T ξ p dα > 0.
Moreover, for all p ∈ {2, 2s}, the functions

ξ ∈ S n-1 ∩ S ⊥ → 1 0 Qe αtB T ξ p dα,
are continuous on the compact set S n-1 ∩ S ⊥ . This implies that the term M t is well defined and satisfies 0 < M t < +∞.

In the remaining of this proof, we will widely use the following lemma whose proof is straightforward and can be found e.g. in [START_REF] Alphonse | Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability[END_REF] (Lemma 3.4). Lemma 4.5. Let E be a real finite-dimensional vector space and L 1 , L 2 : E → R + be two continuous functions satisfying for all j ∈ {1, 2}, ∀λ ≥ 0, ∀P ∈ E, L j (λP ) = λL j (P ),

and

∀P ∈ E \ {0}, L j (P ) > 0. Then, there exists a positive constant c > 0 such that ∀P ∈ E, L 1 (P ) ≤ cL 2 (P ).

We now tackle the proof of the estimate (4.11). For all t > 0 and ξ ∈ S n-1 ∩ S ⊥ , we consider

M t (ξ) = 1 0 Qe αtB T ξ 2 dα 1 2 1 0 Qe αtB T ξ 2s dα -1 2s .
Let us first assume that the matrix B is nilpotent of order K ≥ 1. Since the matrix B T is also nilpotent with the same index K, we have that

∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ , Qe αtB T ξ ∈ (R K-1 [α]) n .
It follows from Lemma 4.5 applied with the real finite-dimensional vector space E = (R K-1 [α]) n and the homogeneous continuous functions (4.13) L 1 (P ) =

1 0 P (α) 2 dα 1 2
and L 2 (P ) =

1 0 P (α) 2s dα 1 2s
, that there exists a positive constant c > 0 such that for all t > 0 and ξ

∈ S n-1 ∩ S ⊥ , M t (ξ) ≤ c.
This ends the proof of Proposition 4.4 in this particular case. Back to the case were the matrix B is general, we consider P t,ξ and R t,ξ the functions defined for all t > 0, ξ ∈ S n-1 ∩ S ⊥ and α ∈ [0, 1] by (4.14)

P t,ξ (α) = r k=0 α k t k k! Q(B T ) k ξ and R t,ξ (α) = Qe tαB T ξ -P t,ξ (α).
It is fundamental in the following to notice that for all t > 0 and ξ ∈ S n-1 ∩ S ⊥ , the coordinates of the function P t,ξ are polynomials of degree less than or equal to r, that is

(4.15) ∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ , P t,ξ ∈ (R r [α]) n .
By using (4.15) and Lemma 4.5 with the real finite-dimensional vector space E = (R r [α]) n and the homogeneous continuous functions defined in (4.13) anew, we obtain the existence of a constant c > 0 such that for all t > 0 and ξ ∈ S n-1 ∩ S ⊥ , .

We aim at establishing uniform upper bounds with respect to t > 0 and ξ ∈ S n-1 ∩ S ⊥ for these two factors. To that end, we equip the vector space (R r [α]) n of the Hardy's norm .

According to the definition (2.2) of the vector space S, we notice that ∀ξ ∈ S n-1 ∩ S ⊥ , max It follows that ∀t ∈ (0, 1], ∀ξ ∈ S n-1 ∩ S ⊥ , P t,ξ H ∞ = max k∈{0,...,r}

t k √ Q(B T ) k ξ k! ≥ εt r ,
and we deduce from (4.17 .

On the other hand, it follows from Taylor's formula with remainder term that ∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ , ∀α ∈ [0, 1], R t,ξ (α) = (tα) r+1 r! 1 0

(1 -θ) r Q(B T ) r+1 e tαθB T ξ dθ.

Therefore, there exists a positive constant M > 0 such that (4.19) ∀t ∈ (0, 1], ∀ξ ∈ S n-1 ∩ S ⊥ , R t,ξ L ∞ [0,1] ≤ M t r+1 .

With these estimates, we can obtain upper bounds on the two factors of the right-hand side of the estimate (4.16). It follows that there exist some positive constants c 0 > 0 and 0 < t 0 < 1 such that for all 0 < t < t 0 and ξ ∈ S n-1 ∩ S ⊥ , ≥ c 0 .

As a consequence of (4.16), (4.20) and (4.21), there exists a positive constant c 1 > 0 such that ∀t ∈ (0, t 0 ), ∀ξ ∈ S n-1 ∩ S ⊥ , M t (ξ) ≤ c 1 .

This ends the proof of the estimate (4.11) in the general case.
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  ξ ∈ S n-1 ∩ S ⊥ → max k∈{0,...,r} √ Q(B T ) k ξ k! ,is continuous on the compact set S n-1 ∩ S ⊥ , we deduce that there exists a positive constant ε > 0 such that∀ξ ∈ S n-1 ∩ S ⊥ , P 1,ξ H ∞ = max k∈{0,...,r} √ Q(B T ) k ξ k! ≥ ε.

  ∀p ∈ {2, 2s}, ∀t ∈ (0, 1], ∀ξ ∈ S n-1 ∩ S ⊥ , εt r ≤ c p

  This estimate implies that for all t > 0 and ξ ∈ S n-1 ∩ S ⊥ ,

		0	1	P t,ξ (α)	2 dα	1 2	≤ c	0	1	P t,ξ (α)	2s dα	1 2s	.
	(4.16)	M t (ξ) ≤ c	   	0	1	1	Qe tαB T ξ P t,ξ (α) 2 dα 2 dα	   	1 2    	1	0	1	P t,ξ (α) Qe αtB T ξ 2s dα 2s dα	   	1 2s
							0							0	

  • H ∞ defined by ∀P ∈ (R r [α]) n , P H ∞ = max We deduce anew from (4.15) and Lemma 4.5 applied with the real finite-dimensional vector space E = (R r [α]) n and the homogeneous continuous functions • H ∞ and (4.13) that (4.17) ∀p ∈ {2, 2s}, ∃c p > 0, ∀P ∈ (R r [α]) n , P H

	k∈{0,...,r}	|P (k) (0)| k!	.

∞ ≤ c p 1 0 |P (α)| p dα 1 p

1 .

 1 By using(4.14) and applying the triangle inequality for the L 2 norm, we first obtain ∀t > 0, ∀ξ ∈ S n-1 ∩ S ⊥ ,

	   	0	1	1	Qe tαB T ξ P t,ξ (α) 2 dα 2 dα	   	1 2	≤ 1 +	   	0	1 1	R t,ξ (α) P t,ξ (α)	2 dα 2 dα	   	1 2
			0							0				

.

  According to(4.18) and (4.19), we therefore get that for all 0 < t ≤ 1 and ξ ∈ S n-1 ∩ S ⊥ , Notice that the classical estimate∀ξ, η ∈ R n , |ξ + η| 2s ≤ 2 (2s-1) + (|ξ| 2s + |η| 2s ),with (2s -1) + = max(2s -1, 0), implies the following one∀ξ, η ∈ R n , 2 -(2s-1) + |ξ| 2s -|η| 2s ≤ |ξ -η| 2s .We therefore deduce from (4.14) that for all 0 < t ≤ 1 and ξ ∈ S n-1 ∩ S ⊥ ,

	(4.20)	   	0	1	1		Qe tαB T ξ P t,ξ (α) 2 dα 2 dα	   	1 2	≤ 1 +	c 2 M t r+1 εt r	= 1 +	c 2 M ε	t ≤ 1 +	c 2 M ε	.
				0											
	2. 1			Qe tαB T ξ	2s dα				1	R t,ξ (α)	2s dα
				0		1	P t,ξ (α)	2s dα		≥ 2 -(2s-1) + -	0	1	P t,ξ (α)
					0											0
					0	1 1	R t,ξ (α) P t,ξ (α)	2s dα 2s dα	≤		c 2s M t r+1 εt r	2s	=	c 2s M ε	t	2s	,
					0									
	from which we deduce that						
						0	1	1	Qe tαB T ξ P t,ξ (α) 2s dα 2s dα	≥ 2 -(2s-1) + -	c 2s M ε	t
							0								

2s 

dα . Moreover, it follows from (4.18) and (4.19) that for all 0 < t ≤ 1 and ξ ∈ S n-1 ∩ S ⊥ , 2s .