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Abstract: This paper deals with the stabilization of 1-D linear hyperbolic systems with
saturated feedback boundary control. By following a Lyapunov approach, sufficient conditions
for global exponential stability in the L2 norm are given in the form of matrix inequalities.
Numerical examples are presented to illustrate the theoretical results.
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1. INTRODUCTION

Partial differential equations are mathematical expressions
which are found to be of great importance in the modeling
of many physical systems that are described simultane-
ously via spatial and temporal variables. Light propa-
gation in optic fibers, blood flow in the vessels, plasma
in laser, liquid metals in cooling systems, road traffic,
acoustic waves, and electromagnetic waves are all examples
of systems modeled via PDEs that can be seen in civil, nu-
clear, mechanical, quantum, and chemical engineering (see
Bastin, Georges and J.-M Coron (2016) and Krstic and
Smyshlyaev (2008) for more examples). That is why the
study of control of PDEs, while challenging, is inevitable.
The presence of actuator saturation in the system im-
mediately threatens the controller by the risks of poor
performance and instability (Hu and Lin, 2001). That is
why control engineers almost always take into account
this saturation in the system modeling and controller
design to protect the actuators and maintain stability.
Researchers have been studying several methods to tackle
saturation problems in closed-loop systems as we can see
in (Tarbouriech et al., 2011), (Zaccarian and Teel, 2011)
and (Gomes da Silva Jr and Tarbouriech, 2005). However,
stability analysis of PDEs in the presence of saturation is
a relatively new topic and is still an open research area.
The aim of this paper is to focus control design of hyper-
bolic systems in the presence of saturation using boundary
control (see more on global stabilization with bounded
controls in Teel (1992) and Sontag (1984)). Several ap-
proaches exist for stability analysis of infinite dimensional
systems such as the Lyapunov approach or the frequency
domain approach (Jayawardhana et al., 2011). We use
the Lyapunov stability approach (Jacob et al., 2019) by
defining a suitable Lyapunov function to determine the
regions of stability and constraints that the system ex-
hibits. This is done using the help of LMIs to see whether
eigenvalues lie in the right-hand side as in (Ferrante and
Prieur, 2018). In addition, we will use a sector condition
given by (Tarbouriech et al., 2011) to encapsulate the
saturation into a conic sector.

This paper is organized as follows. In Section 2, the prob-
lem statement is defined by presenting the class of one-
dimensional hyperbolic models on an appropriate domain
and the class of nonlinear controllers. In Section 3, the
wellposedness of the system and the conditions of global
exponential stability are presented along with their proofs.
In Section 4, our theoretical results are verified using a
different numerical examples of a given hyperbolic system.
Section 5 contains the conclusion and future perspective.

Notation:

The set R>0 represents the set of positive real scalars, Dnp
denotes the set of real diagonal positive definite matrices
of dimension n, and Xt and Xz represents the partial
derivatives of the function X with respect to time t and
space z, respectively. For a matrix A ∈ Rn×m, A> denotes
the transpose of A. In partitioned symmetric matrices, the
symbol * represents symmetric blocks. The letter I denotes
the identity matrix. Let U ⊂ R, V ⊂ Rn, and f : U −→ V ,
we denote by ||f ||L2 = (

∫
U
|f(x)|2dx)

1
2 the L2 norm of f .

In particular, we say that f ∈ L2(U, V ) if ||f ||L2
is finite.

2. PROBLEM STATEMENT

We consider the following linear hyperbolic system with a
boundary input:

Xt(t, z) + ΛXz(t, z) = 0 ∀(t, z) ∈ R>0 × (0, 1)
X(t, 0) = HX(t, 1) +Bu(t) ∀t ∈ R≥0
X(0, z) = X0(z) ∀z ∈ [0, 1]

(1)

where z 7→ X(., z) ∈ Rn is the state, t ∈ R≥0 and z ∈ [0, 1]
are the two independent variables, respectively, ”time” and
”space”, and Λ = diag(λ1, λ2, . . . , λn) ∈ Dnp .
The system is controlled at the boundary z = 0 via the
input u ∈ Rm. Matrices H ∈ Rn×n and B ∈ Rn×m are
given. Let u = σ(KX(·, 1)) where K ∈ Rm×n is the
control gain to be designed and the function u 7→ σ(u)
is the symmetric decentralized saturation function with
saturation levels u1, u2, . . . , um ∈ R>0, whose components
for each u ∈ Rm are defined as



σ(u)i = σ(ui) := min(|ui|, ui)sign(ui) i = 1, 2, . . . ,m
(2)

Our goal is to design a static feedback control law under
the effect of saturation, which stabilizes the system with
improved convergence rate with respect to open-loop; i.e,
when u ≡ 0. For convenience, we define the function u 7→
φ(u) as the symmetric decentralized deadzone nonlinearity
given by (see Tarbouriech et al. (2011), page 40):

φ(ui) := σ(ui)− ui (3)

Hence, the boundary condition can be written as:

X(t, 0) = (H +BK)X(t, 1) +Bφ(KX(t, 1)) (4)

which leads to the following representation of the closed-
loop system:

Xt(t, z) + ΛXz(t, z) = 0 ∀(t, z) ∈ R>0 × (0, 1)

X(t, 0) = (H +BK)X(t, 1) +Bφ(KX(t, 1))
∀t ∈ R≥0

X(0, z) = X0(z) ∀z ∈ [0, 1]

(5)

From now on, we will refer to φ(KX(t, 1)) simply as φ.

3. MAIN RESULTS

In this section, we prove that the closed-loop system
(5) is wellposed using results in (Hastir et al., 2019)
and (Tucsnak and Weiss, 2014). In addition, we propose
sufficient conditions for the exponential stability of (5) in
the form of matrix inequalities.

3.1 Wellposedness of the Cauchy Problem

ΣP

σ(·)

u y

Fig. 1. Representation of Σσ

Proposition 1. For every initial state X0 ∈ L2((0, 1);Rn),
the closed-loop system (5) admits a unique solution X ∈
C([0,∞);L2((0, 1);Rn)).

Proof. Consider the system:

ΣP


Xt(t, z) + ΛXz(t, z) = 0 ∀(t, z) ∈ R>0 × (0, 1)
X(t, 0) = HX(t, 1) +Bu(t) ∀t ∈ R≥0
X(0, z) = X0(z) = 0 ∀z ∈ [0, 1]
y(t) = KX(t, 1) ∀t ∈ R≥0

(6)
Consider the interconnection Σσ (see Figure 1) of the
system ΣP and feedback σ by taking:

u(t) = σ(t) (7)

According to (Bastin, Georges and J.-M Coron, 2016), for
every input u ∈ L2

loc([0,∞);Rm) and for every initial state
X0 ∈ L2((0, 1);Rn), system ΣP admits a unique solution
X ∈ C([0,∞);Rn) and y ∈ L2

loc([0,∞];Y ). In particular,

the solution can be written in the form of four families of
bounded linear operators as:

X(t) = TtX0 + Φtu, (8)

Pty = ΨtX0 + Ftu (9)

for all t ∈ [0,∞). For an interval [0, t], Pt denotes the
operator of truncation of a vector-valued function y defined
on a larger set than [0, t], to [0, t]. Moreover, on any
bounded time interval [0, t], 0 < t < ∞, X(t) and Pty
depend continuously on X0 and on Ptu.
In particular, by the method of characteristics, we can
write:

Xi(t, z) =


0, t ≤

z

λi
n∑

j=1

HijXj(t−
z

λi
, z) +

m∑
k=1

Bijuk(t−
z

λi
), t >

z

λi

where i = 1, 2, . . . , n

yi(t) =


0 t ≤

1

λi

n∑
j=1

KijHijXj(t−
1

λi
, 1) +

m∑
k=1

KijBijuk(t−
1

λi
), t >

1

λi

(10)

Let δ := inft>0 ||Ft||. From (10), it follows that for
t ∈ [0, 1

λ ), Ft = 0, so δ = 0. Each component σi of
σ is differentiable almost everywhere and |σ′i(ui)| ≤ 1
for almost all ui ∈ R. Thus, the saturation function
is Lipschitz continuous with Lipschitz constant L = 1.
According to (Tucsnak and Weiss, 2014), since δL = 0 < 1,
the closed-loop system Σσ is wellposed and thus admits
unique solution X ∈ C([0,∞);L2((0, 1);Rn)). 2

3.2 Sufficient Conditions for Stability Analysis

In this section, we make use of the following global
sector condition to derive sufficient conditions for global
exponential stability of (5).

Lemma 1. [Tarbouriech et al. (2011), page 41] For all
ν ∈ Rm, the nonlinearity φ(ν) satisfies the following
inequality:

φ(ν)>T (φ(ν) + ν) ≤ 0 (11)

for any matrix T ∈ Dmp .

Theorem 1. System (5) is globally exponentially stable in
the norm L2((0, 1);Rn)) if there exist P ∈ Dnp , T ∈ Dmp ,

K ∈ Rm×n, and µ ∈ R>0 such that the following inequality
holds:

N :=

(
A>PΛA− e−µPΛ A>PΛB −K>T

∗ B>PΛB − 2T

)
≤ 0 (12)

where A := H +BK.

Proof. Let P ∈ Dnp and µ ∈ R>0. Consider the following
Lyapunov functional candidate:

V (X) =

∫ 1

0

e−µzX>PXdz (13)

The formal computation of the time derivative of the
Lyapunov function along the solutions to (5) yields:



V̇ (X(t, ·)) =

∫ 1

0

e−µz

(
∂X

∂t

>
PX +X>P

∂X

∂t

)
dz

∀t ≥ 0

Since P and Λ are both diagonal matrices, and using (1),
we obtain:

V̇ (X(t, ·)) = −
∫ 1

0

e−µz
∂

∂z
(X>PΛX)dz ∀t ≥ 0

performing integration by parts:

V̇ (X(t, ·)) = −µ
∫ 1

0

e−µzX>PΛXdz

+X(t, 0)>PΛX(t, 0)− e−µX(t, 1)>PΛX(t, 1)

∀t ≥ 0

and finally using the boundary condition in (5):

V̇ (X(t, ·)) = −µ
∫ 1

0

e−µzX>PΛXdz +

(
X(t, 1)
φ

)>
(
A>PΛA− e−µPΛ A>PΛB

∗ B>PΛB

)(
X(t, 1)
φ

)
∀t ≥ 0

where A := H +BK. Then, ∀t ≥ 0

V̇ (X(t, ·)) ≤ −µλmin(Λ)V (X(t, ·))

+

(
X(t, 1)
φ

)>
M

(
X(t, 1)
φ

)
(14)

where λmin(Λ) is the smallest eigenvalue of the matrix Λ,
and

M :=

(
A>PΛA− e−µPΛ A>PΛB

∗ B>PΛB

)
(15)

Using (11), we have:

V̇ (X(t, ·)) ≤ V̇ (X(t, ·))− 2φ(KX(1, t))>T (φ(KX(1, t)
+KX(1, t)) ∀t ≥ 0

(16)
We then can write:(
X(t, 1)
φ

)>
M

(
X(t, 1)
φ

)
≤
(
X(t, 1)
φ

)>
N

(
X(t, 1)
φ

)
(17)

∀t ≥ 0

where N is defined in (12). Hence, (12), (14) and (16) yield
that

V̇ (X(t, ·)) ≤ −µλminV (X(t, ·)) ∀t ≥ 0

We conclude that system (5) is globally exponentially
stable if N ≤ 0, thus concluding the proof. 2

Remark 1. The derivation of the Lyapunov function was
technically done for C1-solutions. However, similarly as in
(Bastin, Georges and J.-M Coron (2016), page 67), it is
shown that the stability analysis is also valid for the L2-
solutions. In other words, the above Lyapunov analysis can
be extended to weak solutions. ◦
Remark 2. The presence of the term µ in equation (14)
contributes to enhancing the convergence rate of the L2

system state. ◦

The result given next provides the representation of (12)
in the form of a linear matrix inequality (5).

Corollary 1. Assume there exist µ > 0, Q ∈ Dnp , S ∈
Dmp , and W ∈ Rm×n such that−QΛ−1 HQ+BW BS

∗ −e−µΛQ −W>
∗ ∗ −2S

 ≤ 0 (18)

if we set the control gain by K = WQ−1, then system (5)
is globally exponentially stable.

Proof. Applying the Schur complement lemma (see Bern-
stein (2009)) to (12) yields:−Λ−1P PH + PBK PB

∗ −e−µPΛ −K>T
∗ ∗ −2T

 ≤ 0

which is equivalent to:

C>

−Λ−1P PH + PBK PB
∗ −e−µPΛ −K>T
∗ ∗ −2T

C ≤ 0

where C = C> =

P−1 0 0
∗ P−1 0
∗ ∗ T−1


The previous inequality is equivalent to:−P−1Λ−1 HP−1 +BKP−1 BT−1

∗ −e−µΛP−1 −P−1K>
∗ ∗ −2T−1

 ≤ 0

By setting P−1 = Q, T−1 = S and W = KP−1, the
previous inequality turns into (18). So, inequality (18) is
equivalent to (12).−QΛ−1 HQ+BW BS

∗ −e−µΛQ −W>
∗ ∗ −2S

 ≤ 0 (19)

where P−1 = Q, T−1 = S and W = KP−1. 2

Remark 3. It is important to note that the condition
given in (19) is nonlinear because of e−µQ but we deal with
this issue by performing a line search on µ (see Ferrante
and Prieur (2018)). ◦

3.3 Application on a Scalar System

In this section, we consider the following closed-loop scalar
hyperbolic system:

Xt(t, z) + ΛXz(t, z) = 0 ∀(t, z) ∈ R>0 × (0, 1)

X(t, 0) = (H +K)X(t, 1) + φ(KX(t, 1))
∀t ∈ R≥0

X(0, z) = X0(z) ∀z ∈ [0, 1]
(20)

where z 7→ X(., z) ∈ R, t ∈ R≥0 and z ∈ [0, 1]. The terms
H and K ∈ R and P , Λ, and T ∈ R>0. Let R = PΛ. Based
on Section 3.2, system (20) is globally exponentially stable



in the norm L2((0, 1);R) if the following inequality holds:

Ns :=

(
(H +K)2R−R (H +K)R−KT

∗ R− 2T

)
≤ 0 (21)

where matrix Ns ∈ R2×2. In this case, Ns ≤ 0 if and
only if the determinant det(Ns) ≥ 0 and trace(Ns) ≤ 0.
Following the procedure done in (Prieur et al., 2016), we
compute the determinant and trace of this matrix, and
provide conditions to ensure Ns ≤ 0.
For simplicity of the calculation, consider µ = 0. However,
due to the continuity with respect to µ, we know that if
inequality (12) holds for µ = 0, then there exist ε such the
that inequality (12) also holds for µ ∈ [0, ε].

Corollary 2. Inequality (21) admits a feasible solution if
and only if H ∈]− 1, 1[.

Proof.
The determinant of matrix Ns is given by:

det(Ns) = −2T (H2R−R)− (R+KT )2

−2RKT (H + 1)
(22)

The trace of matrix Ns is given by:

trace(Ns) = (H +K)2R− 2T (23)

Case 1: |H| < 1

As stated earlier, for matrix (21) to be negative semi-
definite, (22) must be nonnegative and (23) nonpositive,
simultaneously. To simplify the problem, we take several
values of H between −1 and 1 and fix R = 1. We allow
K and T to be free and observe the 3D curves generated
by the determinant and trace expressions. Figures 2 and 3
represents the K and T points at which the two conditions
are satisfied simultaneously for H = 0.5 and H = −0.99
respectively. Similar graphs are generated for all other
values of H within this range. As noticed, there exists
several T and K pairs to solve this problem which means
that global exponential stability for system (20) using
(21) as a sufficient condition is feasible when H is strictly
between 1 and -1.

Case 2: H ≥ 1 or H ≤ −1

We repeat the procedure done for Case 1. We try sev-
eral values for H including -1 and 1. Numerical analysis
shows that there exist no pair for K and T to solve the
problem given for values of H within the range of this case.
Therefore, when H is equal 1 or -1 and when H > 1 or
H < −1, the problem of finding a suitable K to render
system (20) globally exponentially stable using (21) as a
sufficient condition is unfeasible. 2

4. NUMERICAL EXAMPLES

This section provides numerical results based on different
H selections. We use Matlab to solve initial-boundary
value problems for first order hyperbolic equations. See
(Shampine, 2005) for more details. To do that, we solve
(18) in Matlab using the YALMIP package (Löfberg,
2004) combined with the solver SDPT3 (Toh et al., 1999).
Consider the example given in (Ferrante and Prieur, 2018)
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Fig. 2. Feasible region of the pair K,T where the satisfied
conditions for global exponential stability are satisfied
when H = 0.5
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Fig. 3. Feasible region of the pair K,T where the satisfied
conditions for global exponential stability are satisfied
when H = −0.99

in which we have the following data:

Λ =

(
1 0

0
√

2

)
, B = I and the initial condition

z ∈ [0, 1] 7→ X0(z) := 10

(
cos(4πz)− 1
cos(2πz)− 1

)
(24)

Consider the saturation level u =

(
3
3

)
.

We consider three cases with different selections for the
matrix H to assess the performance and stability of system
(5) in different scenarios. Numerical experiments show that
µ can be arbitrary large when H has eigenvalues strictly
between -1 and 1. This means that the presence of the
controller provides better convergence rate than in the case
of an open-loop system.



• Case 1: H =

(
0.5 0.3
0.3 0.6

)
, µ = 0.0001 then,

K =

(
−0.415 −0.42
−0.37 −0.48

)
In this case we have a Schur matrix (eigenvalues

Fig. 4. Case 1: The time evolution of the spatial norm
L2 of X(t, ·) in closed-loop (solid-line) and open-loop
(dashed-line)

strictly between -1 and 1, and, as expected, we ob-
serve a stable response in Figure 4 where starting
from an initial L2 norm of X(t, ·) of value 17.7,
the system converges with relatively high speed to
zero. In the same figure, we observe the improved
convergence rate of the closed-loop system compared
to the open-loop one (about 27 time units faster). It
is also important to note that the control values are
exhibiting saturation levels in Case 1 as seen in Figure
5.

• Case 2: H =

(
1 0
0 1

)
, µ = 0.001 then, N is unstable

and no feasible solution for K. When we consider a
marginally stable matrix H = I, we obtain no feasible
solution for inequality (12).

• Case 3: H =

(
−2 1
0 −1

)
, µ = 0.001 then, N is

unstable and no feasible solution for K.
When we consider H with relatively high values of
eigenvalues (-2 and -1), we obtain no feasible solution
for inequality (12).

5. CONCLUSION

In this paper, exponential stabilization of 1-D hyperbolic
systems is studied using a saturated boundary controller.
Lyapunov stability analysis and a global sector condition
approach are used to derive a sufficient condition for
exponential stability. An application on scalar system
reveals the intervals of H on which a feasible controller can
be designed. The results show that, using this saturated
controller, open-loop exponential stability is necessarily
needed to achieve closed-loop global exponential stability.
Future work includes the extension to local exponential
stability in order to relax the condition of open-loop
stability condition.

Fig. 5. Time evolution of σ1(K1X1(t, 1)) (solid-line) and
σ2(K2X2(t, 1)) (dashed-line) with respect to time for
Case 2
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